EP0201576B1 - Method for detecting the position of the band edge of a material sheet - Google Patents

Method for detecting the position of the band edge of a material sheet Download PDF

Info

Publication number
EP0201576B1
EP0201576B1 EP85905810A EP85905810A EP0201576B1 EP 0201576 B1 EP0201576 B1 EP 0201576B1 EP 85905810 A EP85905810 A EP 85905810A EP 85905810 A EP85905810 A EP 85905810A EP 0201576 B1 EP0201576 B1 EP 0201576B1
Authority
EP
European Patent Office
Prior art keywords
receiver
instant
transmitter
packet
time span
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
EP85905810A
Other languages
German (de)
French (fr)
Other versions
EP0201576B2 (en
EP0201576A1 (en
Inventor
Hans-Joachim Schrauwen
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
ELMEG Elektro Mechanik GmbH
Original Assignee
ELMEG Elektro Mechanik GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=6250608&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=EP0201576(B1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by ELMEG Elektro Mechanik GmbH filed Critical ELMEG Elektro Mechanik GmbH
Publication of EP0201576A1 publication Critical patent/EP0201576A1/en
Application granted granted Critical
Publication of EP0201576B1 publication Critical patent/EP0201576B1/en
Publication of EP0201576B2 publication Critical patent/EP0201576B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65HHANDLING THIN OR FILAMENTARY MATERIAL, e.g. SHEETS, WEBS, CABLES
    • B65H23/00Registering, tensioning, smoothing or guiding webs
    • B65H23/02Registering, tensioning, smoothing or guiding webs transversely
    • B65H23/0204Sensing transverse register of web
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S367/00Communications, electrical: acoustic wave systems and devices
    • Y10S367/902Speed of sound compensation

Definitions

  • the invention relates to a method for detecting the position of the strip edge of a material web of an ultrasound detector arranged in the strip edge region and consisting of a transmitter and a receiver, the received sound waves being converted into an electrical signal.
  • a pneumatic web edge sensor is used, which essentially consists of two superposed nozzles, namely the transmitter nozzle and the receiver nozzle, which are arranged in the area of the material web near the edge .
  • the receiver pressure changes depending on the position of the material web and acts on a diaphragm drive, which in turn directs a liquid flow proportional to the receiver pressure to an actuator, which is usually designed as a control roller or an adjustable reel.
  • the hydraulic amplification is often not sufficient to be able to adjust the response sensitivity of the control device according to the technical requirements.
  • the response sensitivity can only be increased by increasing the receiver pressure by increasing the transmitter pressure.
  • the invention is based on the object of developing the above-mentioned and initially defined method for position detection of a strip edge in such a way that undesired reflected waves certainly do not have any influence on the measurement result.
  • the transmitter emits individual pulses or wave packets consisting of individual pulses at a predetermined first point in time
  • the receiver receives the single pulse or the wave packet at a second point in time and converts it into an electrical oscillation packet
  • the period between the The first and the second point in time is approximately equal to the transit time of the sound waves between the transmitter and the receiver
  • a region of the oscillation packet that is limited by a predetermined period of time following the second point in time is scanned and stored at a later point in time
  • the period of time between the end of the sampling period and the first point in time is shorter than a time period which requires a reflection interference signal which was emitted as a signal from the transmitter at the first point in time and reaches the receiver via a detour
  • the pause time until the next individual pulse is emitted o the wave packet is so large that the reflection interference signals of the previous single pulse or wave packet have decayed.
  • the peak value that is determined in the sampling period of the oscillation range can be used particularly advantageously as the sample value.
  • the method thus works in such a way that a wave packet is first emitted by the ultrasound transmitter and received by the receiver and converted into an electrical oscillation packet signal — specifically when the scanning is not activated. Instead of a wave packet, single pulses can also be used. Since the undesired reflection rays only reach the receiver at a later point in time, by evaluating or scanning the first area of the oscillation packet, in which no undesired superimpositions yet occur, a measured value can be obtained that represents the position of the strip edge with great accuracy. If you limit the scanning range to a maximum of three to five periods, calculated from the start of the oscillation packet, the interference reflections will certainly be eliminated. The whole process is repeated cyclically and thus enables continuous monitoring or monitoring of the material web.
  • One arrangement for carrying out the method is that the transmitter is fed by a pulse train generator, that an activatable peak rectifier is connected to the receiver that emits an electrical signal, and that an activatable transmission circuit is connected downstream for the transmission of the peak value to a memory.
  • a sequence control is provided which is acted upon by a pulse generator.
  • the same pulses are also fed to the pulse train generator.
  • the sequence control then ensures that a predetermined pulse sequence is sent out by the generator and the peak value rectifier is activated at a specific point in time for a specific sampling period, the peak value determined subsequently being supplied to a memory via a transmission circuit.
  • the measurement can take place both in reflection and in the direct transmission method.
  • the transmitter and receiver are arranged on the same side of the material web at a certain angle, the beam reflected on the material web forming the measuring beam.
  • an ultrasonic transducer can be used alternately as a transmitter and receiver in a known manner.
  • the transmitter is on one side and the receiver on the other side of the material web, sound waves of different energy reaching the receiver depending on the degree of coverage of the beam by the web.
  • Fig. 1, 1 schematically indicates the material web which is guided over rollers, not shown.
  • the transmitter 2 is located above the material web, while the receiver 3 is arranged below the material web.
  • the transmitter and receiver are arranged in the edge region of the material web, so that the sound beam is partially covered by the material web. Depending on the degree of coverage, more or less sound energy reaches the receiver, which represents a measure of the position of the band edge or the material web.
  • the reflection method not shown, can also be used.
  • the transmitter and receiver are arranged at a suitable angle on one side of the material web.
  • the sound beam emitted by the transmitter is reflected on the material web and then reaches the receiver.
  • rays reflected at other points also enter the receiver, which amplify or weaken the measuring beam and thus lead to a falsification of the measurement result.
  • the ultrasound transmitter 2 is fed by a pulse sequence generator 4, which emits a specific pulse sequence of a predetermined sequence frequency.
  • a pulse generator is used instead of the pulse train generator 4.
  • This electrical pulse sequence is converted in the transmitter into a sound wave packet, emitted and received as a sound wave packet by the receiver, the energy received being determined by the degree of coverage of the beam by the material web.
  • the sound waves are converted directly into electrical signals in the receiver, possibly amplified in an amplifier 5 and then fed to an activatable scanning device 6.
  • the scanning device 6 has a switch 7 which supplies the signals emitted by the amplifier 5 to the peak value rectifier 8.
  • the peak value rectifier 8 consists, for example, of the interconnection of a diode with a capacitor, as is shown symbolically. After the end of the sampling period, the switch 7 is opened and the value held in the peak value rectifier is fed to a memory by means of a transmission circuit 9.
  • the transition circuit 9 can consist, for example, of a switch 11 and a capacitor 10. By closing the switch 11, the charge is transferred from the peak value rectifier to the capacitor 10 and then fed via line 15 to a memory, not shown, for further processing.
  • the sequence control is acted upon by a pulse generator 13, which simultaneously delivers pulses to the pulse train generator 4.
  • the sequential control system closes switch 14 and activates the pulse train generator, which for example emits a pulse train with three pulses.
  • the transmitter 2 emits a wave packet with the same period.
  • the switch 14 is opened via the sequence control 12 and the switch 7 is closed.
  • the time difference T2-T1 corresponds approximately to the transit time of the sound waves from the transmitter to the receiver.
  • the switch 7 remains closed so long that approximately three periods are detected by the scanning circuit 6.
  • switch 7 opens and the peak value rectifier maintains the peak value that occurs in the time range T3-T2.
  • switch 11 is closed and the peak value is transferred to a memory 10.
  • the peak rectifier is then reset to zero and the cycle begins again. This ensures that only the measurement signal is recorded during the sampling period and that no disturbing reflections that would occur at a later point in time influence the measurement value.

