EP0185179B1 - Starting circuit for low-pressure discharge lamps - Google Patents

Starting circuit for low-pressure discharge lamps Download PDF

Info

Publication number
EP0185179B1
EP0185179B1 EP85113901A EP85113901A EP0185179B1 EP 0185179 B1 EP0185179 B1 EP 0185179B1 EP 85113901 A EP85113901 A EP 85113901A EP 85113901 A EP85113901 A EP 85113901A EP 0185179 B1 EP0185179 B1 EP 0185179B1
Authority
EP
European Patent Office
Prior art keywords
lamp
capacitor
low
ignition
circuit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
EP85113901A
Other languages
German (de)
French (fr)
Other versions
EP0185179A1 (en
Inventor
Hans-Jürgen Dipl.-Ing. Fähnrich
Eugen Dipl.-Ing. Statnic
Ulrich Dr. Dipl.-Phys. Roll
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Osram GmbH
Original Assignee
Patent Treuhand Gesellschaft fuer Elektrische Gluehlampen mbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Patent Treuhand Gesellschaft fuer Elektrische Gluehlampen mbH filed Critical Patent Treuhand Gesellschaft fuer Elektrische Gluehlampen mbH
Publication of EP0185179A1 publication Critical patent/EP0185179A1/en
Application granted granted Critical
Publication of EP0185179B1 publication Critical patent/EP0185179B1/en
Expired legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B41/00Circuit arrangements or apparatus for igniting or operating discharge lamps
    • H05B41/14Circuit arrangements
    • H05B41/16Circuit arrangements in which the lamp is fed by dc or by low-frequency ac, e.g. by 50 cycles/sec ac, or with network frequencies
    • H05B41/20Circuit arrangements in which the lamp is fed by dc or by low-frequency ac, e.g. by 50 cycles/sec ac, or with network frequencies having no starting switch
    • H05B41/23Circuit arrangements in which the lamp is fed by dc or by low-frequency ac, e.g. by 50 cycles/sec ac, or with network frequencies having no starting switch for lamps not having an auxiliary starting electrode
    • H05B41/231Circuit arrangements in which the lamp is fed by dc or by low-frequency ac, e.g. by 50 cycles/sec ac, or with network frequencies having no starting switch for lamps not having an auxiliary starting electrode for high-pressure lamps
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B41/00Circuit arrangements or apparatus for igniting or operating discharge lamps
    • H05B41/14Circuit arrangements
    • H05B41/26Circuit arrangements in which the lamp is fed by power derived from dc by means of a converter, e.g. by high-voltage dc
    • H05B41/28Circuit arrangements in which the lamp is fed by power derived from dc by means of a converter, e.g. by high-voltage dc using static converters
    • H05B41/295Circuit arrangements in which the lamp is fed by power derived from dc by means of a converter, e.g. by high-voltage dc using static converters with semiconductor devices and specially adapted for lamps with preheating electrodes, e.g. for fluorescent lamps
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S315/00Electric lamp and discharge devices: systems
    • Y10S315/07Starting and control circuits for gas discharge lamp using transistors

