EP0188750B1 - Stosswellenrohr für die Zertrümmerung von Konkrementen - Google Patents

Stosswellenrohr für die Zertrümmerung von Konkrementen Download PDF

Info

Publication number
EP0188750B1
EP0188750B1 EP85116021A EP85116021A EP0188750B1 EP 0188750 B1 EP0188750 B1 EP 0188750B1 EP 85116021 A EP85116021 A EP 85116021A EP 85116021 A EP85116021 A EP 85116021A EP 0188750 B1 EP0188750 B1 EP 0188750B1
Authority
EP
European Patent Office
Prior art keywords
shock wave
wave tube
tube according
axis
reflector
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
EP85116021A
Other languages
German (de)
English (en)
French (fr)
Other versions
EP0188750A1 (de
Inventor
Helmut Dr. Reichenberger
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Siemens AG
Original Assignee
Siemens AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens AG filed Critical Siemens AG
Publication of EP0188750A1 publication Critical patent/EP0188750A1/de
Application granted granted Critical
Publication of EP0188750B1 publication Critical patent/EP0188750B1/de
Expired legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10KSOUND-PRODUCING DEVICES; METHODS OR DEVICES FOR PROTECTING AGAINST, OR FOR DAMPING, NOISE OR OTHER ACOUSTIC WAVES IN GENERAL; ACOUSTICS NOT OTHERWISE PROVIDED FOR
    • G10K9/00Devices in which sound is produced by vibrating a diaphragm or analogous element, e.g. fog horns, vehicle hooters or buzzers
    • G10K9/12Devices in which sound is produced by vibrating a diaphragm or analogous element, e.g. fog horns, vehicle hooters or buzzers electrically operated
    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10KSOUND-PRODUCING DEVICES; METHODS OR DEVICES FOR PROTECTING AGAINST, OR FOR DAMPING, NOISE OR OTHER ACOUSTIC WAVES IN GENERAL; ACOUSTICS NOT OTHERWISE PROVIDED FOR
    • G10K11/00Methods or devices for transmitting, conducting or directing sound in general; Methods or devices for protecting against, or for damping, noise or other acoustic waves in general
    • G10K11/18Methods or devices for transmitting, conducting or directing sound
    • G10K11/26Sound-focusing or directing, e.g. scanning
    • G10K11/28Sound-focusing or directing, e.g. scanning using reflection, e.g. parabolic reflectors

