EP0216694B1 - Apparatus for real-time control of total penetration welding, in particular for seams inaccessible to direct observation - Google Patents

Apparatus for real-time control of total penetration welding, in particular for seams inaccessible to direct observation Download PDF

Info

Publication number
EP0216694B1
EP0216694B1 EP86401987A EP86401987A EP0216694B1 EP 0216694 B1 EP0216694 B1 EP 0216694B1 EP 86401987 A EP86401987 A EP 86401987A EP 86401987 A EP86401987 A EP 86401987A EP 0216694 B1 EP0216694 B1 EP 0216694B1
Authority
EP
European Patent Office
Prior art keywords
welding
detection means
optoelectronic
cone
inaccessible
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP86401987A
Other languages
German (de)
French (fr)
Other versions
EP0216694A1 (en
Inventor
Claude Decailloz
Jean Robin
Jean-Pierre Massy
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Commissariat a lEnergie Atomique et aux Energies Alternatives CEA
Original Assignee
Commissariat a lEnergie Atomique CEA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Commissariat a lEnergie Atomique CEA filed Critical Commissariat a lEnergie Atomique CEA
Publication of EP0216694A1 publication Critical patent/EP0216694A1/en
Application granted granted Critical
Publication of EP0216694B1 publication Critical patent/EP0216694B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/02Positioning or observing the workpiece, e.g. with respect to the point of impact; Aligning, aiming or focusing the laser beam
    • B23K26/03Observing, e.g. monitoring, the workpiece
    • B23K26/032Observing, e.g. monitoring, the workpiece using optical means
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B23/00Telescopes, e.g. binoculars; Periscopes; Instruments for viewing the inside of hollow bodies; Viewfinders; Optical aiming or sighting devices
    • G02B23/24Instruments or systems for viewing the inside of hollow bodies, e.g. fibrescopes
    • G02B23/26Instruments or systems for viewing the inside of hollow bodies, e.g. fibrescopes using light guides
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/26Optical coupling means
    • G02B6/262Optical details of coupling light into, or out of, or between fibre ends, e.g. special fibre end shapes or associated optical elements
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/42Coupling light guides with opto-electronic elements
    • G02B6/4201Packages, e.g. shape, construction, internal or external details
    • G02B6/4202Packages, e.g. shape, construction, internal or external details for coupling an active element with fibres without intermediate optical elements, e.g. fibres with plane ends, fibres with shaped ends, bundles

Definitions

  • the present invention relates to a device for real-time control of a welding with total penetration and relates more particularly to the control of the welding of a joint inaccessible to direct observation.
  • the device of the invention is particularly suitable for controlling welding on a practically closed part or for welding two tubes of great length and small diameter.
  • the assembly by total penetration welding leads to the back of the weld to the formation of a luminous molten bath, in the case of TIG or MIG welding for example, or to the formation of a luminous plasma made up of metallic vapors. more or less ionized, in the case of electron beam or laser beam welding, possibly accompanied by fine droplets of molten metal.
  • a luminous molten bath in the case of TIG or MIG welding for example
  • a luminous plasma made up of metallic vapors.
  • electron beam or laser beam welding possibly accompanied by fine droplets of molten metal.
  • a device for real-time control of a total penetration welding comprises, in known manner, an optoelectronic means for detecting the light intensity on the back of the weld bead at the point of the welding point, a means for processing the electrical signal delivered by said detection means, and signaling means.
  • a detection means which consists of a housing containing an optoelectronic detector and an optical processing means. It is a bulky detection means which can only be used when the back of the weld bead is easily accessible to observation.
  • a detection means consisting of a set of photodiodes and a detection means consisting of a set of optical fibers connected to a photodiode.
  • the set of photodiodes and the set of optical fibers are arranged so as to detect a light signal on a circumference.
  • each photodiode, or each optical fiber constitutes a substantially omnidirectional detector.
  • the number of photodiodes, or optical fibers, necessary to observe the entire weld bead is large.
  • Another prior art is constituted by application FR-A-2 560 696 in which a device for controlling the welding of two metal parts is described.
  • the device comprises an energy source for carrying out the welding and a means for detecting the light radiated by the vapor released at the welding point.
  • This detection means which is capable of comprising an optoelectronic detector as well as a bundle of optical fibers for transmitting to said detector the light intensity radiated at the weld, is placed on the same side as the energy source with respect to the parts to be welded so as to determine the depth of the weld from light radiation.
  • the invention aims to allow real time control of a full penetration welding in the case of a joint inaccessible or difficult to access for direct observation.
  • This goal is essentially achieved by the use of a means of detection comprising an optoelectronic detector and a single optical fiber, the end of this optical fiber being cut into a cone so as to collect a light signal coming from any point of the weld bead.
  • the subject of the invention is a device for real time control of a full penetration welding by detection of the light intensity present on the back of the weld bead at the time of welding, said device being particularly suitable checking the back of a joint inaccessible to direct observation, said device comprising an optoelectronic means for detecting said light intensity present on the back of the weld bead at the time of welding, a means for processing the electrical signal delivered by said detection means and signaling means, said device being characterized in that said optoelectronic detection means comprises an optoelectronic detector and a single optical fiber, said fiber comprising a first end connected to the optoelectronic detector and a second end cut in cone-shaped, said second end cone-shaped opening angle different from 180 ° being intended to be held stationary in a predetermined position facing, but set back, from the back of the weld bead to be formed on the parts to be welded, so as to collect the light intensity present on this reverse side of weld bead at the time
  • the angle of the end cone of the optical fiber is such that the entire weld bead is in the field of vision of the optoelectronic detector, when the optical fiber is held stationary.
  • the opening angle of this cone is between 25 ° and 45 °.
  • the optical fiber is, at least partially, contained in a sheath.
  • a sheath This is advantageously made of a ductile material which then simultaneously constitutes a protection and a mechanical support for the optical fiber.
  • the processing means is adapted to deliver to the welding means a signal for controlling the intensity of the welding beam as a function of the intensity of the detected optical signal. This makes it possible to control the power of the welding beam and to ensure total penetration of the welding.
  • FIG. 1 Schematically shown in Figure 1 a welding system provided with a control device according to the invention.
  • a control device for example, the case of welding, by a pulsed laser beam, of a high-performance pressure device has been shown.
  • the control device of the invention is not linked to the nature of the welding means but can on the contrary be associated with any known welding means, in particular electron beam welding, TIG welding, MIG or MAG.
  • the device to be welded consists of a bottom 2 and a ferrule 4. These two parts have the general shape of a hollow cylinder provided with a bottom.
  • the ferrule 4 is provided with a small opening 6.
  • the assembly of the two parts to be welded forms a closed hollow cylinder.
  • the two parts to be welded are arranged on a support 8 disposed under an inert atmosphere in a welding enclosure 10.
  • the welding means is fixed. Welding on the entire joint between the two parts is obtained by rotation of these parts around a vertical axis. This rotation can be obtained by a turntable 18 constituting the upper part of the support 8.
  • the welding control device comprises an optoelectronic detection means 20, a processing means 22 and a signaling means 24.
  • the detection means 20 is disposed in the welding enclosure 10. It is connected to the processing means 22 by an electrical link 26 passing through the wall of the welding enclosure 10.
  • the processing means 22 may comprise an amplifier 28 followed by a servo means 30 intended to control, by a channel 32, the power of the beam of the means of welding 14 as a function of the optical signal detected on the back of the joint.
  • the signaling means 24 can comprise a display means 34 (plotter, screen or other) and a recording means 36. These means 34 and 36 simultaneously receive a first electrical signal corresponding to the detected optical signal and a second corresponding electrical signal the intensity of the welding beam. This second signal is delivered by the welding means to the processing means 22 on a channel 38.
  • the detection means 20 comprises an optoelectronic detector 40 and a single optical fiber 42.
  • This fiber is preferably protected from mechanical attack (projections, metallic vapors, droplets of liquid metal or the like) by a sheath.
  • this sheath is made of a ductile material, for example stainless steel or copper. This allows the optical fiber to be shaped so that it follows a well-defined path and that it remains in the optimal position without any special fixing device.
  • the optical detection means of the invention thus has the advantages of a very small footprint and very great flexibility allowing it to reach regions inaccessible, or very difficult to access, to direct observation.
  • the end of the optical fiber collecting the light signal on the reverse of the joint is cut into a cone shape.
  • the angle of this cone defines the opening of the field of vision 43 and makes it possible to arrange the fiber out of the range of mechanical or thermal aggressions due to welding, which can damage the end of the fiber or simply disturb the measurement.
  • the length of the fiber is provided sufficient to distance the optoelectronic detector 40 from the welding area so that it does not interfere with the execution of the weld and that its operation is not disturbed by the environment (electric or magnetic field, heating, welding atmosphere or other).
  • FIG. 2 shows a longitudinal section of the optical detection means.
  • the optoelectronic detector 40 consisting for example of a photodiode, is protected by an insulator 44 and disposed in a cylindrical support 46. Its sensitive optical part is disposed opposite one end of the optical fiber 42. The latter is protected by a sheath 48 which is positioned in its upper part, by a flange 50. This upper part is contained in a support 52.
  • the end 56 of the optical fiber collecting the optical signal is cut into a cone shape.
  • the field of vision 43 of the optical detection means depends on the opening of this cone.
  • the support 46 of the optoelectronic detector and the support 52 of the optical fiber are provided with hooking means 58 which cooperate.
  • This design makes it possible to make the optical fiber interchangeable and thus to adapt the optical detection means to the geometry of the weld to be checked.
  • FIG 1 there is shown the case where the observation of the underside of the weld bead is difficult because the welded part constitutes a closed volume.
  • the control device of the invention can also be used advantageously, for example, in the case of the welding of two tubes of great lengths and small diameters. Direct observation of the back of the weld bead, which is not possible with the optical detection means according to the prior art, does not present any difficulty with the optical detection means of the invention.
  • the end of the optical fiber is defined so that its field of vision covers the entire back of the weld bead.
  • the opening angle of the end cone of the optical fiber also makes it possible to adapt the field of vision according to the position and the diameter of the weld.
  • Figures 3a and 4a illustrate two different shapes of the end of the optical fiber.
  • Figures 3b and 4b illustrate the transmission power corresponding to each of these fibers as a function of the angle of incidence of a light signal.
  • the opening of the end cone 56 of the optical fiber 42 is 40 °.
  • the graph in FIG. 3b representing the light intensity transmitted by the optical fiber as a function of the angle of incidence ⁇ of a light signal, shows that the field of vision 43 is between the incidences and approximately 45. Given the necessary distance from the end of the optical fiber to the welding point, to avoid mechanical attack, this field of vision is suitable for controlling a welding operation on a circular joint of approximately 200mm in diameter.
  • the opening of the end cone 56 is 30 °.
  • the curve in FIG. 4b shows that then the field of vision 43 is between the incidences of around 50 to 60 °.
  • Such a field of vision is particularly suitable for checking a weld on a joint having a diameter of the order of 100 mm.
  • the energy E is shown in FIG. 5a as a function of time t of the welding beam obtained by a YAG laser (aluminum garnet and yttrium semiconductor). It is a point-to-point welding, the welding being constituted by a succession of points with overlap, which ensures a continuous welding.
  • a YAG laser aluminum garnet and yttrium semiconductor
  • FIG. 5b shows the intensity of the detected light signal, in correspondence with the intensity of the laser beam.
  • the delay between the start of the laser pulse signal and the start of the light signal on the reverse side of the weld is indicative of the quality of the weld penetration.
  • the delay ⁇ T1 is low: there is over-penetration.
  • the delay ⁇ T2 indicates normal penetration.
  • the delay ⁇ T3 is practically equal to the duration ⁇ T of the laser pulse: total penetration has just been reached.
  • FIGS. 5a and 5b make it possible to assess the quality of the penetration of the weld, to locate any lack of penetration and their coordinates relative to the starting reference position of the weld. They also make it possible to decide on the possible need for repair of the weld in the zone where the penetration is judged insufficient taking into account the no overlap of the welding points.
  • the processing means of the control device comprises a means for controlling the power of the welding means
  • the signal shown in FIG. 5b is used to control the power of the welding means. This power is increased in view of the optical signal corresponding to the pulses 62 and 66 of the pulse of the laser beam and decreased in view of the optical signal corresponding to the pulse 60 of the laser beam.

Landscapes

  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Astronomy & Astrophysics (AREA)
  • Plasma & Fusion (AREA)
  • Mechanical Engineering (AREA)
  • Laser Beam Processing (AREA)
  • Investigating Materials By The Use Of Optical Means Adapted For Particular Applications (AREA)

Description

La présente invention a pour objet un dispositif de contrôle en temps réel d'un soudage à pénétration totale et concerne plus particulièrement le contrôle du soudage d'un joint inaccessible à l'observation directe. Le dispositif de l'invention est adapté notamment au contrôle du soudage sur une pièce pratiquement fermée ou au soudage de deux tubes de grandes longueurs et de faibles diamètres.The present invention relates to a device for real-time control of a welding with total penetration and relates more particularly to the control of the welding of a joint inaccessible to direct observation. The device of the invention is particularly suitable for controlling welding on a practically closed part or for welding two tubes of great length and small diameter.

L'assemblage par soudage à pénétration totale conduit à l'envers de la soudure à la formation d'un bain fondu lumineux, dans le cas du soudage TIG ou MIG par exemple, ou à la formation d'un plasma lumineux constitué de vapeurs métalliques plus ou moins ionisées, dans le cas du soudage par faisceau d'électrons ou par faisceau laser, accompagnées éventuellement de fines gouttelettes de métal fondu. La constatation de ces phénomènes en cours de soudage permet de garantir que la zone fondue a affecté la totalité de l'épaisseur des pièces à assembler.The assembly by total penetration welding leads to the back of the weld to the formation of a luminous molten bath, in the case of TIG or MIG welding for example, or to the formation of a luminous plasma made up of metallic vapors. more or less ionized, in the case of electron beam or laser beam welding, possibly accompanied by fine droplets of molten metal. The observation of these phenomena during welding makes it possible to guarantee that the molten zone has affected the entire thickness of the parts to be assembled.

Un dispositif de contrôle en temps réel d'un soudage à pénétration totale comprend, de manière connue, un moyen optoélectronique de détection de l'intensité lumineuse à l'envers du cordon de soudure au droit du point de soudage, un moyen de traitement du signal électrique délivré par ledit moyen de détection, et un moyen de signalisation.A device for real-time control of a total penetration welding comprises, in known manner, an optoelectronic means for detecting the light intensity on the back of the weld bead at the point of the welding point, a means for processing the electrical signal delivered by said detection means, and signaling means.

On connaît un moyen de détection constitué d'un boîtier contenant un détecteur optoélectronique et un moyen de traitement optique. Il s'agit d'un moyen de détection volumineux qui ne peut être utilisé que lorsque l'envers du cordon de soudure est facilement accessible à l'observation.A detection means is known which consists of a housing containing an optoelectronic detector and an optical processing means. It is a bulky detection means which can only be used when the back of the weld bead is easily accessible to observation.

On connaît également un moyen de détection constitué d'un ensemble de photodiodes et un moyen de détection constitué d'un ensemble de fibres optiques reliées à une photodiode. Dans ces deux moyens de détection connus, l'ensemble de photodiodes et l'ensemble de fibres optiques sont disposés de manière à détecter un signal lumineux sur une circonférence. Dans ces moyens de détection connus, chaque photodiode, ou chaque fibre optique, constitue un détecteur sensiblement omnidirectionnel. Le nombre de photodiodes, ou de fibres optiques, nécessaires pour observer la totalité du cordon de soudure est important. Ces moyens de détection sont donc volumineux et ne peuvent pas être utilisés pour le contrôle d'un soudage à pénétration totale d'un joint difficilement accessible à l'observation directe.There is also known a detection means consisting of a set of photodiodes and a detection means consisting of a set of optical fibers connected to a photodiode. In these two known detection means, the set of photodiodes and the set of optical fibers are arranged so as to detect a light signal on a circumference. In these known detection means, each photodiode, or each optical fiber, constitutes a substantially omnidirectional detector. The number of photodiodes, or optical fibers, necessary to observe the entire weld bead is large. These detection means are therefore bulky and cannot be used for the control of a full penetration welding of a joint which is difficult to access for direct observation.

Un autre art antérieur est constitué par la demande FR-A-2 560 696 dans lequel est décrit un dispositif de commande du soudage de deux pièces métalliques. Le dispositif comprend une source d'énergie pour réaliser le soudage et un moyen pour détecter la lumière rayonnée par la vapeur dégagée au point de soudure. Ce moyen de détection, qui est susceptible de comprendre un détecteur optoéléctronique ainsi qu'un faisceau de fibres optiques pour transmettre audit détecteur l'intensité lumineuse rayonnée au niveau de la soudure, est placé du même côté que la source d'énergie par rapport aux pièces à souder de manière à déterminer la profondeur de la soudure à partir du rayonnement lumineux.Another prior art is constituted by application FR-A-2 560 696 in which a device for controlling the welding of two metal parts is described. The device comprises an energy source for carrying out the welding and a means for detecting the light radiated by the vapor released at the welding point. This detection means, which is capable of comprising an optoelectronic detector as well as a bundle of optical fibers for transmitting to said detector the light intensity radiated at the weld, is placed on the same side as the energy source with respect to the parts to be welded so as to determine the depth of the weld from light radiation.

Ce document ne divulgue pas la possibilité de réaliser le contrôle de l'envers d'un cordon de soudure.This document does not disclose the possibility of carrying out the control of the reverse side of a weld bead.

L'invention a pour but de permettre le contrôle en temps réel d'un soudage à pénétration totale dans le cas d'un joint inaccessible ou difficilement accessible à l'observation directe. Ce but est essentiellement atteint par l'utilisation d'un moyen de détection comprenant un détecteur optoélectronique et une fibre optique unique, l'extrémité de cette fibre optique étant taillée en cône de manière à collecter un signal lumineux provenant d'un point quelconque du cordon de soudure.The invention aims to allow real time control of a full penetration welding in the case of a joint inaccessible or difficult to access for direct observation. This goal is essentially achieved by the use of a means of detection comprising an optoelectronic detector and a single optical fiber, the end of this optical fiber being cut into a cone so as to collect a light signal coming from any point of the weld bead.

De manière précise, l'invention a pour objet un dispositif de contrôle en temps réel d'un soudage à pénétration totale par détection de l'intensité lumineuse présente à l'envers du cordon de soudure au moment du soudage, ledit dispositif étant notamment adapté au contrôle de l'envers d'un joint inaccessible à l'observation directe, ledit dispositif comportant un moyen optoélectronique de détection de ladite intensité lumineuse présente à l'envers du cordon de soudure au moment du soudage, un moyen de traitement du signal électrique délivré par ledit moyen de détection et un moyen de signalisation, ledit dispositif étant caractérisé en ce que ledit moyen de détection optoélectronique comprend un détecteur optoélectronique et une fibre optique unique, ladite fibre comprenant une première extrémité reliée au détecteur optoélectronique et une seconde extrémité taillée en forme de cône, ladite seconde extrémité en forme de cône d'angle d'ouverture différent de 180° étant destinée à être maintenue immobile dans une position prédéterminée en regard, mais en retrait, de l'envers du cordon de soudure à former sur les pièces à souder, de façon à collecter l'intensité lumineuse présente à cet envers de cordon de soudure au moment du soudage tout en étant en dehors de portée des agressions thermiques ou mécaniques dues à la soudure, ledit angle d'ouverture dudit cône d'extrémité de la fibre optique étant choisi tel que le champ de vision qui en résulte pour ladite extrémité soit en mesure, lorsque cette dernière est maintenue immobile dans ladite position prédéterminée, d'appréhender la totalité du joint défini par les pièces à souder.Specifically, the subject of the invention is a device for real time control of a full penetration welding by detection of the light intensity present on the back of the weld bead at the time of welding, said device being particularly suitable checking the back of a joint inaccessible to direct observation, said device comprising an optoelectronic means for detecting said light intensity present on the back of the weld bead at the time of welding, a means for processing the electrical signal delivered by said detection means and signaling means, said device being characterized in that said optoelectronic detection means comprises an optoelectronic detector and a single optical fiber, said fiber comprising a first end connected to the optoelectronic detector and a second end cut in cone-shaped, said second end cone-shaped opening angle different from 180 ° being intended to be held stationary in a predetermined position facing, but set back, from the back of the weld bead to be formed on the parts to be welded, so as to collect the light intensity present on this reverse side of weld bead at the time of welding while being outside the range of thermal or mechanical aggressions due to welding, said opening angle of said end cone of the optical fiber being chosen such that the resulting field of vision for said end is able, when the latter is held stationary in said predetermined position, to grasp the entire joint defined by the parts to be welded.

Selon un mode de réalisation préféré, l'angle du cône d'extrémité de la fibre optique est tel que la totalité du cordon de soudure est dans le champ de vision du détecteur optoélectronique, lorsque la fibre optique est maintenue immobile. De préférence, l'angle d'ouverture de ce cône est compris entre 25° et 45°.According to a preferred embodiment, the angle of the end cone of the optical fiber is such that the entire weld bead is in the field of vision of the optoelectronic detector, when the optical fiber is held stationary. Preferably, the opening angle of this cone is between 25 ° and 45 °.

Selon un mode de réalisation préféré, la fibre optique est, au moins partiellement, contenue dans une gaine. Celle-ci est avantageusement réalisée dans un matériau ductile qui constitue alors simultanément une protection et un support mécanique pour la fibre optique.According to a preferred embodiment, the optical fiber is, at least partially, contained in a sheath. This is advantageously made of a ductile material which then simultaneously constitutes a protection and a mechanical support for the optical fiber.

De manière préférée, le moyen de traitement est adapté pour délivrer au moyen de soudage un signal de commande de l'intensité du faisceau de soudage fonction de l'intensité du signal optique détecté. Ceci permet d'asservir la puissance du faisceau de soudage et d'assurer la pénétration totale du soudage.Preferably, the processing means is adapted to deliver to the welding means a signal for controlling the intensity of the welding beam as a function of the intensity of the detected optical signal. This makes it possible to control the power of the welding beam and to ensure total penetration of the welding.

Les caractéristiques et avantages de l'invention ressortiront mieux de la description qui va suivre, donnée à titre illustratif mais non limitatif, en référence aux dessins annexés, sur lesquels :

  • la figure 1 repésente schématiquement un mode de réalisation du dispositif de contrôle de l'invention,
  • la figure 2 illustre un mode de réalisation du moyen de détection du dispositif de l'invention,
  • les figures 3a et 3b représentent respectivement un premier mode de réalisation de l'extrémité de la fibre optique et la caractéristique de transmission optique associée,
  • les figures 4a et 4b représentent respectivement un second mode de réalisation de l'extrémité de la fibre optique et sa caractéristique de transmission optique associée, et
  • les figures 5a et 5b représentent respectivement l'intensité du faisceau de soudage dans le cas d'un soudage par faisceau d'impulsions et l'intensité du signal optique relevé à l'envers de la soudure en fonction de ce faisceau d'impulsions.
The characteristics and advantages of the invention will emerge more clearly from the description which follows, given by way of illustration but not limitation, with reference to the appended drawings, in which:
  • FIG. 1 schematically represents an embodiment of the control device of the invention,
  • FIG. 2 illustrates an embodiment of the detection means of the device of the invention,
  • FIGS. 3a and 3b respectively represent a first embodiment of the end of the optical fiber and the associated optical transmission characteristic,
  • FIGS. 4a and 4b respectively represent a second embodiment of the end of the optical fiber and its associated optical transmission characteristic, and
  • FIGS. 5a and 5b respectively represent the intensity of the welding beam in the case of a pulse beam welding and the intensity of the optical signal detected on the reverse side of the weld as a function of this pulse beam.

On a représenté schématiquement sur la figure 1 un système de soudage muni d'un dispositif de contrôle conforme à l'invention. A titre d'exemple, on a représenté le cas du soudage, par un faisceau laser à impulsions, d'un appareil à pression à haute performance. Cependant, il est clair que le dispositif de contrôle de l'invention n'est pas lié à la nature du moyen de soudage mais peut au contraire être associé à tout moyen de soudage connu, notamment soudage par faisceau d'électrons, soudage TIG, MIG ou MAG.Schematically shown in Figure 1 a welding system provided with a control device according to the invention. By way of example, the case of welding, by a pulsed laser beam, of a high-performance pressure device has been shown. However, it is clear that the control device of the invention is not linked to the nature of the welding means but can on the contrary be associated with any known welding means, in particular electron beam welding, TIG welding, MIG or MAG.

L'appareil qui doit être soudé se compose d'un fond 2 et d'une virole 4. Ces deux pièces ont la forme générale d'un cylindre creux muni d'un fond. La virole 4 est munie d'une petite ouverture 6. L'assemblage des deux pièces à souder forme un cylindre creux fermé.The device to be welded consists of a bottom 2 and a ferrule 4. These two parts have the general shape of a hollow cylinder provided with a bottom. The ferrule 4 is provided with a small opening 6. The assembly of the two parts to be welded forms a closed hollow cylinder.

Dans le cas d'une soudure par faisceau laser, les deux pièces à souder sont disposées sur un support 8 disposé sous atmosphère inerte dans une enceinte de soudage 10. Le faisceau laser 12 délivré par le moyen de soudage 14, extérieur à l'enceinte de soudage, pénètre dans l'enceinte de soudage par un hublot 16. Le moyen de soudage est fixe. Le soudage sur la totalite du joint entre les deux pièces est obtenu par rotation de ces pièces autour d'un axe vertical. Cette rotation peut être obtenue par un plateau tournant 18 constituant la partie supérieure du support 8.In the case of laser beam welding, the two parts to be welded are arranged on a support 8 disposed under an inert atmosphere in a welding enclosure 10. The laser beam 12 delivered by the welding means 14, outside the enclosure welding, enters the welding chamber through a window 16. The welding means is fixed. Welding on the entire joint between the two parts is obtained by rotation of these parts around a vertical axis. This rotation can be obtained by a turntable 18 constituting the upper part of the support 8.

Le dispositif de contrôle du soudage comprend un moyen de détection optoélectronique 20, un moyen de traitement 22 et un moyen de signalisation 24. Le moyen de détection 20 est disposé dans l'enceinte de soudage 10. Il est reliée au moyen de traitement 22 par une liaison électrique 26 traversant la paroi de l'enceinte de soudage 10. Le moyen de traitement 22 peut comprendre un amplificateur 28 suivi d'un moyen d'asservissement 30 destiné à commander, par une voie 32, la puissance du faisceau du moyen de soudage 14 en fonction du signal optique détecté à l'envers du joint. Le moyen de signalisation 24 peut comprendre un moyen de visualisation 34 (table traçante, écran ou autre) et un moyen d'enregistrement 36. Ces moyens 34 et 36 reçoivent simultanément un premier signal électrique correspondant au signal optique détecté et un second signal électrique correspondant à l'intensité du faisceau de soudage. Ce second signal est délivré par le moyen de soudage au moyen de traitement 22 sur une voie 38.The welding control device comprises an optoelectronic detection means 20, a processing means 22 and a signaling means 24. The detection means 20 is disposed in the welding enclosure 10. It is connected to the processing means 22 by an electrical link 26 passing through the wall of the welding enclosure 10. The processing means 22 may comprise an amplifier 28 followed by a servo means 30 intended to control, by a channel 32, the power of the beam of the means of welding 14 as a function of the optical signal detected on the back of the joint. The signaling means 24 can comprise a display means 34 (plotter, screen or other) and a recording means 36. These means 34 and 36 simultaneously receive a first electrical signal corresponding to the detected optical signal and a second corresponding electrical signal the intensity of the welding beam. This second signal is delivered by the welding means to the processing means 22 on a channel 38.

Conformément à l'invention, le moyen de détection 20 comprend un détecteur optoélectronique 40 et une fibre optique 42 unique. Cette fibre est de préférence protégée des agressions mécaniques (projections, vapeurs métalliques, gouttelettes de métal liquide ou autre) par une gaine. De manière avantageuse, cette gaine est réalisée en un matériau ductile, par exemple en acier inoxydable ou en cuivre. Ceci permet de conformer la fibre optique de façon à ce qu'elle suive un trajet bien défini et à ce qu'elle reste dans la position optimale sans dispositif particulier de fixation.According to the invention, the detection means 20 comprises an optoelectronic detector 40 and a single optical fiber 42. This fiber is preferably protected from mechanical attack (projections, metallic vapors, droplets of liquid metal or the like) by a sheath. Advantageously, this sheath is made of a ductile material, for example stainless steel or copper. This allows the optical fiber to be shaped so that it follows a well-defined path and that it remains in the optimal position without any special fixing device.

Le moyen de détection optique de l'invention présente ainsi les avantages d'un très faible encombrement et d'une très grande flexibilité lui permettant d'atteindre des régions inaccessibles, ou très difficilement accessibles, à l'observation directe.The optical detection means of the invention thus has the advantages of a very small footprint and very great flexibility allowing it to reach regions inaccessible, or very difficult to access, to direct observation.

Conformément à l'invention, l'extrémité de la fibre optique recueillant le signal lumineux au revers du joint est taillée en forme de cône. L'angle de ce cône définit l'ouverture du champ de vision 43 et permet de disposer la fibre hors de portée des agressions mécaniques ou thermiques dues à la soudure, pouvant endommager l'extrémité de la fibre ou simplement perturber la mesure.According to the invention, the end of the optical fiber collecting the light signal on the reverse of the joint is cut into a cone shape. The angle of this cone defines the opening of the field of vision 43 and makes it possible to arrange the fiber out of the range of mechanical or thermal aggressions due to welding, which can damage the end of the fiber or simply disturb the measurement.

La longueur de la fibre est prévue suffisante pour éloigner le détecteur optoélectronique 40 de la zone de soudage afin qu'il ne gêne pas l'exécution de la soudure et que son fonctionnement ne soit pas perturbé par l'environnement (champ électrique ou magnétique, échauffement, atmosphère de soudage ou autre).The length of the fiber is provided sufficient to distance the optoelectronic detector 40 from the welding area so that it does not interfere with the execution of the weld and that its operation is not disturbed by the environment (electric or magnetic field, heating, welding atmosphere or other).

On a représenté sur la figure 2 une coupe longitudinale du moyen de détection optique. Le détecteur optoélectronique 40, constitué par exemple d'une photodiode, est protégé par un isolant 44 et disposé dans un support cylindrique 46. Sa partie optique sensible est disposée en regard d'une extrémité de la fibre optique 42. Celle-ci est protégée par une gaine 48 qui est positionnée dans sa partie supérieure, par une collerette 50. Cette partie supérieure est contenue dans un support 52. L'extrémité 56 de la fibre optique collectant le signal optique est taillée en forme de cône. Le champ de vision 43 du moyen de détection optique dépend de l'ouverture de ce cône.FIG. 2 shows a longitudinal section of the optical detection means. The optoelectronic detector 40, consisting for example of a photodiode, is protected by an insulator 44 and disposed in a cylindrical support 46. Its sensitive optical part is disposed opposite one end of the optical fiber 42. The latter is protected by a sheath 48 which is positioned in its upper part, by a flange 50. This upper part is contained in a support 52. The end 56 of the optical fiber collecting the optical signal is cut into a cone shape. The field of vision 43 of the optical detection means depends on the opening of this cone.

De préférence, le support 46 du détecteur optoélectronique et le support 52 de la fibre optique sont munis de moyens d'accrochage 58 qui coopèrent. Cette conception permet de rendre la fibre optique interchangeable et d'adapter ainsi le moyen de détection optique à la géométrie de la soudure à contrôler.Preferably, the support 46 of the optoelectronic detector and the support 52 of the optical fiber are provided with hooking means 58 which cooperate. This design makes it possible to make the optical fiber interchangeable and thus to adapt the optical detection means to the geometry of the weld to be checked.

Sur la figure 1, on a représenté le cas où l'observation de l'envers du cordon de soudure est délicate car la pièce soudée constitue un volume fermé. Le dispositif de contrôle de l'invention peut également être utilisé avantageusement, par exemple, dans le cas du soudage de deux tubes de grandes longueurs et de faibles diamètres. L'observation directe de l'envers du cordon de soudure, qui n'est pas possible avec les moyens de détection optique selon l'art antérieur, ne présente pas de difficulté avec le moyen de détection optique de l'invention. Dans tous les cas, l'extrémité de la fibre optique est définie de telle sorte que son champ de vision couvre la totalité de l'envers du cordon de soudure. L'angle d'ouverture du cône d'extrémité de la fibre optique permet également d'adapter le champ de vision en fonction de la position et du diamètre de la soudure.In Figure 1, there is shown the case where the observation of the underside of the weld bead is difficult because the welded part constitutes a closed volume. The control device of the invention can also be used advantageously, for example, in the case of the welding of two tubes of great lengths and small diameters. Direct observation of the back of the weld bead, which is not possible with the optical detection means according to the prior art, does not present any difficulty with the optical detection means of the invention. In all cases, the end of the optical fiber is defined so that its field of vision covers the entire back of the weld bead. The opening angle of the end cone of the optical fiber also makes it possible to adapt the field of vision according to the position and the diameter of the weld.

Les figures 3a et 4a illustrent deux formes différentes de l'extrémité de la fibre optique. Les figures 3b et 4b illustrent le pouvoir de transmission correspondant à chacune de ces fibres en fonction de l'angle d'incidence d'un signal lumineux.Figures 3a and 4a illustrate two different shapes of the end of the optical fiber. Figures 3b and 4b illustrate the transmission power corresponding to each of these fibers as a function of the angle of incidence of a light signal.

Sur la figure 3a l'ouverture du cône d'extrémité 56 de la fibre optique 42 est de 40°. Le graphique de la figure 3b, représentant l'intensité lumineuse transmise par la fibre optique en fonction de l'angle d'incidence ϑ d'un signal lumineux, montre que le champ de vision 43 est compris entre les incidences et 45 environ. Compte tenu de l'éloignement nécessaire de l'extrémité de la fibre optique du point de soudage, pour éviter les agressions mécaniques, ce champ de vision est adapté au contrôle d'une opération de soudage sur un joint circulaire d'environ 200mm de diamètre.In FIG. 3a, the opening of the end cone 56 of the optical fiber 42 is 40 °. The graph in FIG. 3b, representing the light intensity transmitted by the optical fiber as a function of the angle of incidence ϑ of a light signal, shows that the field of vision 43 is between the incidences and approximately 45. Given the necessary distance from the end of the optical fiber to the welding point, to avoid mechanical attack, this field of vision is suitable for controlling a welding operation on a circular joint of approximately 200mm in diameter.

Sur la figure 4a, l'ouverture du cône d'extrémité 56 est de 30°. La courbe de la figure 4b montre qu'alors le champ de vision 43 est compris entre les incidences de 50 à 60° environ. Un tel champ de vision est particulièrement adapté au contrôle d'une soudure sur un joint ayant un diamètre de l'ordre de 100 mm.In FIG. 4a, the opening of the end cone 56 is 30 °. The curve in FIG. 4b shows that then the field of vision 43 is between the incidences of around 50 to 60 °. Such a field of vision is particularly suitable for checking a weld on a joint having a diameter of the order of 100 mm.

On a représenté sur la figure 5a l'énergie E en fonction du temps t du faisceau de soudage obtenu par un laser YAG (semiconducteur au grenat d'aluminium et d'yttrium). Il s'agit d'un soudage point par point, le soudage étant constitué par une succession de points avec recouvrement, ce qui assure une soudure continue.The energy E is shown in FIG. 5a as a function of time t of the welding beam obtained by a YAG laser (aluminum garnet and yttrium semiconductor). It is a point-to-point welding, the welding being constituted by a succession of points with overlap, which ensures a continuous welding.

Lorsque le soudage est à pénétration totale, il y a, pour chaque impulsion du faisceau laser, apparition à l'envers de la soudure d'un panache de plasma et d'un signal lumineux correspondant. La présence ou l'absence de ce signal lumineux détecté au moyen du capteur optoélectronique permet d'apprécier l'état de la soudure à l'envers du cordon de soudure.When the welding is at full penetration, there is, for each pulse of the laser beam, appearance on the reverse side of the welding of a plume of plasma and a corresponding light signal. The presence or absence of this light signal detected by means of the optoelectronic sensor makes it possible to assess the state of the weld on the reverse side of the weld bead.

On a représenté sur la figure 5b l'intensité du signal lumineux détecté, en correspondance avec l'intensité du faisceau laser.FIG. 5b shows the intensity of the detected light signal, in correspondence with the intensity of the laser beam.

Le délai séparant le début du signal de l'impulsion laser du début du signal lumineux à l'envers de la soudure est significatif de la qualité de la pénétration de la soudure. Pour l'impulsion 60 du faisceau laser, le délai ΔT₁ est faible : il y a surpénétration. Pour l'impulsion 62, aucun signal lumineux n'apparaît à l'envers du cordon de soudure : il y a sous-pénétration. Pour l'impulsion 64, le délai ΔT₂ indique une pénétration normale. Enfin, pour l'impulsion 66, le délai ΔT₃ est pratiquement égal à la durée ΔT de l'impulsion laser : la pénétration totale est tout juste atteinte.The delay between the start of the laser pulse signal and the start of the light signal on the reverse side of the weld is indicative of the quality of the weld penetration. For the pulse 60 of the laser beam, the delay ΔT₁ is low: there is over-penetration. For pulse 62, no light signal appears behind the weld bead: there is under-penetration. For pulse 64, the delay ΔT₂ indicates normal penetration. Finally, for pulse 66, the delay ΔT₃ is practically equal to the duration ΔT of the laser pulse: total penetration has just been reached.

Les chronogrammes des figures 5a et 5b permettent d'apprécier la qualité de la pénétration de la soudure, de localiser les éventuels manques de pénétration et leurs coordonnées par rapport à la position de référence de départ de la soudure. Ils permettent également de décider de la nécessité éventuelle d'une réparation de la soudure dans la zone où la pénétration est jugé insuffisante compte tenu du pas de recouvrement des points de soudage.The timing diagrams of FIGS. 5a and 5b make it possible to assess the quality of the penetration of the weld, to locate any lack of penetration and their coordinates relative to the starting reference position of the weld. They also make it possible to decide on the possible need for repair of the weld in the zone where the penetration is judged insufficient taking into account the no overlap of the welding points.

Dans le cas où le moyen de traitement du dispositif de contrôle comprend un moyen d'asservissement de la puissance du moyen de soudage, le signal représenté sur la figure 5b est utilisé pour asservir la puissance du moyen de soudage. Cette puissance est augmentée au vu du signal optique correspondant aux impulsions 62 et 66 de l'impulsion du faisceau laser et diminuée au vu du signal optique correspondant à l'impulsion 60 du faisceau laser.In the case where the processing means of the control device comprises a means for controlling the power of the welding means, the signal shown in FIG. 5b is used to control the power of the welding means. This power is increased in view of the optical signal corresponding to the pulses 62 and 66 of the pulse of the laser beam and decreased in view of the optical signal corresponding to the pulse 60 of the laser beam.

Claims (5)

  1. Apparatus for the real time checking or inspection of a total penetration weld by the detection of the light intensity present on the back of the welding bead at the time of welding, said apparatus being in particular suitable for checking the back of a joint inaccessible to direct observation, said apparatus incorporating an optoelectronic detection means (20) of said light intensity present on the back of the welding bead at the time of welding, a means (22) for processing the electric signal supplied by said detection means (20) and a signalling means (24), said apparatus being characterized in that the optoelectronic detection means (20) comprises an optoelectronic detector (40) and a single optical fibre (42), said fibre having a first end connected to the optoelectronic detector (20) and a second end (56) cut in cone-shaped manner and which has an aperture angle different from 180° and which is kept stationary in a predetermined facing, but set back position with respect to the back of the welding bead to be formed on the parts to be welded, so as to collect the light intensity present on the back of said welding bead at the time of welding, whilst being out of reach for thermal or mechanical actions resulting from the welding, the aperture angle of the end cone (56) of the optical fibre being chosen so that the field of vision (43) resulting therefrom for said end (56) is able, when the latter is kept stationary in said predetermined position, to cover the entire joint defined by the parts to be welded.
  2. Apparatus according to claim 1, characterized in that the aperture angle of the end cone (56) is between 25° and 45°.
  3. Apparatus according to either of the claims 1 and 2, characterized in that the optical fibre (42) is at least partly contained in a sheath (48).
  4. Apparatus according to claim 3, characterized in that the sheath (48) is made from a ductile material.
  5. Apparatus according to any one of the claims 1 to 4, characterized in that the processing means (22) supplies a signal for controlling the intensity of the welding beam as a function of the intensity of the detected optical signal.
EP86401987A 1985-09-16 1986-09-11 Apparatus for real-time control of total penetration welding, in particular for seams inaccessible to direct observation Expired - Lifetime EP0216694B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR8513700 1985-09-16
FR8513700A FR2587513B1 (en) 1985-09-16 1985-09-16 DEVICE FOR REAL-TIME MONITORING OF A TOTAL PENETRATION WELDING, SUITABLE FOR A JOINT INACCESSIBLE TO DIRECT OBSERVATION

Publications (2)

Publication Number Publication Date
EP0216694A1 EP0216694A1 (en) 1987-04-01
EP0216694B1 true EP0216694B1 (en) 1992-12-02

Family

ID=9322940

Family Applications (1)

Application Number Title Priority Date Filing Date
EP86401987A Expired - Lifetime EP0216694B1 (en) 1985-09-16 1986-09-11 Apparatus for real-time control of total penetration welding, in particular for seams inaccessible to direct observation

Country Status (4)

Country Link
US (1) US4766285A (en)
EP (1) EP0216694B1 (en)
DE (1) DE3687209T2 (en)
FR (1) FR2587513B1 (en)

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3829350A1 (en) * 1988-08-30 1990-03-01 Messerschmitt Boelkow Blohm METHOD AND DEVICE FOR POSITIONING LOETLASERS
DE3834783A1 (en) * 1988-10-12 1990-04-26 Interatom METHOD AND DEVICE FOR SURFACE PROCESSING BY MEANS OF ELECTROMAGNETIC RADIATION
DE4002627A1 (en) * 1990-01-30 1991-08-08 Deutsche Forsch Luft Raumfahrt WELDING MONITORING DEVICE
US5045669A (en) * 1990-03-02 1991-09-03 General Electric Company Method and apparatus for optically/acoustically monitoring laser materials processing
US5026979A (en) * 1990-03-05 1991-06-25 General Electric Company Method and apparatus for optically monitoring laser materials processing
US5283416A (en) * 1992-06-26 1994-02-01 Trw Inc. Laser process monitoring and evaluation
IL110475A (en) * 1994-07-27 2000-11-21 Given Imaging Ltd Optical system for flexible tubes
US6040550A (en) * 1996-10-28 2000-03-21 Chang; Dale U. Apparatus and method for laser welding the outer joints of metal bellows
US6078021A (en) * 1997-08-29 2000-06-20 Chang; Dale U. Apparatus and method of laser welding inside bellows joints and spacer for manufacturing bellows
US6188041B1 (en) * 1998-11-13 2001-02-13 Korea Atomic Energy Research Institute Method and apparatus for real-time weld process monitoring in a pulsed laser welding
US6818857B1 (en) 2000-11-28 2004-11-16 Heung Ki Cho Method and apparatus for welding
US20030226247A1 (en) * 2002-06-06 2003-12-11 Williamson James T. Metal bellows manufacturing method and apparatus
US20050169346A1 (en) * 2004-01-29 2005-08-04 Trw Automotive U.S. Llc Method for monitoring quality of a transmissive laser weld
DE102007059903A1 (en) * 2007-12-12 2009-06-18 Robert Bosch Gmbh Probe and device for optical testing of test objects
EP2093011A1 (en) * 2008-02-22 2009-08-26 National University of Ireland Galway A method and apparatus for detecting hole breakthrough in a laser drilling process, using an optical fibre
US8674259B2 (en) * 2008-05-28 2014-03-18 Caterpillar Inc. Manufacturing system for producing reverse-tapered orifice
CN108284281A (en) * 2018-03-26 2018-07-17 宁波凯米协尔机床有限公司 A kind of cutter device of equipment manufacturing
JP6835151B2 (en) * 2019-06-28 2021-02-24 株式会社安川電機 Evaluation device, evaluation method, evaluation system and evaluation program

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3278738A (en) * 1964-01-02 1966-10-11 Bausch & Lomb Light deflector
US3867033A (en) * 1973-06-04 1975-02-18 Us Air Force Multi-component flow probe
US4121087A (en) * 1977-11-18 1978-10-17 Rockwell International Corporation Method and apparatus for controlling laser welding
US4316467A (en) * 1980-06-23 1982-02-23 Lorenzo P. Maun Control for laser hemangioma treatment system
IT1180008B (en) * 1984-03-02 1987-09-23 Fiat Ricerche METHOD AND DEVICE FOR THE CONTROL OF THE WELDING PROCESSES BY ANALYSIS OF THE BRIGHTNESS GENERATED DURING THE PROCESS
US4663513A (en) * 1985-11-26 1987-05-05 Spectra-Physics, Inc. Method and apparatus for monitoring laser processes

Also Published As

Publication number Publication date
FR2587513A1 (en) 1987-03-20
DE3687209D1 (en) 1993-01-14
EP0216694A1 (en) 1987-04-01
FR2587513B1 (en) 1987-10-30
US4766285A (en) 1988-08-23
DE3687209T2 (en) 1993-05-19

Similar Documents

Publication Publication Date Title
EP0216694B1 (en) Apparatus for real-time control of total penetration welding, in particular for seams inaccessible to direct observation
EP0119883B1 (en) Method and apparatus for the alignment of a laser beam by optical aiming means, and method of using the apparatus for controlling the alignment
EP1718957B1 (en) Method and device for control by shadowgraphy
FR2723170A1 (en) DETECTOR AND DEFECT DETECTION METHOD FOR METAL PIPES
FR2817339A1 (en) THREE-DIMENSIONAL LIFTING DEVICE OF A LASER EMISSION SCENE
FR2659039A1 (en) METHOD AND APPARATUS FOR OPTICAL MONITORING OF LASER MATERIAL PROCESSING.
FR2556260A1 (en) Automatic arc welding monitoring or control
EP2711732A1 (en) Deviation indicator with infrared imaging and system for sighting and automatic tracking of a target
EP0520894B1 (en) Welding head for measuring welding parameters and method of use
EP0014626A1 (en) Method and apparatus for continuously determining the level of the charge in a blast furnace
EP0112762B1 (en) Method and device for the on-line monitoring of welding depth using a pulsed beam
EP0762432A1 (en) Installation for detecting and monitoring piercing of bottom of a nuclear reactor pressure vessel comprising at least one thermocouple
CA2074635A1 (en) Cutting process by lazer of a material covering a substrate and devices for its development
EP0418170B1 (en) Apparatus and process for welding work-pieces by means of a laser beam
CA2062623A1 (en) Laser equipment and process for the contaminated zone of a nuclear installation
EP0035423B1 (en) System to detect and localize surface discontinuities with a light probe
EP0463982B1 (en) Apparatus for continuous- and pulse analysis of the energy distribution of a power laser beam and apparatus for alignement of this beam
WO2004013619A2 (en) Method and device for in-line measurement of characteristics of the surface coating of a metallurgy product
JP2005095942A (en) Laser welding quality inspection method and device
EP1105712B1 (en) Device for measuring the size of moving particles, in particular for pluviometric measurements
FR3077749A1 (en) DEVICE FOR MEASURING THE POWER OF A LASER BEAM OF A LASER WELDING HEAD BY DRAWING
EP0514235A1 (en) Laser beam welding stick, its use for tube sleeving and optical fibre integrity monitoring process
JPS6371640A (en) Instantaneous inspection device for full-wave welding of joining section incapable of being directly observed all uranami welding
CA2501441A1 (en) Achromatic and absorption reducing light collecting system, particularly adapted to optical spectrometric analysis
EP1734382A1 (en) Device for determining the position of a moving object with respect to a fixed point

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): CH DE GB LI NL

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: COMMISSARIAT A L'ENERGIE ATOMIQUE

17P Request for examination filed

Effective date: 19870903

17Q First examination report despatched

Effective date: 19891114

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): CH DE GB LI NL

REF Corresponds to:

Ref document number: 3687209

Country of ref document: DE

Date of ref document: 19930114

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 19930216

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 19930821

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 19930903

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 19930907

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 19930930

Year of fee payment: 8

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Effective date: 19940911

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Effective date: 19940930

Ref country code: CH

Effective date: 19940930

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Effective date: 19950401

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 19940911

NLV4 Nl: lapsed or anulled due to non-payment of the annual fee
REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Effective date: 19950601