Definitions

  • the invention relates to a circuit arrangement for igniting a low-pressure discharge lamp, which has at least one inductance and a capacitor connected in series in the operating circuit and which contains a series connection of a second capacitor and a temperature-dependent resistor in the ignition circuit parallel to the lamp and in series with its heating electrodes.
  • the so-called compact fluorescent lamps the ballast and / or the ignition device is already integrated in the base of the lamp.
  • the lamp is often operated at high frequency.
  • a resonance capacitor is arranged in the ignition circuit ("Electronic circuits" by Walter Hirschmann, Berlin / Kunststoff, SIEMENS Aktiengesellschaft, 1982, page 148).
  • a suitable choice of the resonance capacitor allows the level of the open circuit voltage at the lamp to be set within certain limits.
  • the voltage should be so high that lamp ignition is ensured even at lower ambient temperatures.
  • a circuit arrangement is known from US Pat. No. 2,231,999 in which a series connection of a resonance capacitor and a temperature-dependent resistor is arranged in the ignition circuit of the lamp.
  • the resistance of the thermistor used here (NTC resistance) is high at the moment of switching on and decreases according to its characteristics until the lamp is ignited.
  • NTC resistance The resistance of the thermistor used here
  • NTC resistance is high at the moment of switching on and decreases according to its characteristics until the lamp is ignited.
  • NTC resistance resistance of the thermistor used here
  • the object of the invention is to provide a starter-free ignition circuit suitable for low and high frequency for a fluorescent lamp, which enables reliable ignition of the lamp in a wide temperature range and which, with the greatest possible protection of the lamp, results in an extended service life during each operating state. At the same time, the annoying glow discharge should be suppressed if the lamp ignites quickly and without flickering.
  • the temperature-dependent resistor has a positive temperature coefficient and a third capacitor is connected in parallel.
  • the ratio of the capacities of the second capacitor to the third capacitor which are then in series in the ignition circuit of the lamp is in the range from 1: 1 to 5: 1, and their capacitance ratio is preferably 2: 1.
  • the PTC resistor bridging the third capacitor has a low initial resistance and has the effect that a high preheating current flows through the heating electrodes of the lamp from the first moment and heats them up quickly.
  • the operating frequency for the lamp is in the range between 20 kHz and 500 kHz. This makes it possible for the circuit components to have small geometric dimensions and for the entire ballast, including the components for the ignition circuit, to be integrated into the base of the low-pressure discharge lamp.
  • the circuit With the ignition circuit, a very short ignition time of only about 0.5 seconds is achieved. The lamp burns "almost" immediately after switching on. The otherwise annoying switch-on flickering of the fluorescent lamp and the glow discharge that shortens the service life do not occur. At the same time, cold ignition of the lamp is avoided, which protects the lamp and thus increases its service life. Due to the voltage regulation, the circuit is suitable for igniting fluorescent lamps at a wide variety of ambient temperatures.
  • a compact fluorescent lamp 1 with 15 W power consumption is operated at a frequency of approximately 45 kHz.
  • the mains voltage U N present at the connecting terminals 2, 3 is initially passed through a filter element 4.
  • the filtered AC voltage is then converted into a screened DC voltage by means of a rectifier 5 and a smoothing capacitor 6.
  • This DC voltage is applied to an inverter, which consists of the transistors 7, 8 with the corresponding emitter resistors 9, 10 and the associated control 11.
  • the control voltage is taken from a toroidal transformer 12, the primary winding 13 of which has only a few turns and is located in the operating circuit of the lamp 1. All of these switching elements are conventional, so that a block diagram was used to simplify the circuit.
  • the rectangular voltage generated by the inverter is supplied to the lamp 1 in the operating circuit via an inductor 14 and a separating capacitor 15 which blocks the direct current.
  • the inductance 14 is approx. 3 mH and the isolating capacitor 15 has a capacitance of approx. 47 n F.
  • the ignition circuit which is formed from a series connection of two resonance capacitors 18, 19, lies parallel to the lamp 1 and in series with its heating electrodes 16, 17, the resonance capacitor 18 being bridged by a PTC resistor 20.
  • the capacitance of the resonance capacitor 18 is 3.3 nF in the exemplary embodiment and that of the resonance capacitor 19 is 6.8 nF.
  • the series connection of the capacitors 18 and 19 forms the resonant capacitor C R.
  • the PTC thermistor 20 is of the type C 890 (SIEMENS).
  • FIG. 2 to 4 show the course of the heating current I H , the lamp voltage U o or U L and the lamp current I L.
  • the capacitor 18, which is smaller in capacity and determines the level of the lamp supply voltage, is bridged by the low-resistance thermistor 20.
  • a high heating current I H flows through the electrodes 16, 17 of the lamp 1 (FIG. 2).
  • a certain open circuit voltage U o is established on the lamp 1 (FIG. 3), the level of which is insufficient to ignite the lamp due to the bridged capacitor 18 and the lower voltage across the capacitor 19.
  • the current I L through the lamp 1 is negligibly small (FIG. 4).
  • the heating current I H decreases slightly.
  • the capacitances of the resonance capacitors 18, 19 are determined such that the desired high lamp supply voltage is set and both capacitors 18, 19 are loaded with approximately the same voltage despite their different capacitances. Together with the inductance 14 and the isolating capacitor 15, the necessary resonance voltage 22 is now set. With the increasing resonance voltage 22, the heating current I H rises again to approximately its original value. The current I L through the lamp 1 is not affected by these processes. The resonant open circuit voltage U o at the capacitors 18, 19 now increases until the lamp 1 ignites 23. Only about 0.5 seconds have passed between the times of switching on 21 and ignition 23. After lamp ignition 23 has taken place, the lamp voltage U L characteristic of lamp 1 is automatically set. The lamp current I L suddenly increases to its operating value. The preheating current I H drops to a low value due to the now reduced voltage and the capacitors 18, 19 lying in series.

Description

Die Erfindung betrifft eine Schaltungsanordnung zur Zündung einer Niederdruckentladungslampe, die im Betriebsstromkreis mindestens eine Induktivität und einen dazu in Reihe geschalteten Kondensator aufweist und die im Zündstromkreis parallel zur Lampe und in Reihe zu deren Heizelektroden eine Reihenschaltung eines zweiten Kondensators und eines temperaturabhängigen Widerstandes enthält.The invention relates to a circuit arrangement for igniting a low-pressure discharge lamp, which has at least one inductance and a capacitor connected in series in the operating circuit and which contains a series connection of a second capacitor and a temperature-dependent resistor in the ignition circuit parallel to the lamp and in series with its heating electrodes.

Bekannte Schaltungsanordnungen für Niederdruckentladungslampen weisen zur Vorheizung der Lampenelektroden im Zündstromkreis einen Glimmzünder auf. Nachteilig hierbei ist, dass die Lampen normalerweise beim Einschalten erst einmal durchzünden, bis der Glimmzünder schliesst und der Vorheizvorgang anfängt. Hierdurch entsteht der Eindruck des Flackerns.Known circuit arrangements for low-pressure discharge lamps have a glow starter for preheating the lamp electrodes in the ignition circuit. The disadvantage here is that the lamps usually ignite when switched on until the glow starter closes and the preheating process begins. This creates the impression of flickering.

Bei den neueren Niederdruckentladungslampen mit kleiner Leistungsaufnahme, den sogenannten Kompaktleuchtstofflampen, ist die Vorschalt- und/oder die Zündvorrichtung bereits in den Sockel der Lampe integriert. Die Lampe wird dabei häufig mit Hochfrequenz betrieben. Um das störende Flackern der Lampe während des Zündvorganges zu vermeiden, ist im Zündstromkreis ein Resonanzkondensator angeordnet («Elektronikschaltungen» von Walter Hirschmann, Berlin/ München, SIEMENS Aktiengesellschaft, 1982, Seite 148 ). Durch geeignete Wahl des Resonanzkondensators kann die Höhe der Leerlaufspannung an der Lampe in bestimmten Grenzen eingestellt werden Bei Kompaktlampen ist es jedoch erwünscht, die Spannung am Resonanzkondensator und damit an den Lampenelektroden beim Einschalten so niedrig zu halten, dass die sonst auftretende störende Glimmentladung nicht auftritt. Andererseits soll die Spannung nach ausreichender Vorheizung so hoch sein, dass eine Lampenzündung auch bei tieferen Umgebungstemperaturen sichergestellt ist.In the newer low-pressure discharge lamps with low power consumption, the so-called compact fluorescent lamps, the ballast and / or the ignition device is already integrated in the base of the lamp. The lamp is often operated at high frequency. In order to avoid the annoying flickering of the lamp during the ignition process, a resonance capacitor is arranged in the ignition circuit ("Electronic circuits" by Walter Hirschmann, Berlin / Munich, SIEMENS Aktiengesellschaft, 1982, page 148). A suitable choice of the resonance capacitor allows the level of the open circuit voltage at the lamp to be set within certain limits. With compact lamps, however, it is desirable to keep the voltage at the resonance capacitor and thus at the lamp electrodes so low when it is switched on that the annoying glow discharge that otherwise occurs does not occur. On the other hand, after sufficient preheating, the voltage should be so high that lamp ignition is ensured even at lower ambient temperatures.