Abstract

In a method for detecting the position of the band edge of a material sheet (1) by means of an ultrasound detector comprised of an emitter (2) and a receiver (3) and arranged in the region of the band edge, the sound waves received being converted into an electric signal. In order to reliably suppress the influence of reflected waves from the result of the measurements, the emitter (2) sends individual pulses or wave packets which are time offset. The wave packets (or individual pulses) received by the receiver (3)are converted into a corresponding series of electric vibrations, a limited part of the series of vibrations being analysed and the analysis value being recorded to be further processed. A device used to implement the method comprises an emitter (2) supplied by a pulse generator (4), a pick value rectifier (6) connected after the receiver (3), which provides an electric signal, and an activatable transmission circuit (9), connected after the pick value rectifier (6) to transmit the pick value to a memory (10).

Description

Die Erfindung betrifft ein Verfahren zur Positionserfassung der Bandkante einer Materialbahn eines im Bandkantenbereich angeordneten, aus einem Sender und einem Empfänger bestehenden Ultraschall-Detektors, wobei die empfangenen Schallwellen in ein elektrisches Signal umgewandelt werden.The invention relates to a method for detecting the position of the strip edge of a material web of an ultrasound detector arranged in the strip edge region and consisting of a transmitter and a receiver, the received sound waves being converted into an electrical signal.

Es sind verschiedene Einrichtungen zur kanten-oder mittengenauen Führung von Materialbahnen bekannt. Bei den pneumohydratischen Regeleinrichtungen (DE-PS 15 74 638 und DE-OS 27 30 733) wird ein pneumatischer Bahnkantenfühler verwendet, der im wesentlichen aus zwei übereinander angeordneten Düsen besteht, nämlich der Senderdüse und der Empfängerdüse, die im kantennahen Bereich der Materialbahn angeordnet sind. Der Empfängerdruck ändert sich in Abhängigkeit von der Position der Materialbahn und beaufschlagt einen Membranantrieb, der wiederum einen dem Empfängerdruck proportionalen Flüssigkeitsstrom zu einem Stellglied leitet, das in der Regel als Steuerrolle oder eine verstellbare Haspel ausgebildet ist.Various devices are known for guiding material webs with precise edges or in the middle. In the pneumohydratic control devices (DE-PS 15 74 638 and DE-OS 27 30 733) a pneumatic web edge sensor is used, which essentially consists of two superposed nozzles, namely the transmitter nozzle and the receiver nozzle, which are arranged in the area of the material web near the edge . The receiver pressure changes depending on the position of the material web and acts on a diaphragm drive, which in turn directs a liquid flow proportional to the receiver pressure to an actuator, which is usually designed as a control roller or an adjustable reel.

Häufig reicht jedoch die hydraulische Verstärkung nicht aus, um die Ansprechempfindlichkeit der Regeleinrichtung den technischen Erfordernissen entsprechend einstellen zu können. In diesen Fällen kann die Ansprechempfindlichkeit nur dadurch erhöht werden, dass der Empfängerdruck durch Vergrösserung des Senderdrucks verstärkt wird. Bei dünnen Materialbahnen findet jedoch ein unerwünschtes Verwehen der Materialbahn statt.However, the hydraulic amplification is often not sufficient to be able to adjust the response sensitivity of the control device according to the technical requirements. In these cases, the response sensitivity can only be increased by increasing the receiver pressure by increasing the transmitter pressure. In the case of thin material webs, however, there is an undesirable blowing of the material web.

Zur Vermeidung dieses Nachteils ist es auch bekannt, anstelle eines pneumatischen Bandkantenfühlers einen optischen Bandkantenfühler zu verwenden, der aus einer fotoelektrischen Einrichtung besteht. Da die Bahnkantenfühler aufgrund besonderer Gegebenheiten der Anlage häufig einer starken Verschmutzung ausgesetzt sind, führt ein sich bildender Schmutzbelag auf der Optik zu einer Intensitätsänderung des Lichtstrahls und damit zu einer Fehlmessung.To avoid this disadvantage, it is also known to use an optical belt edge sensor instead of a pneumatic belt edge sensor, which sensor consists of a photoelectric device. Since the web edge sensors are often exposed to heavy soiling due to the special conditions of the system, a dirt deposit that forms on the optics leads to a change in the intensity of the light beam and thus to an incorrect measurement.

Schliesslich ist es auch bereits bekannt, die Bandkante einer Materialbahn mittels einer aus einem Sender und einem Empfänger bestehenden Ultraschalleinrichtung abzutasten (US-A-3 225 988). Bei den bekannten Ultraschlalldetektoren treten jedoch wesentliche Verfälschungen des Messsignals dadurch auf, dass der Empfänger nicht nur den Messstrahl empfängt, sondern auch reflektierende Strahlen, die nicht zum direkten Strahlengang gehören. Insbesondere wenn aufgrund der Höhenschwankungen des Bandes zwischen Empfänger und Sender die Reflexionssignale in ein harmonisches Verhältnis zur Wellenlänge des abgestrahlten Schalls gelangen, addieren oder subtrahieren sich diese Reflexionssignale je nach ihren Phasenlagen zu dem direkten Messsignal und führen damit zu einem verfälschten Messwert.Finally, it is also known to scan the band edge of a material web by means of an ultrasound device consisting of a transmitter and a receiver (US Pat. No. 3,225,988). In the known ultrasonic detectors, however, significant falsifications of the measurement signal occur in that the receiver not only receives the measurement beam, but also reflecting beams that do not belong to the direct beam path. In particular if, due to the height fluctuations of the band between the receiver and transmitter, the reflection signals come into harmonic relationship with the wavelength of the emitted sound, these reflection signals add or subtract depending on their phase positions to the direct measurement signal and thus lead to a falsified measurement value.

Der Erfindung liegt die Aufgabe zugrunde, das vorgenannte und eingangs definierte Verfahren zur Positionserfassung einer Bandkante dahingehend weiterzubilden, dass unerwünschte reflektierte Wellen mit Sicherheit keinen Einfluss auf das Messergebnis nehmen.The invention is based on the object of developing the above-mentioned and initially defined method for position detection of a strip edge in such a way that undesired reflected waves certainly do not have any influence on the measurement result.

Diese Aufgabe wird gemäss der Erfindung dadurch gelöst, dass der Sender Einzelimpulse oder aus Einzelimpulsen bestehende Wellenpakete zu einem vorgegebenen ersten Zeitpunkt abstrahlt, dass der Empfänger zu einem zweiten Zeitpunkt den Einzelimpuls oder das Wellenpaket empfängt und in ein elektrisches Schwingungspaket umwandelt, wobei die Zeitspanne zwischen dem ersten und dem zweiten Zeitpunkt ungefähr gleich der Laufzeit der Schallwellen zwischen Sender und Empfänger ist, dass ein durch eine vorgegebene Zeitspanne im Anschluss an den zweiten Zeitpunkt begrenzter Bereich des Schwingungspaketes abgetastet und zu einem späteren Zeitpunkt gespeichert wird, wobei die Zeitspanne zwischen dem Ende der Abtastzeitspanne und dem ersten Zeitpunkt kürzer ist als eine Zeitspanne, die ein Reflexionsstörsignal benötigt, das als Signal vom Sender im ersten Zeitpunkt abgegeben wurde und über einen Umweg auf den Empfänger gelangt, und dass die Pausenzeit bis zur Abstrahlung des nächsten Einzelimpulses oder Wellenpaketes so gross ist, dass die Reflexionsstörsignale des vorhergehenden Einzelimpulses oder Wellenpaketes abgeklungen sind.This object is achieved according to the invention in that the transmitter emits individual pulses or wave packets consisting of individual pulses at a predetermined first point in time, that the receiver receives the single pulse or the wave packet at a second point in time and converts it into an electrical oscillation packet, the period between the The first and the second point in time is approximately equal to the transit time of the sound waves between the transmitter and the receiver, that a region of the oscillation packet that is limited by a predetermined period of time following the second point in time is scanned and stored at a later point in time, the period of time between the end of the sampling period and the first point in time is shorter than a time period which requires a reflection interference signal which was emitted as a signal from the transmitter at the first point in time and reaches the receiver via a detour, and that the pause time until the next individual pulse is emitted o the wave packet is so large that the reflection interference signals of the previous single pulse or wave packet have decayed.

Als Abtastwert lässt sich besonders vorteilhaft der Spitzenwert verwenden, der in der Abtastperiode des Schwingungsbereichs ermittelt wird. Bei dem Verfahren wird also so gearbeitet, dass zunächst - und zwar bei nicht aktivierter Abtastung - ein Wellenpaket vom Ultraschallsender ausgestrahlt und vom Empfänger empfangen und in ein elektrisches Schwingungspaket-Signal umgewandelt wird. Anstelle eines Wellenpakets kann auch mit Einzelimpulsen gearbeitet werden. Da die unerwünschten Reflexionsstrahlen erst zu einem späteren Zeitpunkt in den Empfänger gelangen, kann man durch Auswertung bzw. Abtasten des ersten Bereichs des Schwingungspakets, in dem noch keine unerwünschten Überlagerungen auftreten, einen Messwert gewinnen, der die Lage der Bandkante mit grosser Genauigkeit repräsentiert. Begrenzt man den Abtastbereich, und zwar von Beginn des Schwingungspakets an gerechnet, auf höchstens drei bis fünf Perioden, so bleiben die Störreflexe mit Sicherheit eliminiert. Der ganze Vorgang wiederholt sich zyklisch und ermöglicht so eine fortlaufende Kontrolle bzw. Überwachung der Materialbahn.The peak value that is determined in the sampling period of the oscillation range can be used particularly advantageously as the sample value. The method thus works in such a way that a wave packet is first emitted by the ultrasound transmitter and received by the receiver and converted into an electrical oscillation packet signal — specifically when the scanning is not activated. Instead of a wave packet, single pulses can also be used. Since the undesired reflection rays only reach the receiver at a later point in time, by evaluating or scanning the first area of the oscillation packet, in which no undesired superimpositions yet occur, a measured value can be obtained that represents the position of the strip edge with great accuracy. If you limit the scanning range to a maximum of three to five periods, calculated from the start of the oscillation packet, the interference reflections will certainly be eliminated. The whole process is repeated cyclically and thus enables continuous monitoring or monitoring of the material web.

Eine Anordnung zur Durchführung des Verfahrens besteht darin, dass der Sender von einem Impulsfolgegenerator gespeist wird, dass dem ein elektrisches Signal abgebenden Empfänger ein aktivierbarer Spitzengleichrichter und diesem eine aktivierbare Übertragungsschaltung zur Übertragung des Spitzenwertes auf einen Speicher nachgeschaltet ist.One arrangement for carrying out the method is that the transmitter is fed by a pulse train generator, that an activatable peak rectifier is connected to the receiver that emits an electrical signal, and that an activatable transmission circuit is connected downstream for the transmission of the peak value to a memory.

Um das Verfahren in einem vorgegebenen Zeitlauf zu steuern, ist eine Ablaufsteuerung vorgesehen, die von einem Impulsgenerator beaufschlagt wird. Die gleichen Impulse werden auch dem Impulsfolgegenerator zugeführt. Die Ablaufsteuerung sorgt dann dafür, dass eine vorgegebene Impulsfolge von dem Generator ausgesandt und der Spitzenwertgleichrichter zu einem bestimmten Zeitpunkt für eine bestimmte Abtastperiode aktiviert wird, wobei der ermittelte Spitzenwert anschliessend über eine Übertragungsschaltung einem Speicher zugeführt wird.In order to control the method in a predetermined time course, a sequence control is provided which is acted upon by a pulse generator. The same pulses are also fed to the pulse train generator. The sequence control then ensures that a predetermined pulse sequence is sent out by the generator and the peak value rectifier is activated at a specific point in time for a specific sampling period, the peak value determined subsequently being supplied to a memory via a transmission circuit.

Die Messung kann sowohl in Reflexion als auch im direkten Durchstrahlverfahren erfolgen. Im ersten Fall sind Sender und Empfänger auf der gleichen Seite der Materialbahn unter bestimmtem Winkel angeordnet, wobei der an der Materialbahn reflektierte Strahl den Messstrahl bildet. Alternativ dazu kann in bekannter Weise ein Ultraschall-Wandler wechselweise als Sender und Empfänger verwendet werden. Im Falle der Durchstrahlmethode befindet sich der Sender auf der einen Seite und der Empfänger auf der anderen Seite der Materialbahn, wobei je nach dem Abdeckungsgrad des Strahls durch die Bahn Schallwellen unterschiedlicher Energie in den Empfänger gelangen.The measurement can take place both in reflection and in the direct transmission method. In the first case, the transmitter and receiver are arranged on the same side of the material web at a certain angle, the beam reflected on the material web forming the measuring beam. Alternatively, an ultrasonic transducer can be used alternately as a transmitter and receiver in a known manner. In the case of the transmission method, the transmitter is on one side and the receiver on the other side of the material web, sound waves of different energy reaching the receiver depending on the degree of coverage of the beam by the web.

Das Wesen der Erfindung soll an einem in den Zeichnungen dargestellten Ausführungsbeispiel näher erläutert werden. Es zeigen:

  • Fig. 1 die allgemeine Messanordnung mit einem Ultraschalldetektor,
  • Fig. 2 die schematische Darstellung einer Anordnung zur Durchführung des Verfahrens gemäss der Erfindung und
  • Fig. 3 ein Ablaufdiagramm zur Erläuterung des Verfahrensablaufs.
The essence of the invention will be explained in more detail using an exemplary embodiment shown in the drawings. Show it:
  • 1 shows the general measuring arrangement with an ultrasound detector,
  • Fig. 2 is a schematic representation of an arrangement for performing the method according to the invention and
  • Fig. 3 is a flow chart to explain the process flow.