Definitions

  • the invention relates to a shock wave tube with a coil on which a membrane is adjacent.
  • the invention relates in particular to a shock wave tube which is used for crushing concrement in therapy.
  • Shock wave tubes of this type have been known per se for a long time and can be according to recent studies such.
  • a shock wave tube is described, the coil of which has a curved shape, so that the emitted shock wave converges in one focus.
  • An insulating film and a metal membrane are arranged in front of the coil.
  • a cavity is formed in front of the membrane, which is filled with a liquid which is under a certain pressure.
  • the object of the invention is to develop a shock wave tube of the type mentioned in such a way that it is no longer exposed to such destructive stresses.
  • the invention is based on the consideration that this can be achieved if the shock waves do not pass through any other parts apart from the membrane, which are subjected to a permanent pressure difference.
  • This object is achieved in that the membrane is sucked into the coil with negative pressure relative to the environment.
  • this shock wave tube is that there is no overpressure for pressing the membrane against the coil. This also eliminates the necessary chamber for holding the excess pressure and the material layer provided in this chamber as an exit window, which is passed through by the shock wave. The elimination of this layer of material has the further significant advantage that there can be no interaction with this layer of material which would otherwise adversely affect the amplitude and the temporal and spatial course of the shock wave.
  • a preferred embodiment is characterized in that the coil is designed as a flat flat coil and that a tube-like connection is provided, one end of which lies in the area between the membrane and the flat coil and the other end of which can be connected to the suction side of a vacuum pump which is provided for generating the negative pressure.
  • 1 denotes a shock wave tube.
  • the shock wave tube 1 has a cylindrical housing 3, in the area of the end face of which a circular coil carrier 5 is fastened on the inside.
  • the gap between the coil carrier 5 and the housing 3 is sealed by means of a first O-ring 7.
  • a flat single-layer flat coil 9 is cast in on the upper side of the coil carrier 5.
  • the flat coil 9 is wound spirally, so that there is a connection in the middle and at the edge for applying an electrical voltage.
  • a circular insulating film 11 is arranged above the cast flacule coil 9 and has the same cross section as the housing 3 of the shock wave tube 1. Above the insulating film 11 there is a circular membrane 13 of the same cross section.
  • the membrane 13 is made of an electrically highly conductive material.
  • a spacer ring 15 is inserted between the membrane 13 and the insulating film 11, so that a small air gap 14 is present between the insulating film 11 and the membrane 13.
  • a profiled retaining ring 17 is arranged above the membrane 13.
  • a second O-ring 19 is located in a peripheral annular groove of the retaining ring 17. The underside of the retaining ring 17 is thus sealed against the membrane 13.
  • the housing 3 is bent at right angles to the retaining ring 17 inwards, so that a stop for the retaining ring 17 is formed.
  • an annular groove 21 is milled from the inside, which serves to receive a third O-ring 23. With this O-ring 23 is the top of the retaining ring 17 sealed against the housing 3.
  • the coil carrier 5 is provided in its edge region with a bore or opening 25 which extends completely through it parallel to the main axis. Deviating from this, the channel-like opening 25 could also run in the inside of the housing 3.
  • the insulating film 11 located at one end of the channel-like opening 25 is provided with a hole 27.
  • a vacuum pump (not shown in FIG. 1) is connected to the other end of the opening 25 via a nozzle (not shown).
  • the vacuum pump If the vacuum pump is switched on, air is drawn in through the bore 25 and the hole 27 from the gap 14 which lies between the insulating film 11 and the membrane 13. The membrane 13 then moves into the bent position shown in dash-dotted lines. Because of the suction force, it then lies closely against the insulating film 11 and thus indirectly against the flat coil 9. If a steep, high voltage pulse is applied to the flat coil 9 by means of a capacitor (shown in FIG. 2), the membrane 13 is repelled by the flat coil 9 and the insulating film 11 due to the strong electromagnetic forces that result. After the voltage pulse, the membrane 13 is returned to the defined position on the insulating film 11 due to the negative pressure.
  • the volume between the membrane 13 and the insulating film 11 is very small compared to the volume of the bore 25 and the supply line to the vacuum pump. It has been shown that the shock wave tube 1 can work for several hours with the negative pressure once generated with a good seal, without the vacuum pump having to be switched on again.
  • the axial length of the shock wave tube 1 was approximately 10 cm.
  • the inner diameter of the housing 3 is approximately 15 cm
  • the thickness of the membrane 13 is approximately 0.2 mm
  • the thickness of the spacer ring 15 is approximately 0.2 mm
  • the diameter of the bore 25 is approximately 2 mm.
  • the shock wave tube 1 is again shown with its essential components, namely the coil carrier 5, the flat coil 9, the insulating film 11 and the membrane 13.
  • the first electrical connection of the flat coil 9, which sits at its center. is led out and to the first electrode 29 of a spark gap 31.
  • a grounded capacitor 35 is connected to the second electrode 33 of the spark gap 31. This is charged via a series resistor 36 by a charger, not shown.
  • the charging voltage is approx. 20 kV.
  • An auxiliary electrode 37 is located between the first electrode 29 and the second electrode 33 of the spark gap 31, via which the spark gap 31 can be ignited. In the event of ignition, the capacitor 35 suddenly discharges via the flat coil 9, whereupon the metal membrane 13 is repelled by the flat coil 9 due to the electromagnetic interaction.
  • the bore 25 is part of a tubular connection here.
  • this still includes a hose 39 which leads to the suction side of a vacuum pump 41.
  • the hose 39 has a branch 43, from which a stub leads to a pressure gauge or pressure gauge 45.
  • a display device 47 for displaying the current negative pressure is connected to the manometer 45.
  • the manometer 45 is designed so that it emits an electrical signal on the output side, which is a measure of the negative pressure. On the output side, it is connected to the first input 49 of a comparator 51 via a line. An electrical voltage is applied to the second input 53 of the comparator 51, which corresponds to an upper limit value for the pressure between the insulating film 11 and the membrane 13.
  • This limit value which may be, for example, 100 mbar, is compared with the currently measured actual pressure value of the manometer 45, and the result of the comparison is output at the output 55 of the comparator 51 as an electrical output signal C.
  • the output signal C of the comparator 51 is passed to a control circuit 57 for the vacuum pump 41.
  • the vacuum pump 41 is switched on and off via the control circuit 57. If the specified upper limit is exceeded, it is switched on.
  • the output signal C of the comparator 51 is applied to the first input 59 of an AND gate 61. This is blocked when the upper limit is exceeded.
  • a trigger signal is applied to the second input 63 of the AND gate 61. This is supplied by a trigger circuit 62.
  • the trigger signal can, for example, be triggered manually via a switch 60.
  • switch 60 When switch 60 is closed, for example, a single trigger pulse can be triggered. But it can also trigger a sequence of trigger pulses. However, this can also trigger a sequence of trigger pulses with a preselectable time interval that determines the sequence of the shock waves.
  • the trigger signal can be derived from a device for monitoring cardiac activity and / or from a device for monitoring breathing. Such a device would then be connected to the trigger circuit 62 via the input 60a.
  • the output of the AND gate 61 is guided to a triggering device 65 which operates the ignition or auxiliary electrode 37.
  • the AND gate 61, the trigger circuit 62 and the trigger circuit 65 thus together form the part 64 of a control device for the shock wave tube 1. This is ignited only when the pressure mentioned is below the limit value.
  • the aim of the shock wave tube 1 shown, including the monitoring device, is to give an impulse to the shock wave tube 1, namely to trigger the generation of a shock wave only when the conditions for a fault free functioning are given. These conditions are the presence of a sufficient negative pressure in the air gap 14 and the presence of a trigger signal from a connected trigger signal transmitter 62.
  • the AND gate 61 can have more than two inputs in order to take into account further triggering criteria for the shock wave. Both patient-side and device-side requirements can therefore be specified.
  • a flat shock wave tube 1 is shown schematically in FIGS. 3 to 7, with the membrane 13 and the flat coil 9.
  • the spark gap 31 is also shown in FIGS. 3 and 4. Beyond the membrane 13, the housing 3 continues there.
  • the shock wave tube 1 is oriented essentially parallel to the body surface 67 of a patient.
  • the emitted shock wave strikes a parabolically curved reflector 69, which is arranged on the output side opposite the membrane 13.
  • the parabola axes are labeled x, y.
  • the shock wave tube 1 and the reflector 69 are located here in a common device housing 71.
  • the device housing 71 contains a coupling layer 73 on the side, namely at the level of the reflector 69.
  • the coupling layer 73 consists, for example, of EPDM rubber or another material low thrust modulus. Such materials are known per se in ultrasound technology.
  • the device housing 71 is filled with water on the inside at least between the reflector 69 and the membrane 13.
  • the coupling layer 73 is preferably placed on the body surface 67 of the patient via a gel as the coupling medium.
  • the patient is aligned so that a calculus 75 to be destroyed is located inside him at the focal point F of the parabolic reflector 69.
  • the parabola which determines the curvature of the reflector 69 has an axis of symmetry 77 which runs parallel to the main axis 79 of the shock wave tube 1.
  • the reflector 69 can be moved both parallel to the x and parallel to the y direction, i. H. perpendicular to or in the direction of shock wave propagation.
  • the mechanical adjustment option is indicated by double arrows 80a and 80b.
  • the reflector 69 can also be moved perpendicularly thereto, that is to say in the z direction. This has the advantage that the focus position can be changed without moving the device housing 71 with the coupling layer 73 or the patient.
  • a plane shock wave propagates in the direction of the reflector 69. From there it is deflected to the side by about 90 °.
  • the shock wave enters the patient through the coupling layer 73 and collects in the focal point F of the reflector 69.
  • the advantage of the arrangement shown is that a relatively large entrance angle ⁇ is used when only one reflecting surface is used.
  • FIG. 4 there is a cone 81 opposite the membrane 13, the tip of which faces the membrane 13.
  • the cone 81 serves as the first reflector for the plane shock wave and is in particular made of brass.
  • the cone axis k and the main axis 79 are oriented in the same direction here.
  • the flat shock wave which also has a circular cross section due to the circular membrane 13, is formed on the cone 81 to form a vertical cylindrical wave which runs outwards.
  • the latter is surrounded by a second reflector 83, which focuses the shock wave running vertically outwards into a focus F.
  • the second reflector 83 which extends in a ring around the cone 81, comes about due to the rotation of an arc of a parabola 85 (coordinates x, y).
  • the parabola 85 is placed so that its main axis 87 is perpendicular to the axis 79 of the shock tube 1.
  • the concretion 75 is located in the focal point F of the parabolic ring 83.
  • the arrangement of shock wave tube 1 with the associated reflectors 81, 83 is accommodated in a common device housing 71.
  • the path traversed by the shock wave is filled with water.
  • At the end of the device housing 71 there is again a coupling layer 73 in order to apply the apparatus to the body surface 67 of the patient.
  • shock wave is coupled into the patient's body with a particularly large aperture. Since the second reflector 83 is rotationally symmetrical to the axis 79 of the shock wave tube 1, the focal point F is on this axis 79. The arrangement is thus easy to align with the concretion 75 in the patient. In addition, there is a particularly compact construction.
  • a shock wave tube 1 with a relatively small diameter, e.g. B. of five centimeters, can be used here.
  • Figure 5 shows an arrangement with a shock wave tube 1, in which the shock wave also axially strikes a cone 81 and is reflected at right angles to the outside, so that a cylindrical shock wave results.
  • a second reflector 83 is provided, which is arranged in a ring around the cone 81.
  • the second reflector 83 was created here by rotating the arc of a parabola 85 about the axis 79 of the shock wave tube 1.
  • the parabola axis x which is assigned to the arc and belongs to the circular ring of the second reflector 83, coincides with the axis 79 of the shock wave tube 1 and the axis k of the cone 81.
  • the geometry of the arrangement is fixed here.
  • the center A of the cone 81 has three times the vertex S of the parabola 85 Distance like the focal point F from the apex S.
  • the arrangement is oriented towards the patient so that the concretion 75 of the patient is on the common axis 79, k of the shock wave tube 1 and cone 81.
  • a focus zone is formed. whose vertex nearest point B is nine times the distance from vertex S as the focal point F.
  • the concretion 75 is positioned.
  • FIG. 6 shows a further possibility of focusing using reflectors.
  • the plane shock wave hits a cone 81, the concave surface of which has come about by rotating an arc of a parabola about the cone axis k.
  • the latter is surrounded by a second reflector 83, which is formed by rotating a straight line about the axis k of the cone 81. From there, the sound wave is focused on focus F.
  • the shock wave tube 1 is provided with a lens system.
  • This comprises a planar reflector 89, which is arranged in the normal position at an angle of 45 ° to the direction of propagation of the shock waves, and a converging lens 91 onto which the shock waves are directed by the reflector 89.
  • the arrangement of converging lens 81 and reflector 89 can be interchanged.
  • the reflector 89 can also have a curved surface.
  • a displacement device for the converging lens 91 is provided for depth adjustment. Their function is indicated by the double arrow 93.
  • the reflector 89 can be tilted by means of a ball joint 95. This makes it possible to adjust the focus perpendicular to the direction of propagation.
  • the converging lens 91 is hardly exposed to wear here.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Acoustics & Sound (AREA)
  • Multimedia (AREA)
  • Surgical Instruments (AREA)
EP85116021A 1984-12-27 1985-12-16 Stosswellenrohr für die Zertrümmerung von Konkrementen Expired EP0188750B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE19843447440 DE3447440A1 (de) 1984-12-27 1984-12-27 Stosswellenrohr fuer die zertruemmerung von konkrementen
DE3447440 1984-12-27