Aus der US-PS 2 231 999 ist eine Schaltungsanordnung bekannt, bei der im Zündstromkreis der Lampe eine Reihenschaltung eines Resonanzkondensators und eines temperaturabhängigen Widerstandes angeordnet ist. Der Widerstand des hier verwendeten Heissleiters (NTC-Widerstand) ist im Moment des Einschaltens hoch und verringert sich entsprechend seiner Charakteristik bis zur Zündung der Lampe. Hierdurch bedingt fliesst anfangs nur ein kleiner Vorheizstrom. Das führt zu langen Vorheizzeiten und damit auch zu langen Zündzeiten für die Lampe. Bei niedrigen Umgebungstemperaturen reicht die dann an der Lampe liegende niedrige Spannung zur Zündung nicht mehr aus. Nach der Lampenzündung fliesst ein relativ hoher Strom durch den Zündstromkreis. Das reduziert wiederum die Systemausbeute, da die Dauerheizung der Elektroden eine Verlustleistung bedeutet. Eine Überheizung der Elektroden führt darüber hinaus zu einem erhöhten Emitterverbrauch und damit zu einer reduzierten Lebensdauer der Lampe.A circuit arrangement is known from US Pat. No. 2,231,999 in which a series connection of a resonance capacitor and a temperature-dependent resistor is arranged in the ignition circuit of the lamp. The resistance of the thermistor used here (NTC resistance) is high at the moment of switching on and decreases according to its characteristics until the lamp is ignited. As a result, only a small preheating current flows initially. This leads to long preheating times and thus long ignition times for the lamp. At low ambient temperatures, the low voltage then on the lamp is no longer sufficient for ignition. After the lamp has ignited, a relatively high current flows through the ignition circuit. This in turn reduces the system yield, since the permanent heating of the electrodes means a power loss. Overheating the electrodes also leads to increased emitter consumption and thus to a reduced lamp life.

Aufgabe der Erfindung ist es, für eine Leuchtstofflampe eine für Nieder- und Hochfrequenz geeignete starterlose Zündschaltung zu schaffen, die eine sichere Zündung der Lampe in einem grossen Temperaturbereich ermöglicht und die bei grösstmöglicher Schonung der Lampe während jedes Betriebszustandes eine verlängerte Lebensdauer bewirkt. Gleichzeitig soll bei schneller und flackerfreier Zündung der Lampe die störende Glimmentladung unterdrückt werden.The object of the invention is to provide a starter-free ignition circuit suitable for low and high frequency for a fluorescent lamp, which enables reliable ignition of the lamp in a wide temperature range and which, with the greatest possible protection of the lamp, results in an extended service life during each operating state. At the same time, the annoying glow discharge should be suppressed if the lamp ignites quickly and without flickering.

Diese Aufgabe wird bei einer Schaltungsanordnung zur Zündung einer Niederdruckentladungslampe mit den im Oberbegriff des Hauptanspruches genannten Merkmalen dadurch gelöst, dass der temperaturabhängige Widerstand einen positiven Temperaturkoeffizienten aufweist und diesem ein dritter Kondensator parallelgeschaltet ist. Das Verhältnis der dann im Zündstromkreis der Lampe in Reihe liegenden Kapazitäten des zweiten Kondensators zum dritten Kondensator liegt erfindungsgemäss im Bereich 1:1 bis 5:1, vorzugsweise beträgt deren Kapazitätsverhältnis 2:1. Der den dritten Kondensator überbrückende Kaltleiter (PTC-Widerstand) hat einen niedrigen Anfangswiderstand und bewirkt, dass schon vom ersten Augenblick an ein hoher Vorheizstrom durch die Heizelektroden der Lampe fliesst und diese schnell erwärmt. Nachdem sich der Kaltleiter erwärmt und einen hohen Widerstand angenommen hat, fliesst weiterhin ein hoher Strom durch die jetzt wirksam gewordene Reihenschaltung des zweiten und dritten Kondensators, wobei gleichzeitig die Spannung an der Lampe durch Resonanz bis zur Zündung ansteigt. Nach der Zündung liegt nur die übliche Brennspannung der Lampe an der Reihenschaltung beider Kondensatoren; durch den Zündstromkreis fliesst deshalb nur ein kleiner Reststrom. Die Funktion der Zündschaltung wird in der Figurenbeschreibung genauer erläutert. Die Betriebsfrequenz für die Lampe liegt im Bereich zwischen 20 kHz und 500 kHz. Hierdurch wird es ermöglicht, dass die Schaltungsbauteile kleine geometrische Abmessungen aufweisen und das gesamte Vorschaltgerät einschliesslich der Bauteile für den Zündkreis in den Sockel der Niederdruckentladungslampe integriert werden kann.This object is achieved in a circuit arrangement for igniting a low-pressure discharge lamp with the features mentioned in the preamble of the main claim in that the temperature-dependent resistor has a positive temperature coefficient and a third capacitor is connected in parallel. According to the invention, the ratio of the capacities of the second capacitor to the third capacitor which are then in series in the ignition circuit of the lamp is in the range from 1: 1 to 5: 1, and their capacitance ratio is preferably 2: 1. The PTC resistor bridging the third capacitor has a low initial resistance and has the effect that a high preheating current flows through the heating electrodes of the lamp from the first moment and heats them up quickly. After the PTC thermistor has warmed up and assumed a high resistance, a high current continues to flow through the series connection of the second and third capacitors which has now become effective, with the voltage at the lamp simultaneously increasing due to resonance until ignition. After ignition, only the usual operating voltage of the lamp is connected to the series connection of both capacitors; therefore only a small residual current flows through the ignition circuit. The function of the ignition circuit is explained in more detail in the description of the figures. The operating frequency for the lamp is in the range between 20 kHz and 500 kHz. This makes it possible for the circuit components to have small geometric dimensions and for the entire ballast, including the components for the ignition circuit, to be integrated into the base of the low-pressure discharge lamp.

