EP0238717A1 - Steerable missile - Google Patents

Steerable missile Download PDF

Info

Publication number
EP0238717A1
EP0238717A1 EP86115867A EP86115867A EP0238717A1 EP 0238717 A1 EP0238717 A1 EP 0238717A1 EP 86115867 A EP86115867 A EP 86115867A EP 86115867 A EP86115867 A EP 86115867A EP 0238717 A1 EP0238717 A1 EP 0238717A1
Authority
EP
European Patent Office
Prior art keywords
rotor
missile
actuators
control
rudder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP86115867A
Other languages
German (de)
French (fr)
Other versions
EP0238717B1 (en
Inventor
Walter Kranz
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Airbus Defence and Space GmbH
Original Assignee
Messerschmitt Bolkow Blohm AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Messerschmitt Bolkow Blohm AG filed Critical Messerschmitt Bolkow Blohm AG
Publication of EP0238717A1 publication Critical patent/EP0238717A1/en
Application granted granted Critical
Publication of EP0238717B1 publication Critical patent/EP0238717B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F42AMMUNITION; BLASTING
    • F42BEXPLOSIVE CHARGES, e.g. FOR BLASTING, FIREWORKS, AMMUNITION
    • F42B10/00Means for influencing, e.g. improving, the aerodynamic properties of projectiles or missiles; Arrangements on projectiles or missiles for stabilising, steering, range-reducing, range-increasing or fall-retarding
    • F42B10/60Steering arrangements
    • F42B10/62Steering by movement of flight surfaces
    • F42B10/64Steering by movement of flight surfaces of fins

Definitions

  • the invention relates to a rotor control system for missile systems.
  • the aim of the invention is to provide rotor positioning systems, in particular rudder systems or spoiler systems, with which the missile can be controlled with as little effort as possible.
  • the specified rotor positioning systems should also be possible for controls of relatively small missiles, with low-inertia systems being proposed.
  • effective inertial rotor positioning systems can be specified.
  • the invention is characterized by the features of claim 1.
  • the rotor parking system is characterized by one or angled parallel to the missile longitudinal axis to a rotatable or pivotable bracket which supports the actuators for the transverse force generation.
  • the actuators are actuated by their metered coupling to the missile via a control mechanism .
  • the direction of the transverse force is determined by the momentary angular position of the actuators relative to the environment during the coupling.
  • the transverse force level or the transverse pulse is determined by the coupling duration.
  • the energy for actuating the actuators is preferably normal from the rotary drive of the rotor taken.
  • the actuating elements are actuated by their dosed coupling to the missile via the control mechanism, whereby a further rotor can be located between the missile and the control mechanism (e.g. a rotation of the body is then unnecessary for the function of different variants).
  • Additional drives are possible, e.g. B. by a rudder with the help of a motor between the two rotors or by a rotor between the second rotor and the missile.
  • the main components of the rotor positioning system are: a rotor from console, rotary drive for the rotor, actuators and a control part for the rotor; the missile with the control part for the missile.
  • Actuators are used aerodynamic or aquadynamic thrusters, aerodynamic or aquadynamic jet spoilers, Thrusters, Flaps or the like.
  • Possible rotary drives for the rotor are: entangled aerodynamic, aquadynamic or jet spoilers (hot gas), Drives between missile and rotor such.
  • the measurement of the rotational position of individual parts is necessary for various systems in order to obtain the relation to the electrical command in the missile part.
  • the measurement option (by potentiometer, magnetic or optical tap) is not listed here.
  • Rotor positioning system rotor rudder system I Console: Part A with high inertia around axis xx.
  • Rotary drive of the rotor The entangled rudder pair, part B, or an extra rudder pair generates a rolling moment.
  • Control part rotor part C with lever transmission 8 to part B.
  • the control part for the FK missile is the braking system E.
  • Command ZERO brake system E is not activated: rotor runs continuously, driven by e.g. B. crossed oars pair B.
  • Brake system is activated: Part C is braked compared to part A and rotates the rudder pair B via pin 8, so that a lateral force is generated.
  • Rotor positioning system rotor rudder system II Console: Part A with slight inertia around axis xx; Rotary drive of the rotor: crossed rudder pair B; Actuators: Rudder 2 (rudder 1 firmly connected to part A); Control part rotor: part C These parts form the rotor.
  • Command zero brake system is not activated, rotor runs continuously, driven by a twisted rudder pair B.
  • Brake system is activated: Part C is braked in relation to A and rotates rudder 2 via pin 8. The lateral force is created by the rudder pair, which is rotated on average. The rotary drive is also supported by the increased entanglement. The function is similar to that of the rotor positioning system according to FIG. 1.
  • the seeker head system essentially consists of the FK missile itself and a rotating unit A, consisting of an aerodynamic rotary drive with additional aileron action and the sensor system 1, 2, 3, and as a link between the missile and rotating unit, a braking system E.
  • the turntable turns in the opposite direction to the missile direction (around the x-axis); the missile also rotates about its x-axis with respect to the environment.
  • the mode of operation is first explained using a drop rocket, ie using a relatively slow-moving missile (FIGS. 4, 5).
  • the sensor system consists of a grommet 1 with a slit-shaped opening 2 (“acoustic tube”) and the acoustic sensor 3 itself, all of which rotate at an angle ⁇ to the x-axis, caused by the interlocked pair of wings 4.
  • the sensor system scans the bottom region 5, which is highlighted in bold in FIG. 5, with the width and length corresponding to the spout slot 2 and forms the maximum scanning region AB.
  • the rotating unit rotates freely due to the entangled pair of wings 4 by the braking system;
  • the scanning area AB decreases with decreasing distance from the missile to the ground.
  • the rotary drive is in the axis x-x (or parallel to it), so that no transverse forces can act on the missile FK; (Resistance reduction, simplification of the regulation, but at the expense of the increased effort for applying the lateral force in the event of a command; description of the function later).
  • the sensor picks up these noises and immediately initiates the braking process rotary drive against missiles.
  • the rotary unit After the rotary drive has low inertia relative to the missile, the rotary unit now rotates with the missile when the brakes are fully applied or even when the brakes are reduced. H. opposite to their original direction of rotation and also spatially opposite to the target, since the missile itself rotates in relation to the surroundings.
  • the senor loses the acoustic signal, i. H. the target again, the brake is released and the rotary drive rotates again in its original direction until the acoustic signal is detected again and the brake is switched on again.
  • This process is repeated continuously.
  • the rotating unit is spatially fixed with the axis a-a in the direction of the target, i. H. the pair of wings 4 (Fig. 1, 4) constantly generates shear force in the missile towards the target, until the acoustic signal is within the cone angle ⁇ . The result is zero command.
  • the inaccuracy is also determined by the angle .beta.
  • the angle .beta. Serves primarily to avoid having to correct every missile wobble movement.
  • an additional stabilization of the missile can be achieved, in particular if the control with transverse forces is less than the maximum transverse forces, as is shown in the solution according to FIGS. 2 and 3: here there is a forced one Rotation of the pair of wings 4 about the axis ee (corresponds to increasing transverse force generation) when the braked brake disc 6 exerts force on the eccentrically arranged bolt 8 via part 7.
  • the resetting of the pair of wings to the "transverse force zero" position is carried out by the spring 9 or aerodynamic effects on the wings.
  • the sensor signal is routed via a grinder 10 to signal processing with amplification 11 and on to the brake coil 12.
  • the very simple system listed here can preferably be used for relatively slow targets, e.g. B. Anti-tank missile, helicopter defense, ship targets etc, ie attack from above; steered slide bomb; Lift mine.
  • targets e.g. B. Anti-tank missile, helicopter defense, ship targets etc, ie attack from above; steered slide bomb; Lift mine.
  • the rudder pair rotates about the axis e-e up to a stop which, for. B. can be realized by the tightly wrapped spring 9 to part 7. Then the rudder pair together with the console will turn in the opposite direction of rotation around the axis x-x if the missile itself turns in the opposite direction to the environment: This means the possibility of generating a full command in a defined spatial direction.
  • transverse thrust nozzle according to DE-OS 33 17 583, which is supplied with gas either by ram air, but preferably by a hot gas generator. Due to the reduced moment of inertia, the impeller rotary actuator now only requires smaller dimensions or is itself replaced by a torque-generating nozzle (rotating nozzle system).
  • the senor is e.g. B. a low-inertia laser receiver.
  • the command is given analogously to Figures 1 to 4: That is. with zero command, the rotating nozzle DD constantly blows into the inner wall I z. B. the grenade FK.
  • a gate KL is braked by the braking system, the rotating unit slides axially, in this case backwards in such a way that depending on the overlap at the edge K, more or less lateral force is generated to the outside in accordance with the duration of the command.
  • the sensor S is constructed as in FIGS. 4 and 5; the measurement signals are picked up by the slip ring 10.
  • a neutral outlet 13 is also provided for the rotary nozzle.
  • the mechanical separation is to be understood so that the sensor system can rotate quickly regardless of the transverse force generator, i. H. works autonomously. This means that a more precise command formation for the transverse force generator can take place in a computer from the signals of the target and the rotation of the missile relative to the sensor system.
  • an inertial console and low-inertia actuators are provided: With extreme commands (e.g. high braking), the rudder (pair) is rotated, and with maximum deflection, the console is turned by decoupled from the control elements (rudder pair): the console continues to run - expediently supported by a separate rotary drive -, the rudder pair "remains" spatially.
  • Shear force zero command The rotor remains in rotation due to the interlocked rudders (Fig. 9a); there is no lateral force, turning requires a minimum of energy.
  • This type of control can thus be used directly for roll-stabilized missiles.
  • F is the extension system for the console A; a slide piston of the extension system F acted upon by gas G from a gas generator is designated by 21; the braking system E is constructed as in FIG. 1; a separate roller drive by pivoted fixed wings 22 for the console is provided, which can also be used for the expansion wing solution according to FIG. 10; the rear fixed rudder is designated 23, the front rudder 24, which is at the same time an actuator and rotary drive for the rotor. 8 has a non-rotatable brake magnet 25 with a brake disc 26 which acts on the control part C of the rotor.
  • FIG. 10 A variant of the transverse force generation can be seen in FIG. 10: at zero command, the expandable wings 33 and 34 disappear from the flow; in the case of braking, there is a more or less high lateral force depending on the wing spread over a -shaped profile bar 35, which runs in a cladding tube 36 and is actuated by a magnet system or the like, not shown.
  • the wings are interlaced with each other (angle ⁇ ), so that rolling moment also acts with increasing shear force, a rolling moment which counteracts that which constantly arises from the pair of wings 33, 34.
  • the same effect namely turning reversal as described above, can thus be achieved.
  • FIG. 11 shows part of a missile FK with the missile longitudinal axis 41 indicated.
  • the missile tip forms the front part of the missile with a target seeker 42, the details of which are not shown further.
  • the tip runs on ball bearings 43 around the missile.
  • the rudder axis RA is radial.
  • At least two opposite rudders are shown around the circumference of the target seeker head, one of which, the one shown here, is adjustable.
  • the rudder has a transmission mandrel 45 projecting from the rudder axis, which is assigned to a transmission stop 46 of a brake disk 47.
  • the brake disc forms the control part for the rudder and works together with a ring magnet 48 on the missile side.
  • the parts 47 and 48 form a braking system, as already explained above. From Figure 12 it can be seen that by turning on the ring magnet, the brake disc opposite the rotation of the seeker head or here a rotating part A located in the middle of the missile remains so that the rudder is turned relative to the missile longitudinal axis. If the braking is released, the brake disc rotates freely again with the transmission mandrel; the rudder is brought into the starting position by a return spring, not shown here.
  • FIG. 13a A system similar to that shown in FIG. 11 is shown in FIG. 13a.
  • the same reference numerals are used, to which a ( ⁇ ) has been added.
  • the rudder 44 ⁇ is designed so that the pressure point 51 of the rudder lies in front of the radial rudder axis.
  • a further transmission mandrel 45 ⁇ is provided, to which a brake disk 47 ⁇ is assigned.
  • Another ring magnet 48 ⁇ works together with the brake disc.
  • the operation of these parts 45 ⁇ , 46 ⁇ , 47 ⁇ , 48 ⁇ is like that of the parts 45, 46, 47, 48. Is the rudder according to the above description with the help of the ring magnet 48usion, the brake disc 47 ⁇ and the transmission mandrel 45 ⁇ in the in Fig.
  • rudders In the simplest case, four rudders are provided, three of which generate a torque via the inertial console.
  • the fourth rudder is steered impulsively.
  • the rotary drive takes place through the inclined rudder; however, this can also be done by a motor.
  • FIG. 14 shows a multiple rudder rotor system in which a plurality of rudders with radial rudder axes are arranged on a rotating part A. Only one of the oars is shown here, usually four or more oars are used. All rudders are adjustable around their rudder axes. The adjustment of each rudder is carried out as in the exemplary embodiments according to FIGS. 11 to 13, the braking system consisting of magnets and brake disks being broken down into a plurality of, in this case eight pot magnets M1 to M8 and associated scenes K1 to K4 with corresponding scenery skids.
  • These runners and the guide links are designed so that the rudder can be transferred from its rest position to the position with the angle ⁇ and returned from it.
  • the individual rudders are controlled in such a way that the desired control component is set in a fixed space sector, ie a smooth control of all rudders is provided.
  • the individual pot magnets are controlled accordingly. With this version, full command can be achieved almost during the entire rotation of the missile.
  • This multiple rudder system is based on the rotor rudder system II. Basically, the energy for deflecting the rudders is taken from the current. With the rudder not shown, the missile FK (front part, rear part) rotates in the direction of the arrow shown, the console A of the control system through the four rudders R1 to R4 (angle ⁇ , rudder axis 61) in the opposite direction.
  • Each rudder has a runner K1 to K4 made of magnetic material, which are each guided in a guide link 62.
  • the runners are preferably designed so that two magnets M of eight pot magnets M1 to M8 located next to one another always trigger the rotary movement of the rudder when the two magnets are excited.
  • the rudders are returned either aorodynamically or preferably by a spring, not shown.
  • the mounting of console A in the missile is also not shown.
  • a missile roll drive can also be omitted.
  • a kinked bracket A is mounted in a missile tip FK, which has two rudders R which are interlocked in the part which projects forward and is kinked with respect to the missile longitudinal axis.
  • the control parts for the bent console and the control parts on the missile side are not shown. This is about it is a brake system as in Figure 1, accordingly a brake disc connected to the rotating console and a brake magnet on the missile side. If the braking system is not activated, the bent console rotates freely around the longitudinal axis of the missile at high speed. If the bent console is stopped by the braking system, a lateral force corresponding to a pitching moment acts on the missile due to the off-center position of the rudder.
  • the system shown in FIG. 15 can be used in conjunction with a seeker head system according to FIG. 5.
  • This rotor positioning system (rotor rudder system VI) has the following parts on the rotor side: Console: kinked low inertia shaft; Rotary drive of the rotor: entangled oars on the bent part of the console; Actuators: Adjustment of the rudder pair in relation to the missile longitudinal axis part (always available); Control unit rotor: corresponds to console plus brake magnet disc.
  • the control part on the missile side is the brake magnet.
  • a slim console A is mounted in the missile tip FK, the axis of rotation of which is inclined relative to the longitudinal axis of the missile.
  • the console At its front end, which lies approximately in the longitudinal axis of the missile, the console carries a crossed pair of wings 71, so that the console is set into rapid rotation when the missile is flying.
  • the described arrangement practically avoids interference forces on the missile. If a transverse force is to be exerted on the missile in a certain direction, the console is stopped with a brake system E, which consists of a magnet and a toothed brake disc which meshes with a gear wheel on the missile end of the console.
  • a brake system E which consists of a magnet and a toothed brake disc which meshes with a gear wheel on the missile end of the console.
  • the pair of wings now held exerts a transverse force on the missile, the spatial direction of this transverse force being able to be determined in accordance with the held position of the console.
  • This rotor positioning system (rotor rudder system VII) has on the rotor side: One console: shaft rotatable at an angle to the longitudinal axis of the missile, low inertia; Rotary drive of the rotor: entangled rudder pair on shaft; Actuators: crossed oars; Control unit rotor: brake disc on shaft. A brake magnet is provided as a control part on the missile side.
  • Command zero plane surface of the rudder pair aims through the missile's longitudinal axis (braking effect on the missile is low).
  • the plane of the rudder pair forms an angle with the longitudinal axis of the missile.
  • the command zero is 90 degrees.
  • the solution is simple.
  • the actual positioning system with the console, the entangled pair of wings and the magnet system is similar to the system shown in FIG. 16, so that a description is unnecessary.
  • This control system is in turn received in a rotating part 81, which forms part of the missile tip.
  • This rotating part is supported against the missile housing FK.
  • a ring magnet 82 is provided in the missile housing
  • a rotating disk 83 is assigned to the rotating part. Ring magnet and brake disc form another brake system.
  • the turned part itself must be kept in constant rotation by means of interlocked rudder R. These rudders are therefore only used for the rotor drive. With this rotor system, a fixed lateral force can be constantly exerted on the missile, even when the missile is rotating.
  • the entire tip is coupled to an additional control unit opposite the missile (brake magnet or electric motor drive). Otherwise, this system is similar to that in Figure 16. A pivoting movement is possible with an electric motor drive.
  • the necessary rudder area generally decreases with increasing distance from the center of gravity of the missile; this reduces the rudder moment of inertia and the switching process command - zero command command is faster; the lateral force otherwise supplied by thrusters can also be reduced, ie a hot gas generator is not even necessary for many applications.
  • the handrail ie the console A after leaving z. B. the gun barrel pushed out, for. B. by delaying the grenade, the extended lever arm does not prevent the manipulation of the missile. It should be mentioned that the handrail itself generates lift, which additionally reduces the rudder surface.
  • a console A is mounted in a missile tip FK parallel to the missile longitudinal axis and is set in rotation by an entangled pair of spoilers 91 at the tip.
  • a gear 92 is provided which meshes with a toothed brake disk 93.
  • This brake disc forms a brake system E with a magnet 94, as described for FIGS. 16 and 17.
  • the entangled spoiler pair 91 is held in a plane parallel to the transverse plane of the missile in accordance with FIGS. 18a and 18b; with a zero command, the spoiler is held in the vertical plane of the missile (Fig. 18 c and d)
  • FIGS. 19a and 19b A top view of a missile tip FK is shown in FIGS. 19a and 19b, parts being broken away for reasons of clarity.
  • a spoiler 101 designed as a turned sheet metal strip is mounted on a spoiler carrier 102 and, in the position shown in FIG. 19a, is located on the outer circumference of the missile.
  • the shape of the spoiler drives the entire console system A.
  • a sprocket carrier 103 which is designed as an armature and which rotates together about the axis of rotation D, is connected to the spoiler carrier.
  • the armature meshes in a gear 104, which is firmly connected to a brake magnet missile.
  • the brake magnetic poles 105 are also indicated.
  • the spoiler can be transferred from the position shown in FIG. 19a to the missile-centered position shown in FIG. 19b by a corresponding rotation of the spoiler carrier and running of the individual toothed wheels on one another. This position corresponds to the zero command, the position according to FIG. 19a