In Fig. 1 ist mit 1 schematisch die Materialbahn angedeutet, die über nicht dargestellte Rollen geführt wird. Oberhalb der Materialbahn befindet sich der Sender 2, während unterhalb der Materialbahn der Empfänger 3 angeordnet ist. Sender und Empfänger sind im Kantenbereich der Materialbahn angeordnet, so dass der Schallstrahl teilweise von der Materialbahn abgedeckt wird. Je nach dem Abdeckungsgrad gelangt mehr oder weniger Schallenergie in den Empfänger, die ein Mass für die Lage der Bandkante bzw. der Materialbahn repräsentiert. Anstelle des Durchstrahlverfahrens kann auch das nicht dargestellte Reflexionsverfahren angewendet werden. In diesem Fall sind Sender und Empfänger unter geeignetem Winkel auf der einen Seite der Materialbahn angeordnet. Der vom Sender abgegebene Schallstrahl wird auf der Materialbahn reflektiert und gelangt danach in den Empfänger. Wie bereits erwähnt, treten jedoch auch an anderer Stelle reflektierte Strahlen zusätzlich in den Empfänger ein, die den Messstrahl verstärken oder schwächen und somit zu einer Verfälschung des Messergebnisses führen.In Fig. 1, 1 schematically indicates the material web which is guided over rollers, not shown. The transmitter 2 is located above the material web, while the receiver 3 is arranged below the material web. The transmitter and receiver are arranged in the edge region of the material web, so that the sound beam is partially covered by the material web. Depending on the degree of coverage, more or less sound energy reaches the receiver, which represents a measure of the position of the band edge or the material web. Instead of the transmission method, the reflection method, not shown, can also be used. In this case, the transmitter and receiver are arranged at a suitable angle on one side of the material web. The sound beam emitted by the transmitter is reflected on the material web and then reaches the receiver. As already mentioned, however, rays reflected at other points also enter the receiver, which amplify or weaken the measuring beam and thus lead to a falsification of the measurement result.

In Fig. 2 sind wieder die Materialbahn 1, der Sender 2 und der Empfänger 3 schematisch dargestellt. Der Ultraschallsender 2 wird von einem Impulsfolgegenerator 4 gespeist, der eine bestimmte Impulsfolge vorgegebener Folgefrequenz abgibt. Wie bereits erwähnt, lässt sich das Verfahren auch mit Einzelimpulsen durchführen. In diesem Fall wird anstelle des Impulsfolgegenerators 4 ein Impulsgenerator verwendet. Diese elektrische Impulsfolge wird im Sender in ein Schallwellenpaket umgewandelt, abgestrahlt und als Schallwellenpaket vom Empfänger empfangen, wobei die empfangene Energie vom Abdeckungsgrad des Strahls durch die Materialbahn bestimmt wird. Die Schallwellen werden im Empfänger direkt in elektrische Signale umgewandelt, gegebenenfalls in einem Verstärker 5 verstärkt und dann einer aktivierbaren Abtasteinrichtung 6 zugeführt. Die Abtasteinrichtung 6 weist einen Schalter 7 auf, der die vom Verstärker 5 abgegebenen Signale dem Spitzenwertgleichrichter 8 zuführt. Der Spitzenwertgleichrichter 8 besteht beispielsweise aus der Zusammenschaltung einer Diode mit einem Kondensator, wie es symbolisch dargestellt ist. Nach Beendigung der Abtastperiode wird der Schalter 7 geöffnet und der im Spitzenwertgleichrichter festgehaltene Wert mittels einer Übertragungsschaltung 9 einem Speicher zugeführt. Die Übergangsschaltung 9 kann beispielsweise aus einem Schalter 11 und einem Kondensator 10 bestehen. Durch Schliessen des Schalters 11 wird die Ladung aus dem Spitzenwertgleichrichter auf den Kondensator 10 übertragen und dann zur Weiterverarbeitung über die Leitung 15 einem nicht näher dargestellten Speicher zugeführt.2, the material web 1, the transmitter 2 and the receiver 3 are shown schematically. The ultrasound transmitter 2 is fed by a pulse sequence generator 4, which emits a specific pulse sequence of a predetermined sequence frequency. As already mentioned, the method can also be carried out with individual pulses. In this case, a pulse generator is used instead of the pulse train generator 4. This electrical pulse sequence is converted in the transmitter into a sound wave packet, emitted and received as a sound wave packet by the receiver, the energy received being determined by the degree of coverage of the beam by the material web. The sound waves are converted directly into electrical signals in the receiver, possibly amplified in an amplifier 5 and then fed to an activatable scanning device 6. The scanning device 6 has a switch 7 which supplies the signals emitted by the amplifier 5 to the peak value rectifier 8. The peak value rectifier 8 consists, for example, of the interconnection of a diode with a capacitor, as is shown symbolically. After the end of the sampling period, the switch 7 is opened and the value held in the peak value rectifier is fed to a memory by means of a transmission circuit 9. The transition circuit 9 can consist, for example, of a switch 11 and a capacitor 10. By closing the switch 11, the charge is transferred from the peak value rectifier to the capacitor 10 and then fed via line 15 to a memory, not shown, for further processing.

Zur Erläuterung des Funktionsablaufs wird Fig. 3 herangezogen. Die Ablaufsteuerung wird von einem Impulsgenerator 13 beaufschlagt, der gleichzeitig Impulse an den Impulsfolgegenerator 4 liefert. Zum Zeitpunkt T1 schliesst die Ablaufsteuerung den Schalter 14 und aktiviert den Impulsfolgegenerator, der beispielsweise eine Impulsfolge mit drei Impulsen abgibt. Demzufolge strahlt der Sender 2 ein Wellenpaket mit der gleichen Periodendauer ab. Zum Zeitpunkt T2 wird über die Ablaufsteuerung 12 der Schalter 14 geöffnet und der Schalter 7 geschlossen. Die Zeitdifferenz T2-T1 entspricht etwa der Laufzeit der Schallwellen vom Sender zum Empfänger. Der Schalter 7 bleibt so lange geschlossen, dass etwa drei Perioden von der Abtastschaltung 6 erfasst werden. Zum Zeitpunkt T3 öffnet der Schalter 7, und der Spitzenwertgleichrichter behält den Spitzenwert, der im Zeitbereich T3-T2 auftritt. Zum Zeitpunkt T4 wird der Schalter 11 geschlossen und der Spitzenwert auf einen Speicher 10 übertragen. Danach ist der Spitzenwertgleichrichter wieder auf Null gestellt, und der Zyklus beginnt von neuem. Auf diese Weise ist sichergestellt, dass während der Abtastperiode nur das Messsignal erfasst wird und keine störenden Reflexionen, die zu einem späteren Zeitpunkt eintreffen würden, den Messwert beeinflussen.3 is used to explain the functional sequence. The sequence control is acted upon by a pulse generator 13, which simultaneously delivers pulses to the pulse train generator 4. At time T1, the sequential control system closes switch 14 and activates the pulse train generator, which for example emits a pulse train with three pulses. As a result, the transmitter 2 emits a wave packet with the same period. At time T2, the switch 14 is opened via the sequence control 12 and the switch 7 is closed. The time difference T2-T1 corresponds approximately to the transit time of the sound waves from the transmitter to the receiver. The switch 7 remains closed so long that approximately three periods are detected by the scanning circuit 6. At time T3, switch 7 opens and the peak value rectifier maintains the peak value that occurs in the time range T3-T2. At time T4, switch 11 is closed and the peak value is transferred to a memory 10. The peak rectifier is then reset to zero and the cycle begins again. This ensures that only the measurement signal is recorded during the sampling period and that no disturbing reflections that would occur at a later point in time influence the measurement value.

Claims (8)

1. Method for the detection of the position of the web edge of a material web (1) by means of an ultrasonic detector which is arranged in the web edge region and consists of a transmitter (2) and a receiver (3), wherein the received sound waves are converted into an electrical signal, characterised thereby, that the transmitter (2) radiates individual pulses or wave packets consisting of individual pulses at a preset first instant (T1 that the receiver (3) receives the individual pulse or the wave packet at a second instant (T2) and converts it into an electrical oscillation packet, wherein the time span (T2-T1) between the first and the second instant is approximately equal to the transit time of the sound waves between transmitter (2) and receiver (3), that an oscillation packet region, which is bounded by a preset time span (T3-T2) following the second instant, is scanned and stored at a later instant (T4), wherein the time span (T3-T1) between the end of the scanning time span (T3-T2) and the first instant (T1) is shorter than a time span needed by a reflection interference signal which was emitted by the transmitter as signal at the first instant (T1) and gets to the receiver by way of an indirect path and that the interval time before the radiation of the next individual pulse or wave packet is so great that the reflection interference signal of the preceding individual pulse or wave packet have decayed.
2. Method according to claim 1, characterised thereby, that the peak value of the scanned oscillation packet is determined as scanning value in the scanning period.
3. Method according to claim 2, characterised thereby, that the scanning range comprises the first three to five periods of the oscillation packet.
4. Arrangement for the detection of the position of the web edge of a material web (1) with an ultrasonic detector which is arranged in the web edge region and consists of a transmitter (2) and a receiver (3), wherein the transmitter (2) radiates wave packets consisting of individual pulses at a first instant (T1) and the receiver (3) receives the wave packet at a second instant (T2) and converts it into an electrical oscillation packet, a limited region of the oscillation packet is scanned during a time scan (T3-T2) following the second instant and the scanning value is scanned at a later instant (T4), and wherein the time span (T2-T1) between the first and the second instant is approximately equal to the transit time of the sound waves, the time span (T3-T1) between the end of the scanning time span (T3-T2) and the first instant (T1) is shorter than a time span needed by a reflection interference signal which was emitted by the transmitter as a signal at the first instant (T1) and gets to the receiver by way of an indirect path and the interval time before the radiation of the next individual pulse or wave packet is so great that the reflection interference signals of the preceding individual pulse or wave packet have decayed, characterised thereby, that the transmitter (2) is fed by a pulse sequence generator (4) and that an activatable peak value rectifier (6) is connected behind the receiver (3) and followed in the circuit by an activatable transfer circuit (9) for the transfer of the peak value to a store (10).
5. Arrangement according to claim 4, characterised thereby, that a pulse generator (13) is provided, which acts on an operating course control (12) and the pulse sequence generator (4), that the operating course control (12) causes the pulse sequence generator to generate pulse sequences, activates the peak value rectifier (6) in the scanning period and subsequently causes the transfer circuit (9) to store the peak value.
6. Arrangement according to one of the claims 5 or 6, characterised thereby, that the transmitter (2) and the receiver (3) are arranged on the same side of the material web (1).
7. Arrangement according to one of the claims 5 or 6, characterised thereby, that the transmitter (2) and the receiver (3) are arranged on different sides of the material web.
8. Arrangement according to one of the claims 1 to 7, characterised thereby, that only one ultrasonic transducer operates as transmitter and receiver under an appropriate control.
EP85905810A 1984-11-17 1985-11-09 Method for detecting the position of the band edge of a material sheet Expired - Lifetime EP0201576B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE19843442154 DE3442154A1 (en) 1984-11-17 1984-11-17 METHOD FOR DETECTING THE POSITION OF THE STRIP EDGE OF A MATERIAL RAIL
DE3442154 1984-11-17
PCT/EP1985/000598 WO1986002913A1 (en) 1984-11-17 1985-11-09 Method for detecting the position of the band edge of a material sheet

Publications (3)

Publication Number Publication Date
EP0201576A1 EP0201576A1 (en) 1986-11-20
EP0201576B1 true EP0201576B1 (en) 1989-01-18
EP0201576B2 EP0201576B2 (en) 1994-05-04

Family

ID=6250608

Family Applications (1)

Application Number Title Priority Date Filing Date
EP85905810A Expired - Lifetime EP0201576B2 (en) 1984-11-17 1985-11-09 Method for detecting the position of the band edge of a material sheet

Country Status (5)

Country Link
US (1) US4901292A (en)
EP (1) EP0201576B2 (en)
JP (1) JPH06105172B2 (en)
DE (2) DE3442154A1 (en)
WO (1) WO1986002913A1 (en)

Families Citing this family (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3913601A1 (en) * 1989-04-25 1990-10-31 Dornier Gmbh Lindauer Band control for screen band dryer - uses auxiliary control rollers and ultrasonic measurement of band edge position
US5274573A (en) * 1989-07-31 1993-12-28 Accuweb, Inc. Ultrasonic web edge detection method and apparatus
US5072414A (en) * 1989-07-31 1991-12-10 Accuweb, Inc. Ultrasonic web edge detection method and apparatus
DE9000783U1 (en) * 1990-01-24 1990-03-29 Schwark, Hans-Friedrich, Dr. Ing., 8000 Muenchen, De
US4963807A (en) * 1990-02-06 1990-10-16 Zip-Pak Incorporated Ultrasonic web edge guide circuit
FR2684362A1 (en) * 1991-12-02 1993-06-04 Siderurgie Fse Inst Rech Method for controlling and adjusting the centring of a strip moving forward continuously in an installation and device and roller for controlling the centring
DE4208294C2 (en) * 1992-03-16 1995-01-26 Honeywell Regelsysteme Gmbh Ultrasonic detection method
US5583828A (en) * 1994-04-05 1996-12-10 Nireco Corporation Method and apparatus for detection of edge position thickness or splice position of a material web
US5565627A (en) * 1994-10-11 1996-10-15 Xecutek Corporation Ultrasonic edge detector and control system
DE19500822C1 (en) * 1995-01-13 1996-03-21 Erhardt & Leimer Gmbh Ultrasonic edge sensor for detecting web product edge
DE19839287C5 (en) * 1998-08-28 2008-02-14 Siemens Ag Method and device for determining the position of the edge of a metal strip
DE19839286B4 (en) 1998-08-28 2004-12-02 Siemens Ag Method and device for measuring the tension distribution in a metal strip
US6289729B1 (en) 1998-12-28 2001-09-18 Fife Corporation Ultrasonic sensor for web-guiding apparatus
DE19905331A1 (en) * 1999-02-09 2000-04-20 Siemens Ag Monitoring method for lateral position of e.g. paper web or plastic film
US6175419B1 (en) 1999-03-24 2001-01-16 Fife Corporation Light sensor for web-guiding apparatus
DE10337673B3 (en) 2003-08-16 2005-04-28 Erhardt & Leimer Gmbh Method and device for detecting the position of an edge of a moving web
FI118274B (en) * 2004-02-05 2007-09-14 Metso Paper Inc Method and apparatus for determining the lateral position of the edge of a web or tissue in a sheet forming machine
US7415881B2 (en) * 2004-08-19 2008-08-26 Fife Corporation Ultrasonic sensor system for web-guiding apparatus
DE102006029139A1 (en) 2006-06-22 2007-12-27 Betriebsforschungsinstitut VDEh - Institut für angewandte Forschung GmbH Measuring device for determining the strip edge position, the bandwidth and / or the tension distribution over the bandwidth of a band
EP2186624B1 (en) * 2008-11-18 2015-08-26 Tetra Laval Holdings & Finance S.A. Apparatus and method for detecting the position of application of a sealing strip onto a web of packaging material for food products
JP5119496B2 (en) * 2008-12-12 2013-01-16 竹中電子工業株式会社 Ultrasonic edge sensor
CH701610A2 (en) * 2009-08-14 2011-02-15 Rieter Ag Maschf Device for monitoring and control of the belt path in a device for producing a lap roll.
DE202011002054U1 (en) 2011-01-28 2011-05-26 Texmag Gmbh Vertriebsgesellschaft Ultrasonic edge sensor
DE202012004305U1 (en) * 2012-04-27 2012-05-25 Texmag Gmbh Vertriebsgesellschaft Device for detecting an edge of a material web
CN103264919A (en) * 2013-05-10 2013-08-28 奇瑞汽车股份有限公司 Roll material deviation rectification control system
DE202016008273U1 (en) 2016-02-08 2017-06-09 Asinco GmbH Device for measuring the width of a metal strip produced by strip rolling

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3225988A (en) * 1963-08-07 1965-12-28 Koppers Co Inc Ultrasonic web position detector and aligning means
US3570624A (en) * 1966-06-27 1971-03-16 Lummus Co Web tracking and control
US3739177A (en) * 1970-12-15 1973-06-12 North American Mfg Co Light sensitive control
US3792613A (en) * 1972-05-19 1974-02-19 Krautkramer Branson Pulse-echo ultrasonic test apparatus with cathode ray tube digital display
US3929006A (en) * 1973-11-26 1975-12-30 Western Electric Co Measuring article thickness ultrasonically
JPS5373161A (en) * 1976-12-13 1978-06-29 Toshiba Corp Ultrasonic type position detector
DE2726981C2 (en) * 1977-06-15 1984-11-22 Fried. Krupp Gmbh, 4300 Essen Device for measuring time between pulses
DE2730733C2 (en) * 1977-07-07 1985-01-03 Elektro-Mechanik Gmbh, 5963 Wenden Arrangement for web edge or web center control
FR2430020A1 (en) * 1978-06-28 1980-01-25 Petroles Cie Francaise METHOD FOR AUTOMATICALLY MEASURING A DISTANCE IN WATER BY CONTROLLED TRANSMISSIONS AND ULTRASONIC RECEPTIONS
US4221004A (en) * 1978-08-03 1980-09-02 Robertshaw Controls Company Adjustable ultrasonic level measurement device
US4247922A (en) * 1978-10-12 1981-01-27 Harris Corporation Object position and condition detection system
JPS55143475A (en) * 1979-04-27 1980-11-08 Oki Electric Ind Co Ltd Ultrasonic distance measuring instrument
DE3029444A1 (en) * 1980-08-02 1982-02-25 Heribert Dipl.-Ing. 7517 Waldbronn Ballhaus SURFACE SCANNER
US4470307A (en) * 1982-06-24 1984-09-11 Aluminum Company Of America Sonic system inspection control
DE3242284A1 (en) * 1982-11-16 1984-05-17 Philips Patentverwaltung Gmbh, 2000 Hamburg METHOD AND ARRANGEMENT FOR DETERMINING THE RUNTIME OF AN ULTRASONIC PULSE

Also Published As

Publication number Publication date
EP0201576B2 (en) 1994-05-04
US4901292A (en) 1990-02-13
WO1986002913A1 (en) 1986-05-22
DE3442154A1 (en) 1986-05-28
DE3567618D1 (en) 1989-02-23
DE3442154C2 (en) 1989-08-31
EP0201576A1 (en) 1986-11-20
JPS62501520A (en) 1987-06-18
JPH06105172B2 (en) 1994-12-21

Similar Documents

Publication Publication Date Title
EP0201576B1 (en) Method for detecting the position of the band edge of a material sheet
DE3413852C2 (en) Microwave humidity sensor
DE2408574C2 (en) Device for the simultaneous determination of the inside and outside diameter as well as the wall thickness of a tubular body
DE2027333C3 (en) Device for examining obstacles and discontinuities in solids by means of ultrasound
DE19607345A1 (en) Laser distance determination device
DE60124647T2 (en) Device and method for distance measurement
DE3337690C2 (en)
DE2617246A1 (en) DEVICE FOR PRECISION MEASUREMENT OF DIMENSIONS USING ULTRASOUND
DE2229887A1 (en) METHOD OF MEASURING THE DISTANCE FROM AND THE SPEED COMPONENT OF AN OBJECT VERTICAL TO A REFERENCE LINE
DE1573411B2 (en) Ultrasonic examination device for measuring the thickness of thin workpieces and the depth of any imperfections near the surface
DE1917877B2 (en) Device for determining surface defects on a continuous web of material
DE2035777B2 (en) Device for measuring the thickness of a workpiece with the help of ultrasound
DE2600154A1 (en) METHOD AND EQUIPMENT FOR MEASURING THE THICKNESS AREA BY USING SOUND VIBRATIONS
DE2129110C3 (en) Method for checking metallic weld seams for freedom from defects by means of ultrasound
DE2653298A1 (en) TESTING DEVICE FOR TESTING THE ENDS OF CIGARETTES
DE2236710A1 (en) METHOD AND DEVICE FOR DETERMINING THE AMOUNT OF LIQUID ON A WETTED SURFACE
EP0666974B1 (en) Process and device for non-contact determination of the mass per unit area of thin materials
DE2124444A1 (en) Method for determining the thickness or width of workpieces
DE2827705B2 (en) Device for the detection of defects in web material
DE10318756B4 (en) Method and device for determining the thickness of sheet material
EP1510487B1 (en) Method and apparatus for detecting the position of an edge of a running web
DE3008924C2 (en) Procedure for measuring defects in tubes and rods
DE3241200A1 (en) Ultrasonic transducer arrangement
DE3715914A1 (en) Method and apparatus for detecting cracks with the aid of ultrasound
EP0394428B1 (en) Process and device for measuring a two-dimensional reflective structure

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19860716

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): DE FR GB IT

17Q First examination report despatched

Effective date: 19870720

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE FR GB IT

REF Corresponds to:

Ref document number: 3567618

Country of ref document: DE

Date of ref document: 19890223

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)
ET Fr: translation filed
ITF It: translation for a ep patent filed

Owner name: MODIANO & ASSOCIATI S.R.L.

PLBI Opposition filed

Free format text: ORIGINAL CODE: 0009260

26 Opposition filed

Opponent name: ERHARDT & LEIMER GMBH

Effective date: 19891017

ITTA It: last paid annual fee
PUAH Patent maintained in amended form

Free format text: ORIGINAL CODE: 0009272

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: PATENT MAINTAINED AS AMENDED

27A Patent maintained in amended form

Effective date: 19940504

AK Designated contracting states

Kind code of ref document: B2

Designated state(s): DE FR GB IT

GBTA Gb: translation of amended ep patent filed (gb section 77(6)(b)/1977)

Effective date: 19940608

ITF It: translation for a ep patent filed

Owner name: MODIANO & ASSOCIATI S.R.L.

ET3 Fr: translation filed ** decision concerning opposition
APAC Appeal dossier modified

Free format text: ORIGINAL CODE: EPIDOS NOAPO

APAC Appeal dossier modified

Free format text: ORIGINAL CODE: EPIDOS NOAPO

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20011101

Year of fee payment: 17

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20011122

Year of fee payment: 17

REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20020125

Year of fee payment: 17

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20021109

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20030603

GBPC Gb: european patent ceased through non-payment of renewal fee
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20030731

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

APAH Appeal reference modified

Free format text: ORIGINAL CODE: EPIDOSCREFNO