Mit der Zündschaltung wird eine sehr kurze Zündzeit von nur etwa 0,5 Sekunden erreicht. Die Lampe brennt quasi «sofort» nach dem Einschalten. Das sonst übliche störende Einschaltflackern der Leuchtstofflampe sowie die die Lebensdauer verkürzende Glimmentladung treten nicht auf. Gleichzeitig wird eine Kaltzündung der Lampe vermieden, wodurch die Lampe geschont und somit deren Lebensdauer erhöht wird. Durch die Spannungsregelung ist die Schaltung zur Zündung von Leuchtstofflampen bei den unterschiedlichsten Umgebungstemperaturen geeignet.With the ignition circuit, a very short ignition time of only about 0.5 seconds is achieved. The lamp burns "almost" immediately after switching on. The otherwise annoying switch-on flickering of the fluorescent lamp and the glow discharge that shortens the service life do not occur. At the same time, cold ignition of the lamp is avoided, which protects the lamp and thus increases its service life. Due to the voltage regulation, the circuit is suitable for igniting fluorescent lamps at a wide variety of ambient temperatures.

Die Schaltungsanordnung zur Zündung für eine Niederdruckentladungslampe wird nachstehend an Hand der vier Figuren eingehend erläutert:

  • Figur 1 zeigt die wesentlichen Bauteile der Schaltungsanordnung,
  • Figur 2 zeigt ein Oszillogramm des Heizstromes
  • Figur 3 zeigt ein Oszillogramm der Lampenspannung
  • Figur 4 zeigt ein Oszillogramm des Lampenstromes
The circuit arrangement for the ignition for a low-pressure discharge lamp is explained in detail below using the four figures:
  • FIG. 1 shows the essential components of the circuit arrangement,
  • Figure 2 shows an oscillogram of the heating current
  • Figure 3 shows an oscillogram of the lamp voltage
  • Figure 4 shows an oscillogram of the lamp current

Im Ausführungsbeispiel der Figur 1 wird eine kompakte Leuchtstofflampe 1 mit 15 W Leistungsaufnahme mit einer Frequenz von ca. 45 kHz betrieben. Für die Versorgung der Lampe 1 wird die an den Anschlussklemmen 2, 3 anliegende Netzspannung UN anfangs über ein Filterglied 4 geleitet. Die gefilterte Wechselspannung wird dann mittels eines Gleichrichters 5 und eines Glättungskondensators 6 in eine gesiebte Gleichspannung umgewandelt. Diese Gleichspannung wird auf einen Wechselrichter gegeben, der aus den Transistoren 7, 8 mit den entsprechenden Emitterwiderständen 9, 10 sowie der zugehörigen Ansteuerung 11 besteht. Die Steuerspannung wird einem Ringkerntransformator 12 entnommen, dessen nur wenige Windungen aufweisende Primärwicklung 13 im Betriebsstromkreis der Lampe 1 liegt. Alle diese Schaltglieder sind konventionell, so dass zur Vereinfachung der Schaltung auf eine Blockdarstellung zurückgegriffen wurde. Die vom Wechselrichter erzeugte rechteckförmige Spannung wird im Betriebsstromkreis über eine Induktivität 14 und einen den Gleichstrom sperrenden Trennkondensator 15 der Lampe 1 zugeführt. Die Induktivität 14 beträgt ca. 3 mH und der Trennkondensator 15 hat eine Kapazität von ca. 47 n F.In the exemplary embodiment in FIG. 1, a compact fluorescent lamp 1 with 15 W power consumption is operated at a frequency of approximately 45 kHz. To supply the lamp 1, the mains voltage U N present at the connecting terminals 2, 3 is initially passed through a filter element 4. The filtered AC voltage is then converted into a screened DC voltage by means of a rectifier 5 and a smoothing capacitor 6. This DC voltage is applied to an inverter, which consists of the transistors 7, 8 with the corresponding emitter resistors 9, 10 and the associated control 11. The control voltage is taken from a toroidal transformer 12, the primary winding 13 of which has only a few turns and is located in the operating circuit of the lamp 1. All of these switching elements are conventional, so that a block diagram was used to simplify the circuit. The rectangular voltage generated by the inverter is supplied to the lamp 1 in the operating circuit via an inductor 14 and a separating capacitor 15 which blocks the direct current. The inductance 14 is approx. 3 mH and the isolating capacitor 15 has a capacitance of approx. 47 n F.