Abstract

Die Erfindung bezieht sich auf ein Rotorstellsystem in Verbindung mit einer Flugkörpersteuerung. Das Stellsystem ist gekennzeichnet durch einen Rotor, der eine Konsole (A), einen Drehantrieb für den Rotor (22, 23, 24), Stellorgane zur Flugkörpersteuerung (23, 24), insbesondere Ruder oder Spoiler sowie ein Steuerteil (C) für den Rotor aufweist und zum anderen gekennzeichnet durch ein Steuerteil (E) auf Seiten des Flugkörpers, wobei die beiden Steuerteile zur Einstellung der Stellorgane miteinander kooperieren.The invention relates to a rotor control system in connection with a missile control. The control system is characterized by a rotor, a console (A), a rotary drive for the rotor (22, 23, 24), control elements for missile control (23, 24), in particular rudder or spoiler, and a control part (C) for the rotor has and on the other hand characterized by a control part (E) on the missile side, the two control parts cooperating with one another to adjust the actuators.

Description

Die Erfindung bezieht sich auf ein Rotorstellsystem für Flugkörpersysteme.The invention relates to a rotor control system for missile systems.

Mit der Erfindung wird angestrebt, Rotorstellsysteme, insbesondere Rudersysteme oder Spoilersysteme anzugeben, mit denen der Flugkörper mit möglichst geringem Aufwand gesteuert werden kann. Insbesondere sollen die angegebenen Rotorstellsysteme auch für Steuerungen von relativ kleinen Flugkörpern möglich sein, wobei trägheitsarme Systeme vorgeschlagen werden. Zur Steuerung von langsameren und größeren Flugkörpern, so z. B. Fallbomben, können wirksame trägheitsbehaftete Rotorstellsysteme angegeben werden.The aim of the invention is to provide rotor positioning systems, in particular rudder systems or spoiler systems, with which the missile can be controlled with as little effort as possible. In particular, the specified rotor positioning systems should also be possible for controls of relatively small missiles, with low-inertia systems being proposed. To control slower and larger missiles, such. B. drop bombs, effective inertial rotor positioning systems can be specified.

Die Erfindung ist durch die Merkmale des Anspruches 1 gekennzeichnet.The invention is characterized by the features of claim 1.

Weitere Ausgestaltungen gehen aus den Unteransprüchen hervor. Die Erfindung ist in verschiedenen Ausführungsbei­spielen anhand der Zeichnung näher erläutert. In der Zeichnung stellen dar:

  • Figur 1 ein Rotorstellsystem mit einem Ruderpaar als Stellorgan, wobei die beiden Ruder mit einer gemeinsamen Achse versehen sind;
  • Figur 2 ein System ähnlich wie in Figur 1, wobei jedoch ein Ruder fest, das andere hingegen verstellbar ist;
  • Figur 3 eine teilweise geschnittene Aufsicht eines mit einem Stellsystem gemäß Figur 1 ausgerüsteten Flugkörpers;
  • Figur 4 eine teilweise geschnittene perspektivische An­sicht des Vorderteiles eines Flugkörpers mit einem Stellsystem gemäß Figur 1 oder 2, das mit einem Suchkopf kombiniert ist;
  • Figur 5 eine schematische Darstellung des Prinzipes für den Suchkopf, der in diesem Falle mit einem Rotorstellsystem gemäß Figur 15 ausgerüstet ist;
  • Figur 6 einen Querschnitt durch eine Flugkörperspitze mit einem angetriebenen Suchkopfsystem;
  • Figur 7 einen Querschnitt durch eine Flugkörperspitze mit einem Rotorstellsystem gemäß der Erfindung, das ein aus dem Flugkörper nach vorn ragendes Drehteil aufweist, an dessen Spitze zwei gegen­einander verschränkte und verstellbare Ruder angeordnet sind, wobei das Drehteil mit Hilfe eines Bremssystemes positionierbar ist;
  • Figur 8 das Steuerteil mit dem Bremssystem für das Rotorstellsystem in Figur 7;
  • Figur 9 eine schematische Darstellung unterschiedlicher Kommandos, die mit einem Rotorstellsystem gemäß Figur 7 möglich sind, und zwar ein Rollkommando zum Antrieb des Drehteiles bei verschwenktem Flügelpaar in Fig. 9a, in Fig. 9b ein Nickkomman­do in Richtung des Winkels α bei parallel gestellten Flügeln und in Fig. 9c ein Nickkomman­do mit gleichsinnig in einer Richtung, jedoch nicht um den gleichen Winkel verstellten Flügeln bei gleichzeitigem Rollenantrieb;
  • Figur 10 die Spitze eines Drehteiles für ein Stellsystem ähnlich Figur 7 mit zwei gegeneinander ver­schränkten Flügeln, die in die Innenkontur des Drehteiles einschwenkbar und aus dieser zur Ableitung eines Nickkommandos ausschwenkbar sind;
  • Figur 11 eine Teildarstellung des Vorderteiles eines mit einem Zielsuchkopf ausgerüsteten Flugkörpers, wobei mit dem Zielsuchkopf Ruder mitrotieren, die um eine radiale Drehachse verschwenkbar sind und zur Erzeugung eines Nickkommandos mit Hilfe eines magnetischen Bremssystemes um die Ruderachse verschwenkt werden können;
  • Figur 12 eine Teilseitendarstellung des in Figur 11 gezeigten leicht modifizierten Flugkörpers bei ausgelenktem Ruder;
  • Figur 13 ein Stellsystem entsprechend Figur 11, wobei jedoch ein weiteres Magnetsystem an der Vorder­seite der Ruder vorgesehen ist, um die Ruder nach einer impulsartigen Verstellung durch einen weiteren Steuerimpuls in die Ruhelage zu bringen, wozu der Druckpunkt des Ruders in Flugrichtung des Flugkörpers vor der radialen Ruderachse liegt;
  • Figur 14 eine geknickte Explosionsdarstellung eines Flug­körpervorderteiles und eines Flugkörperhin­terteiles mit einem Mehrfach-Ruderrotorsystem, wobei dieses Rotorsystem auf einem Drehteil mehrere, in diesem Falle vier Ruder trägt;
  • Figur 15eine schematische Teildarstellung des Vorderteiles eines Flugkörpers mit einem abgeknickten Drehteil, an dessen Spitze zwei gegenüberliegende und gegeneinander verschränkte feste Ruder angeordnet sind, die einmal die Rotation des Drehteiles erzwingen und zum anderen dann, wenn das Drehteil gegenüber dem Flugkörper im wesentlichen raumfest angehalten wird, auf den Flugkörper eine Querkraft ausüben;
  • Figur 16 schematisch einen Querschnitt durch die Spitze eines Flugkörpers mit einem geraden Drehteil, das an seiner Vorderspitze zwei gegeneinander ver­schwenkte Flügel aufweist, wobei dieses Drehteil gegenüber der Flugkörperlängsachse geneigt ist;
  • Figur 17 eine Variante des in Figur 16 dargestellten Rotorsystemes, wobei das Drehteil für das ver­schränkte Flügelpaar auf einem weiteren Drehteil angeordnet ist, das mit Hilfe von verschränkten Rudern in Rotation versetzbar ist, andererseits auf dem Flugkörper abgesetzt und gegenüber diesem in unterschiedlichen Positionen gehalten werden kann;
  • Figur 18 Querschnitte bzw. Vorderansichten eines Teiles eines Flugkörpers mit einem Rotor-Spoilersystem, wobei zwei gegenüberliegende, verschränkt gegen­einander angeordnete Spoiler im Bereich der Flugkörperspitze auf einem Drehteil angeordnet sind, dessen Drehachse parallel zu der Flugkör­perlängsachse ist, wobei die Stellung der Spoiler mit Hilfe eines Magnet-Bremssystemes eingestellt werden kann; in den Figuren 18a und 18b ist die Stellung des Drehkörpers und der Spoiler für ein Vollkommando gezeigt, bei dem die anströmende Luft auf die als Prallfläche ausgebildete Front­fläche des Flugkörpers aufprallt und andererseits an dem Spoiler vorbeigeleitet wird, so daß sich ein Nickkommando einstellt; in den Figuren 18c und 81d ist die Stellung des Drehteiles mit dem Spoiler für ein Nullkommando gezeigt, wobei die Strömung um den Flugkörper relativ symmetrisch ist, lediglich das aus der Außenkontur des Flugkörpers herausragende Teil des Spoilers bildet einen geringen Widerstand;
  • Figur 19 eine Aufsicht auf ein weiteres Rotor-Spoiler­system, wobei der Spoiler auf eine Art Planeten­träger mit mehreren aufeinander ablaufenden Zahnrädern angeordnet ist und aus einer Stellung nahe am Umfang des Flugkörpers zur Erzielung eines Vollkommandos in eine Stellung etwa in der Mitte des Flugkörpers entsprechend Figur 19b für ein Nullkommando zu bringen ist.
Further developments emerge from the subclaims. The invention is explained in more detail in various exemplary embodiments with reference to the drawing. In the drawing:
  • Figure 1 shows a rotor control system with a pair of oars as an actuator, the two oars are provided with a common axis;
  • Figure 2 shows a system similar to that of Figure 1, but with one rudder fixed and the other adjustable.
  • 3 shows a partially sectioned top view of a missile equipped with an actuating system according to FIG. 1;
  • FIG. 4 shows a partially sectioned perspective view of the front part of a missile with an adjusting system according to FIG. 1 or 2, which is combined with a seeker head;
  • Figure 5 is a schematic representation of the principle for the seeker head, which in this case is equipped with a rotor control system according to Figure 15;
  • FIG. 6 shows a cross section through a missile tip with a driven seeker head system;
  • FIG. 7 shows a cross section through a missile tip with a rotor actuation system according to the invention, which has a rotating part protruding out of the missile, at the tip of which two mutually interchangeable and adjustable rudders are arranged, the rotating part being positionable with the aid of a braking system;
  • FIG. 8 the control part with the brake system for the rotor actuating system in FIG. 7;
  • Figure 9 is a schematic representation of different commands that are possible with a rotor control system according to Figure 7, namely a roll command to drive the rotating part with pivoted wing pair in Fig. 9a, in Fig. 9b a pitch command in the direction of the angle α with parallel blades and in FIG. 9c a pitch command with wings adjusted in the same direction in one direction, but not by the same angle, with simultaneous roller drive;
  • FIG. 10 shows the tip of a rotating part for an actuating system similar to FIG. 7 with two mutually intertwined wings which can be pivoted into the inner contour of the rotating part and pivoted out of the latter for deriving a pitching command;
  • FIG. 11 shows a partial representation of the front part of a missile equipped with a seeker head, with the seeker head also rotating oars, which can be pivoted about a radial axis of rotation and can be pivoted about the rudder axis with the aid of a magnetic braking system to generate a pitching command;
  • FIG. 12 shows a partial side view of the slightly modified missile shown in FIG. 11 with the rudder deflected;
  • Figure 13 shows an actuation system corresponding to Figure 11, but with a further magnet system is provided on the front of the rudder to bring the rudder into the rest position after a pulse-like adjustment by another control pulse, for which purpose the pressure point of the rudder in the flight direction of the missile before the radial Rudder axis lies;
  • FIG. 14 shows an exploded view of a missile front part and a missile rear part with a multiple rudder rotor system, this rotor system carrying several, in this case four rudders on a rotating part;
  • FIG. 15 shows a schematic partial representation of the front part of a missile with an angled rotating part, at the tip of which two opposing and mutually entangled fixed rudders are arranged, which force the rotation of the rotating part on the one hand and on the other hand when the rotating part is held essentially spatially fixed relative to the missile, exert a lateral force on the missile;
  • FIG. 16 schematically shows a cross section through the tip of a missile with a straight rotating part, which has two wings pivoted against one another at its front tip, this rotating part being inclined relative to the longitudinal axis of the missile;
  • Figure 17 shows a variant of the rotor system shown in Figure 16, wherein the rotating part for the entangled pair of wings is arranged on a further rotating part, which can be set in rotation by means of entangled oars, on the other hand can be placed on the missile and held in different positions relative to it ;
  • Figure 18 cross-sections or front views of a part of a missile with a rotor spoiler system, wherein two opposing spoilers arranged opposite one another are arranged in the region of the missile tip on a rotating part, the axis of rotation of which is parallel to the longitudinal axis of the missile, the position of the spoiler using a Magnetic braking system can be adjusted; in Figures 18a and 18b is the position of the rotating body and the spoiler for a Fully command shown, in which the incoming air impacts the front surface of the missile, which is designed as a baffle surface, and on the other hand is guided past the spoiler, so that a pitch command is established; FIGS. 18c and 81d show the position of the rotating part with the spoiler for zero command, the flow around the missile being relatively symmetrical, only the part of the spoiler protruding from the outer contour of the missile forms a low resistance;
  • Figure 19 is a plan view of another rotor spoiler system, the spoiler being arranged on a type of planet carrier with a plurality of gearwheels running on one another and from a position close to the circumference of the missile to achieve a perfect command into a position approximately in the middle of the missile according to Figure 19b to be brought for a zero command.

Rotor-StellsystemRotor positioning system

Das Rotor-Stellsystem ist charakterisiert durch eine um die Flugkörper-Längsachse parallel oder angewinkelt dazu dreh- oder schwenkbare Konsole, welche die Stell­organe für die Querkrafterzeugung trägt. Die Betätigung der Stellorgane entsteht durch deren dosierte Kopplung mit dem Flugkörper über einen Steuermechanismus. Die Querkraftrichtung ist bestimmt durch die momentane Winkelstellung der Stellorgane gegenüber der Umgebung bei der Kopplung. Die Querkrafthöhe bzw. der Querimpuls ist bestimmt durch die Kopplungsdauer.The rotor parking system is characterized by one or angled parallel to the missile longitudinal axis to a rotatable or pivotable bracket which supports the actuators for the transverse force generation. The actuators are actuated by their metered coupling to the missile via a control mechanism . The direction of the transverse force is determined by the momentary angular position of the actuators relative to the environment during the coupling. The transverse force level or the transverse pulse is determined by the coupling duration.

Die Energie für die Betätigung der Stellorgane wird vorzugsweise aus dem Drehantrieb des Rotors normal entnommen.The energy for actuating the actuators is preferably normal from the rotary drive of the rotor taken.

Die Betätigung der Stellorgane entsteht durch deren dosierte Kopplung mit dem Flugkörper über den Steuerme­chanismus, wobei zwischen Flugkörper und Steuermechanis­mus ein weiterer Rotor befindlich sein kann (z. B. erübrigt sich dann eine Drehung des Körpers für die Funktion verschiedener Varianten). Zusätzliche Antriebe sind möglich, z. B. durch eine Ruderverschränkung mit Hilfe eines Motors zwischen den beiden Rotoren oder durch einen Rotor zwischen dem zweiten Rotor und dem Flugkörper.The actuating elements are actuated by their dosed coupling to the missile via the control mechanism, whereby a further rotor can be located between the missile and the control mechanism (e.g. a rotation of the body is then unnecessary for the function of different variants). Additional drives are possible, e.g. B. by a rudder with the help of a motor between the two rotors or by a rotor between the second rotor and the missile.

Die wesentlichen Bestandteile des Rotor-Stellsystems sind demnach:
ein Rotor aus Konsole, Drehantrieb für den Rotor, Stellorganen und einem Steuerteil für den Rotor;
der Flugkörper mit dem Steuerteil für den Flugkörper.
The main components of the rotor positioning system are:
a rotor from console, rotary drive for the rotor, actuators and a control part for the rotor;
the missile with the control part for the missile.

Nähere Einzelheiten des Rotors sind häufig zu einem Teil mit Mehrfachfunktion zusammengefaßt.Further details of the rotor are often combined into one part with multiple functions.

Als Stellorgane kommen zur Anwendung
aerodynamische oder aquadynamische Strahlruder,
aerodynamische oder aquadynamische Strahlspoiler,
Schubdüsen,
Klappen oder ähnliches.
Actuators are used
aerodynamic or aquadynamic thrusters,
aerodynamic or aquadynamic jet spoilers,
Thrusters,
Flaps or the like.

Als Drehantrieb des Rotors kommen in Frage:
verschränkte aerodynamische, aquadynamische oder Strahl-Spoiler (Heißgas),
Antriebe zwischen Flugkörper und Rotor wie z. B. Elektromotore, Pneumatik- oder Hydrauliksysteme,
drehmomenterzeugende Schubdüsen,
Turbinensysteme,
Federantriebe.
Possible rotary drives for the rotor are:
entangled aerodynamic, aquadynamic or jet spoilers (hot gas),
Drives between missile and rotor such. B. electric motors, pneumatic or hydraulic systems,
torque-generating thrusters,
Turbine systems,
Spring drives.

Für verschiedene Systeme ist die Messung der Drehstellung einzelner Teile notwendig, um die Relation zum elektri­schen Kommando in dem Flugkörperteil zu bekommen. Grundsätzlich wird hier die Meßmöglichkeit (durch Potentiometer, magnetischen oder optischen Abgriff) nicht aufgeführt.The measurement of the rotational position of individual parts is necessary for various systems in order to obtain the relation to the electrical command in the missile part. Basically, the measurement option (by potentiometer, magnetic or optical tap) is not listed here.

Beschreibung zu Figur 1 und Figur 3Description of Figure 1 and Figure 3

Rotor-Stellsystem: Rotor-Rudersystem I
Konsole: Teil A mit hoher Trägheit um die Achse x-x.
Drehantrieb des Rotors: Das verschränkte Ruderpaar, Teil B, oder ein Extra-Ruderpaar erzeugt ein Rollmoment.
Stellorgane: Verschränktes Ruderpaar B, drehbar gelagert um e-e, erzeugt Querkraft bei Bremsung von Teil C.
Steuerteil-Rotor: Teil C mit Hebelübertragung 8 zu Teil B.
Diese Teile bilden den Rotor.
Rotor positioning system: rotor rudder system I
Console: Part A with high inertia around axis xx.
Rotary drive of the rotor: The entangled rudder pair, part B, or an extra rudder pair generates a rolling moment.
Actuators: Crossed rudder pair B, rotatable around ee, generates lateral force when braking part C.
Control part rotor: part C with lever transmission 8 to part B.
These parts form the rotor.

Steuerteil für den Flugkörper FK ist das Bremssystem E.The control part for the FK missile is the braking system E.

Kommando NULL: Bremssystem E ist nicht aktiviert: Rotor läuft kontinuierlich durch, angetrieben durch z. B. verschränktes Ruderpaar B. Command ZERO : brake system E is not activated: rotor runs continuously, driven by e.g. B. crossed oars pair B.

Kommandogabe: Bremssystem wird aktiviert: Teil C wird gegenüber Teil A abgebremst und verdreht dabei das Ruderpaar B über Stift 8, so daß eine Querkraft erzeugt wird. Command : Brake system is activated: Part C is braked compared to part A and rotates the rudder pair B via pin 8, so that a lateral force is generated.

Bemerkungen: Ein Vollkommando ist alle 360° in eine räumliche Richtung möglich. Rotor läuft kontinuierlich durch.Remarks: A full command is possible every 360 ° in one spatial direction. Rotor runs continuously.

Beschreibung zu Figur 2Description of Figure 2

Rotor-Stellsystem: Rotor-Ruder-System II
Konsole: Teil A mit kleiner Trägheit um Achse x-x;
Drehantrieb des Rotors: verschränktes Ruderpaar B;
Stellorgane: Ruder 2 (Ruder 1 fest mit Teil A verbunden);
Steuerteil-Rotor: Teil C
Diese Teile bilden den Rotor.
Rotor positioning system: rotor rudder system II
Console: Part A with slight inertia around axis xx;
Rotary drive of the rotor: crossed rudder pair B;
Actuators: Rudder 2 (rudder 1 firmly connected to part A);
Control part rotor: part C
These parts form the rotor.

Steuerteil-Flugkörper FK: Bremssystem EControl unit missile FK: brake system E

Kommando Null: Bremssystem ist nicht aktiviert, Rotor läuft kontinuierlich durch, angetrieben durch verschränk­tes Ruderpaar B. Command zero : brake system is not activated, rotor runs continuously, driven by a twisted rudder pair B.

Kommandogabe: Bremssystem wird aktiviert: Teil C wird gegenüber A abgebremst und verdreht dabei Ruder 2 über Stift 8. Die Querkraft entsteht durch das im Mittel verdrehte Ruderpaar. Der Drehantrieb wird gleich­zeitig durch die erhöhte Verschränkung unterstützt. Die Funktion ist ähnlich wie beim Rotor-Stellsystem gemäß Figur 1. Command : Brake system is activated: Part C is braked in relation to A and rotates rudder 2 via pin 8. The lateral force is created by the rudder pair, which is rotated on average. The rotary drive is also supported by the increased entanglement. The function is similar to that of the rotor positioning system according to FIG. 1.

Suchkopf-System (Figuren 4 und 5)Seeker head system (Figures 4 and 5)

Als Anwendung der Stellsysteme gemäß Fig. 1 bis 3 und Figur 15.As an application of the control systems according to FIGS. 1 to 3 and FIG. 15.

Aufbau: Das Suchkopf-System besteht im wesentlichen aus dem Flugkörper FK selbst und einer Dreheinheit A, bestehend aus einem aerodynamischen Drehantrieb mit zusätzlicher Querruderwirkung und dem Sensorsystem 1, 2, 3 sowie als Bindeglied zwischen Flugkörper und Dreheinheit einem Bremssystem E.Structure: The seeker head system essentially consists of the FK missile itself and a rotating unit A, consisting of an aerodynamic rotary drive with additional aileron action and the sensor system 1, 2, 3, and as a link between the missile and rotating unit, a braking system E.

Funktionsweise: Für die Funktion sind folgende Vorausset­zungen von Bedeutung:
Die Dreheinheit dreht entgegengesetzt zur Flugkör­per-Drehrichtung (um die x-Achse);
der Flugkörper dreht um seine x-Achse auch gegenüber der Umgebung.
How it works: The following requirements are important for the function:
The turntable turns in the opposite direction to the missile direction (around the x-axis);
the missile also rotates about its x-axis with respect to the environment.

Die Funktionsweise wird zunächst anhand einer Fallrakete, d. h. anhand eines relativ langsam fliegenden Flugkörpers erklärt (Fig. 4, 5). Das Sensorsystem besteht aus einer Tülle 1 mit schlitzförmiger Öffnung 2 ("akustisches Rohr") und dem akustischen Sensor 3 selbst, die sich allesamt im Winkel α zur x-Achse drehen, verursacht durch das verschränkte Flügelpaar 4.The mode of operation is first explained using a drop rocket, ie using a relatively slow-moving missile (FIGS. 4, 5). The sensor system consists of a grommet 1 with a slit-shaped opening 2 (“acoustic tube”) and the acoustic sensor 3 itself, all of which rotate at an angle α to the x-axis, caused by the interlocked pair of wings 4.

Durch die Drehung tastet das Sensor-System den in Figur 5 fett ausgezeichneten Bodenbereich 5 mit der Breite und Länge entsprechend des Tüllenschlitzes 2 rotationssym­metrisch ab und bildet dabei den maximalen Abtastbereich AB.As a result of the rotation, the sensor system scans the bottom region 5, which is highlighted in bold in FIG. 5, with the width and length corresponding to the spout slot 2 and forms the maximum scanning region AB.

Kommando Null (d. h. kein Ziel wird erfaßt):Command zero (i.e. no target is detected):

Die Dreheinheit rotiert aufgrund des verschränkten Flügel­paares 4 ungehindert vom Bremssystem frei durch; Der Abstastbereich AB verkleinert sich dabei mit abnehmender Entfernung Flugkörper-Boden.The rotating unit rotates freely due to the entangled pair of wings 4 by the braking system; The scanning area AB decreases with decreasing distance from the missile to the ground.

Im Fall nach Fig. 5 wird hier nach Drehstellung der Achse a-a eine Querkraft durch das Flügelpaar 4 erzeugt, die sich durch Rotation in ihrer Wirkung zumindest so weit aufhebt, daß der Flugkörper im Mittel die Flugrichtung beibehält.In the case of FIG. 5, after the rotational position of the axis a-a, a transverse force is generated by the pair of wings 4, the effect of which is at least canceled out by rotation to such an extent that the missile maintains the direction of flight on average.

Im Fall nach Fig. 4 befindet sich der Drehantrieb in der Achse x-x (bzw. parallel dazu), so daß keine Querkräfte auf den Flugkörper FK wirksam werden können; (Widerstands­reduzierung, Vereinfachung der Regelung, allerdings auf Kosten des erhöhten Aufwandes für die Aufbringung der Querkraft im Falle eines Kommandos; Beschreibung der Funktion später).In the case of FIG. 4, the rotary drive is in the axis x-x (or parallel to it), so that no transverse forces can act on the missile FK; (Resistance reduction, simplification of the regulation, but at the expense of the increased effort for applying the lateral force in the event of a command; description of the function later).

Funktion bei Zielerfassung:Function for target acquisition:

Befindet sich innerhalb des Abtastbereiches AB auf der Ringbodenfläche, gebildet durch die Drehung der Drehein­heit und der Ringdicke b-c, ein Ziel, das Geräusche abgibt, nimmt der Sensor diese Geräusche auf und leitet sofort den Bremsvorgang Drehantrieb gegen Flugkörper ein.Is within the scanning range AB on the Ring bottom surface, formed by the rotation of the rotating unit and the ring thickness bc, a target that emits noises, the sensor picks up these noises and immediately initiates the braking process rotary drive against missiles.

Nachdem der Drehantrieb gegenüber dem Flugkörper massen­trägheitsarm ist, dreht die Dreheinheit bei völliger Abbremsung oder auch bereits bei reduzierter Abbremsung nun mit dem Flugkörper mit, d. h. entgegengesetzt zu ihrer ursprünglichen Drehrichtung und auch räumlich entgegenge­setzt zum Ziel, da ja der Flugkörper selbst gegenüber der Umgebung dreht.After the rotary drive has low inertia relative to the missile, the rotary unit now rotates with the missile when the brakes are fully applied or even when the brakes are reduced. H. opposite to their original direction of rotation and also spatially opposite to the target, since the missile itself rotates in relation to the surroundings.

Dadurch verliert der Sensor das akustische Signal, d. h. das Ziel wieder, die Bremse wird gelöst, und der Drehantrieb dreht wieder in seine ursprüngliche Richtung, bis wiederum das akustische Signal erfaßt und die Bremse wieder eingeschaltet wird. Dieser Vorgang wiederholt sich ständig. Im Mittel befindet sich dabei die Dreheinheit raumfest mit der Achse a-a in Richtung des Zieles, d. h. das Flügelpaar 4 (Fig. 1, 4) erzeugt ständig Querkraft in dem Flugkörper in Richtung Ziel, und zwar so lange, bis sich das akustische Signal innerhalb des Kegelwinkelsβ befindet. Die Folge ist das Kommando Null.As a result, the sensor loses the acoustic signal, i. H. the target again, the brake is released and the rotary drive rotates again in its original direction until the acoustic signal is detected again and the brake is switched on again. This process is repeated continuously. On average, the rotating unit is spatially fixed with the axis a-a in the direction of the target, i. H. the pair of wings 4 (Fig. 1, 4) constantly generates shear force in the missile towards the target, until the acoustic signal is within the cone angle β. The result is zero command.

Durch zunehmende Verkleinerung des Abstandes Flugkörper - Ziel, taucht jedoch das Signal immer wieder im dem Bereich zwischen b und c von "innen" her (c-d) auf; eine entsprechend gerichtete Querkraft wird aufgebaut, bis letztlich der Flugkörper im Ziel landet.However, as the distance between the missile and the target increases, the signal appears again and again in the area between b and c from "inside" (c-d); a correspondingly directed transverse force is built up until the missile ends up in the target.

Die Ungenauigkeit ist dabei vom Winkel β mitbestimmt, der Winkel β dient vor allem dazu, nicht jede Flugkörper-­Taumelbewegung ausregeln zu müssen. Andererseits ist zu erwarten, daß bei einem Winkel β nahezu 0 eine zusätzliche Stabilisierung des Flugkörpers zu erzielen ist, insbeson­dere dann, wenn die Ausregelung mit Querkräften kleiner den maximalen Querkräften erfolgt, wie dieses in der Lösung nach Fig. 2 und 3 dargestellt ist: hier erfolgt eine erzwungene Drehung des Flügelpaares 4 um die Achse e-e (entspricht wachsender Querkrafterzeugung), wenn die abgebremste Bremsscheibe 6 über Teil 7 Kraft auf den außermittig angeordneten Bolzen 8 ausübt. Die Rückstellung des Flügelpaares auf Stellung "Querkraft Null" erfolgt durch die Feder 9 oder aerodynamische Effekte an den Flügeln. Das Sensorsignal wird über einen Schleifer 10 zu einer Signalverarbeitung mit Verstärkung 11 und weiter zur Bremsspule 12 geleitet.The inaccuracy is also determined by the angle .beta. The angle .beta. Serves primarily to avoid having to correct every missile wobble movement. On the other hand is too expect that at an angle β almost 0 an additional stabilization of the missile can be achieved, in particular if the control with transverse forces is less than the maximum transverse forces, as is shown in the solution according to FIGS. 2 and 3: here there is a forced one Rotation of the pair of wings 4 about the axis ee (corresponds to increasing transverse force generation) when the braked brake disc 6 exerts force on the eccentrically arranged bolt 8 via part 7. The resetting of the pair of wings to the "transverse force zero" position is carried out by the spring 9 or aerodynamic effects on the wings. The sensor signal is routed via a grinder 10 to signal processing with amplification 11 and on to the brake coil 12.

Ausführungsformen:Embodiments:

Wie schon erwähnt, ist das hier aufgeführte, sehr einfache System für relativ langsame Ziele bevorzugt verwendbar, wie z. B.
Fallrakete für Panzerabwehr- Hubschrauberabwehr Schiffsziele etc, d. h. Angriff von oben;
gelenkte Gleitbombe;
Auftriebsmine.
As already mentioned, the very simple system listed here can preferably be used for relatively slow targets, e.g. B.
Anti-tank missile, helicopter defense, ship targets etc, ie attack from above;
steered slide bomb;
Lift mine.

Für schnellere Ziele bzw. auch für schnellere Flugkörper ist eine erhöhte Reaktionsfähigkeit des Suchkopf-Steuer­systems (d. h. letztlich schneller Schaltzeiten) erforder­lich.Increased responsiveness of the seeker head control system (i.e. ultimately faster switching times) is required for faster targets and also for faster missiles.

Eine Verbesserung im Hinblick auf diesen Anwendungsbereich kann auf zwei Arten geschehen:

  • 1. Verwendung von trägheitsarmen Komponenten,
  • 2. mechanische Trennung des Meßsystems vom Querkrafter­zeuger.
There are two ways to improve this application:
  • 1. Use of low-inertia components,
  • 2. Mechanical separation of the measuring system from the transverse force generator.

Ergänzung zum Rotor-Rudersystem IComplement to the rotor rudder system I

Bei längerer Kopplung über Bremsscheibe 6 dreht das Ruderpaar um die Achse e-e bis zu einem Anschlag, der z. B. durch die fest umschlungene Feder 9 um Teil 7 realisiert werden kann. Dann wird als Folge das Ruderpaar samt Konsole in entgegengesetzter Drehrichtung um die Achse x-x drehen, wenn der Flugkörper selbst gegenüber der Umgebung entgegengesetzt dreht: Dies bedeutet die Möglich­keit zur Erzeugung eines Vollkommandos in eine definierte räumliche Richtung.With a longer coupling via brake disc 6, the rudder pair rotates about the axis e-e up to a stop which, for. B. can be realized by the tightly wrapped spring 9 to part 7. Then the rudder pair together with the console will turn in the opposite direction of rotation around the axis x-x if the missile itself turns in the opposite direction to the environment: This means the possibility of generating a full command in a defined spatial direction.

Beschreigung zu Figur 6Descender to Figure 6 1. Verwendung trägheitsarmer Komponenten für einen Such­kopf:1. Using low-inertia components for a search head:

Die besonders trägheitsbehafteten Flächen des Querkraft­erzeugers können ersetzt werden durch eine Querschubdüse entsprechend DE-OS 33 17 583, die entweder durch Stauluft, bevorzugt aber durch einen Heißgasgenerator mit Gas versorgt wird. Der Flügelrad-Drehantrieb benötigt nun augrund des reduzierten Trägheitsmomentes nur geringere Ausmaße oder wird selbst durch eine Drehmomente erzeugende Düse ersetzt (Drehdüsensystem).The particularly inertia surfaces of the transverse force generator can be replaced by a transverse thrust nozzle according to DE-OS 33 17 583, which is supplied with gas either by ram air, but preferably by a hot gas generator. Due to the reduced moment of inertia, the impeller rotary actuator now only requires smaller dimensions or is itself replaced by a torque-generating nozzle (rotating nozzle system).

Der Sensor ist in diesem Fall z. B. ein trägheitsarmer Laserempfänger.In this case the sensor is e.g. B. a low-inertia laser receiver.

Die Kommandogabe geschieht sinngemäß nach Figuren 1 bis 4: D. h. bei Kommanodgabe Null bläst die drehende Düse DD ständig in die Innenwand I z. B. der Granate FK. Bei Abbremsung einer Kulisse KL durch das Bremssystem rutscht die Dreheinheit axial, in diesem Falle derart nach hinten, daß je nach Überschneidujng an der Kante K mehr oder weniger Querkraft nach außen entsprechend der Dauer der Kommandogabe erzeugt wird. (Fig. 6). Der Sensor S ist wie in Fig. 4 und 5 aufgebaut; die Meßsignale werden durch den Schleifring 10 abgenommen. Für die Drehdüse ist noch ein neutraler Auslaß 13 vorgesehen.The command is given analogously to Figures 1 to 4: That is. with zero command, the rotating nozzle DD constantly blows into the inner wall I z. B. the grenade FK. When a gate KL is braked by the braking system, the rotating unit slides axially, in this case backwards in such a way that depending on the overlap at the edge K, more or less lateral force is generated to the outside in accordance with the duration of the command. (Fig. 6). The sensor S is constructed as in FIGS. 4 and 5; the measurement signals are picked up by the slip ring 10. A neutral outlet 13 is also provided for the rotary nozzle.

2. Mechanische Trennung des Meßsystems vom Querkraft­erzeuger2. Mechanical separation of the measuring system from the transverse force generator

Die mechanische Trennung ist so zu verstehen, daß das Sensorsystem unabhängig vom Querkrafterzeuger schnell drehen kann, d. h. autonom arbeitet. Dies bedeutet, daß eine genauere Kommandobildung für den Querkrafterzeuger aus den Signalen des Zieles und der Drehung des Flugkör­pers gegenüber dem Sensorsystem in einem Rechner erfolgen kann.The mechanical separation is to be understood so that the sensor system can rotate quickly regardless of the transverse force generator, i. H. works autonomously. This means that a more precise command formation for the transverse force generator can take place in a computer from the signals of the target and the rotation of the missile relative to the sensor system.

Rotor-Stellsystem IV (ohne Figur)Rotor positioning system IV (without figure) als Variante zu Stellsystemen I bis III entsprechende Fig. 1 bis 4 mit besonders trägheitsarmem Rotor:1 to 4 as a variant of control systems I to III with particularly low-inertia rotor:

Dreht der Flugkörper entgegen dem Rotor und entgegen der Umgebung um seine Längsachse, so wird beim Bremsen im Extremfall ein räumlich stehendes Ruderpaar mit ständiger Querkraftentwicklung realisiert: Zunächst schlagt das Ruder (bzw. Ruderpaar) aus für die Querkraft­entwicklung, dann wird durch "Überdrückung" das Ruderpaar räumlich gehalten. Gegebenenfalls wird ein zusätzlicher Antrieb des Rotors notwendig, je nach erforderlicher Stellsystemleistung.If the missile turns against the rotor and against the environment around its longitudinal axis, in extreme cases, a spatially standing rudder pair with constant lateral force development is realized when braking: First the rudder (or rudder pair) deflects for the lateral force development, then this is achieved by "overpressure" Oar pair kept spatially. An additional drive for the rotor may be necessary, depending on the required actuating system performance.

Rotor-Rudersystem V (ohne Figur)Rotor rudder system V (without figure) Als Kombination aus den Systemen I bis III und IV.As a combination of systems I to III and IV.

Um die Vorteile der Systeme I bis III und IV kombinieren zu können, werden eine trägheitsbehaftete Konsole und trägheitsarme Stellorgane vorgesehen: Bei extremer Kommandogabe (z. B. hohe Bremsung) wird das Ruder(paar) verdreht, und bei maximaler Auslenkung wird die Konsole von den Stellorganen (Ruderpaar) entkoppelt: Die Konsole läuft weiter - zweckmäßigerweise durch einen gesonderten Drehantrieb unterstützt - , das Ruderpaar bleibt räumlich "stehen".In order to be able to combine the advantages of systems I to III and IV, an inertial console and low-inertia actuators are provided: With extreme commands (e.g. high braking), the rudder (pair) is rotated, and with maximum deflection, the console is turned by decoupled from the control elements (rudder pair): the console continues to run - expediently supported by a separate rotary drive -, the rudder pair "remains" spatially.

Fig. 7 bis 9: Rotor-Rudersystem IX7 to 9: rotor rudder system IX

Dieses System ist in Anlehnung an das Rudersystem II zu sehen (vgl. Fig. 2). Fig. 7 bis 9 zeigen außer dem Ausfahrmechanismus F und der Bremse E eine besondere Art der Querkrafterzeugung:This system can be seen on the basis of rudder system II (cf. FIG. 2). 7 to 9 show, in addition to the extension mechanism F and the brake E, a special type of transverse force generation:

Querkraft-Nullkommando: Der Rotor bleibt durch die verschränkten Ruder (Fig. 9a) in Drehung; es tritt keine Querkraft auf, das Drehen erfordert ein Minimum an Energie.Shear force zero command: The rotor remains in rotation due to the interlocked rudders (Fig. 9a); there is no lateral force, turning requires a minimum of energy.

Bei Querkraft-Kommandogabe entsteht die Tendenz, den Rotorantrieb umso mehr zurückzunehmen, je höher die Querkraft in eine räumliche Richtung wirken soll, bis schließlich der Rotorantrieb zu Null wird, wenn beide Ruder zueinander parallel stehen (Fig. 9b).When the shear force command is given, the tendency to withdraw the rotor drive is greater the higher the shear force is to act in a spatial direction until the rotor drive finally becomes zero when both rudders are parallel to each other (Fig. 9b).

Bei weiterer bzw. längerer Bremsung dreht das bewegliche Ruder weiter, die Querkraft wird nochmals stärker und außerdem entsteht ein rückstellendes Rollmoment (Fig. 9c), wodurch eine räumliche Fixierung eines entsprechenden Querkraftbereiches möglich wird, und zwar ohne Drehung des Flugkörpers.With further or longer braking, the movable rudder continues to turn, the lateral force becomes even stronger and, in addition, there is a resetting rolling moment (FIG. 9c), which enables a corresponding lateral force range to be fixed in space, without turning the missile.

Damit ist diese Art der Steuerung direkt für rollstabi­lisierte Flugkörper anwendbar.This type of control can thus be used directly for roll-stabilized missiles.

Nachdem nur geringe Trägheitsmomente für schnelle Steuerbewegungen auftreten dürften, sind andere Rotor-­Rudersystemlösungen nur mit entkoppelter Trägheitsmasse denkbar (oder aber besonders langsame Steuervorgänge sind bereits für die Mission des Flugkörpers ausrei­chend). In den Fig. 7 bis 9 ist mit F das Ausfahrsystem für die Konsole A bezeichnet; ein von Gas G aus einem Gasgenerator beaufschlagter Gleitkolben des Ausfahrsyste­mes F ist mit 21 bezeichnet; das Bremssystem E ist wie in Fig. 1 aufgebaut; ein gesonderter Rollantrieb durch verschwenkte feste Flügel 22 für die Konsole ist vorge­sehen, der auch für die Spreizflügellösung nach Fig. 10 verwendet werden kann; das hintere feststehende Ruder ist mit 23, das vordere Ruder mit 24 bezeichnet, das gleichzeitig Stellorgan und Drehantrieb für den Rotor ist. Das Bremssystem nach Fig. 8 weist einen drehfesten Bremsmagnet 25 mit einer Bremsscheibe 26 auf, die auf das Steuerteil C des Rotors wirkt.Since only small moments of inertia for fast control movements are likely to occur, other rotor rudder system solutions are only conceivable with a decoupled inertia mass (or particularly slow control processes are already sufficient for the missile's mission). 7 to 9, F is the extension system for the console A; a slide piston of the extension system F acted upon by gas G from a gas generator is designated by 21; the braking system E is constructed as in FIG. 1; a separate roller drive by pivoted fixed wings 22 for the console is provided, which can also be used for the expansion wing solution according to FIG. 10; the rear fixed rudder is designated 23, the front rudder 24, which is at the same time an actuator and rotary drive for the rotor. 8 has a non-rotatable brake magnet 25 with a brake disc 26 which acts on the control part C of the rotor.

Figur 10Figure 10

Eine Variante der Querkrafterzeugung ist in Fig. 10 zu sehen: Bei Nullkommando verschwinden die ausspreizba­ren Flügel 33 und 34 aus der Strömung; im Falle der Bremsung entsteht eine mehr oder minder hohe Querkraft je nach Flügelspreizung über eine

Figure imgb0001
-förmige Profilstange 35, die in einem Hüllrohr 36 läuft und durch ein nicht gezeigtes Magnetsystem oder dergleichen betätigt wird. Die Flügel sind zueinander verschränkt (Winkel γ), so daß auch zusätzlich Rollmoment wirkt bei zunehmender Querkraftwirkung, ein Rollmoment, welches jenem aus dem Flügelpaar 33, 34 ständig entstehenden entgegenwirkt. Damit ist derselbe Effekt, nämlich Drehumkehr, wie oben beschrieben, erzielbar.A variant of the transverse force generation can be seen in FIG. 10: at zero command, the expandable wings 33 and 34 disappear from the flow; in the case of braking, there is a more or less high lateral force depending on the wing spread over a
Figure imgb0001
-shaped profile bar 35, which runs in a cladding tube 36 and is actuated by a magnet system or the like, not shown. The wings are interlaced with each other (angle γ), so that rolling moment also acts with increasing shear force, a rolling moment which counteracts that which constantly arises from the pair of wings 33, 34. The same effect, namely turning reversal as described above, can thus be achieved.

Weitere Varianten sind realisierbar mit Verstärkereffekt, d. h. die Betätigung der Ruder erfolgt durch die Stauluft; der Steuermechanismus dient lediglich zur Steuerung der Stauluft, die die Ruder betätigt.Other variants can be realized with an amplifier effect, i. H. the rudders are operated by the ram air; the control mechanism only serves to control the ram air that actuates the rudders.

Beschreibung der Rotorstellsysteme gemäß den Figuren 11 bis 14Description of the rotor control systems according to FIGS. 11 to 14

In Figur 11 ist ein Teil eines Flugkörpers FK mit der angedeuteten Flugkörperlängsachse 41 gezeigt. Den vorderen Teil des Flugkörpers bildet die Flugkörperspitze mit einem Zielsuchkopf 42, dessen Einzelheiten nicht weiter darge­stellt sind. Die Spitze läuft auf Kugellagern 43 um den Flugkörper. In der Flugkörperspitze mit dem Zielsuchkopf sind Ruder 44 dargestellt, deren Ruderachse RA radial verläuft. Um den Umfang des Zielsuchkopfes sind zumindest zwei gegenüberliegende Ruder dargestellt, von denen eines, hier das gezeigte verstellbar ist. Das Ruder weist im Flugkörperinneren einen von der Ruderachse wegragenden Übertragungsdorn 45 auf, der einem Übertragungsanschlag 46 einer Bremsscheibe 47 zugeordnet ist. Die Bremsscheibe bildet das Steuerteil für das Ruder und arbeitet mit einem Ringmagnet 48 auf Seiten des Flugkörpers zusammen. Die Teile 47 und 48 bilden ein Bremssystem, wie bereits oben erläutert. Aus Figur 12 ist ersichtlich, daß durch Einschalten des Ringmagneten die Bremsscheibe gegenüber der Drehung des Suchkopfes bzw. hier eines in der Mitte des Flugkörpers gelegenen drehenden Teiles A zurückbleibt, so daß das Ruder gegenüber der Flugkörperlängsachse angestellt wird. Wird die Bremsung aufgehoben, so rotiert die Bremsscheibe wieder frei mit dem Übertragungsdorn mit; das Ruder wird durch eine hier nicht gezeigte Rückholfeder in die Ausgangslage gebracht.FIG. 11 shows part of a missile FK with the missile longitudinal axis 41 indicated. The missile tip forms the front part of the missile with a target seeker 42, the details of which are not shown further. The tip runs on ball bearings 43 around the missile. In the missile tip with the target seeker rudder 44 are shown, the rudder axis RA is radial. At least two opposite rudders are shown around the circumference of the target seeker head, one of which, the one shown here, is adjustable. In the interior of the missile, the rudder has a transmission mandrel 45 projecting from the rudder axis, which is assigned to a transmission stop 46 of a brake disk 47. The brake disc forms the control part for the rudder and works together with a ring magnet 48 on the missile side. The parts 47 and 48 form a braking system, as already explained above. From Figure 12 it can be seen that by turning on the ring magnet, the brake disc opposite the rotation of the seeker head or here a rotating part A located in the middle of the missile remains so that the rudder is turned relative to the missile longitudinal axis. If the braking is released, the brake disc rotates freely again with the transmission mandrel; the rudder is brought into the starting position by a return spring, not shown here.

In Figur 13a ist ein ähnliches System wie in Figur 11 gezeigt. Es sind gleiche Bezugszeichen verwendet, denen ein (ʹ) hinzugefüht ist. Das Ruder 44ʹ ist allerdings so ausgebildet, daß der Druckpunkt 51 des Ruders vor der radialen Ruderachse liegt. Auf der Vorderseite des Ruders ist ein weiterer Übertragungsdorn 45ʺ vorgesehen, dem eine Bremsscheibe 47ʺ zugeordnet ist. Ein weiterer Ringmagnet 48ʺ arbeitet mit der Bremsscheibe zusammen. Die Wirkungsweise dieser Teile 45ʺ, 46ʺ, 47ʺ, 48ʺ ist wie diejenige der Teile 45, 46, 47, 48. Ist das Ruder entsprechend der obigen Beschreibung mit Hilfe des Ringmagneten 48ʹ, der Bremsscheibe 47ʹ und des Übertra­gungsdornes 45ʹ in die in Figur 13b angestellte Richtung geschwenkt, so verbleibt es in dieser verschränkten Stellung aufgrund der Lage des Druckpunktes. Der Ringmag­net kann daher wieder abgeschaltet werden. Soll das Ruder wieder in die Ausgangposition gebracht werden, so wird kurzfristig der Ringmagnet 48ʺ betätigt, wodurch der Übertragungsanschlag der Ringscheibe 47ʺ den Übertra­gungsdorn 45ʺ erfaßt und das Ruder in die Ausgangslage bringt. Eine Rückholfeder ist in diesem Falle demnach nicht notwendig. Die Umschaltung des Ruders in beide Stellungen erfolgt aufgrund einer einfachen Impulssteue­rung. Der Energieverbrauch ist daher sehr gering. Auch bei diesen Ausführungsformen sind zwischen dem Drehteil A bzw. dem Suchkopf und dem Flugkörper Drehgeber 49 vorgesehen, wie in Figur 13a angedeutet.A system similar to that shown in FIG. 11 is shown in FIG. 13a. The same reference numerals are used, to which a (ʹ) has been added. The rudder 44ʹ is designed so that the pressure point 51 of the rudder lies in front of the radial rudder axis. On the front of the rudder, a further transmission mandrel 45ʺ is provided, to which a brake disk 47ʺ is assigned. Another ring magnet 48ʺ works together with the brake disc. The operation of these parts 45ʺ, 46ʺ, 47ʺ, 48ʺ is like that of the parts 45, 46, 47, 48. Is the rudder according to the above description with the help of the ring magnet 48scheibe, the brake disc 47ʹ and the transmission mandrel 45ʹ in the in Fig. 13b Pivoted direction, it remains in this entangled position due to the position of the pressure point. The ring magnet can therefore be switched off again. If the rudder is to be returned to the starting position, the ring magnet 48ʺ is actuated briefly, whereby the transmission stop of the ring disk 47ʺ detects the transmission mandrel 45ʺ and brings the rudder into the starting position. A return spring is therefore not necessary in this case. The rudder is switched to both positions based on a simple pulse control. The energy consumption is therefore very low. Also at In these embodiments, rotary encoders 49 are provided between the rotating part A or the seeker head and the missile, as indicated in FIG. 13a.

Im einfachsten Falle sind vier Ruder vorgesehen, von denen drei über die trägheitsbehaftete Konsole ein Drehmoment erzeugen. Das vierte Ruder wird impulsartig gesteuert. Der Drehantrieb erfolgt durch die schragge­stellen Ruder; dies kann jedoch auch durch einen Motor erfolgen.In the simplest case, four rudders are provided, three of which generate a torque via the inertial console. The fourth rudder is steered impulsively. The rotary drive takes place through the inclined rudder; however, this can also be done by a motor.

In Figur 14 ist ein Mehrfach-Ruderrotorsystem dargestellt, bei dem auf einem Drehteil A mehrere Ruder mit radialen Ruderachsen angeordnet sind. Von den Rudern ist hier nur ein einziges gezeigt, überlicherweise werden vier oder mehr Ruder verwendet. Sämtliche Ruder sind um ihre Ruderachsen verstellbar. Die Verstellung eines jeden Ruders erfolgt wie bei den Ausführungsbeispielen gemäß Figuren 11 bis 13, wobei hier das Bremssystem aus Magneten und Bremsscheiben aufgelöst ist in mehrere, in diesem Falle acht Topfmagnete M1 bis M8 und zugeordnete Kulissen K1 bis K4 mit entsprechenden Kulissenkufen. Diese Kufen und die Füh­rungskulissen sind so gestaltet, daß das Ruder jeweils aus seiner Ruhelage in die angestellte Lage mit dem Winkelα überführt und aus dieser wieder zurückgeführt werden kann. Die einzelnen Ruder werden so angesteuert, daß sich die gewünschte Steuerkomponente in einem festen Raumsektor einstellt, d. h. es ist eine fließende Steuerung aller Ruder vorgesehen. Entsprechend erfolgt die Ansteuerung der einzelnen Topfmagnete. Mit dieser Ausführung kann ein Vollkommando nahezu während der gesamten Drehung des Flugkörpers erreicht werden.FIG. 14 shows a multiple rudder rotor system in which a plurality of rudders with radial rudder axes are arranged on a rotating part A. Only one of the oars is shown here, usually four or more oars are used. All rudders are adjustable around their rudder axes. The adjustment of each rudder is carried out as in the exemplary embodiments according to FIGS. 11 to 13, the braking system consisting of magnets and brake disks being broken down into a plurality of, in this case eight pot magnets M1 to M8 and associated scenes K1 to K4 with corresponding scenery skids. These runners and the guide links are designed so that the rudder can be transferred from its rest position to the position with the angle α and returned from it. The individual rudders are controlled in such a way that the desired control component is set in a fixed space sector, ie a smooth control of all rudders is provided. The individual pot magnets are controlled accordingly. With this version, full command can be achieved almost during the entire rotation of the missile.

Dieses Mehrfach-Rudersystem ist an das Rotor-Rudersystem II angelehnt. Grundsätzlich wird hier die Energie zum Auslenken der Ruder aus der Strömung entnommen. Durch nicht gezeigte angestellte Ruder dreht der Flugkör­per FK (Vorderteil, Hinterteil) in der gezeigten Pfeil­richtung, die Konsole A des Stellsystems durch die vier angestellten Ruder R1 bis R4 (Anstellwinkel α, Ruderachse 61) in der entgegengesetzten Richtung. Jedes Ruder besitzt eine Kufe K1 bis K4 aus magnetischem Material, die jeweils in einer Führungskulisse 62 geführt sind. Die Kufen sind vorzugsweise so ausgebildet, daß immer zwei nebeneinander befindliche Magnete M von acht Topfmagneten M1 bis M8 die Drehbewegung des Ruders auslösen, wenn die zwei Magnete erregt werden. Die Rückführung der Ruder geschieht entweder aorodyna­misch oder vorzugsweise durch eine nicht gezeigte Feder. Ebenfalls nicht gezeigt ist die Lagerung der Konsole A im Flugkörper. Je nach Trägheitsmoment des Flugkörpers um die Rollachse kann auch ein Flugkörper-­Rollantrieb entfallen.This multiple rudder system is based on the rotor rudder system II. Basically, the energy for deflecting the rudders is taken from the current. With the rudder not shown, the missile FK (front part, rear part) rotates in the direction of the arrow shown, the console A of the control system through the four rudders R1 to R4 (angle α, rudder axis 61) in the opposite direction. Each rudder has a runner K1 to K4 made of magnetic material, which are each guided in a guide link 62. The runners are preferably designed so that two magnets M of eight pot magnets M1 to M8 located next to one another always trigger the rotary movement of the rudder when the two magnets are excited. The rudders are returned either aorodynamically or preferably by a spring, not shown. The mounting of console A in the missile is also not shown. Depending on the moment of inertia of the missile around the roll axis, a missile roll drive can also be omitted.

Vorteile: Viermal schnellere Bereitschaft zur Erzeugung einer räumlich definierten Querkraft; wie auch bei anderen Lösungen ist durch "Schleifenlassen" der Kufen ein konstantes Querkraftkommando bzw. dessen Erzeugung möglich.Advantages: Four times faster readiness to generate a spatially defined lateral force; As with other solutions, a constant shear force command or its generation is possible by "grinding" the skids.

Beschreibung des Rotorstellsystemes gemäß Figur 15Description of the rotor control system according to FIG. 15

In einer Flugkörperspitze FK ist eine geknickte Konsole A gelagert, die in dem nach vorne ragenden gegenüber der Flugkörperlängsachse abgeknickten Teil zwei gegeneinan­der verschränkte Ruder R aufweist. Die Steuerteile für die geknickte Konsole und die Steuerteile auf Seiten des Flugkörpers sind nicht dargestellt. Hierbei handelt es sich um ein Bremssystem wie in Figur 1, demnach um eine mit der drehenden Konsole verbundene Bremsscheibe und einen Bremsmagneten auf Seiten des Flugkörpers. Ist das Bremssystem nicht betätigt, so rotiert die geknickte Konsole frei mit hoher Geschwindigkeit um die Flugkörperlängsachse. Wird die geknickte Konsole durch das Bremssystem angehalten, so wirkt auf den Flugkörper eine Querkraft entsprechend einem Nickmoment durch die außermittige Stellung der Ruder. Das in Figur 15 gezeigte System kann in Verbindung mit einem Suchkopfsystem entsprechend Figur 5 verwendet werden.A kinked bracket A is mounted in a missile tip FK, which has two rudders R which are interlocked in the part which projects forward and is kinked with respect to the missile longitudinal axis. The control parts for the bent console and the control parts on the missile side are not shown. This is about it is a brake system as in Figure 1, accordingly a brake disc connected to the rotating console and a brake magnet on the missile side. If the braking system is not activated, the bent console rotates freely around the longitudinal axis of the missile at high speed. If the bent console is stopped by the braking system, a lateral force corresponding to a pitching moment acts on the missile due to the off-center position of the rudder. The system shown in FIG. 15 can be used in conjunction with a seeker head system according to FIG. 5.

Dieses Rotor-Stellsystem (Rotor-Rudersystem VI) weist rotorseitig folgende Teile auf:
Konsole: geknickte trägheitsarme Welle;
Drehantrieb des Rotors: verschränktes Ruderpaar auf dem geknickten Teil der Konsole;
Stellorgane: Anstellung des Ruderpaares gegenüber dem Flugkörper-Längsachsenteil (ständig vorhanden);
Steuerteil-Rotor: entspricht Konsole plus Bremsmagnet­scheibe.
This rotor positioning system (rotor rudder system VI) has the following parts on the rotor side:
Console: kinked low inertia shaft;
Rotary drive of the rotor: entangled oars on the bent part of the console;
Actuators: Adjustment of the rudder pair in relation to the missile longitudinal axis part (always available);
Control unit rotor: corresponds to console plus brake magnet disc.

Auf Seiten des Flugkörpers ist der Steuerteil der Brems­magnet.The control part on the missile side is the brake magnet.

Kommando Null: konstante hohe Drehung des Rotor (Summe aller Querkräfte = 0): Bremse gelöst oder Bremse ständig eingeschaltet (kontinuierlich oder Pulsbreitenmodulation).Command zero: constant high rotation of the rotor (sum of all lateral forces = 0): brake released or brake switched on continuously (continuously or pulse width modulation).

Kommandogabe: reduzierte Drehung bei Durchlaufen der gewünschten Querkraftrichtung durch Bremsaktivierung oder erhöhte Drehung in allen nicht gewünschten Querkraft­richtungen, z. B. auch durch andere Steuermittel.Command: reduced rotation when running through the desired direction of transverse force by activating the brake or increased rotation in all undesirable directions of transverse force, e.g. B. also by other control means.

Bemerkungen: bremst den Flugkörper.Remarks: brakes the missile.

Beschreibung des Rotorstellsystemes gemäß Figur 16Description of the rotor control system according to FIG. 16

In der Flugkörperspitze FK ist eine schlanke Konsole A gelagert, deren Drehachse gegenüber der Flugkörperlängs­achse geneigt ist. Die Konsole trägt an ihrem vorderen Ende, das etwa in der Flugkörperlängsachse liegt, ein verschränktes Flügelpaar 71, so daß die Konsole beim Flug des Flugkörpers in schnelle Rotation versetzt wird. Durch die beschriebene Anordnung werden hierbei Störkräfte auf den Flugkörper praktisch vermieden. Soll in einer bestimmten Richtung auf den Flugkörper eine Querkraft ausgeübt werden, dann wird die Konsole mit einem Bremssystem E gestoppt, das aus einem Magneten und einer gezahnten Bremsscheibe besteht, die mit einem Zahnrad am flugkörperseitigen Ende der Konsole kämmt. Das jetzt festgehaltene Flügelpaar übt entspre­chend Figur 16b eine Querkraft auf den Flugkörper aus, wobei die Raumrichtung dieser Querkraft entsprechend der gehaltenen Stellung der Konsole bestimmt werden kann. Mit diesem System ist ein Vollkommando jeweils nur einmal während einer Rotation des Flugkörpers möglich, sofern dieser rotiert.A slim console A is mounted in the missile tip FK, the axis of rotation of which is inclined relative to the longitudinal axis of the missile. At its front end, which lies approximately in the longitudinal axis of the missile, the console carries a crossed pair of wings 71, so that the console is set into rapid rotation when the missile is flying. The described arrangement practically avoids interference forces on the missile. If a transverse force is to be exerted on the missile in a certain direction, the console is stopped with a brake system E, which consists of a magnet and a toothed brake disc which meshes with a gear wheel on the missile end of the console. According to FIG. 16b, the pair of wings now held exerts a transverse force on the missile, the spatial direction of this transverse force being able to be determined in accordance with the held position of the console. With this system, a full command is only possible once during a rotation of the missile, provided that it rotates.

Dieses Rotor-Stellsystem (Rotor-Rudersystem VII) weist rotorseitig auf:
Eine Konsole: schräg zur Flugkörper-Längsachse drehbar angeordnete Welle, trägheitsarm;
Drehantrieb des Rotors: verschränktes Ruderpaar auf Welle;
Stellorgane: verschränktes Ruderpaar;
Steuerteil-Rotor: Bremsscheibe an Welle.
Flugkörperseitig ist als Steuerteil ein Bremsmagnet vorgesehen.
This rotor positioning system (rotor rudder system VII) has on the rotor side:
One console: shaft rotatable at an angle to the longitudinal axis of the missile, low inertia;
Rotary drive of the rotor: entangled rudder pair on shaft;
Actuators: crossed oars;
Control unit rotor: brake disc on shaft.
A brake magnet is provided as a control part on the missile side.

Kommando Null: Flächenebene des Ruderpaares zielt durch die Flugkörper-Längsachse (Bremswirkung auf den Flugkörper gering).Command zero: plane surface of the rudder pair aims through the missile's longitudinal axis (braking effect on the missile is low).

Kommandogabe: Flächenebene des Ruderpaares bildet einen Winkel mit der Flugkörperlängsachse. Beim Beispiel liegt das Kommando Null auf 90 Grad. Die Lösung ist einfach.Command: The plane of the rudder pair forms an angle with the longitudinal axis of the missile. In the example, the command zero is 90 degrees. The solution is simple.

Beschreibung des Rotorstellsystemes gemäß Figur 17 (Rotor-Ruderssystem VII)Description of the rotor control system according to FIG. 17 (rotor rudder system VII)

Das eigentliche Stellsystem ähnelt mit der Konsole, dem verschränkten Flügelpaar und dem Magnetsystem dem in Figur 16 gezeigten System, so daß sich eine Beschreibung erübrigt. Dieses Stellsystem ist seinerseits in einem Drehteil 81 aufgenommen, das einen Teil der Flugkörperspitze bildet. Dieses Drehteil ist gegenüber dem Flugkörpergehäuse FK abgestützt. Im Flugkörpergehäuse ist ein Ringmagnet 82 vorgesehen, dem auf Seiten des Drehteiles eine Bremsscheibe 83 zugeordnet ist. Ringmagnet und Bremsscheibe bilden ein weiteres Bremssystem. Das Drehteil selbst ist durch verschränkte Ruder R ständig in Drehung zu halten. Diese Ruder dienen demnach nur für den Rotorantrieb. Mit diesem Rotorsystem kann ständig eine raumfeste Querkraft auf den Flugkörper ausgeübt werden, auch wenn der Flugkörper rotiert.The actual positioning system with the console, the entangled pair of wings and the magnet system is similar to the system shown in FIG. 16, so that a description is unnecessary. This control system is in turn received in a rotating part 81, which forms part of the missile tip. This rotating part is supported against the missile housing FK. A ring magnet 82 is provided in the missile housing A rotating disk 83 is assigned to the rotating part. Ring magnet and brake disc form another brake system. The turned part itself must be kept in constant rotation by means of interlocked rudder R. These rudders are therefore only used for the rotor drive. With this rotor system, a fixed lateral force can be constantly exerted on the missile, even when the missile is rotating.

Um in einer räumlichen Richtung ständig Querkraft erzeugen zu können, wird die gesamte Spitze (Rotor) mit einer zusätzlichen Steuerung gegenüber dem Flugkörper gekoppelt (Bremsmagnet oder auch Elektromotorantrieb). Ansonsten ist dieses System ähnlich dem in Figur 16. Bei einem Elektromotorantrieb ist eine Schwenkbewegung möglich.In order to be able to continuously generate lateral force in a spatial direction, the entire tip (rotor) is coupled to an additional control unit opposite the missile (brake magnet or electric motor drive). Otherwise, this system is similar to that in Figure 16. A pivoting movement is possible with an electric motor drive.

Grundsätzlich verringert sich allgemein die notwendige Ruderfläche mit zunehmendem Abstand vom Flugkörperschwer­punkt; dadurch verringert sich das Ruder-Trägheitsmoment und der Umschaltvorgang Kommando - Nullkommando Kommando geht schneller vonstatten; die sonst von Schubdüsen gelieferte Querkraft kann auch geringer werden, d. h. für viele Anwendungsfälle wird ein Heißgas­generator erst gar nicht nötig. Wird die Haltestange, d. h. die Konsole A nach Verlassen z. B. des Kanonenroh­res herausgeschoben, z. B. durch die Verzögerung der Granate, so hindert der verlängerte Hebelarm die Manipula­tion des Flugkörpers nicht. Es sei erwähnt, daß auch die Haltestange selbst auftriebserzeugend ist, was zusätzlich die Ruderfläche verkleinert.Basically, the necessary rudder area generally decreases with increasing distance from the center of gravity of the missile; this reduces the rudder moment of inertia and the switching process command - zero command command is faster; the lateral force otherwise supplied by thrusters can also be reduced, ie a hot gas generator is not even necessary for many applications. If the handrail, ie the console A after leaving z. B. the gun barrel pushed out, for. B. by delaying the grenade, the extended lever arm does not prevent the manipulation of the missile. It should be mentioned that the handrail itself generates lift, which additionally reduces the rudder surface.

Beschreibung des Rotorspoilersystems gemäß Figur 18Description of the rotor spoiler system according to FIG. 18

In einer Flugkörperspitze FK ist parallel zur Flugkörper­längsachse eine Konsole A gelagert, die durch ein verschränktes Spoilerpaar 91 an der Spitze in Rotation versetzt wird. Am anderen Ende der Konsole ist ein Zahnrad 92 vorgesehen, das mit einer gezahnten Brems­scheibe 93 kämmt. Diese Bremsscheibe bildet mit einem Magneten 94 ein Bremssystem E, wie zu Fig. 16 und 17 beschrieben.A console A is mounted in a missile tip FK parallel to the missile longitudinal axis and is set in rotation by an entangled pair of spoilers 91 at the tip. At the other end of the console, a gear 92 is provided which meshes with a toothed brake disk 93. This brake disc forms a brake system E with a magnet 94, as described for FIGS. 16 and 17.

Bei einem Kommando von 100 % wird das verschränkte Spoilerpaar 91 entsprechend den Figuren 18a und 18b in einer Ebene parallel zur Flugkörper-Querebene festge­halten; bei einem Kommando Null wird der Spoiler in der Vertikalebene des Flugkörpers gehalten (Fig. 18 c und d)With a command of 100%, the entangled spoiler pair 91 is held in a plane parallel to the transverse plane of the missile in accordance with FIGS. 18a and 18b; with a zero command, the spoiler is held in the vertical plane of the missile (Fig. 18 c and d)

Beschreibung des Rotorspoilersystems nach Figur 19Description of the rotor spoiler system according to FIG. 19

In den Figuren 19a und 19b ist eine Aufsicht auf eine Flugkörperspitze FK dargestellt, wobei wegen der Übersicht­lichkeit Teile weggebrochen sind. Ein als gedrehtes Blechband ausgebildeter Spoiler 101 ist auf einem Spoiler­träger 102 montiert und in der in Figur 19a gezeigten Stellung am Außenumfang des Flugkörpers gelegen. Der Spoiler bewirkt durch seine Form den Drehantrieb des gesamten KonsolensystemsA. Mit dem Spoilerträger ist ein als Anker ausgebildetes Zahnrad 103 verbunden, das gemeinsam um die Drehachse D rotiert. Der Anker kämmt in einem Zahnrad 104, das mit einem Bremsmagneten flugkörper fest verbunden ist. Die Bremsmagnetpole 105 sind ebenfalls angedeutet. Durch entsprechende Verdrehung des Spoiler­trägers und Ablaufen der einzelnen Zahnräder aufeinander kann der Spoiler auf einer gewünschten Raumkurve von der Stellung gemäß Figur 19a in die flugkörpermittige Stellung gemäß Figur 19b überführt werden. Diese Stellung entspricht dem Nullkommando, die Stellung gemäß Fig. 19a einem Vollkommando.A top view of a missile tip FK is shown in FIGS. 19a and 19b, parts being broken away for reasons of clarity. A spoiler 101 designed as a turned sheet metal strip is mounted on a spoiler carrier 102 and, in the position shown in FIG. 19a, is located on the outer circumference of the missile. The shape of the spoiler drives the entire console system A. A sprocket carrier 103, which is designed as an armature and which rotates together about the axis of rotation D, is connected to the spoiler carrier. The armature meshes in a gear 104, which is firmly connected to a brake magnet missile. The brake magnetic poles 105 are also indicated. The spoiler can be transferred from the position shown in FIG. 19a to the missile-centered position shown in FIG. 19b by a corresponding rotation of the spoiler carrier and running of the individual toothed wheels on one another. This position corresponds to the zero command, the position according to FIG. 19a a full command.

Claims (29)

1. Rotorstellsystem in Verbindung mit Flugkörpersteue­rungen gekennzeichnet durch
einen Rotor, der eine Konsole, einen Drehantrieb für den Rotor, Stellorgane zur Flugkörpersteuerung, insbe­sondere Ruder oder Spoiler, sowie einen Steuerteil für den Rotor aufweist und
ein Steuerteil auf Seiten des Flugkörpers, das mit dem Steuerteil für den Rotor kooperiert.
1. Rotor positioning system in connection with missile controls characterized by
a rotor having a console, a rotary drive for the rotor, actuators for missile control, in particular rudder or spoiler, and a control part for the rotor and
a control part on the missile side, which cooperates with the control part for the rotor.
2. Rotorstellsystem nach Anspruch 1, dadurch gekennzeich­net, daß die Energie für die Betätigung der Stellorgane aus dem Drehantrieb des Rotors entnommen ist.2. Rotor control system according to claim 1, characterized in that the energy for the actuation of the actuators is taken from the rotary drive of the rotor. 3. Vorrichtung nach Anspruch 1 oder 2, dadurch gekenn­zeichnet, daß der Drehantrieb des Rotors durch ver­schränkte fluiddynamische Ruder oder Strahlspoiler erfolgt.3. Apparatus according to claim 1 or 2, characterized in that the rotary drive of the rotor is carried out by entangled fluid dynamic rudders or jet spoilers. 4. Rotorstellsystem nach einem der vorhergehenden Ansprü­che, dadurch gekennzeichnet, daß der Drehantrieb des Rotors ein zwischen Flugkörper und Rotor angeordneter Antrieb ist, z. B. ein Elektromotor, ein Pneumatik- oder Hydrauliksystem oder ein Federantrieb.4. Rotor control system according to one of the preceding claims, characterized in that the rotary drive of the rotor is a drive arranged between the missile and the rotor, for. B. an electric motor, a pneumatic or hydraulic system or a spring drive. 5. Rotorstellsystem nach einem der vorhergehenden Ansprü­che, dadurch gekennzeichnet, daß der Drehantrieb des Rotors durch Drehmoment erzeugende Schubdüsen oder Turbinensysteme erfolgt.5. Rotor control system according to one of the preceding claims, characterized in that the rotary drive of the rotor is carried out by torque-generating thrusters or turbine systems. 6. Rotorstellsystem nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß zwischen dem Rotor und dem Flugkörper Drehwinkelgeber vorgesehen sind.6. Rotor positioning system according to one of the preceding claims, characterized in that rotary angle sensors are provided between the rotor and the missile. 7. Rotorstellsystem nach einem der vorhergehenden Ansprü­che, dadurch gekennzeichnet, daß das Steuerteil des Flugkörpers ein Bremssystem und das Steuerteil für den Rotor eine mit dem Bremssystem kooperierende Brems­scheibe ist.7. Rotor control system according to one of the preceding claims, characterized in that the control part of the missile is a brake system and the control part for the rotor is a brake disc cooperating with the brake system. 8. Rotorstellsystem nach Anspruch 7, dadurch gekennzeich­net, daß Bremssystem und Bremsscheibe ein Magnetsystem bilden.8. Rotor actuating system according to claim 7, characterized in that the brake system and brake disc form a magnet system. 9. Rotorstellsystem nach einem der vorhergehenden Ansprü­che, dadurch gekennzeichnet, daß an der Spitze des Flugkörpers eine nach vorne ragende Dreheinheit vorge­sehen ist, die die Stellorgane trägt, und daß innerhalb der Dreheinheit der mit dem Steuerteil auf Seiten des Flugkörpers kooperierende Steuerteil für den Rotor angeordnet ist, der zur Verstellung der Stellorgane dient (Figuren 1 bis 4, 7 bis 10).9. Rotor control system according to one of the preceding claims, characterized in that a forwardly projecting rotating unit is provided at the tip of the missile, which carries the actuators, and that arranged within the rotating unit of the cooperating with the control part on the part of the missile control part for the rotor is used to adjust the actuators (Figures 1 to 4, 7 to 10). 10. Rotorstellsystem nach Anspruch 9, dadurch gekennzeich­net, daß die Stellorgane (2) Ruder mit einer gemeinsa­men Drehachse sind (Figur 1).10. Rotor control system according to claim 9, characterized in that the actuators (2) are rudders with a common axis of rotation (Figure 1). 11. Rotorstellsystem nach einem der Ansprüche 1 bis 9, dadurch gekennzeichnet, daß zumindest ein Ruder unab­hängig von dem anderen oder beide Ruder unabhängig voneinander über den Steuerteil des Rotors betätigbar sind.11. Rotor control system according to one of claims 1 to 9, characterized in that at least one rudder can be actuated independently of one another or both rudders independently of one another via the control part of the rotor. 12. Rotorstellsystem nach einem der Ansprüche 9 bis 11, dadurch gekennzeichnet, daß der Steuerteil für die Betätigung der Stellorgane federbelastet ist, um die Stellorgane bei nicht betätigten Steuerteilen von Flugkörper und Rotor in die Ruhelage zu bringen.12. Rotor control system according to one of claims 9 to 11, characterized in that the control part for the actuation of the actuators is spring-loaded to bring the actuators in the non-actuated control parts of the missile and rotor in the rest position. 13. Rotorstellsystem nach einem der Ansprüche 9 bis 12, dadurch gekennzeichnet, daß die Stellorgane als Ruder, sogenannte Entenruder an vorderster Spitze des aus dem Flugkörper herausragenden Drehteiles angeordnet sind (Figur 7 bis 10).13. Rotor positioning system according to one of claims 9 to 12, characterized in that the actuators are arranged as oars, so-called duck oars at the very front of the rotating part protruding from the missile (Figure 7 to 10). 14. Rotorstellsystem nach einem der Ansprüche 9 bis 13, dadurch gekennzeichnet, daß am Drehteil ein zusätzli­cher fluiddynamischer Rollantrieb vorgesehen ist, der vorzugsweise durch zwei gegenuberliegende verschränkte Spreizflügel gebildet ist.14. Rotor positioning system according to one of claims 9 to 13, characterized in that an additional fluid dynamic roller drive is provided on the rotating part, which is preferably formed by two opposite, interlocking spreading wings. 15. Rotorstellsystem nach einem der Ansprüche 9 bis 14, dadurch gekennzeichnet, daß die als verschränktes Flügelpaar ausgebildeten Stellorgane mit Hilfe des Steuerteiles für den Rotor in das Drehteil einschwenk­bar und aus diesem herausschwenkbar sind (Figur 10).15. Rotor actuating system according to one of claims 9 to 14, characterized in that the actuators designed as an entangled pair of wings can be pivoted into and out of the rotating part with the aid of the control part for the rotor (FIG. 10). 16. Rotorstellsystem nach einem der Ansprüche 1 bis 8, dadurch gekennzeichnet daß die Stellorgane auf einem an den Umfang des Flugkörpers anschließenden Drehteil angeordnet sind (Figur 11).16. Rotor control system according to one of claims 1 to 8, characterized in that the actuators are arranged on a rotating part adjoining the circumference of the missile (Figure 11). 17. Rotorstellsystem nach Anspruch 16, dadurch gekennzeich­net, daß die Stellorgane radial von dem Flugkörper wegweisende Ruder sind, die gleichzeitig dem fluiddyna­mischen Drehantrieb für das Drehteil besorgen.17. Rotor actuating system according to claim 16, characterized in that the actuators are radially pioneering rudder, which simultaneously provide the fluid dynamic rotary drive for the rotating part. 18. Rotorstellsystem nach Anspruch 16 oder 17, dadurch gekennzeichnet, daß zumindest eines der Stellorgane verstellbar ist.18. Rotor actuating system according to claim 16 or 17, characterized in that at least one of the actuators is adjustable. 19. Rotorstellsystem nach Anspruch 18, dadurch gekennzeich­net, daß das verstellbare Stellorgan um eine radiale Achse schwenkbar ist und innerhalb des Drehteiles einen Übertragungsdorn trägt, der mit dem Steuerteil für den Rotor kooperiert.19. Rotor actuating system according to claim 18, characterized in that the adjustable actuator is pivotable about a radial axis and carries a transmission mandrel within the rotating part, which cooperates with the control part for the rotor. 20. Rotorstellsystem nach Anspruch 18 oder 19, dadurch gekennzeichnet, daß das Steuerteil für das Drehteil eine Bremsscheibe ist, die mit Magneten auf Seiten des Flugkörpers kooperiert.20. Rotor actuating system according to claim 18 or 19, characterized in that the control part for the rotary part is a brake disc which cooperates with magnets on the missile side. 21. Rotorstellsystem nach einem der Ansprüche 18 bis 20, dadurch gekennzeichnet, daß für das verstellbare Stellorgan ein Rückholelement zur Rückführung in die Ruhelage vorgesehen ist.21. Rotor positioning system according to one of claims 18 to 20, characterized in that a return element is provided for returning to the rest position for the adjustable actuator. 22. Rotorstellsystem nach Anspruch 21, dadurch gekennzeich­net, daß das Rückholelement eine Rückholfeder ist.22. A rotor actuating system according to claim 21, characterized in that the return element is a return spring. 23. Rotorstellsystem nach Anspruch 21, dadurch gekennzeich­net, daß das Rückholelement als Magnetsystem entspre­chend Anspruch 20 auf der dem ersten Magnetsystem gegenüberliegenden Seite des Stellorganes ausgebildet ist.23, rotor actuating system according to claim 21, characterized in that the return element is designed as a magnet system according to claim 20 on the opposite side of the first magnet system of the actuator. 24. Rotorstellsystem nach einem der Ansprüche 16 bis 23, dadurch gekennzeichnet, daß längs des Umfanges des mehrere Stellorgane, insbesonder Ruder tragenden Dreh­teiles ebenfalls mehrere Steuerteile auf Seiten des Flugkörpers und auf Seiten des Drehteiles vorgesehen sind.24. Rotor positioning system according to one of claims 16 to 23, characterized in that along the circumference of the several actuators, in particular rudder-bearing rotary part also a plurality of control parts are provided on the missile side and on the rotating part side. 25. Rotorstellsystem nach einem der Ansprüche 16 bis 24, dadurch gekennzeichnet, daß die Stellorgane Ruder sind, deren aorodynamischer Druckpunkt in Flugrichtung gese­hen vor der radialen Drehachse liegt.25. Rotor positioning system according to one of claims 16 to 24, characterized in that the actuators are rudders, the aorodynamic pressure point seen in the direction of flight lies in front of the radial axis of rotation. 26. Rotorstellsystem nach einem der Ansprüche 1 bis 8, dadurch gekennzeichnet, daß die Konsole des Rotors, die die Stellorgane trägt, aus der Flugkörperspitze nach vorne in eine Richtung herausragt, die mit der Flugkörperlängsachse einen Winkel bildet (Figuren 15 - 17).26. Rotor positioning system according to one of claims 1 to 8, characterized in that the console of the rotor, which carries the actuators, protrudes forward from the missile tip in a direction which forms an angle with the missile longitudinal axis (Figures 15-17). 27. Rotorstellsystem nach Anspruch 26, dadurch gekennzeich­net, daß die Konsole ein abgeknicktes Drehteil ist, dessen erstes Teil in der Flugkörperlängsachse liegt und dessen abgeknickter Teil mit der Flugkörper­längsachse einen Winkel bildet, und daß an diesem abgeknickten Teil der Drehantrieb für den Rotor, insbesondere ein verschränktes Flügelpaar vorgesehen ist (Figur 15).27. Rotor positioning system according to claim 26, characterized in that the console is a bent rotary part, the first part of which lies in the missile longitudinal axis and the bent part of which forms an angle with the missile longitudinal axis, and in that the bent part of the rotary drive for the rotor, in particular an crossed pair of wings is provided (Figure 15). 28. Rotorstellsystem nach Anspruch 26, dadurch gekennzeich­net, daß das Drehteil für die Steuerorgane ein gerades Drehteil ist, das gegenüber der Flugkörperlängsachse angestellt ist, derart, daß die Spitze des Drehteiles mit den als Drehantrieb dienenden miteinander ver­schränkten Flügeln in der Flugkörperlängsachse liegt (Figuren 16 und 17).28. A rotor actuating system according to claim 26, characterized in that the rotating part for the control members is a straight rotating part which is positioned relative to the longitudinal axis of the missile, such that the tip of the rotating part with the interlocking wings serving as rotary drive lies in the longitudinal axis of the missile (Figures 16 and 17). 29. Rotorstellsystem nach einem der vorhergehenden Ansprü­che, dadurch gekennzeichnet, daß zwischen dem Flugkör­per und dem die Stellorgane tragenden Drehteil ein weiteres Drehteil vorgesehen ist, auf dem das die Stellorgane tragende Drehteil abgestützt und positions­gesteuert gehalten werden kann (Figur 17).29. Rotor positioning system according to one of the preceding claims, characterized in that a further rotating part is provided between the missile and the rotating part carrying the actuators, on which the rotating part carrying the actuators can be supported and held in a position-controlled manner (FIG. 17).
EP86115867A 1986-02-27 1986-11-14 Steerable missile Expired - Lifetime EP0238717B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE19863606423 DE3606423A1 (en) 1986-02-27 1986-02-27 ROTOR SYSTEM IN CONNECTION WITH AIRCRAFT CONTROLS
DE3606423 1986-02-27

Publications (2)

Publication Number Publication Date
EP0238717A1 true EP0238717A1 (en) 1987-09-30
EP0238717B1 EP0238717B1 (en) 1990-08-01

Family

ID=6295103

Family Applications (1)

Application Number Title Priority Date Filing Date
EP86115867A Expired - Lifetime EP0238717B1 (en) 1986-02-27 1986-11-14 Steerable missile

Country Status (3)

Country Link
US (3) US4927096A (en)
EP (1) EP0238717B1 (en)
DE (2) DE3606423A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2615938A1 (en) * 1987-05-26 1988-12-02 Messerschmitt Boelkow Blohm GOVERNMENT CONTROL DEVICE FOR A GUIDE MISSILE

Families Citing this family (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3606423A1 (en) * 1986-02-27 1987-09-03 Messerschmitt Boelkow Blohm ROTOR SYSTEM IN CONNECTION WITH AIRCRAFT CONTROLS
DE3742836C1 (en) * 1987-12-17 1989-07-13 Messerschmitt Boelkow Blohm Missile with adjustable control elements
DE3826615C2 (en) * 1988-08-05 1995-06-08 Rheinmetall Gmbh Yaw-free bullet
DE3827590A1 (en) * 1988-08-13 1990-02-22 Messerschmitt Boelkow Blohm MISSILE
DE4024264C2 (en) * 1990-07-31 1996-02-01 Daimler Benz Aerospace Ag Device for controlling a missile
US5201829A (en) * 1991-12-19 1993-04-13 General Dynamics Corporation Flight control device to provide directional control
DE4239589A1 (en) * 1992-11-25 1994-05-26 Deutsche Aerospace Guidance system for flying missiles - has guiding spoiler and adjuster comprising spring drive with controlled holding and release mechanism
IL107830A (en) * 1993-12-01 1998-07-15 Israel State Controlled scanner head missile
US5379968A (en) * 1993-12-29 1995-01-10 Raytheon Company Modular aerodynamic gyrodynamic intelligent controlled projectile and method of operating same
US6364248B1 (en) * 2000-07-06 2002-04-02 Raytheon Company Articulated nose missile control actuation system
US7278609B2 (en) * 2005-08-05 2007-10-09 Northrop Grumman Corporation Movable nose cap and control strut assembly for supersonic aircraft
DE102005043474B4 (en) * 2005-09-13 2011-04-07 Deutsch-Französisches Forschungsinstitut Saint-Louis, Saint-Louis Device for controlling a projectile
DE102006003638B4 (en) * 2006-01-26 2008-01-17 Deutsches Zentrum für Luft- und Raumfahrt e.V. Missile for the supersonic range
US7963442B2 (en) 2006-12-14 2011-06-21 Simmonds Precision Products, Inc. Spin stabilized projectile trajectory control
US9040885B2 (en) * 2008-11-12 2015-05-26 General Dynamics Ordnance And Tactical Systems, Inc. Trajectory modification of a spinning projectile
US8434712B1 (en) * 2011-01-12 2013-05-07 Lockheed Martin Corporation Methods and apparatus for driving rotational elements of a vehicle
FR2980842B1 (en) * 2011-10-03 2013-09-13 Nexter Munitions GYROSTABILIZED PROJECTILE COMPRISING A PAIR OF FINS AND METHOD FOR CONTROLLING SUCH A PROJECTILE
CN103407570A (en) * 2013-07-12 2013-11-27 西北工业大学 Eddy current generating device for controlling lateral force of large-incidence-angle slender body
GB2523097B (en) * 2014-02-12 2016-09-28 Jaguar Land Rover Ltd Vehicle terrain profiling system with image enhancement
US9429401B2 (en) * 2014-06-17 2016-08-30 Raytheon Company Passive stability system for a vehicle moving through a fluid
DE102018133216A1 (en) * 2018-12-20 2020-06-25 Rheinmetall Air Defence Ag Guided missile with several controllable wings and with a drive arrangement with a rotatable rotor
CN115325889B (en) * 2022-09-01 2023-09-29 北京中科宇航技术有限公司 Leaf surface rotating grid rudder control system

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE694533C (en) * 1930-03-04 1940-08-03 Siemens App Device for controlling rockets, in particular rocket projectiles
DE1092313B (en) * 1958-02-28 1960-11-03 Ignaz V Maydell Dipl Ing Method and device for influencing the trajectory of a remotely controlled or remotely controlled flying body
DE1578144B1 (en) * 1964-09-16 1979-06-21 Gen Dynamics Corp Control device for a rotating steering projectile
GB2019335A (en) * 1978-03-01 1979-10-31 Bristol Aerojet Ltd Rocket vehicles
DE3047389A1 (en) * 1979-12-17 1981-09-17 Motorola, Inc., 60196 Schaumburg, Ill. Canard-type guided missile - has stabiliser at rear end with appreciably less wing span than canard surfaces preceding it
US4373688A (en) * 1981-01-19 1983-02-15 The United States Of America As Represented By The Secretary Of The Army Canard drive mechanism latch for guided projectile

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3102437A (en) * 1960-11-23 1963-09-03 Gen Motors Corp Electromechanical actuator
DE1215554B (en) * 1961-08-29 1966-04-28 Gen Dynamics Corp Control device for a floor
US3111088A (en) * 1962-02-27 1963-11-19 Martin Marietta Corp Target seeking missile
US3154015A (en) * 1962-09-19 1964-10-27 Martin Marietta Corp Missile flight control system
US4438893A (en) * 1973-08-10 1984-03-27 Sanders Associates, Inc. Prime power source and control for a guided projectile
US4512537A (en) * 1973-08-10 1985-04-23 Sanders Associates, Inc. Canard control assembly for a projectile
US4210298A (en) * 1978-08-01 1980-07-01 The United States Of America As Represented By The Secretary Of The Army Electro-mechanical guidance actuator for a missile
EP0076271B1 (en) * 1981-04-08 1985-11-21 The Commonwealth Of Australia Directional control device for airborne or seaborne missiles
DE3317583C2 (en) * 1983-05-13 1986-01-23 Messerschmitt-Bölkow-Blohm GmbH, 8012 Ottobrunn Device with a nozzle arrangement supplied by a propellant source
DE3429798C1 (en) * 1984-08-13 1985-12-12 Messerschmitt-Bölkow-Blohm GmbH, 8012 Ottobrunn Device for correcting the trajectory of a projectile
US4565340A (en) * 1984-08-15 1986-01-21 Ford Aerospace & Communications Corporation Guided projectile flight control fin system
DE3606423A1 (en) * 1986-02-27 1987-09-03 Messerschmitt Boelkow Blohm ROTOR SYSTEM IN CONNECTION WITH AIRCRAFT CONTROLS
SE461750B (en) * 1987-03-20 1990-03-19 Lars Johan Schleimann Jensen PROCEDURES FOR CONTROL OF A FLYING OBJECT, SUCH AS A PROJECT, AGAINST A TARGET AND PROJECT FOR THE IMPLEMENTATION OF THE PROCEDURE
DE3742836C1 (en) * 1987-12-17 1989-07-13 Messerschmitt Boelkow Blohm Missile with adjustable control elements

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE694533C (en) * 1930-03-04 1940-08-03 Siemens App Device for controlling rockets, in particular rocket projectiles
DE1092313B (en) * 1958-02-28 1960-11-03 Ignaz V Maydell Dipl Ing Method and device for influencing the trajectory of a remotely controlled or remotely controlled flying body
DE1578144B1 (en) * 1964-09-16 1979-06-21 Gen Dynamics Corp Control device for a rotating steering projectile
GB2019335A (en) * 1978-03-01 1979-10-31 Bristol Aerojet Ltd Rocket vehicles
DE3047389A1 (en) * 1979-12-17 1981-09-17 Motorola, Inc., 60196 Schaumburg, Ill. Canard-type guided missile - has stabiliser at rear end with appreciably less wing span than canard surfaces preceding it
US4373688A (en) * 1981-01-19 1983-02-15 The United States Of America As Represented By The Secretary Of The Army Canard drive mechanism latch for guided projectile

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2615938A1 (en) * 1987-05-26 1988-12-02 Messerschmitt Boelkow Blohm GOVERNMENT CONTROL DEVICE FOR A GUIDE MISSILE

Also Published As

Publication number Publication date
US4927096A (en) 1990-05-22
US5083724A (en) 1992-01-28
DE3645077C2 (en) 1996-06-27
DE3606423A1 (en) 1987-09-03
EP0238717B1 (en) 1990-08-01
US5065957A (en) 1991-11-19

Similar Documents

Publication Publication Date Title
EP0238717B1 (en) Steerable missile
DE19640540C1 (en) Rudder control system for a guided missile
DD153786A5 (en) BOAT AND SHIP PROPELLERS
DE2721656A1 (en) CONTROL ARRANGEMENT FOR THE CONTROL OF AIRCRAFT
DE2832082A1 (en) TURBINE AIR JET ENGINE
EP2157398A2 (en) Countermeasure launcher
DE2410255C2 (en) Cross rudder system for a rocket
DE60200899T2 (en) Control group for the control fins of missiles or projectiles
DE19949640A1 (en) Method and device for quickly turning a moving body in a fluid medium
DE3010903C2 (en)
DE2730751A1 (en) AERODYNAMIC CONTROL SURFACE WITH INTEGRATED THRUST VECTOR
DE917540C (en) High-speed wind turbine
EP1635135A1 (en) Missile head and method of steering a missile
DE1808779A1 (en) Wing stabilized sub-caliber bullet
DE3519892A1 (en) BRAKE AND RELEASE DEVICE FOR A TURNTING BODY
DE102016121102B3 (en) Variable offset on the rotor head of a gyrocopter
DE2813032C1 (en) Sliding floor
DE102020105188B4 (en) Missile fin deployment device, missile and method of operating a missile
DE1781098C3 (en) Steering control loop
DE1781191A1 (en) Drawer tilting or straightening device
EP3279605A1 (en) Method for ejection of a guided missile from a flying platform
EP0814315B1 (en) Rocket
DE3645093C2 (en) Flying body steering system with connected motor
DE4024264A1 (en) Missile steering appts. for guided missile - has generator feeding drive gas to thrust nozzles on radially opposite sides of missile longitudinal axis
EP3086078A1 (en) Missile rudder system

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): CH FR GB IT LI SE

17P Request for examination filed

Effective date: 19871113

17Q First examination report despatched

Effective date: 19890201

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): CH FR GB IT LI SE

ET Fr: translation filed
GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)
ITF It: translation for a ep patent filed

Owner name: STUDIO JAUMANN

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
ITTA It: last paid annual fee
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 19930217

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 19931021

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 19931108

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 19931116

Year of fee payment: 8

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Effective date: 19931130

Ref country code: CH

Effective date: 19931130

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Effective date: 19941114

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Effective date: 19941115

EAL Se: european patent in force in sweden

Ref document number: 86115867.3

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 19941114

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Effective date: 19950731

EUG Se: european patent has lapsed

Ref document number: 86115867.3

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.

Effective date: 20051114