Publications (2)

Publication Number Publication Date
EP0188750A1 EP0188750A1 (de) 1986-07-30
EP0188750B1 true EP0188750B1 (de) 1988-11-09

Family

ID=6253926

Family Applications (1)

Application Number Title Priority Date Filing Date
EP85116021A Expired EP0188750B1 (de) 1984-12-27 1985-12-16 Stosswellenrohr für die Zertrümmerung von Konkrementen

Country Status (4)

Country Link
US (1) US4697588A (enrdf_load_stackoverflow)
EP (1) EP0188750B1 (enrdf_load_stackoverflow)
JP (1) JPS61154658A (enrdf_load_stackoverflow)
DE (2) DE3447440A1 (enrdf_load_stackoverflow)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4125375C1 (en) * 1991-07-31 1992-12-10 Siemens Ag, 8000 Muenchen, De Pressure pulse source for lithotripsy - has pulsed diaphragm in acoustic medium with layer of lower acoustic impedance
DE19520749C1 (de) * 1995-06-07 1996-08-08 Siemens Ag Therapiegerät mit einer Quelle akustischer Wellen

Families Citing this family (108)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6218113U (enrdf_load_stackoverflow) * 1985-07-18 1987-02-03
JPH042644Y2 (enrdf_load_stackoverflow) * 1985-11-28 1992-01-29
EP0256203A1 (de) * 1986-06-05 1988-02-24 Siemens Aktiengesellschaft Stosswellengenerator zum berührungslosen Zertrümmern von Konkrementen im Körper eines Lebewesens
US5095891A (en) * 1986-07-10 1992-03-17 Siemens Aktiengesellschaft Connecting cable for use with a pulse generator and a shock wave generator
US4782821A (en) * 1986-07-14 1988-11-08 Siemens Aktiengesellschaft Shock wave generator for an installation for non-contacting disintegration of calculi in the body of a life form
DE3789688D1 (de) * 1986-07-14 1994-06-01 Siemens Ag Stosswellengenerator für eine Einrichtung zum berührungslosen Zertrümmern von Konkrementen im Körper eines Lebewesens.
DE3765336D1 (de) * 1986-07-16 1990-11-08 Siemens Ag Stosswellengenerator zur erzeugung eines akustischen stosswellenimpulses.
EP0263349A1 (de) * 1986-10-06 1988-04-13 Siemens Aktiengesellschaft Stosswellenquelle
DE8627238U1 (de) * 1986-10-06 1988-02-04 Siemens AG, 1000 Berlin und 8000 München Stoßwellenquelle
DE3743822A1 (de) * 1987-12-23 1989-07-13 Dornier Medizintechnik Elektromagnetische stosswellenquelle
DE3804993C1 (enrdf_load_stackoverflow) * 1988-02-18 1989-08-10 Dornier Medizintechnik Gmbh, 8034 Germering, De
DE3835318C1 (enrdf_load_stackoverflow) 1988-10-17 1990-06-28 Storz Medical Ag, Kreuzlingen, Ch
DE3907605C2 (de) * 1989-03-09 1996-04-04 Dornier Medizintechnik Stosswellenquelle
EP0412202A1 (de) * 1989-08-11 1991-02-13 Siemens Aktiengesellschaft Stosswellenquelle zur Erzeugung von fokussierten Stosswellen mit einem als Rotationsparaboloid ausgebildeten Reflektor
US5156144A (en) * 1989-10-20 1992-10-20 Olympus Optical Co., Ltd. Ultrasonic wave therapeutic device
DE9109025U1 (de) * 1990-08-02 1991-12-05 Siemens AG, 80333 München Generator zur Erzeugung akustischer Zugimpulse
US5233972A (en) * 1990-09-27 1993-08-10 Siemens Aktiengesellschaft Shockwave source for acoustic shockwaves
DE59010891D1 (de) * 1990-10-29 2000-01-27 Siemens Ag Akusticher Druckimpulsgenerator
DE4038651C2 (de) * 1990-12-04 1999-10-28 Siemens Ag Druckimpulsgenerator
DE4038650C1 (en) * 1990-12-04 1992-04-16 Siemens Ag, 8000 Muenchen, De Pressure pulse concretion remover - has pulsed pressure source and pulse generator in common housing
DE4102447C1 (enrdf_load_stackoverflow) * 1991-01-28 1992-04-09 Siemens Ag, 8000 Muenchen, De
US5350352A (en) * 1991-02-21 1994-09-27 Siemens Aktiengesellschaft Acoustic pressure pulse generator
DE4118443C2 (de) * 1991-06-05 2000-04-06 Siemens Ag Akustischer Druckimpulsgenerator
DE4119524C2 (de) * 1991-06-13 1998-08-20 Siemens Ag Vorrichtung zur Behandlung von Knochenleiden mittels akustischer Wellen
DE4122223C1 (en) * 1991-07-04 1992-10-01 Siemens Ag, 8000 Muenchen, De Acoustic, focussed, pressure pulse generator - has presser pulse source, pulse reflector, and acoustic lens between reflector and focus
DE4125088C1 (enrdf_load_stackoverflow) * 1991-07-29 1992-06-11 Siemens Ag, 8000 Muenchen, De
DE4135177C2 (de) * 1991-10-24 1998-04-09 Siemens Ag Theraphieeinrichtung zur Behandlung eines Lebewesens mit fokussierten akustischen Wellen
DE4143540C2 (de) * 1991-10-24 1996-08-08 Siemens Ag Therapieeinrichtung zur Behandlung eines Patienten mit fokussierten akustischen Wellen
DE4136004C1 (enrdf_load_stackoverflow) * 1991-10-31 1993-01-28 Siemens Ag, 8000 Muenchen, De
DE4139024C1 (enrdf_load_stackoverflow) * 1991-11-27 1993-04-15 Siemens Ag, 8000 Muenchen, De
DE4201139A1 (de) * 1992-01-17 1993-07-22 Siemens Ag Elektromagnetische akustische druckimpulsquelle mit elektrisch leitfaehigen membranmitteln
DE4201141C2 (de) * 1992-01-17 1994-11-03 Siemens Ag Akustische Druckimpulsquelle mit elektrisch leitfähigen Membranmitteln
US5331952A (en) * 1992-03-23 1994-07-26 Bantum Tripter Joint Venture Partners Water system for lithotripter
DE4212809C2 (de) * 1992-04-16 1996-08-14 Siemens Ag Therapieeinrichtung zur Behandlung eines Lebewesens mit fokussierten akustischen Wellen
DE4232683C1 (de) * 1992-09-29 1994-04-28 Siemens Ag Therapieeinrichtung zur Behandlung mit fokussierten akustischen Wellen
US5370120A (en) * 1992-12-08 1994-12-06 Siemens Aktiengesellschaft Ultrasound imaging apparatus
EP0683657B2 (de) * 1993-02-10 2005-06-15 Siemens Aktiengesellschaft Gerät zur schmerztherapie und/oder zur beeinflussung des vegetativen nervensystems
DE4306459C1 (de) * 1993-03-02 1994-04-28 Siemens Ag Therapieeinrichtung zur Behandlung mit fokussierten akustischen Wellen
DE4306460C2 (de) * 1993-03-02 1995-04-20 Siemens Ag Therapieeinrichtung zur Behandlung mit fokussierten akustischen Wellen
DE4315282C2 (de) * 1993-05-07 1999-10-07 Siemens Ag Verwendung einer akustischen Druckimpulsquelle
DE4325213C2 (de) * 1993-07-27 1996-11-21 Siemens Ag Therapiegerät zur Behandlung mit akustischen Wellen
DE4329167C2 (de) * 1993-08-30 1996-06-05 Siemens Ag Medizinisches Gerät mit einem Geräteteil
DE4447665B4 (de) * 1994-01-14 2004-04-29 Siemens Ag Medizinisches Gerät mit einer Röntgendiagnostikeinrichtung zur Erzeugung von Röntgen-Schattenbildern
DE19538054C1 (de) * 1995-10-12 1996-12-05 Siemens Ag Medizinisches Gerät mit einer Patientenlagerungsplatte
DE19644314A1 (de) * 1995-11-23 1997-05-28 Siemens Ag Therapiegerät mit einer Quelle akustischer Wellen
DE19615342C1 (de) * 1996-04-18 1997-10-09 Siemens Ag Therapiegerät mit einer optischen Einheit zur Ausrichtung
CH691345A5 (de) * 1996-04-18 2001-07-13 Siemens Ag Therapiegerät mit einfacher Einstellung eines gewünschten Abstandes von einem Bezugspunkt.
DE19702593C2 (de) * 1997-01-24 2000-07-06 Siemens Ag Verfahren und Vorrichtung zur Erzeugung von Stoßwellen für technische, vorzugsweise medizintechnische Anwendungen
US6050943A (en) * 1997-10-14 2000-04-18 Guided Therapy Systems, Inc. Imaging, therapy, and temperature monitoring ultrasonic system
DE19822793C2 (de) * 1998-05-20 2000-05-31 Siemens Ag Vorrichtung zur Kennzeichnung der Lage des Fokus einer Stoßwellenquelle
US7914453B2 (en) * 2000-12-28 2011-03-29 Ardent Sound, Inc. Visual imaging system for ultrasonic probe
US6869407B2 (en) * 2001-09-12 2005-03-22 Moshe Ein-Gal Acoustic wave device
DE10215416B4 (de) * 2002-04-08 2020-10-29 Ferton Holding S.A. Medizinisches Gerät zur Behandlung von biologischem Gewebe
US7311677B1 (en) * 2002-06-26 2007-12-25 Fields John G Energy concentrator system and method
US7267654B2 (en) * 2002-10-08 2007-09-11 University Of Washington Focused shock-wave devices with direct wave cavitation suppressor
US8235909B2 (en) * 2004-05-12 2012-08-07 Guided Therapy Systems, L.L.C. Method and system for controlled scanning, imaging and/or therapy
US7824348B2 (en) * 2004-09-16 2010-11-02 Guided Therapy Systems, L.L.C. System and method for variable depth ultrasound treatment
US9011336B2 (en) * 2004-09-16 2015-04-21 Guided Therapy Systems, Llc Method and system for combined energy therapy profile
US7393325B2 (en) 2004-09-16 2008-07-01 Guided Therapy Systems, L.L.C. Method and system for ultrasound treatment with a multi-directional transducer
US8535228B2 (en) 2004-10-06 2013-09-17 Guided Therapy Systems, Llc Method and system for noninvasive face lifts and deep tissue tightening
US10864385B2 (en) 2004-09-24 2020-12-15 Guided Therapy Systems, Llc Rejuvenating skin by heating tissue for cosmetic treatment of the face and body
US20120165848A1 (en) 2010-08-02 2012-06-28 Guided Therapy Systems, Llc System and method for treating cartilage
US8444562B2 (en) 2004-10-06 2013-05-21 Guided Therapy Systems, Llc System and method for treating muscle, tendon, ligament and cartilage tissue
US7530958B2 (en) * 2004-09-24 2009-05-12 Guided Therapy Systems, Inc. Method and system for combined ultrasound treatment
PL3287170T3 (pl) * 2004-10-06 2019-07-31 Guided Therapy Systems, L.L.C. Układ do kontrolowanego oddziaływania termicznego na ludzką tkankę powierzchowną
US11883688B2 (en) 2004-10-06 2024-01-30 Guided Therapy Systems, Llc Energy based fat reduction
US8690779B2 (en) 2004-10-06 2014-04-08 Guided Therapy Systems, Llc Noninvasive aesthetic treatment for tightening tissue
US11235179B2 (en) 2004-10-06 2022-02-01 Guided Therapy Systems, Llc Energy based skin gland treatment
US20060111744A1 (en) 2004-10-13 2006-05-25 Guided Therapy Systems, L.L.C. Method and system for treatment of sweat glands
US7530356B2 (en) * 2004-10-06 2009-05-12 Guided Therapy Systems, Inc. Method and system for noninvasive mastopexy
US9694212B2 (en) 2004-10-06 2017-07-04 Guided Therapy Systems, Llc Method and system for ultrasound treatment of skin
US9827449B2 (en) 2004-10-06 2017-11-28 Guided Therapy Systems, L.L.C. Systems for treating skin laxity
EP2279699B1 (en) 2004-10-06 2019-07-24 Guided Therapy Systems, L.L.C. Method for non-invasive cosmetic enhancement of cellulite
US7758524B2 (en) 2004-10-06 2010-07-20 Guided Therapy Systems, L.L.C. Method and system for ultra-high frequency ultrasound treatment
US8133180B2 (en) 2004-10-06 2012-03-13 Guided Therapy Systems, L.L.C. Method and system for treating cellulite
KR20170117205A (ko) 2004-10-06 2017-10-20 가이디드 테라피 시스템스, 엘.엘.씨. 초음파 치료 시스템
US11724133B2 (en) 2004-10-07 2023-08-15 Guided Therapy Systems, Llc Ultrasound probe for treatment of skin
US11207548B2 (en) 2004-10-07 2021-12-28 Guided Therapy Systems, L.L.C. Ultrasound probe for treating skin laxity
US20060079868A1 (en) * 2004-10-07 2006-04-13 Guided Therapy Systems, L.L.C. Method and system for treatment of blood vessel disorders
US7571336B2 (en) * 2005-04-25 2009-08-04 Guided Therapy Systems, L.L.C. Method and system for enhancing safety with medical peripheral device by monitoring if host computer is AC powered
US9566454B2 (en) * 2006-09-18 2017-02-14 Guided Therapy Systems, Llc Method and sysem for non-ablative acne treatment and prevention
EP3103522A1 (en) * 2006-09-19 2016-12-14 Guided Therapy Systems, L.L.C. System for treating muscle, tendon, ligament and cartilage tissue
US9241683B2 (en) * 2006-10-04 2016-01-26 Ardent Sound Inc. Ultrasound system and method for imaging and/or measuring displacement of moving tissue and fluid
US20080127735A1 (en) * 2006-11-21 2008-06-05 Stephen Bruce Berman Sonar and Ultrasound Emitter that Generates Shock Wave Vibratory Forces by the Fracturing, Breaking or Cracking of Materials for Testing and Measuring and Imaging Purposes
JP5975600B2 (ja) * 2007-05-07 2016-08-24 ガイデッド セラピー システムズ, エル.エル.シー. カプラ部材を使用して音響エネルギーを結合し、かつ焦点に集めるための方法およびシステム
US20150174388A1 (en) 2007-05-07 2015-06-25 Guided Therapy Systems, Llc Methods and Systems for Ultrasound Assisted Delivery of a Medicant to Tissue
TWI526233B (zh) 2007-05-07 2016-03-21 指導治療系統股份有限公司 利用聲波能量調製藥劑輸送及效能之系統
EP3058875B1 (en) 2008-06-06 2022-08-17 Ulthera, Inc. A system for cosmetic treatment and imaging
US12102473B2 (en) 2008-06-06 2024-10-01 Ulthera, Inc. Systems for ultrasound treatment
CA2748362A1 (en) 2008-12-24 2010-07-01 Michael H. Slayton Methods and systems for fat reduction and/or cellulite treatment
US8715186B2 (en) * 2009-11-24 2014-05-06 Guided Therapy Systems, Llc Methods and systems for generating thermal bubbles for improved ultrasound imaging and therapy
US9504446B2 (en) 2010-08-02 2016-11-29 Guided Therapy Systems, Llc Systems and methods for coupling an ultrasound source to tissue
US8857438B2 (en) 2010-11-08 2014-10-14 Ulthera, Inc. Devices and methods for acoustic shielding
KR102068728B1 (ko) 2011-07-10 2020-01-21 가이디드 테라피 시스템스, 엘.엘.씨. 초음파 치료를 위한 방법 및 시스템
WO2013012641A1 (en) 2011-07-11 2013-01-24 Guided Therapy Systems, Llc Systems and methods for coupling an ultrasound source to tissue
US9263663B2 (en) 2012-04-13 2016-02-16 Ardent Sound, Inc. Method of making thick film transducer arrays
US9510802B2 (en) 2012-09-21 2016-12-06 Guided Therapy Systems, Llc Reflective ultrasound technology for dermatological treatments
CN113648551B (zh) 2013-03-08 2025-03-25 奥赛拉公司 用于多焦点超声治疗的装置和方法
US10561862B2 (en) 2013-03-15 2020-02-18 Guided Therapy Systems, Llc Ultrasound treatment device and methods of use
RU2015142994A (ru) * 2014-02-08 2017-04-20 Саундбласт Текнолоджиз Ллк. Система и способ передачи волны избыточного давления на объекты целевого воздействия
BR112016023889B1 (pt) 2014-04-18 2023-02-07 Ulthera, Inc Sistema de transdução de ultrassom para ultrassom de focagem linear
FR3022674B1 (fr) * 2014-06-18 2019-12-13 Iem Sarl Borne de detection comprenant un transducteur piezoelectrique fixe a une membrane liee a une structure de butee
NL2013968B1 (en) * 2014-12-12 2016-10-11 Fugro N V Pressure tolerant seismic source.
DK3405294T3 (da) 2016-01-18 2023-03-13 Ulthera Inc Kompakt ultralydsanordning med ringformet ultralydsmatrice med periferisk elektrisk tilslutning til fleksibel printplade
EP3981466B9 (en) 2016-08-16 2023-10-04 Ulthera, Inc. Systems and methods for cosmetic ultrasound treatment of skin
TWI797235B (zh) 2018-01-26 2023-04-01 美商奧賽拉公司 用於多個維度中的同時多聚焦超音治療的系統和方法
US11944849B2 (en) 2018-02-20 2024-04-02 Ulthera, Inc. Systems and methods for combined cosmetic treatment of cellulite with ultrasound
BR112022000062A2 (pt) 2019-07-15 2022-06-07 Ulthera Inc Sistemas e métodos para medir elasticidade com imagem de ondas de cisalhamento multifocais de ultrassom em múltiplas dimensões

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR528145A (fr) * 1917-05-07 1921-11-07 Louis Lumiere Système d'appareil de réception et de transmission des ondes sonores
US1730531A (en) * 1928-11-30 1929-10-08 Percy A Robbins Acoustic transformer
DE760163C (de) * 1939-12-19 1953-05-18 Siemens Reiniger Werke Ag Einrichtung zur Erzeugung einer konvergenten Ultraschallstrahlung
DE1191720B (de) * 1961-06-24 1965-04-22 Siemens Ag Elektrodynamischer Impulsschallgeber fuer Echolotung
US3934460A (en) * 1973-08-06 1976-01-27 General Electric Company Apparatus for focusing and collimating ultrasonic waves
DE3119295A1 (de) * 1981-05-14 1982-12-16 Siemens AG, 1000 Berlin und 8000 München Einrichtung zum zerstoeren von konkrementen in koerperhoehlen
DE3146628C2 (de) * 1981-11-25 1991-03-28 Dornier System Gmbh, 7990 Friedrichshafen Auslösevorrichtung für Stoßwellen zu therapeutischen Zwecken
DE3312014C2 (de) * 1983-04-02 1985-11-07 Wolfgang Prof. Dr. 7140 Ludwigsburg Eisenmenger Einrichtung zur berührungsfreien Zertrümmerung von Konkrementen im Körper von Lebewesen

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4125375C1 (en) * 1991-07-31 1992-12-10 Siemens Ag, 8000 Muenchen, De Pressure pulse source for lithotripsy - has pulsed diaphragm in acoustic medium with layer of lower acoustic impedance
DE19520749C1 (de) * 1995-06-07 1996-08-08 Siemens Ag Therapiegerät mit einer Quelle akustischer Wellen

Also Published As

Publication number Publication date
EP0188750A1 (de) 1986-07-30
JPS61154658A (ja) 1986-07-14
DE3566077D1 (en) 1988-12-15
DE3447440A1 (de) 1986-07-03
US4697588A (en) 1987-10-06
JPH0458979B2 (enrdf_load_stackoverflow) 1992-09-21

Similar Documents

Publication Publication Date Title
EP0188750B1 (de) Stosswellenrohr für die Zertrümmerung von Konkrementen
DE4241161C2 (de) Akustische Therapieeinrichtung
DE3443295C2 (enrdf_load_stackoverflow)
DE3328051A1 (de) Einrichtung zum beruehrungslosen zertruemmern von konkrementen
DE3146626C2 (de) Vorrichtung zum Zerstören von im Körper eines Lebewesens befindlichen Konkrementen
DE3319871C2 (enrdf_load_stackoverflow)
DE3119295C2 (enrdf_load_stackoverflow)
EP0397980B1 (de) Lithotriptor
DE2538960C2 (de) Vorrichtung zum berührungslosen Zertrümmern von in einem Lebewesen befindlichen Konkrementen
DE2950203A1 (de) Endoskop
DE8710118U1 (de) Stoßwellengenerator für eine Einrichtung zum berührungslosen Zertrümmern von Konkrementen im Körper eines Lebewesens
DE3328039C2 (de) Einrichtung zum beruehrungslosen zertruemmern eines im koerper eines lebewesens befindlichen konkrements
EP0192833A2 (de) Verfahren und Vorrichtung zur Zertrümmerung eines festen Körpers
EP0372174A1 (de) Lithotriptor
DE19548000C1 (de) Vorrichtung zur Ortung von Konkrementen im Körper eines Patienten
EP0372119B2 (de) Lithotripter
EP0240797B1 (de) Stosswellenquelle mit erhöhtem Wirkungsgrad
DE3522491A1 (de) Akustische linsenanordnung
EP0441997A1 (de) Medizinischer Ultraschall-Applikator zur Verwendung in einem von akustischen Stosswellen durchlaufenen Ausbreitungsmedium
DE3727692C2 (de) Stoßwellenquelle mit kurzer Fokussierung
EP0243650B1 (de) Stosswellenquelle mit verbesserter Fokuszone
DE4039408A1 (de) Stosswellengenerator mit einem reflektor
DE8809253U1 (de) Stoßwellengenerator zum berührungslosen Zertrümmern von Konkrementen im Körper eines Lebewesens
EP0282727A2 (de) Verbesserung der Chemolyse von Konkrementen
DE8809252U1 (de) Stoßwellenquelle zum Zertrümmern von Konkrementen

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): DE FR GB NL

17P Request for examination filed

Effective date: 19860826

17Q First examination report despatched

Effective date: 19880121

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE FR GB NL

REF Corresponds to:

Ref document number: 3566077

Country of ref document: DE

Date of ref document: 19881215

ET Fr: translation filed
GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20041203

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20041207

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20041223

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20050217

Year of fee payment: 20

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 20051215

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 20051216

REG Reference to a national code

Ref country code: GB

Ref legal event code: PE20

NLV7 Nl: ceased due to reaching the maximum lifetime of a patent

Effective date: 20051216