Parallel zur Lampe 1 und in Reihe zu deren Heizelektroden 16, 17 liegt der Zündstromkreis, der aus einer Reihenschaltung zweier Resonanzkondensatoren 18, 19 gebildet wird, wobei der Resonanzkondensator 18 von einem Kaltleiter (PTC-Widerstand) 20 überbrückt ist. Die Kapazität des Resonanzkondensators 18 beträgt im Ausführungsbeispiel 3,3 nF und die des Resonanzkondensators 19 6,8 nF. Die Reihenschaltung der Kondensatoren 18 und 19 bildet den Resonanzkondensator CR. Der Kaltleiter 20 ist vom Typ C 890 (SIEMENS).The ignition circuit, which is formed from a series connection of two resonance capacitors 18, 19, lies parallel to the lamp 1 and in series with its heating electrodes 16, 17, the resonance capacitor 18 being bridged by a PTC resistor 20. The capacitance of the resonance capacitor 18 is 3.3 nF in the exemplary embodiment and that of the resonance capacitor 19 is 6.8 nF. The series connection of the capacitors 18 and 19 forms the resonant capacitor C R. The PTC thermistor 20 is of the type C 890 (SIEMENS).

Die Figuren 2 bis 4 zeigen den Verlauf des Heizstromes IH, der Lampenspannung Uo bzw. UL sowie den Lampenstrom IL. Zum Zeitpunkt des Einschaltens 21 ist nur der Kondensator 19 wirksam. Der in der Kapazität kleinere und für die Höhe der Lampenversorgungsspannung massgebende Kondensator 18 ist durch den niederohmigen Kaltleiter 20 überbrückt. Durch die Elektroden 16, 17 der Lampe 1 fliesst ein hoher Heizstrom IH (Fig. 2). An der Lampe 1 stellt sich eine bestimmte Leerlaufspannung Uo ein (Fig. 3), deren Höhe aufgrund des überbrückten Kondensators 18 und der geringeren Spannung am Kondensator 19 nicht zur Lampenzündung ausreicht. Ebenso ist der Strom IL durch die Lampe 1 vernachlässigbar klein (Fig. 4). Mit sich zunehmend erwärmenden Lampenelektroden 16, 17 verringert sich der Heizstrom IH geringfügig. Nach dem Aufheizen des Kaltleiters 20 wird dieser hochohmig und die Reihenschaltung der beiden Kondensatoren 18, 19 wird wirksam. Hierdurch verringert sich deren Gesamtkapazität. Die Kapazitäten der Resonanzkondensatoren 18, 19 sind so bestimmt, dass sich die erwünschte hohe Lampenversorgungsspannung einstellf und beide Kondensatoren 18, 19 trotz ihrer unterschiedlichen Kapazitäten mit etwa der gleichen Spannung belastet werden. Zusammen mit der Induktivität 14 und dem Trennkondensator 15 stellt sich jetzt die notwendige Resonanzspannung 22 ein. Mit der steigenden Resonanzspannung 22 steigt auch wieder der Heizstrom IH auf etwa seinen ursprünglichen Wert an. Der Strom IL durch die Lampe 1 ist von diesen Vorgängen nicht betroffen. Die resonante Leerlaufspannung Uo an den Kondensatoren 18, 19 steigt jetzt bis zum Durchzünden 23 der Lampe 1 an. Zwischen den Zeitpunkten des Einschaltens 21 und der Zündung 23 sind nur ca. 0,5 Sekunden vergangen. Nach erfolgter Lampenzündung 23 stellt sich automatisch die der Lampe 1 charakteristische Brennspannung UL ein. Ebenso plötzlich steigt der Lampenstrom IL auf seinen Betriebswert an. Der Vorheizstrom IH geht aufgrund der jetzt verringerten Spannung und der in Reihe liegenden Kondensatoren 18, 19 auf einen niedrigen Wert zurück.Figures 2 to 4 show the course of the heating current I H , the lamp voltage U o or U L and the lamp current I L. At the time of switching on 21, only the capacitor 19 is effective. The capacitor 18, which is smaller in capacity and determines the level of the lamp supply voltage, is bridged by the low-resistance thermistor 20. A high heating current I H flows through the electrodes 16, 17 of the lamp 1 (FIG. 2). A certain open circuit voltage U o is established on the lamp 1 (FIG. 3), the level of which is insufficient to ignite the lamp due to the bridged capacitor 18 and the lower voltage across the capacitor 19. Likewise, the current I L through the lamp 1 is negligibly small (FIG. 4). As lamp electrodes 16, 17 become increasingly warm, the heating current I H decreases slightly. After heating up the PTC thermistor 20, it becomes high-resistance and the series connection of the two capacitors 18, 19 becomes effective. This reduces their overall capacity. The capacitances of the resonance capacitors 18, 19 are determined such that the desired high lamp supply voltage is set and both capacitors 18, 19 are loaded with approximately the same voltage despite their different capacitances. Together with the inductance 14 and the isolating capacitor 15, the necessary resonance voltage 22 is now set. With the increasing resonance voltage 22, the heating current I H rises again to approximately its original value. The current I L through the lamp 1 is not affected by these processes. The resonant open circuit voltage U o at the capacitors 18, 19 now increases until the lamp 1 ignites 23. Only about 0.5 seconds have passed between the times of switching on 21 and ignition 23. After lamp ignition 23 has taken place, the lamp voltage U L characteristic of lamp 1 is automatically set. The lamp current I L suddenly increases to its operating value. The preheating current I H drops to a low value due to the now reduced voltage and the capacitors 18, 19 lying in series.

Claims (4)

1. A circuit arrangement for the ignition of a low-pressure discharge lamp which, in the operating circuit, comprises at least one inductance (13, 14) and a series-connected capacitor (15) and which, in the ignition circuit in parallel to the lamp (1) and in series with its heating electrodes (16, 17), comprises a series arrangement of a second capacitor (19) and a temperature-dependent resistor (20), characterised in that the temperature-dependent resistor (20) has a positive temperature coefficient and is connected in parallel with a third capacitor (18).
2. A circuit arrangement as claimed in claim 1, characterised in that the ratio of the capacitance of the second capacitor (19) to the capacitance of the third capacitor (18) is in the range of 1:1 to 5:1.
3. A circuit arrangement as claimed in claims 1 and 2, characterised in that the ratio of the capacitance of the second capacitor (19) to the third capacitor (18) is approximately 2:1.
4. A circuit arrangement as claimed in claims 1 to 3, characterised in that the low-pressure discharge lamp (1) is operated at a frequency of between 20 kHz and 500 kHz.
EP85113901A 1984-11-16 1985-10-31 Starting circuit for low-pressure discharge lamps Expired EP0185179B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE19843441992 DE3441992A1 (en) 1984-11-16 1984-11-16 CIRCUIT ARRANGEMENT FOR IGNITING A LOW-PRESSURE DISCHARGE LAMP
DE3441992 1984-11-16

Publications (2)

Publication Number Publication Date
EP0185179A1 EP0185179A1 (en) 1986-06-25
EP0185179B1 true EP0185179B1 (en) 1989-03-22

Family

ID=6250511

Family Applications (1)

Application Number Title Priority Date Filing Date
EP85113901A Expired EP0185179B1 (en) 1984-11-16 1985-10-31 Starting circuit for low-pressure discharge lamps

Country Status (6)

Country Link
US (1) US4647817A (en)
EP (1) EP0185179B1 (en)
JP (1) JPH079836B2 (en)
KR (1) KR940010821B1 (en)
DE (2) DE3441992A1 (en)
HK (1) HK91493A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0310218A1 (en) * 1987-09-28 1989-04-05 Hubbell Incorporated Compact fluorescent lamp circuit
EP0320944A1 (en) * 1987-12-17 1989-06-21 Pintsch Bamag Antriebs- und Verkehrstechnik GmbH Converter for a discharge lamp
WO1991007070A1 (en) * 1989-10-26 1991-05-16 Skyline Holding Ag Preheater circuit for fluorescent lamps
EP0449127A1 (en) * 1990-03-24 1991-10-02 ABBPATENT GmbH Circuit for operating a fluorescent lamp from a DC supply
EP0779768A2 (en) 1995-12-13 1997-06-18 Patent-Treuhand-Gesellschaft für elektrische Glühlampen mbH Process and circuit for operating a discharge lamp

Families Citing this family (55)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3611611A1 (en) * 1986-04-07 1987-10-08 Patent Treuhand Ges Fuer Elektrische Gluehlampen Mbh CIRCUIT ARRANGEMENT FOR HIGH-FREQUENCY OPERATION OF A LOW-PRESSURE DISCHARGE LAMP
DE3711814C2 (en) * 1986-05-09 1998-04-09 Patent Treuhand Ges Fuer Elektrische Gluehlampen Mbh Electronic ballast for operating fluorescent lamps
US4730147A (en) * 1986-08-19 1988-03-08 Siemens Aktiengesellschaft Method and arrangement for the operation of a gas discharge lamp
US4999547A (en) 1986-09-25 1991-03-12 Innovative Controls, Incorporated Ballast for high pressure sodium lamps having constant line and lamp wattage
US5008596A (en) * 1987-12-02 1991-04-16 Patent Treuhand Gesellschaft Fur Elektrische Gluhlampen M.B.H. Fluorescent lamp high frequency operating circuit
DE3835121C2 (en) * 1987-12-02 1996-09-05 Patent Treuhand Ges Fuer Elektrische Gluehlampen Mbh Circuit arrangement for operating a low-pressure discharge lamp
US4982137A (en) * 1987-12-24 1991-01-01 Matsushita Electric Industrial Co., Ltd. Apparatus for igniting a discharge lamp including circuitry for preventing cataphoresis phenomenon generation
US4954754A (en) * 1988-05-02 1990-09-04 Nilssen Ole K Controlled electronic ballast
US5023516A (en) * 1988-05-10 1991-06-11 Matsushita Electric Industrial Co., Ltd. Discharge lamp operation apparatus
DE3901111A1 (en) * 1989-01-16 1990-07-19 Patent Treuhand Ges Fuer Elektrische Gluehlampen Mbh CIRCUIT ARRANGEMENT FOR THE OPERATION OF DISCHARGE LAMPS
DE4005776C2 (en) * 1989-02-24 1999-08-05 Zenit Energietechnik Gmbh Circuit arrangement for starting and operating a gas discharge lamp
US5289083A (en) * 1989-04-03 1994-02-22 Etta Industries, Inc. Resonant inverter circuitry for effecting fundamental or harmonic resonance mode starting of a gas discharge lamp
DE4005850A1 (en) * 1990-02-23 1991-08-29 Patent Treuhand Ges Fuer Elektrische Gluehlampen Mbh Gas discharge lamp operating circuit - uses cold conductor for switching between pre-heating and lamp ignition
DE9015674U1 (en) * 1990-11-15 1992-03-12 Patent-Treuhand-Gesellschaft Fuer Elektrische Gluehlampen Mbh, 8000 Muenchen, De
US5138235A (en) * 1991-03-04 1992-08-11 Gte Products Corporation Starting and operating circuit for arc discharge lamp
DE4119775A1 (en) * 1991-06-15 1992-12-17 Vossloh Schwabe Gmbh CONTROL UNIT WITH CONTROLLED HEATING TIME
SG48129A1 (en) * 1992-08-20 1998-04-17 Philips Electronics Nv Lamp ballast circuit
US5483125A (en) * 1993-12-06 1996-01-09 General Electric Company Ballast circuit for a gas discharge lamp having a cathode pre-heat arrangement
US5686799A (en) * 1994-03-25 1997-11-11 Pacific Scientific Company Ballast circuit for compact fluorescent lamp
DE4410492A1 (en) * 1994-03-25 1995-09-28 Patent Treuhand Ges Fuer Elektrische Gluehlampen Mbh Circuit arrangement for operating low-pressure discharge lamps
US6037722A (en) * 1994-09-30 2000-03-14 Pacific Scientific Dimmable ballast apparatus and method for controlling power delivered to a fluorescent lamp
US5821699A (en) * 1994-09-30 1998-10-13 Pacific Scientific Ballast circuit for fluorescent lamps
US5691606A (en) * 1994-09-30 1997-11-25 Pacific Scientific Company Ballast circuit for fluorescent lamp
US5596247A (en) * 1994-10-03 1997-01-21 Pacific Scientific Company Compact dimmable fluorescent lamps with central dimming ring
EP0752804B1 (en) 1995-07-05 1999-12-01 MAGNETEK S.p.A. Supply circuit for discharge lamps with means for preheating the electrodes
KR0155936B1 (en) * 1995-12-26 1998-12-15 손욱 Fluorescent lamp ballast circuit
US6008589A (en) * 1996-03-05 1999-12-28 California Institute Of Technology Single-switch, high power factor, ac-to-ac power converters
US5925986A (en) * 1996-05-09 1999-07-20 Pacific Scientific Company Method and apparatus for controlling power delivered to a fluorescent lamp
US5932974A (en) * 1996-06-04 1999-08-03 International Rectifier Corporation Ballast circuit with lamp removal protection and soft starting
US5796214A (en) * 1996-09-06 1998-08-18 General Elecric Company Ballast circuit for gas discharge lamp
US5917289A (en) * 1997-02-04 1999-06-29 General Electric Company Lamp ballast with triggerless starting circuit
US5952790A (en) * 1996-09-06 1999-09-14 General Electric Company Lamp ballast circuit with simplified starting circuit
US5877595A (en) * 1996-09-06 1999-03-02 General Electric Company High power factor ballast circuit with complementary converter switches
US5965985A (en) * 1996-09-06 1999-10-12 General Electric Company Dimmable ballast with complementary converter switches
US5838117A (en) * 1997-02-28 1998-11-17 General Electric Company Ballast circuit with synchronization and preheat functions
US5910708A (en) * 1996-09-06 1999-06-08 General Electric Company Gas discharge lamp ballast circuit with complementary converter switches
US5866993A (en) * 1996-11-14 1999-02-02 Pacific Scientific Company Three-way dimming ballast circuit with passive power factor correction
US5798617A (en) * 1996-12-18 1998-08-25 Pacific Scientific Company Magnetic feedback ballast circuit for fluorescent lamp
US5914570A (en) * 1996-12-23 1999-06-22 General Electric Company Compact lamp circuit structure having an inverter/boaster combination that shares the use of a first n-channel MOSFET of substantially lower on resistance than its p-channel counterpart
US5986410A (en) * 1997-02-20 1999-11-16 General Electric Company Integrated circuit for use in a ballast circuit for a gas discharge lamp
WO1998045873A1 (en) * 1997-04-04 1998-10-15 Zhejiang Sunlight Group Co., Ltd. A high power compact fluorescent lamp
US6018220A (en) * 1997-07-21 2000-01-25 General Electric Company Gas discharge lamp ballast circuit with a non-electrolytic smoothing capacitor for rectified current
US5959408A (en) * 1997-08-07 1999-09-28 Magnetek, Inc. Symmetry control circuit for pre-heating in electronic ballasts
US5874810A (en) * 1997-09-02 1999-02-23 General Electric Company Electrodeless lamp arrangement wherein the excitation coil also forms the primary of the feedback transformer used to switch the transistors of the arrangement
CN1180663C (en) * 1998-01-19 2004-12-15 马士科技有限公司 Electronic ballast circuit for fluorescent lamp
US6064155A (en) * 1998-05-04 2000-05-16 Matsushita Electric Works Research And Development Labratory Inc Compact fluorescent lamp as a retrofit for an incandescent lamp
JP3600976B2 (en) * 1998-07-14 2004-12-15 三菱電機株式会社 Discharge lamp lighting device
US6057648A (en) * 1998-08-25 2000-05-02 General Electric Company Gas discharge lamp ballast with piezoelectric transformer
DE19838830A1 (en) * 1998-08-26 2000-03-02 Patent Treuhand Ges Fuer Elektrische Gluehlampen Mbh Start up circuit for low pressure discharge lamp has a sensor unit for a value dependent on the light flux or the temperature of the lamp, and controls the lamp current depending on the light flux or the temperature of the lamp
US6078143A (en) * 1998-11-16 2000-06-20 General Electric Company Gas discharge lamp ballast with output voltage clamping circuit
US6150769A (en) * 1999-01-29 2000-11-21 General Electric Company Gas discharge lamp ballast with tapless feedback circuit
US6153983A (en) * 1999-07-21 2000-11-28 General Electric Company Full wave electronic starter
CN1363202A (en) * 2000-02-10 2002-08-07 皇家菲利浦电子有限公司 Protection circuit with NTC resistance
DE10125510A1 (en) * 2001-05-23 2002-12-05 Innolux Gmbh fluorescent lamp circuit
DE102005025154A1 (en) * 2005-06-01 2006-12-07 Patent-Treuhand-Gesellschaft für elektrische Glühlampen mbH Circuit arrangement for operating a discharge lamp with temperature compensation

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2231999A (en) * 1938-04-23 1941-02-18 Westinghouse Electric & Mfg Co Discharge lamp and circuit
US2212427A (en) * 1939-11-01 1940-08-20 Gen Electric Electric discharge lamp circuit
US3836817A (en) * 1973-01-10 1974-09-17 Lampes Sa Two-pole electronic starter for fluorescent lamps
US3882354A (en) * 1973-07-23 1975-05-06 Coleman Company Inverter ballast circuit for fluorescent lamp
US4075476A (en) * 1976-12-20 1978-02-21 Gte Sylvania Incorporated Sinusoidal wave oscillator ballast circuit
FI55744C (en) * 1978-05-17 1979-09-10 Matti N T Otala ELEKTRONISK LJUSROERSTAENDARE
NL7909128A (en) * 1979-12-19 1981-07-16 Philips Nv ELECTRONIC AUXILIARY DEVICE FOR STARTING AND ACCOUNTING OPERATIONS OF A GAS AND / OR VAPOR DISCHARGE LAMP.
US4406976A (en) * 1981-03-30 1983-09-27 501 Advance Transformer Company Discharge lamp ballast circuit
DE3246454A1 (en) * 1982-12-15 1984-06-20 Siemens AG, 1000 Berlin und 8000 München INVERTER WITH A LOAD CIRCUIT CONTAINING A SERIES RESONANCE CIRCUIT AND A DISCHARGE LAMP
NL8400923A (en) * 1984-03-23 1985-10-16 Philips Nv ELECTRICAL DEVICE FOR IGNITION AND POWERING A GAS AND / OR VAPOR DISCHARGE TUBE.

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0310218A1 (en) * 1987-09-28 1989-04-05 Hubbell Incorporated Compact fluorescent lamp circuit
EP0320944A1 (en) * 1987-12-17 1989-06-21 Pintsch Bamag Antriebs- und Verkehrstechnik GmbH Converter for a discharge lamp
WO1991007070A1 (en) * 1989-10-26 1991-05-16 Skyline Holding Ag Preheater circuit for fluorescent lamps
EP0449127A1 (en) * 1990-03-24 1991-10-02 ABBPATENT GmbH Circuit for operating a fluorescent lamp from a DC supply
EP0779768A2 (en) 1995-12-13 1997-06-18 Patent-Treuhand-Gesellschaft für elektrische Glühlampen mbH Process and circuit for operating a discharge lamp

Also Published As

Publication number Publication date
JPH079836B2 (en) 1995-02-01
KR860004563A (en) 1986-06-23
EP0185179A1 (en) 1986-06-25
DE3441992A1 (en) 1986-05-22
DE3569072D1 (en) 1989-04-27
HK91493A (en) 1993-09-10
KR940010821B1 (en) 1994-11-16
JPS61126795A (en) 1986-06-14
US4647817A (en) 1987-03-03

Similar Documents

Publication Publication Date Title
EP0185179B1 (en) Starting circuit for low-pressure discharge lamps
DE3047865A1 (en) INSTANT START DEVICE FOR FLUORESCENT LAMPS
DE3311215A1 (en) IGNITION DEVICE FOR A LOW-PRESSURE DISCHARGE LAMP
DE2751464A1 (en) STARTER TO IGNITE A GAS AND / OR VAPOR DISCHARGE LAMP
DE2116950C3 (en) Circuit arrangement for igniting and operating gas discharge lamps
DE3108548A1 (en) "IGNITION SWITCH FOR A HIGH PRESSURE METAL STEAM DISCHARGE LAMP"
EP0054301B1 (en) Lighting circuit for a low-pressure discharge lamp
DE2924069C2 (en) Circuit arrangement for igniting and operating a gas and / or vapor discharge lamp
EP0519220A1 (en) Ballast with controlled heating time
DE2808261C3 (en) Circuit arrangement for igniting and operating a fluorescent lamp with preheatable electrodes on a transistorized inverter
EP1424880A2 (en) Device for operating discharge lamps
AT389614B (en) CONTROL UNIT FOR AT LEAST ONE CONSUMER IGNITIONED AND SUPPLIED BY A GENERATOR
DE2758872C2 (en) Circuit arrangement for starting and operating a gas discharge lamp with preheatable electrodes on an alternating voltage network or on an additional emergency lighting device
EP2103192B1 (en) Circuit arrangement and method for starting and operating one or more discharge lamps
DE2604914C3 (en) Circuit arrangement for igniting and operating a discharge lamp
DE3835533A1 (en) Electronic starting device for starting fluorescent lamps in radio-frequency operation
EP1377136A2 (en) Device for operating discharge lamps
EP0629104B1 (en) Circuit for limiting the DC crest current and/or the inrush current after the ignition of a discharge lamp
DE2721253A1 (en) ARRANGEMENT FOR STARTING AND OPERATING FLUORESCENT LAMPS
DE2725532A1 (en) Fast starter circuit for AC gas discharge lamp - has diode in series with PTC resistor, discharge starter and capacitor all parallel to lamp
DE1589205B2 (en) Circuit arrangement for the capacitive operation of low-voltage fluorescent lamps
DE1914211C (en) Starterless circuit arrangement for the operation of one or more low-voltage fluorescent lamps
DE962098C (en) Circuit for lighting devices with at least one warm cathode fluorescent lamp and with ballast and oscillating inductors and series capacitor
DE2933596B1 (en) Switching arrangement for a safety light supply device for fluorescent lamps
DE1914211A1 (en) Starterless circuit arrangement for the operation of one or more low-voltage fluorescent lamps

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): CH DE FR GB IT LI

17P Request for examination filed

Effective date: 19860606

17Q First examination report despatched

Effective date: 19880823

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): CH DE FR GB IT LI

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)
REF Corresponds to:

Ref document number: 3569072

Country of ref document: DE

Date of ref document: 19890427

ET Fr: translation filed
ITF It: translation for a ep patent filed

Owner name: STUDIO JAUMANN

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
ITTA It: last paid annual fee
REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20041012

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20041029

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20041220

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 20050105

Year of fee payment: 20

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 20051030

REG Reference to a national code

Ref country code: GB

Ref legal event code: PE20

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL