EP0172089A1 - Display device using field emission excited cathode luminescence - Google Patents

Display device using field emission excited cathode luminescence Download PDF

Info

Publication number
EP0172089A1
EP0172089A1 EP85401521A EP85401521A EP0172089A1 EP 0172089 A1 EP0172089 A1 EP 0172089A1 EP 85401521 A EP85401521 A EP 85401521A EP 85401521 A EP85401521 A EP 85401521A EP 0172089 A1 EP0172089 A1 EP 0172089A1
Authority
EP
European Patent Office
Prior art keywords
anode
cathode
layer
grid
grids
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP85401521A
Other languages
German (de)
French (fr)
Other versions
EP0172089B1 (en
Inventor
Robert Meyer
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Commissariat a lEnergie Atomique et aux Energies Alternatives CEA
Original Assignee
Commissariat a lEnergie Atomique CEA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Commissariat a lEnergie Atomique CEA filed Critical Commissariat a lEnergie Atomique CEA
Publication of EP0172089A1 publication Critical patent/EP0172089A1/en
Application granted granted Critical
Publication of EP0172089B1 publication Critical patent/EP0172089B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J31/00Cathode ray tubes; Electron beam tubes
    • H01J31/08Cathode ray tubes; Electron beam tubes having a screen on or from which an image or pattern is formed, picked up, converted, or stored
    • H01J31/10Image or pattern display tubes, i.e. having electrical input and optical output; Flying-spot tubes for scanning purposes
    • H01J31/12Image or pattern display tubes, i.e. having electrical input and optical output; Flying-spot tubes for scanning purposes with luminescent screen
    • H01J31/15Image or pattern display tubes, i.e. having electrical input and optical output; Flying-spot tubes for scanning purposes with luminescent screen with ray or beam selectively directed to luminescent anode segments
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J31/00Cathode ray tubes; Electron beam tubes
    • H01J31/08Cathode ray tubes; Electron beam tubes having a screen on or from which an image or pattern is formed, picked up, converted, or stored
    • H01J31/10Image or pattern display tubes, i.e. having electrical input and optical output; Flying-spot tubes for scanning purposes
    • H01J31/12Image or pattern display tubes, i.e. having electrical input and optical output; Flying-spot tubes for scanning purposes with luminescent screen
    • H01J31/123Flat display tubes
    • H01J31/125Flat display tubes provided with control means permitting the electron beam to reach selected parts of the screen, e.g. digital selection
    • H01J31/127Flat display tubes provided with control means permitting the electron beam to reach selected parts of the screen, e.g. digital selection using large area or array sources, i.e. essentially a source for each pixel group

Definitions

  • the present invention relates to a display device by cathodoluminescence excited by field emission. It applies in particular to the production of simple displays, allowing the viewing of still images, and to the production of complex multiplexed screens, allowing the viewing of moving images of the type of television images.
  • Cathodoluminescence display devices are already known, using thermoelectronic emission.
  • a particular embodiment of such devices is schematically represented in FIG. 1 and comprises a plurality of anodes coated with a substance, or phosphorus, cathodoluminescent 2, and arranged in parallel lines, on an insulating support 4, and a plurality of filaments 6 capable of emitting electrons when they are heated and playing the role of cathodes, these filaments being arranged in lines parallel to the anodes.
  • a plurality of grids 8 are arranged between the anodes and the filaments, along cotton threads which are parallel to each other and perpendicular to the lines. All the anodes, filaments and grids are placed under vacuum in a transparent case 10, tightly connected to the support 4.
  • Such display devices have the following disadvantages: The definition of the images which they make it possible to obtain is not very high, these devices are complicated to produce and have a fairly high consumption of electric current since the filaments must be heated.
  • the object of the present invention is to remedy the above drawbacks by proposing a display device using field emission, the principle of which has just been recalled.
  • the present invention relates to a display device comprising a plurality of elementary patterns each comprising a cathodoluminescent anode and a cathode capable of emitting electrons, characterized in that each cathode comprises a plurality of microtips electrically connected to each other and subject to an emission of electrons by field effect When the cathode is negatively polarized with respect to the corresponding anode, the electrons coming to strike the latter which is then subject to an emission of light.
  • Each anode can be integrated into the corresponding cathode and electrically isolated from it.
  • the emission of electrons is only significant beyond a certain threshold of polarization, the emission being very low below said threshold. and then resulting in very little production of Light.
  • the present invention makes it possible to produce flat screens, operating under low voltage, like the known devices which have been described above, but the images obtained using the device of the invention have a much better definition. Indeed, it is possible to produce very small microtips, at the rate of a few tens of thousands of microtips per square millimeter, which makes it possible to produce elementary cathodes of very small area and therefore to excite cathodoluminescent anodes of very small dimensions .
  • the device that is the subject of the invention has a lower electrical current consumption than the devices described above, since it uses cold cathodes.
  • the area of the cathode corresponding to an elementary pattern can be either equal to or less than the area of the anode of this pattern. Since it is possible to produce a large number of microtips per square millimeter, it is possible to excite each anode with a very large number of microtips.
  • the light emission of an elementary pattern corresponds to the average emission characteristic of all the corresponding microdots. If a small number of these microtips do not work, this average characteristic then remains practically unchanged, which constitutes an important advantage of the invention.
  • the device further comprises a plurality of electrically conductive grids, respectively associated with the patterns, each grid being disposed between the anode and the corresponding cathode, electrically isolated from this cathode. and intended to be positively polarized with respect thereto and to be negatively polarized with respect to the anode or to be brought to the potential of the latter.
  • the anodes are produced so that they can also play the role of grids.
  • each anode is arranged on a transparent support, and facing the corresponding cathode.
  • each anode is integrated into the corresponding cathode and electrically isolated from it, and the microtips of each cathode cover the entire surface of the corresponding anode.
  • each anode is integrated into the corresponding cathode and electrically isolated from it, the microdots of each pattern are gathered in the same domain distinct from the active part of the anode.
  • the domain occupied by the microtips and the cathodoluminescent zone of the anode are distinct.
  • each the cathodes are grouped along lines parallel to each other, the cathodes of the same line being electrically connected to each other, the grids are grouped according to columns which are parallel to each other and perpendicular to the lines, the grids of the same column being electrically connected to each other, and the device further comprises electronic control means provided for performing matrix addressing of the rows and columns.
  • the device further comprises electronic control means provided for performing matrix addressing of the rows and columns.
  • each anode is integrated into the corresponding cathode, each anode being also both cathodoluminescent and conductive to play the role of grid, or else the grids being present and respectively electrically connected to the corresponding anodes
  • the cathodes are grouped according to Lines parallel to each other, the cathodes of the same line being electrically connected to each other,
  • the anodes and the grids which are optionally associated with them are grouped in columns which are parallel to each other and perpendicular to the lines, the grids of the same column being electrically connected to each other, the anodes of the same column being also electrically connected to each other, and
  • the device further comprises electronic control means provided for performing an address matrix age of rows and columns.
  • cathodes and grids together using integrated technology grid can also be integrated into the corresponding cathode and electrically isolated from the corresponding anode.
  • each anode can comprise a layer of a cathodoluminescent and electrically conductive substance.
  • each grid can be further integrated into the corresponding cathode, each anode then comprising a layer of a cathodoluminescent substance brought to the potential of the corresponding grid or to a potential greater than the potential of this grid, the latter being positive.
  • the device which is the subject of the invention may further comprise a thin and transparent electrode placed opposite the anodes, on a transparent support.
  • the latter are controlled using a matrix addressing of the anode-grid system.
  • the device which is the subject of the invention can be controlled by performing a matrix addressing of the cathodes and of the grids, since the response time of the cathodes in the invention is very fast. This further facilitates the production of a device according to the invention compared to the known display devices mentioned above.
  • each elementary pattern comprises a layer of cathodoluminescent phosphor, excitable at low voltage, located opposite the corresponding cathode, and the phosphor layer is observed on the side opposite to its excitation.
  • each elementary pattern comprises a cathode 18 and a cathodoluminescent anode 20.
  • the cathode 18 comprises a plurality of electrically conductive microtips 22, formed on an electrically conductive layer 24, it - even deposited on an electrically insulating substrate 26.
  • Layer 24 could be semiconductor instead of being conductive.
  • the microtips 22 are separated from each other by electrically insulating layers 28.
  • Each elementary pattern also includes a grid 30. This consists of a plurality of electrically conductive layers 32 which are deposited on the insulating layers 28, these having substantially the same thickness, this thickness being able to be chosen so that the top of each microtip is situated substantially at the level of the electrically conductive layers 32 which constitute the grid 30.
  • the anode 20 comprises a layer 34 of low-voltage excitable cathodoluminescent phosphorus, deposited on a transparent flat support 36 disposed opposite the grid 30 parallel to it, the phosphor layer 34 being deposited on the face of the support which is directly next to this grid.
  • the anode 20 also comprises a thin electrically conductive layer 38 which is deposited on the layer of cathodoluminescent phosphorus 34, and directly opposite the grid 30.
  • This grid can be presented as a continuous layer which is pierced by holes opposite the microtips.
  • the insulating layers 28 can form a single continuous layer pierced with holes through which the microtips.
  • the substrate 26 is made of glass and the layer 24 is made of aluminum or silicon;
  • the microtips 22 are in lanthanum hexaboride or else in one of the metals taken from the group comprising niobium, hafnium, zirconium and molybdenum, or alternatively in a carbide or a nitride of the preceding metals;
  • the phosphor layer 34 is made of zinc sulfide or cadmium sulfide;
  • the transparent support 36 is in glass
  • the conductive layer 38 is made of aluminum or gold;
  • the insulating layers 28 are made of silica;
  • the grid 30 is made of niobium or molybdenum;
  • the microtips are in the form of cones, the base diameter of which is around 2 ⁇ m and the height around 1.7 ⁇ m;
  • the thickness of each insulating layer 28 is of the order of 1.5 ⁇ m;
  • the grid has a thickness of the order of 0.4 ⁇
  • a single glass substrate 26 and a single transparent support 36 in glass are used for all of the elementary patterns, and when these are produced, in a manner which will be indicated below.
  • the substrate 26 and the transparent support 36 are connected to each other in a sealed manner.
  • the excitation of an elementary pattern is obtained by simultaneously polarizing the anode, the grid and the cathode.
  • One of these, for example The grid is used as a reference potential and grounded.
  • the anode can be brought to the potential of the grid or positively biased relative to this grid, using a voltage source 40.
  • the cathode is negatively biased relative to the grid using a source tension 42.
  • Each point of the elementary pattern then emits electrons which will excite The phosphor layer,
  • the conductive layer 38 having been chosen as thin as possible so as not to stop the electrons, and
  • the phosphorus layer thus excited emits Light as One can be observed through the transparent support 36.
  • a low voltage of the order of 100 volts between the grid and the cathode allows ob hold an electronic current of the order of several micro-amps per microtip and therefore an electronic current density of several milliamps per square millimeter for the entire pattern which comprises a very large number of microtips (a few tens of thousands) per millimeter square.
  • the conductive layer is no longer located directly opposite the microtips but disposed between the transparent support 36 and the phosphor layer 34, the latter being then directly opposite the microtips 22.
  • the conductive layer 38 is chosen so as to be transparent to the light emission of phosphorus.
  • layer 38 is for example a layer of indium oxide doped with tin.
  • the conductive layer 38 is eliminated and the phosphor layer 34, deposited on the transparent support 36, is then chosen so as to be additionally electrically conductive.
  • a layer of zinc oxide doped with zinc is used.
  • the phosphorus is deposited on the grid itself (apart from possible interposition of layers), the assembly formed by the cathode, the grid and the anode is then integrated on the same substrate and the phosphorus is observed from the side where it is excited, which makes it possible to suppress the loss of Light due to the crossing of the phosphorus, a loss which occurred in the embodiments represented in FIGS. 3, 4 and 5.
  • the cathode 18 comprises the microtips 22 on the conduc layer trice 24, the latter being deposited on the insulating substrate 26, the microtips being separated by the electrically insulating layers 28 on which the grid 30 is deposited.
  • An electrically insulating layer 44 for example made of silica, is deposited on the grid layer 30, and also has holes in correspondence with the holes made in the grid layer so as to reveal the microtips 22.
  • the anode 20 comprises an electrically conductive layer 39, for example made of gold or aluminum, deposited on the insulating layer 44 and a phosphor layer 34 deposited on the conductive layer 39, these layers 34 and 39 of course having holes 37 which The microdots 22 appear, so that the composite layer resulting from the stacking of the layers 30, 44, 39 and 34 constitutes a layer pierced with holes which reveal the microdots 22.
  • an electrically conductive layer 39 for example made of gold or aluminum, deposited on the insulating layer 44 and a phosphor layer 34 deposited on the conductive layer 39, these layers 34 and 39 of course having holes 37 which The microdots 22 appear, so that the composite layer resulting from the stacking of the layers 30, 44, 39 and 34 constitutes a layer pierced with holes which reveal the microdots 22.
  • microtips are preferably distributed regularly and in such a way that the surface occupied by them merges substantially with the surface occupied by the phosphor layer: When the latter is observed, it seems to be covered with microtips.
  • the transparent support 36 is arranged opposite the phosphor layer 34, parallel to it and it is tightly connected to the substrate 26, once the vacuum has been established between them.
  • the anode can be brought to the same potential as the grid or to a positive potential with respect to this grid, by means of a voltage source 40, and the cathode is brought to a negative potential with respect to the grid. , Using a voltage source 42, The grid being taken as reference potential and grounding.
  • each microtip 22 emits electrons which pass through The hole corresponds to the microtip considered and the trajectory of which is then curved in the direction of the phosphor layer 34, the electrons thus striking this layer of phosphorus which then emits light that can be seen through transparent support 36.
  • the phosphor layer 34 is directly deposited on the insulating layer 44 and the conductive layer 39 is then deposited on the phosphor layer 34 and chosen so as to be transparent to the light emitted by this layer of phosphorus.
  • the electrically conductive layer 39 is eliminated and the phosphor layer 34 is directly deposited on the insulating layer 44, this phosphor layer then being chosen so as to be electrically conductive.
  • the insulating layer 44 is eliminated and the phosphor layer 34 is directly deposited on the grid layer 30 and brought to the potential of the grid, the excitation of the elementary pattern then being carried out by bringing the cathode to a negative potential with respect to the grid, by means of a voltage source 46, the grid being grounded.
  • the grid is eliminated and the phosphor layer 34, chosen so as to be electrically conductive, also plays the role of grid.
  • the cathode is still brought to a negative potential with respect to the phosphor layer which is grounded.
  • a layer electrically CONR ductrice and transparent 48 (Figure 7) is deposited on the transparent support face 36, which is located directly with regard to the anode 20.
  • This transparent and conductive layer 48 can be left floating or brought to a repulsive potential with respect to the electrons emitted by the microtips 22, by means of a voltage source 50 (FIG. 10).
  • FIG. 11 there is schematically shown another particular embodiment of an elementary pattern, the only difference with the particular embodiments described above and corresponding to the case where the anode, the grid and the cathode are integrated.
  • the microtips 22, observed over the phosphor layer 34 do not seem to cover all of the latter. In the present case, they are gathered in the same domain. More specifically, in the example shown in FIG. 11, the microtips are arranged in the same domain 64, on the conductive layer 24, itself deposited on the insulating substrate 26.
  • the insulating layer 28 is deposited on the conductive layer 24 by separating the microtips from each other, a grid layer 30, pierced with holes corresponding to the microtips, is deposited on the insulating layer 28 and a layer of phosphorus 34 is deposited on the grid layer, except above the area in which the microtips are concentrated, and brought to the same potential as the grid (as explained in the description of Figure 8).
  • a grid layer pierced with said holes, could be deposited on the insulating layer 28, then another insulating layer on this grid layer, except above said area 64, and finally a possibly composite layer playing the role of anode.
  • the anode layer being constituted by an electrically conductive layer associated with a phosphor layer (as explained in the description of FIG. 6) or simply by an electrically conductive phosphor layer (as we explained in the description of Figure 7).
  • the transparent support 36 is always placed opposite the anode and optionally provided with a conductive layer, left floating or brought to an appropriate potential, as explained above.
  • FIG 12 there is shown schematically a particular embodiment of a display device according to the invention.
  • the elementary patterns are produced as explained in the description of FIG. 3, with possible variants which have been described with reference to FIGS. 4 and 5.
  • the cathodes are grouped together along lines 52 parallel to each other and are all formed on the same electrically insulating substrate 26.
  • the cathodes are in one piece, that is to say that there is no of interruption When moving from one cathode to another.
  • the grids are grouped according to columns 54 parallel to each other and perpendicular to the Lines 52. In each column, The grids are in one piece, that is to say that there is no interruption between two adjacent grids. Microtips are useless in any zone corresponding to an interval separating two columns.
  • the anodes form a continuous assembly constituted by a single layer of phosphorus 34 associated, when it is not electrically conductive, with a single electrically conductive layer 38, these two layers being deposited on a single transparent support 36.
  • Characteristics of layer 38 have been explained in the description of FIGS. 3 and 4, depending on the situation of this layer.
  • Each elementary pattern 56 thus corresponds to the crossing of a row and a column.
  • the display device shown in Figure 12 also includes electronic control means provided to effect address - wise matrix of lines and columns.
  • electronic control means are known in the prior art both in the case where one wishes to obtain still images and in the case where one wishes to obtain moving images.
  • the field emission mainly occurs when a potential difference greater than a positive threshold voltage V S is applied between the grid and the cathode of the considered motif, the anode of the latter being brought to a potential at least equal to that of the grid.
  • the following operations are carried out for the first line, then for the second and so on until the last Line: the Line considered is brought to the potential -V / 2, the potential V being greater than or equal AV S and less than 2V S , while all the other lines are left floating or brought to zero potential, this being achieved using first means 58 forming part of the electronic means, and, simultaneously, all the columns corresponding to the elementary patterns to be excited on the line considered are brought to the potential V / 2 while the other columns are left floating or brought to a zero potential, this being achieved using second means 60 forming part of the electronic means, the anodes being constantly maintained at a potential at least equal to V / 2, using an appropriate voltage source 62.
  • all the anodes of the device can be electrically connected to each other.
  • FIG. 11 Another particular embodiment of the device which is the subject of the invention is also shown in FIG. 11.
  • This other particular embodiment comprises elementary patterns 61 in each of which the microtips are grouped in the same domain 64, as we have already explained above with reference to this same figure 11.
  • the cathodes are grouped along parallel lines 52 and
  • the anodes when they are electrically connected to the associated grids or when they play the r8Le of grids, are grouped together as well as any grids, along columns 54 parallel to each other and perpendicular to the lines, as already explained above.
  • the crossing of a Row and a column corresponds to an elementary pattern in the center of which Said domain 64 is located.
  • the display device shown in FIG. 11 can be controlled as The device described with reference to FIG. 12.
  • the insulating substrate 26 and the transparent support 36 are common to all the elementary patterns. When the anodes and the grids are separated by insulating layers, all the anodes of the device can be electrically connected to each other.
  • microtips 22 arranged on a conductive layer 24 and separated by insulating layers 28 is known in the state of the art and has been studied by SPINDT at STANFORD RESEARCH INSTITUTE (for applications unrelated to visualization).

Abstract

Dispositif de visualisation par cathodoluminescence excitée par émission de champ. Il comprend une pluralité de motifs élémentaires comportant chacun une anode cathodoluminescente (20) et une cathode (18) apte à émettre des électrons. Chaque cathode comprend une pluralité de micropointes (22) électriquement reliées entre elles et sujettes à une émission d'électrons par effet de champ lorsque la cathode est polarisée négativement par rapport à l'anode correspondante, les électrons venant frapper cette dernière qui est alors sujette à une émission de lumière. Chaque anode (20) est intégrée à la cathode correspondante (18). Application à l'affichage d'images fixes ou animées.Visualization device by cathodoluminescence excited by field emission. It comprises a plurality of elementary patterns each comprising a cathodoluminescent anode (20) and a cathode (18) capable of emitting electrons. Each cathode comprises a plurality of microtips (22) electrically connected to each other and subject to an emission of electrons by field effect when the cathode is negatively polarized with respect to the corresponding anode, the electrons coming to strike the latter which is then subject to a light emission. Each anode (20) is integrated with the corresponding cathode (18). Application to the display of still or moving images.

Description

La présente invention concerne un dispositif de visualisation par cathodoluminescence excitée par émission de champ. Elle s'applique notamment à La réalisation d'afficheurs simples, permettant La visualisation d'images fixes, et à La réalisation d'écrans complexes multiplexés, permettant La visualisation d'images animées du type des images de télévision.The present invention relates to a display device by cathodoluminescence excited by field emission. It applies in particular to the production of simple displays, allowing the viewing of still images, and to the production of complex multiplexed screens, allowing the viewing of moving images of the type of television images.

On connaît déjà des dispositifs de visualisation par cathodoluminescence, utilisant une émission thermoélectronique. Une réalisation particulière de tels dispositifs est schématiquement représentée sur la figure 1 et comprend une pluralité d'anodes revêtues d'une substance, ou phosphore, cathodoluminescente 2, et disposées suivant des lignes parallèles, sur un support isolant 4, et une pluralité de filaments 6 aptes à émettre des électrons lorsqu'ils sont chauffés et jouant Le rôle de cathodes, ces filaments étant disposés suivant des lignes parallèles aux anodes. Une pluralité de grilles 8 sont disposées entre les anodes et les filaments, suivant des cotonnes parallèles entre elles et perpendiculaires aux Lignes. L'ensemble des anodes, des filaments et des grilles est mis sous vide dans un boitier 10 transparent, raccordé de façon étanche au support 4. Les filaments 6, lorsqu'ils sont chauffés, émettent des électrons, et une polarisation convenable d'un filament, d'une grille et d'une anode, permet aux électrons émis par ce filament de frapper L'anode qui est alors sujette à une émission de Lumière. Par adressage matriciel des Lignes d'anodes et des colonnes de grilles, on peut ainsi engendrer des images qui sont visibles à travers le boîtier transparent 10.Cathodoluminescence display devices are already known, using thermoelectronic emission. A particular embodiment of such devices is schematically represented in FIG. 1 and comprises a plurality of anodes coated with a substance, or phosphorus, cathodoluminescent 2, and arranged in parallel lines, on an insulating support 4, and a plurality of filaments 6 capable of emitting electrons when they are heated and playing the role of cathodes, these filaments being arranged in lines parallel to the anodes. A plurality of grids 8 are arranged between the anodes and the filaments, along cotton threads which are parallel to each other and perpendicular to the lines. All the anodes, filaments and grids are placed under vacuum in a transparent case 10, tightly connected to the support 4. The filaments 6, when heated, emit electrons, and a suitable polarization of a filament, a grid and an anode, allows the electrons emitted by this filament to strike the Anode which is then subject to an emission of Light. By matrix addressing of the anode lines and of the grid columns, it is thus possible to generate images which are visible through the transparent housing 10.

De tels dispositifs de visualisation présentent Les inconvénients suivants : La définition des images qu'ils permettent d'obtenir n'est pas très élevée, ces dispositifs sont compliqués à réaliser et ont une consommation assez élevée en courant électrique étant donné que Les filaments doivent être chauffés.Such display devices have the following disadvantages: The definition of the images which they make it possible to obtain is not very high, these devices are complicated to produce and have a fairly high consumption of electric current since the filaments must be heated.

On connaît par ailleurs le principe de L'émission électronique par effet de champ, encore appelé "émission de champ" ou "émission froide". Ce principe a déjà été utilisé pour des applications sans rapport avec La visualisation. Il est schématiquement illustré sur La figure 2 : dans Le vide, des pointes métalliques 12 jouant Le rôle de cathodes et disposées sur un support 14, sont susceptibles d'émettre des électrons Lorsqu'une tension électrique convenable est établie entre elles et une anode 16 disposée en regard de ces pointes.We also know the principle of electronic emission by field effect, also called "field emission" or "cold emission". This principle has already been used for applications unrelated to visualization. It is schematically illustrated in FIG. 2: in the vacuum, metal spikes 12 playing the role of cathodes and arranged on a support 14, are capable of emitting electrons When a suitable electrical voltage is established between them and an anode 16 arranged opposite these points.

La présente invention a pour but de remédier aux inconvénients précédents en proposant un dispositif de visualisation utilisant L'émission de champ dont le principe vient d'être rappelé.The object of the present invention is to remedy the above drawbacks by proposing a display device using field emission, the principle of which has just been recalled.

De façon précise, La présente invention a pour objet un dispositif de visualisation comprenant une pluralité de motifs élémentaires comportant chacun une anode cathodoluminescente et une cathode apte à émettre des électrons, caractérisé en ce que chaque cathode comprend une pluralité de micropointes électriquement reliées entre elles et sujettes à une émission d'électrons par effet de champ Lorsque La cathode est polarisée négativement par rapport à L'anode correspondante, Les électrons venant frapper cette dernière qui est alors sujette à une émission de Lumière.Specifically, the present invention relates to a display device comprising a plurality of elementary patterns each comprising a cathodoluminescent anode and a cathode capable of emitting electrons, characterized in that each cathode comprises a plurality of microtips electrically connected to each other and subject to an emission of electrons by field effect When the cathode is negatively polarized with respect to the corresponding anode, the electrons coming to strike the latter which is then subject to an emission of light.

Chaque anode peut être intégrée à La cathode correspondante et électriquement isolée de cette-ci.Each anode can be integrated into the corresponding cathode and electrically isolated from it.

En fait, L'émission d'électrons n'est importante qu'au-delà d'un certain seuil de polarisation, L'émission étant très faible en-deçà dudit seuil et n'entraînant alors qu'une très faible production de Lumière.In fact, the emission of electrons is only significant beyond a certain threshold of polarization, the emission being very low below said threshold. and then resulting in very little production of Light.

On peut ainsi obtenir une image Lumineuse globale en polarisant convenablement les motifs élémentaires. Lorsque les différentes polarisations sont maintenues constantes au cours du temps, l'image obtenue est fixe mais l'on peut également obtenir des images animées, en faisant varier d'une manière appropriée les polarisations au cours du temps.It is thus possible to obtain a global light image by suitably polarizing the elementary patterns. When the different polarizations are kept constant over time, the image obtained is fixed but it is also possible to obtain animated images, by varying the polarizations in an appropriate manner over time.

La présente invention permet de réaliser des écrans plats, fonctionnant sous basse tension, comme les dispositifs connus qui ont été décrits plus haut, mais les images obtenues grâce au dispositif de l'invention ont une bien meilleure définition. En effet, il est possible de réaliser des micropointes très petites, à raison de quelques dizaines de milliers de micropointes par millimètre carré, ce qui permet de réaliser des cathodes élémentaires de très faible surface et donc d'exciter des anodes cathodoluminescentes de très petites dimensions.The present invention makes it possible to produce flat screens, operating under low voltage, like the known devices which have been described above, but the images obtained using the device of the invention have a much better definition. Indeed, it is possible to produce very small microtips, at the rate of a few tens of thousands of microtips per square millimeter, which makes it possible to produce elementary cathodes of very small area and therefore to excite cathodoluminescent anodes of very small dimensions .

En outre, Le dispositif objet de L'invention a une consommation en courant électrique plus faible que les dispositifs décrits plus haut, étant donné qu'il utilise des cathodes froides.In addition, the device that is the subject of the invention has a lower electrical current consumption than the devices described above, since it uses cold cathodes.

La surface de la cathode correspondant à un motif élémentaire peut être soit égale, soit inférieure à la surface de l'anode de ce motif. Etant donné qu'il est possible de réaliser un grand nombre de micropointes par millimètre carré, il est possible d'exciter chaque anode par un très grand nombre de micropointes. L'émission Lumineuse d'un motif élémentaire correspond à La caractéristique d'émission moyenne de l'ensemble des micropointes correspondantes. Si un petit nombre de ces micropointes ne fonctionnent pas, cette caractéristique moyenne demeure alors pratiquement inchangée, ce qui constitue un avantage important de L'invention.The area of the cathode corresponding to an elementary pattern can be either equal to or less than the area of the anode of this pattern. Since it is possible to produce a large number of microtips per square millimeter, it is possible to excite each anode with a very large number of microtips. The light emission of an elementary pattern corresponds to the average emission characteristic of all the corresponding microdots. If a small number of these microtips do not work, this average characteristic then remains practically unchanged, which constitutes an important advantage of the invention.

SeLon un mode de réalisation particulier du dispositif objet de l'invention, celui-ci comprend en outre une pluralité de grilles électriquement conductrices, respectivement associées aux motifs, chaque grille étant disposée entre L'anode et la cathode correspondantes, électriquement isolée de cette cathode et destinée à être polarisée positivement par rapport à celle-ci et à être polarisée négativement par rapport à L'anode ou à être portée au potentiel de cette dernière.According to a particular embodiment of the device that is the subject of the invention, it further comprises a plurality of electrically conductive grids, respectively associated with the patterns, each grid being disposed between the anode and the corresponding cathode, electrically isolated from this cathode. and intended to be positively polarized with respect thereto and to be negatively polarized with respect to the anode or to be brought to the potential of the latter.

Dans certaines réalisations, les anodes sont réalisées de façon à pouvoir également jouer Le rôle de grilles.In certain embodiments, the anodes are produced so that they can also play the role of grids.

Selon un autre mode de réalisation particuLier du dispositif objet de l'invention, chaque anode est disposée sur un support transparent, et en regard de La cathode correspondante.According to another particular embodiment of the device which is the subject of the invention, each anode is arranged on a transparent support, and facing the corresponding cathode.

SeLon un autre mode de réalisation particuLier, chaque anode est intégrée à La cathode correspondante et électriquement isolée de celle-ci, et Les micropointes de chaque cathode couvrent l'ensemble de La surface de L'anode correspondante. En d'autres termes, La projection de La surface occupée par ces micropointes, sur La surface occupée par l'anode, se confond sensiblement avec cette dernière.According to another particular embodiment, each anode is integrated into the corresponding cathode and electrically isolated from it, and the microtips of each cathode cover the entire surface of the corresponding anode. In other words, the projection of the surface occupied by these microtips, onto the surface occupied by the anode, merges substantially with the latter.

SeLon un autre mode de réalisation particuLier, chaque anode est intégrée à La cathode correspondante et électriquement isolée de cette-ci, les micropointes de chaque motif sont rassemblées dans un même domaine distinct de La partie active de L'anode. En d'autres termes, vus de l'anode, le domaine occupé par Les micropointes et La zone cathodoluminescente de L'anode sont distincts.According to another particular embodiment, each anode is integrated into the corresponding cathode and electrically isolated from it, the microdots of each pattern are gathered in the same domain distinct from the active part of the anode. In other words, seen from the anode, the domain occupied by the microtips and the cathodoluminescent zone of the anode are distinct.

Dans ces deux derniers modes de réalisation particuliers, et Lorsque le dispositif de L'invention comporte Les grilles mentionnées plus haut, chaque les cathodes sont regroupées suivant des lignes parallèles entre elles, les cathodes d'une même ligne étant électriquement reliées Les unes aux autres, les grilles sont regroupées suivant des colonnes parallèles entre elles et perpendiculaires aux lignes, les grilLes d'une même colonne étant électriquement reliées Les unes aux autres, et le dispositif comprend en outre des moyens électroniques de commande prévus pour effectuer un adressage matriciel des lignes et des colonnes. Lorsque chaque anode et chaque grille qui lui correspond sont séparées par une couche électriquement isolante, toutes les anodes peuvent être électriquement reliées ensemble.In these last two particular embodiments, and When the device of the invention comprises the grids mentioned above, each the cathodes are grouped along lines parallel to each other, the cathodes of the same line being electrically connected to each other, the grids are grouped according to columns which are parallel to each other and perpendicular to the lines, the grids of the same column being electrically connected to each other, and the device further comprises electronic control means provided for performing matrix addressing of the rows and columns. When each anode and each grid which corresponds to it are separated by an electrically insulating layer, all the anodes can be electrically connected together.

Enfin, selon une autre réalisation particulière correspondant à l'un ou L'autre des deux modes de réalisation mentionnés plus haut, dans lesquels chaque anode est intégrée à la cathode correspondante, chaque anode étant en outre à la fois cathodoluminescente et conductrice pour jouer le rôle de grille, ou bien les grilles étant présentes et respectivement reliées électriquement aux anodes correspondantes, Les cathodes sont regroupées suivant des Lignes parallèles entre elles, les cathodes d'une même ligne étant électriquement reliées les unes aux autres, Les anodes ainsi que les grilles qui leurs sont éventuellement associées sont regroupées suivant des colonnes parallèles entre elles et perpendiculaires aux lignes, les grilles d'une même colonne étant électriquement reLiées Les unes aux autres, les anodes d'une même colonne étant également électriquement reliées les unes aux autres, et Le dispositif comprend en outre des moyens électroniques de commande prévus pour effectuer un adressage matriciel des lignes et des colonnes.Finally, according to another particular embodiment corresponding to one or the other of the two embodiments mentioned above, in which each anode is integrated into the corresponding cathode, each anode being also both cathodoluminescent and conductive to play the role of grid, or else the grids being present and respectively electrically connected to the corresponding anodes, The cathodes are grouped according to Lines parallel to each other, the cathodes of the same line being electrically connected to each other, The anodes and the grids which are optionally associated with them are grouped in columns which are parallel to each other and perpendicular to the lines, the grids of the same column being electrically connected to each other, the anodes of the same column being also electrically connected to each other, and The device further comprises electronic control means provided for performing an address matrix age of rows and columns.

La possibilité de réaliser ensemble des cathodes et des grilles par une technologie intégrée grille peut être en outre intégrée à La cathode correspondante et électriquement isolée de L'anode correspondante.The possibility of making cathodes and grids together using integrated technology grid can also be integrated into the corresponding cathode and electrically isolated from the corresponding anode.

Dans ce cas, ou bien dans Le cas où chaque anode est disposée sur un support transparent, et en regard de la cathode correspondante, chaque anode peut comprendre :

  • - une couche d'une substance cathodoluminescente et une couche mince électriquement conductrice disposée sur cette dernière, en face de la cathode correspondante, ou
  • - une couche électriquement conductrice et transparente et une couche d'une substance cathodoluminescente disposée sur cette dernière, en face de la cathode correspondante.
In this case, or else in the case where each anode is arranged on a transparent support, and facing the corresponding cathode, each anode can comprise:
  • - a layer of a cathodoluminescent substance and an electrically conductive thin layer placed on the latter, opposite the corresponding cathode, or
  • - an electrically conductive and transparent layer and a layer of a cathodoluminescent substance disposed on the latter, opposite the corresponding cathode.

Dans une réalisation particulière de l'invention, chaque anode peut comprendre une couche d'une substance cathodoluminescente et électriquement conductrice.In a particular embodiment of the invention, each anode can comprise a layer of a cathodoluminescent and electrically conductive substance.

Dans Les deux modes de réalisation particuliers mentionnés plus haut, correspondant au cas où chaque anode est intégrée à La cathode correspondante, et Lorsque Les grilles mentionnées plus haut sont utilisées, chaque grille peut être en outre intégrée à la cathode correspondante, chaque anode comprenant alors une couche d'une substance cathodoluminescente mise au potentiel de La grille correspondante ou à un potentiel supérieur au potentiel de cette grille, ce dernier étant positif.In the two particular embodiments mentioned above, corresponding to the case where each anode is integrated into the corresponding cathode, and When the grids mentioned above are used, each grid can be further integrated into the corresponding cathode, each anode then comprising a layer of a cathodoluminescent substance brought to the potential of the corresponding grid or to a potential greater than the potential of this grid, the latter being positive.

Dans Les deux modes de réalisation particu- tiers en question, le dispositif objet de L'invention peut comprendre en outre une électrode mince et transparente disposée en regard des anodes, sur un support transparent.In the two particular embodiments in question, the device which is the subject of the invention may further comprise a thin and transparent electrode placed opposite the anodes, on a transparent support.

Selon une réalisation particulière de l'invention utilisant Les grilles mentionnées plus haut, permet de réaliser le dispositif selon L'invention d'une manière plus simple que les dispositifs de visualisation connus, mentionnés plus haut.According to a particular embodiment of the invention using the grids mentioned above, allows the device according to the invention to be produced in a simpler way than the known display devices mentioned above.

En outre, on a vu que ces derniers sont commandés en utilisant un adressage matriciel du système anodes-grilles. Comme on l'a déjà indiqué, dans certaines réalisations, le dispositif objet de l'invention peut être commandé en effectuant un adressage matriciel des cathodes et des grilles, car le temps de réponse des cathodes dans l'invention est très rapide. Ceci facilite encore plus la réalisation de dispositif selon L'invention par rapport aux dispositifs connus de visualisation mentionnés plus haut.In addition, it has been seen that the latter are controlled using a matrix addressing of the anode-grid system. As already indicated, in certain embodiments, the device which is the subject of the invention can be controlled by performing a matrix addressing of the cathodes and of the grids, since the response time of the cathodes in the invention is very fast. This further facilitates the production of a device according to the invention compared to the known display devices mentioned above.

La présente invention sera mieux comprise à La lecture de La description qui suit, d'exemples de réalisation donnés à titre indicatif et nullement limitatif, en référence aux dessins annexés sur lesquels :

  • - La figure 1 est une vue schématique d'un dispositif connu de visualisation par cathodoluminescence excitée par émission thermoélectronique et a déjà été décrite,
  • - La figure 2 est un schéma illustrant le principe de l'émission de champ et a déjà été décrite,
  • - La figure 3 est une vue schématique d'un mode de réalisation particulier de chaque motif élémentaire dont est pourvu Le dispositif de visualisation objet de l'invention,
  • - les figures 4 et 5 sont des vues schématiques de modes de réalisation particuliers des anodes cathodoluminescentes utilisées dans L'invention,
  • - Les figures 6, 7, 8 et 9 sont des vues schématiques d'autres modes de réalisation particuliers des motifs élémentaires que comporte le dispositif objet de l'invention, dans lesquels La cathode, La grille et L'anode d'un même motif élémentaire sont intégrées sur un même substrat, L'anode jouant également le rôle de grille dans La réalisation de La figure 9,
  • - La figure 10 est une vue schématique d'un autre mode de réalisation particulier de L'invention, utilisant une électrode mince et transparente en regard des anodes cathodoluminescentes,
  • - La figure 11 est une vue schématique d'un mode de réalisation particulier du dispositif objet de L'invention, dans LequeL Les micropointes d'un même motif élémentaire sont regroupées dans un même domaine, et
  • - La figure 12 est une vue schématique d'un autre mode de réalisation particulier, dans lequel les micropointes d'un même motif "couvrent" l'ensemble de La surface de L'anode correspondante.
The present invention will be better understood on reading the description which follows, of exemplary embodiments given by way of indication and in no way limiting, with reference to the appended drawings in which:
  • FIG. 1 is a schematic view of a known display device by cathodoluminescence excited by thermoelectronic emission and has already been described,
  • FIG. 2 is a diagram illustrating the principle of the field emission and has already been described,
  • FIG. 3 is a schematic view of a particular embodiment of each elementary pattern with which the display device object of the invention is provided,
  • FIGS. 4 and 5 are schematic views of particular embodiments of the cathodoluminescent anodes used in the invention,
  • - Figures 6, 7, 8 and 9 are schematic views of other particular embodiments of the elementary patterns that comprise the device object of the invention, in which the cathode, the grid and the anode of the same elementary pattern are integrated on the same substrate, the anode also playing the role of grid in the embodiment of FIG. 9,
  • FIG. 10 is a schematic view of another particular embodiment of the invention, using a thin and transparent electrode facing the cathodoluminescent anodes,
  • FIG. 11 is a schematic view of a particular embodiment of the device which is the subject of the invention, in LequeL The microtips of the same elementary pattern are grouped in the same field, and
  • - Figure 12 is a schematic view of another particular embodiment, in which the microtips of the same pattern "cover" the entire surface of the corresponding anode.

Sur La figure 3, on a représenté schématiquement un mode de réalisation particulier des motifs élémentaires dont est pourvu Le dispositif objet de L'invention. Dans ce mode de réalisation particulier, chaque motif élémentaire comprend une couche de phosphore cathodoluminescent, excitable à basse tension, située en regard de La cathode correspondante, et La couche de phosphore est observée du côté opposé à son excitation.In Figure 3, there is shown schematically a particular embodiment of the elementary patterns which is provided The device object of the invention. In this particular embodiment, each elementary pattern comprises a layer of cathodoluminescent phosphor, excitable at low voltage, located opposite the corresponding cathode, and the phosphor layer is observed on the side opposite to its excitation.

PLus précisément, dans Le mode de réalisation particulier représenté schématiquement sur La figure 3, chaque motif élémentaire comprend une cathode 18 et une anode cathodoluminescente 20. La cathode 18 comprend une pluralité de micropointes 22 électriquement conductrices, formées sur une couche électriquement conductrice 24, elle-même déposée sur un substrat électriquement isolant 26.More specifically, in the particular embodiment shown schematically in FIG. 3, each elementary pattern comprises a cathode 18 and a cathodoluminescent anode 20. The cathode 18 comprises a plurality of electrically conductive microtips 22, formed on an electrically conductive layer 24, it - even deposited on an electrically insulating substrate 26.

La couche 24 pourrait être semiconductrice au Lieu d'être conductrice.Layer 24 could be semiconductor instead of being conductive.

Les micropointes 22 sont séparées Les unes des autres par des couches électriquement isolantes 28. Chaque motif élémentaire comprend également une grille 30. CeLLe-ci est constituée par une pluralité de couches électriquement conductrices 32 qui sont déposées sur Les couches isolantes 28, celles-ci ayant sensiblement La même épaisseur, cette épaisseur pouvant être choisie de façon que le sommet de chaque micropointe se situe sensiblement au niveau des couches électriquement conductrices 32 qui constituent La grille 30.The microtips 22 are separated from each other by electrically insulating layers 28. Each elementary pattern also includes a grid 30. This consists of a plurality of electrically conductive layers 32 which are deposited on the insulating layers 28, these having substantially the same thickness, this thickness being able to be chosen so that the top of each microtip is situated substantially at the level of the electrically conductive layers 32 which constitute the grid 30.

L'anode 20 comprend une couche 34 de phosphore cathodoluminescent excitable à basse tension, déposée sur un support plan transparent 36 disposé en regard de La grille 30 parallèlement à celle-ci, La couche de phosphore 34 étant déposée sur La face du support qui est directement en regard de cette grille. L'anode 20 comprend également une couche mince électriquement conductrice 38 qui est déposée sur La couche de phosphore cathodoluminescent 34, et directement en regard de La grille 30. Cette grille peut se présenter comme une couche continue qui est percée par des trous en regard des micropointes. De même, Les couches isolantes 28 peuvent former une seule couche continue percée de trous traversés par Les micropointes.The anode 20 comprises a layer 34 of low-voltage excitable cathodoluminescent phosphorus, deposited on a transparent flat support 36 disposed opposite the grid 30 parallel to it, the phosphor layer 34 being deposited on the face of the support which is directly next to this grid. The anode 20 also comprises a thin electrically conductive layer 38 which is deposited on the layer of cathodoluminescent phosphorus 34, and directly opposite the grid 30. This grid can be presented as a continuous layer which is pierced by holes opposite the microtips. Similarly, the insulating layers 28 can form a single continuous layer pierced with holes through which the microtips.

A titre purement indicatif et nullement limitatif, Le substrat 26 est en verre et La couche 24 est en aluminium ou en silicium ; Les micropointes 22 sont en hexaborure de Lanthane ou bien en l'un des métaux pris dans le groupe comprenant Le niobium, le hafnium, Le zirconium et Le molybdène, ou encore en un carbure ou un nitrure des métaux précédents ; La couche de phosphore 34 est en sulfure de zinc ou en sulfure de cadmium ; le support transparent 36 est en verre La couche conductrice 38 est en aluminium ou en or ; les couches isolantes 28 sont en silice ; La grille 30 est en niobium ou en molybdène ; les micropointes se présentent sous La forme de cônes dont le diamètre de base est de L'ordre de 2 µm et La hauteur de L'ordre de 1,7 µm ; L'épaisseur de chaque couche isolante 28 est de L'ordre de 1,5 µm ; La grille a une épaisseur de L'ordre de 0,4 µm et les trous qu'elle comporte ont un diamètre de L'ordre de 2 µm ; enfin, La couche conductrice mince 38 a une épaisseur de l'ordre de 50 à 100 A.As a purely indicative and in no way limitative, the substrate 26 is made of glass and the layer 24 is made of aluminum or silicon; The microtips 22 are in lanthanum hexaboride or else in one of the metals taken from the group comprising niobium, hafnium, zirconium and molybdenum, or alternatively in a carbide or a nitride of the preceding metals; The phosphor layer 34 is made of zinc sulfide or cadmium sulfide; the transparent support 36 is in glass The conductive layer 38 is made of aluminum or gold; the insulating layers 28 are made of silica; The grid 30 is made of niobium or molybdenum; the microtips are in the form of cones, the base diameter of which is around 2 µm and the height around 1.7 µm; The thickness of each insulating layer 28 is of the order of 1.5 μm; The grid has a thickness of the order of 0.4 μm and the holes which it comprises have a diameter of the order of 2 μm; finally, the thin conductive layer 38 has a thickness of the order of 50 to 100 A.

En pratique, un seul substrat 26 en verre et un seul support transparent 36 en verre sont utilisés pour l'ensemble des motifs élémentaires, et lorsque ceux-ci sont réalisés, d'une manière qui sera indiquée par La suite, Le vide est fait entre Les anodes et les cathodes, et Le substrat 26 et Le support transparent 36 sont raccordés l'un à L'autre de façon étanche.In practice, a single glass substrate 26 and a single transparent support 36 in glass are used for all of the elementary patterns, and when these are produced, in a manner which will be indicated below. between the anodes and the cathodes, and the substrate 26 and the transparent support 36 are connected to each other in a sealed manner.

L'excitation d'un motif élémentaire est obtenue en polarisant simultanément l'anode, La grille et La cathode. L'une de celles-ci, par exemple La grille, est utilisée comme potentiel de référence et mise à La masse. L'anode peut être portée au potentiel de La grille ou polarisée positivement par rapport à cette grille, à l'aide d'une source de tension 40. La cathode est polarisée négativement par rapport à La grille à L'aide d'une source de tension 42.The excitation of an elementary pattern is obtained by simultaneously polarizing the anode, the grid and the cathode. One of these, for example The grid, is used as a reference potential and grounded. The anode can be brought to the potential of the grid or positively biased relative to this grid, using a voltage source 40. The cathode is negatively biased relative to the grid using a source tension 42.

Chaque pointe du motif élémentaire émet alors des électrons qui vont exciter La couche de phosphore, La couche conductrice 38 ayant été choisie aussi mince que possible pour ne pas arrêter les électrons, et La couche de phosphore ainsi excitée émet de La Lumière que L'on peut observer à travers le support transparent 36. Une faible tension de L'ordre de 100 volts entre la grille et La cathode, permet d'obtenir un courant électronique de L'ordre de plusieurs micro-ampères par micropointe et donc une densité de courant électronique de plusieurs milliampères par millimètre carré pour l'ensemble du motif qui comporte un très grand nombre de micropointes (quelques dizaines de milliers) par millimètre carré.Each point of the elementary pattern then emits electrons which will excite The phosphor layer, The conductive layer 38 having been chosen as thin as possible so as not to stop the electrons, and The phosphorus layer thus excited emits Light as One can be observed through the transparent support 36. A low voltage of the order of 100 volts between the grid and the cathode, allows ob hold an electronic current of the order of several micro-amps per microtip and therefore an electronic current density of several milliamps per square millimeter for the entire pattern which comprises a very large number of microtips (a few tens of thousands) per millimeter square.

Dans une variante de réalisation (figure 4), La couche conductrice n'est plus située directement en regard des micropointes mais disposée entre Le support transparent 36 et la couche de phosphore 34, cette dernière étant aLors directement en regard des micropointes 22. Dans ce cas, La couche conductrice 38 est choisie de façon à être transparente à L'émission lumineuse du phosphore. Pour ce faire, La couche 38 est par exemple une couche d'oxyde d'indium dopé à L'étain.In an alternative embodiment (FIG. 4), the conductive layer is no longer located directly opposite the microtips but disposed between the transparent support 36 and the phosphor layer 34, the latter being then directly opposite the microtips 22. In this In this case, the conductive layer 38 is chosen so as to be transparent to the light emission of phosphorus. To do this, layer 38 is for example a layer of indium oxide doped with tin.

Dans une autre variante de réalisation (figure 5), La couche conductrice 38 est supprimée et La couche de phosphore 34, déposée sur Le support transparent 36, est alors choisie de façon à être en outre électriquement conductrice. A cet effet, on utilise par exemple une couche d'oxyde de zinc dopé au zinc.In another alternative embodiment (FIG. 5), the conductive layer 38 is eliminated and the phosphor layer 34, deposited on the transparent support 36, is then chosen so as to be additionally electrically conductive. For this purpose, for example, a layer of zinc oxide doped with zinc is used.

Dans un autre mode de réalisation particulier, le phosphore est déposé sur La grille elle-même (à une éventuelle interposition de couches près), L'ensembLe formé par la cathode, La grille et L'anode est alors intégré sur un même substrat et le phosphore est observé du côté où il est excité, ce qui permet de supprimer la perte de Lumière due à La traversée du phosphore, perte qui se produisait dans Les modes de réalisation représentés sur les figures 3, 4 et 5.In another particular embodiment, the phosphorus is deposited on the grid itself (apart from possible interposition of layers), the assembly formed by the cathode, the grid and the anode is then integrated on the same substrate and the phosphorus is observed from the side where it is excited, which makes it possible to suppress the loss of Light due to the crossing of the phosphorus, a loss which occurred in the embodiments represented in FIGS. 3, 4 and 5.

PLus précisément, dans L'autre mode de réaLisation particulier des motifs élémentaires, qui est schématiquement représenté sur la figure 6, La cathode 18 comprend Les micropointes 22 sur La couche conductrice 24, celle-ci étant déposée sur le substrat isolant 26, Les micropointes étant séparées par Les couches électriquement isolantes 28 sur lesquelles est déposée la grille 30.More specifically, in the other particular embodiment of the elementary patterns, which is schematically represented in FIG. 6, the cathode 18 comprises the microtips 22 on the conduc layer trice 24, the latter being deposited on the insulating substrate 26, the microtips being separated by the electrically insulating layers 28 on which the grid 30 is deposited.

Une couche étectriquement isolante 44, par exemple en silice, est déposée sur la couche de grille 30, et présente également des trous en correspondance avec les trous pratiqués dans la couche de grille de manière à Laisser apparaître les micropointes 22.An electrically insulating layer 44, for example made of silica, is deposited on the grid layer 30, and also has holes in correspondence with the holes made in the grid layer so as to reveal the microtips 22.

L'anode 20 comprend une couche électriquement conductrice 39, par exemple en or ou en aluminium, déposée sur la couche isolante 44 et une couche de phosphore 34 déposée sur la couche conductrice 39, ces couches 34 et 39 comportant bien entendu des trous 37 qui Laissent apparaître Les micropointes 22, de sorte que La couche composite résultant de l'empilement des couches 30, 44, 39 et 34 constitue une couche percée de trous qui Laissent apparaître les micropointes 22.The anode 20 comprises an electrically conductive layer 39, for example made of gold or aluminum, deposited on the insulating layer 44 and a phosphor layer 34 deposited on the conductive layer 39, these layers 34 and 39 of course having holes 37 which The microdots 22 appear, so that the composite layer resulting from the stacking of the layers 30, 44, 39 and 34 constitutes a layer pierced with holes which reveal the microdots 22.

En outre, Les micropointes sont réparties de préférence régulièrement et de telle manière que La surface occupée par elles se confonde sensiblement avec La surface occupée par La couche de phosphore : Lorsqu'on observe cette dernière, elle semble être couverte de micropointes.In addition, the microtips are preferably distributed regularly and in such a way that the surface occupied by them merges substantially with the surface occupied by the phosphor layer: When the latter is observed, it seems to be covered with microtips.

Le support transparent 36 est disposé en regard de La couche de phosphore 34, parallèlement à celte-ci et il est raccordé de façon étanche au substrat 26, une fois le vide établi entre eux.The transparent support 36 is arranged opposite the phosphor layer 34, parallel to it and it is tightly connected to the substrate 26, once the vacuum has been established between them.

Comme précédemment, L'anode peut être portée au même potentiel que La grille ou à un potentiel positif par rapport à cette grille, au moyen d'une source de tension 40, et La cathode est portée à un potentiel négatif par rapport à La grille, à L'aide d'une source de tension 42, La grille étant prise comme potentiel de référence et mise à la masse.As before, the anode can be brought to the same potential as the grid or to a positive potential with respect to this grid, by means of a voltage source 40, and the cathode is brought to a negative potential with respect to the grid. , Using a voltage source 42, The grid being taken as reference potential and grounding.

Dans ces conditions, chaque micropointe 22 émet des électrons qui traversent Le trou correspondent à la micropointe considérée et dont La trajectoire est ensuite recourbée en direction de La couche de phosphore 34, Les électrons venant ainsi frapper cette couche de phosphore qui émet alors de La Lumière que l'on peut observer à travers Le support transparent 36.Under these conditions, each microtip 22 emits electrons which pass through The hole corresponds to the microtip considered and the trajectory of which is then curved in the direction of the phosphor layer 34, the electrons thus striking this layer of phosphorus which then emits light that can be seen through transparent support 36.

Dans une variante de réalisation non représentée, la couche de phosphore 34 est directement déposée sur la couche isolante 44 et la couche conductrice 39 est alors déposée sur la couche de phosphore 34 et choisie de façon à être transparente à la lumière émise par cette couche de phosphore. Dans une autre variante de réalisation schématiquement représentée sur La figure 7, la couche électriquement conductrice 39 est supprimée et La couche de phosphore 34 est directement déposée sur La couche isolante 44, cette couche de phosphore étant alors choisie de façon à être électriquement conductrice.In an alternative embodiment not shown, the phosphor layer 34 is directly deposited on the insulating layer 44 and the conductive layer 39 is then deposited on the phosphor layer 34 and chosen so as to be transparent to the light emitted by this layer of phosphorus. In another variant embodiment diagrammatically shown in FIG. 7, the electrically conductive layer 39 is eliminated and the phosphor layer 34 is directly deposited on the insulating layer 44, this phosphor layer then being chosen so as to be electrically conductive.

Dans une autre variante de réalisation schématiquement représentée sur La figure 8, La couche isolante 44 est supprimée et La couche de phosphore 34 est directement déposée sur La couche de grille 30 et portée au potentiel de la grille, l'excitation du motif élémentaire étant alors réalisée en portant La cathode à un potentiel négatif par rapport à La grille, au moyen d'une source de tension 46, La grille étant mise à La masse.In another variant embodiment shown diagrammatically in FIG. 8, the insulating layer 44 is eliminated and the phosphor layer 34 is directly deposited on the grid layer 30 and brought to the potential of the grid, the excitation of the elementary pattern then being carried out by bringing the cathode to a negative potential with respect to the grid, by means of a voltage source 46, the grid being grounded.

Dans une autre variante de réalisation schématiquement représentée sur la figure 9, La grille est supprimée et La couche de phosphore 34, choisie de façon à être électriquement conductrice, joue également le rôle de grille. La cathode est encore portée à un potentiel négatif par rapport à La couche de phosphore qui est mise à La masse.In another variant embodiment schematically represented in FIG. 9, the grid is eliminated and the phosphor layer 34, chosen so as to be electrically conductive, also plays the role of grid. The cathode is still brought to a negative potential with respect to the phosphor layer which is grounded.

Dans une réalisation particulière corres - pondant au cas où L'anode et La cathode sont intégrées sur un même substrat, une couche électriquement conr ductrice et transparente 48 (figure 7) est déposée sur La face du support transparent 36, qui est située directement en regard de L'anode 20. Cette couche conductrice et transparente 48 peut être Laissée flottante ou portée à un potentiel répulsif vis-à-vis des électrons émis par les micropointes 22, au moyen d'une source de tension 50 (figure 10).In a particular embodiment corre - sponding to the case where the anode and the cathode are integrated on the same substrate, a layer electrically CONR ductrice and transparent 48 (Figure 7) is deposited on the transparent support face 36, which is located directly with regard to the anode 20. This transparent and conductive layer 48 can be left floating or brought to a repulsive potential with respect to the electrons emitted by the microtips 22, by means of a voltage source 50 (FIG. 10).

Sur La figure 11, on a représenté schématiquement un autre mode de réalisation particulier d'un motif élémentaire, dont La seule différence avec Les modes de réalisation particuliers décrits plus haut et correspondant au cas où l'anode, La grille et La cathode sont intégrées sur un même substrat réside dans le fait que les micropointes 22, observées par dessus La couche de phosphore 34, ne semblent pas recouvrir La totalité de cette dernière. Dans le cas présent, elles sont rassemblées dans un même domaine. PLus précisément, dans l'exemple représenté sur La figure 11, les micropointes sont disposées dans un même domaine 64, sur La couche conductrice 24, elle-même déposée sur Le substrat isolant 26. La couche isolante 28 est déposée sur La couche conductrice 24 en séparant Les micropointes Les unes des autres, une couche de grille 30, percée de trous en correspondance avec Les micropointes, est déposée sur La couche isolante 28 et une couche de phosphore 34 est déposée sur La couche de grille, excepté au-dessus du domaine dans lequel sont concentrées Les micropointes, et portée au même potentiel que La grille (comme on L'a expliqué dans La description de La figure 8).In Figure 11, there is schematically shown another particular embodiment of an elementary pattern, the only difference with the particular embodiments described above and corresponding to the case where the anode, the grid and the cathode are integrated. on the same substrate lies in the fact that the microtips 22, observed over the phosphor layer 34, do not seem to cover all of the latter. In the present case, they are gathered in the same domain. More specifically, in the example shown in FIG. 11, the microtips are arranged in the same domain 64, on the conductive layer 24, itself deposited on the insulating substrate 26. The insulating layer 28 is deposited on the conductive layer 24 by separating the microtips from each other, a grid layer 30, pierced with holes corresponding to the microtips, is deposited on the insulating layer 28 and a layer of phosphorus 34 is deposited on the grid layer, except above the area in which the microtips are concentrated, and brought to the same potential as the grid (as explained in the description of Figure 8).

En variante, on pourrait déposer une couche de grille, percée desdits trous, sur La couche isolante 28 puis une autre couche isolante sur cette couche grille, excepté au-dessus dudit domaine 64, et enfin une couche éventuellement composite jouant le rôle d'anode, sur cette autre couche isolante, La couche d'anode étant constituée par une couche électriquement conductrice associée à une couche de phosphore (comme on la expliqué dans La description de La figure 6) ou simplement par une couche de phosphore électriquement conducteur (comme on l'a expliqué dans La description de La figure 7).As a variant, a grid layer, pierced with said holes, could be deposited on the insulating layer 28, then another insulating layer on this grid layer, except above said area 64, and finally a possibly composite layer playing the role of anode. , on this other insulating layer, the anode layer being constituted by an electrically conductive layer associated with a phosphor layer (as explained in the description of FIG. 6) or simply by an electrically conductive phosphor layer (as we explained in the description of Figure 7).

Selon une autre variante, on pourrait simplement déposer sur La couche isolante 28 une couche de phosphore électriquement conducteur jouant à La fois le rôle d'anode et de grille et percée de trous en correspondance avec Les micropointes.According to another variant, one could simply deposit on the insulating layer 28 an electrically conductive phosphor layer playing both the role of anode and grid and pierced with holes in correspondence with the microtips.

Bien entendu, Le support transparent 36 est toujours disposé en regard de L'anode et éventuellement muni d'une couche conductrice, Laissée flottante ou portée à un potentiel approprié, comme on L'a expliqué plus haut.Of course, the transparent support 36 is always placed opposite the anode and optionally provided with a conductive layer, left floating or brought to an appropriate potential, as explained above.

Sur la figure 12, on a représenté schématiquement un mode de réalisation particulier d'un dispositif de visualisation conforme à L'invention. Dans ce mode de réalisation particulier, les motifs élémentaires sont réalisés comme on l'a expliqué dans La description de La figure 3, avec d'éventuelles variantes qui ont été décrites en référence aux figures 4 et 5. En outre, les cathodes sont regroupées suivant des lignes 52 parallèles entre elles et sont toutes formées sur un même substrat électriquement isolant 26. En outre, dans chaque ligne, les cathodes sont d'un seul tenant, c'est-à-dire qu'il n'y a pas d'interruption Lorsque l'on passe d'une cathode à une autre.In Figure 12, there is shown schematically a particular embodiment of a display device according to the invention. In this particular embodiment, the elementary patterns are produced as explained in the description of FIG. 3, with possible variants which have been described with reference to FIGS. 4 and 5. In addition, the cathodes are grouped together along lines 52 parallel to each other and are all formed on the same electrically insulating substrate 26. In addition, in each line, the cathodes are in one piece, that is to say that there is no of interruption When moving from one cathode to another.

Les grilles sont regroupées suivant des colonnes 54 parallèles entre elles et perpendiculaires aux Lignes 52. Dans chaque colonne, Les grilles sont d'un seul tenant, c'est-à-dire qu'il n'y a pas d'interruption entre deux grilles adjacentes. Les micropointes sont inutiles dans toute zone correspondant à un intervalle séparant deux colonnes.The grids are grouped according to columns 54 parallel to each other and perpendicular to the Lines 52. In each column, The grids are in one piece, that is to say that there is no interruption between two adjacent grids. Microtips are useless in any zone corresponding to an interval separating two columns.

En outre, Les anodes forment un ensemble continu constitué par une unique couche de phosphore 34 associée, lorsqu'elle n'est pas électriquement conductrice, à une unique couche électriquement conductrice 38, ces deux couches étant déposées sur un unique support transparent 36. Les caractéristiques de La couche 38 ont été expliquées dans la description des figures 3 et 4, en fonction de La situation de cette couche.In addition, the anodes form a continuous assembly constituted by a single layer of phosphorus 34 associated, when it is not electrically conductive, with a single electrically conductive layer 38, these two layers being deposited on a single transparent support 36. Characteristics of layer 38 have been explained in the description of FIGS. 3 and 4, depending on the situation of this layer.

Chaque motif élémentaire 56 correspond ainsi au croisement d'une Ligne et d'une colonne.Each elementary pattern 56 thus corresponds to the crossing of a row and a column.

Le dispositif de visualisation représenté sur La figure 12 comprend également des moyens électroniques de commande prévus pour effectuer un adres- sage matriciel des Lignes et des colonnes. De tels moyens électroniques sont connus dans L'état de La technique aussi bien dans le cas où l'on souhaite obtenir des images fixes que dans Le cas où l'on souhaite obtenir des images animées.The display device shown in Figure 12 also includes electronic control means provided to effect adres - wise matrix of lines and columns. Such electronic means are known in the prior art both in the case where one wishes to obtain still images and in the case where one wishes to obtain moving images.

Pour chaque motif élémentaire, L'émission de champ se produit principalement Lorsqu'une différence de potentiel supérieure à une tension de seuil positive VS, est appliquée entre La grille et La cathode du motif considéré, L'anode de ce dernier étant portée à un potentiel au moins égal à celui de La grille.For each elementary pattern, the field emission mainly occurs when a potential difference greater than a positive threshold voltage V S is applied between the grid and the cathode of the considered motif, the anode of the latter being brought to a potential at least equal to that of the grid.

Pour former des images fixes ou animées, on effectue les opérations suivantes pour la première ligne, puis pour la seconde et ainsi de suite jusqu' dernière Ligne : la Ligne considérée est portée au potentiel -V/2, le potentiel V étant supérieur ou égal A VS et inférieur à 2VS, tandis que toutes les autres Lignes sont Laissées flottantes ou portées à un potentiel nul, ceci étant réalisé à l'aide de premiers moyens 58 faisant partie des moyens électroniques, et, de façon simultanée, toutes Les colonnes correspondant aux motifs élémentaires qu'il s'agit d'exciter sur la ligne considérée sont portées au potentiel V/2 tandis que Les autres colonnes sont Laissées flottantes ou portées à un potentiel nul, ceci étant réalisé à l'aide de seconds moyens 60 faisant partie des moyens électroniques, les anodes étant constamment maintenues à un potentiel au moins égal à V/2, à l'aide d'une source de tension appropriée 62.To form still or moving images, the following operations are carried out for the first line, then for the second and so on until the last Line: the Line considered is brought to the potential -V / 2, the potential V being greater than or equal AV S and less than 2V S , while all the other lines are left floating or brought to zero potential, this being achieved using first means 58 forming part of the electronic means, and, simultaneously, all the columns corresponding to the elementary patterns to be excited on the line considered are brought to the potential V / 2 while the other columns are left floating or brought to a zero potential, this being achieved using second means 60 forming part of the electronic means, the anodes being constantly maintained at a potential at least equal to V / 2, using an appropriate voltage source 62.

On peut également réaliser un dispositif selon l'invention en réalisant les motifs élémentaires comme on l'a expliqué dans La description correspondant aux figures 6 à 10. Dans ce cas, Les lignes sont réalisées comme on l'a expliqué plus haut et les anodes, lorsqu'elles sont électriquement reliées aux grilles associées ou lorsqu'elles jouent le rôle de grilles, sont disposées suivant Les colonnes, les anodes d'une même colonne ne présentant pas de séparation entre elles.It is also possible to produce a device according to the invention by producing the elementary patterns as explained in the description corresponding to FIGS. 6 to 10. In this case, the lines are produced as explained above and the anodes , when they are electrically connected to the associated grids or when they play the role of grids, are arranged in accordance with the columns, the anodes of the same column having no separation between them.

Lorsque les anodes et les grilles sont séparées par des couches isolantes, toutes les anodes du dispositif peuvent être électriquement reliées entre elles.When the anodes and the grids are separated by insulating layers, all the anodes of the device can be electrically connected to each other.

On peut alors utiliser les mêmes moyens électroniques d'adressage matriciel que ceux qui ont été décrits plus haut. Dans ce cas, lorsque dans chaque colonne Les anodes doivent être électriquement isolées des grilles correspondantes, ces anodes sont constamment maintenues à un potentiel au moins égal à V/2.We can then use the same electronic matrix addressing means as those which have been described above. In this case, when in each as column The anodes must be electrically isolated from the corresponding grids, these anodes are constantly maintained at a potential at least equal to V / 2.

Un autre mode de réalisation particulier du dispositif objet de L'invention est également représenté sur La figure 11. Cet autre mode de réalisation particulier comprend des motifs élémentaires 61 dans chacun desquels Les micropointes sont regroupées dans un même domaine 64, comme on L'a déjà expliqué plus haut en référence à cette même figure 11. Les cathodes sont regroupées suivant des lignes parallèles 52 et Les anodes, lorsqu'elles sont électriquement reliées aux grilles associées ou lorsqu'elles jouent Le r8Le de grilles, sont regroupées ainsi que Les éventuelles grilles, suivant des colonnes 54 parallèles entre elles et perpendiculaires aux lignes, comme on L'a déjà expliqué plus haut. Le croisement d'une Ligne et d'une colonne correspond à un motif élémentaire au centre duquel se trouve Ledit domaine 64. Le dispositif de visualisation représenté sur La figure 11 peut être commandé comme Le dispositif décrit en référence à La figure 12. Bien entendu, le substrat isolant 26 et Le support transparent 36 sont communs à tous Les motifs élémentaires. Lorsque Les anodes et Les grilles sont séparées par des couches isolantes, toutes Les anodes du dispositif peuvent être électriquement reliées entre elles.Another particular embodiment of the device which is the subject of the invention is also shown in FIG. 11. This other particular embodiment comprises elementary patterns 61 in each of which the microtips are grouped in the same domain 64, as we have already explained above with reference to this same figure 11. The cathodes are grouped along parallel lines 52 and The anodes, when they are electrically connected to the associated grids or when they play the r8Le of grids, are grouped together as well as any grids, along columns 54 parallel to each other and perpendicular to the lines, as already explained above. The crossing of a Row and a column corresponds to an elementary pattern in the center of which Said domain 64 is located. The display device shown in FIG. 11 can be controlled as The device described with reference to FIG. 12. Of course , the insulating substrate 26 and the transparent support 36 are common to all the elementary patterns. When the anodes and the grids are separated by insulating layers, all the anodes of the device can be electrically connected to each other.

La réalisation de micropointes 22 disposées sur une couche conductrice 24 et séparées par des couches isolantes 28 est connue dans l'état de La technique et a été étudiée par SPINDT au STANFORD RESEARCH INSTITUTE (pour des applications sans rapport avec La visualisation).The production of microtips 22 arranged on a conductive layer 24 and separated by insulating layers 28 is known in the state of the art and has been studied by SPINDT at STANFORD RESEARCH INSTITUTE (for applications unrelated to visualization).

Pour réaliser Les dispositifs représentés sur Les figures 11 et 12, on procède selon Les techniques connues de La microélectronique.To make the devices shown in Figures 11 and 12, we proceed according to techniques known from microelectronics.

Claims (12)

1. Dispositif de visualisation comprenant une pluralité de motifs élémentaires comportant chacun une anode cathodluminescente (20) et une cathode (18) apte à émettre des électrons, caractérisé en ce que chaque cathode comprend une pluralité de micropointes (22) électriquement reliées entre elles et sujettes à une émission d'électrons par effet de champ Lorsque la cathode est polarisée négativement par rapport à L'anode correspondante, les électrons venant frapper cette dernière qui est alors sujette à une émission de Lumière et en ce que chaque anode (20) est intégrée à La cathode correspondante (18) et électriquement isolée de celle-ci.1. Display device comprising a plurality of elementary patterns each comprising a cathodluminescent anode (20) and a cathode (18) capable of emitting electrons, characterized in that each cathode comprises a plurality of microtips (22) electrically connected to each other and Subject to an emission of electrons by field effect When the cathode is negatively polarized with respect to the corresponding Anode, the electrons coming to strike the latter which is then subject to an emission of Light and in that each anode (20) is integrated with the corresponding cathode (18) and electrically isolated from it. 2. Dispositif selon La revendication 1, caractérisé en ce qu'il comprend en outre une pluralité de grilles électriquement conductrices (30), respectivement associées aux motifs, chaque grille étant intégrée à la cathode (18) correspondante, disposée entre celle-ci et L'anode (20) correspondante, électriquement isolée de cette cathode et prévue pour être polarisée positivement par rapport à celle-ci et pour être polarisée négativement par rapport à L'anode ou pour être portée au potentiel de cette dernière.2. Device according to claim 1, characterized in that it further comprises a plurality of electrically conductive grids (30), respectively associated with the patterns, each grid being integrated into the corresponding cathode (18), disposed between the latter and The corresponding anode (20), electrically isolated from this cathode and intended to be positively polarized with respect thereto and to be negatively polarized with respect to the anode or to be brought to the potential of the latter. 3. Dispositif selon l'une quelconque des revendications 1 et 2, caractérisé en ce que Les micropointes (22) de chaque cathode couvrent l'ensemble de la surface de L'anode correspondante.3. Device according to any one of claims 1 and 2, characterized in that the microtips (22) of each cathode cover the entire surface of the corresponding anode. 4. Dispositif selon l'une quelconque des revendications 1 et 2, caractérisé en ce que les micropointes (22) de chaque motif sont rassemblées dans un même domaine (64) distinct de la partie active de L'anode.4. Device according to any one of claims 1 and 2, characterized in that the microtips (22) of each pattern are gathered in the same area (64) distinct from the active part of the anode. 5. Dispositif selon La revendication 2, caractérisé en ce que chaque grille (30) est en outre électriquement isolée de L'anode correspondante (20).5. Device according to claim 2, characterized in that each grid (30) is also electrically isolated from the corresponding anode (20). 6. Dispositif selon La revendication 5, caractérisé en ce que chaque anode (20) comprend une couche (34) d'une substance cathodoluminescente et une couche mince (38) électriquement conductrice disposée sur cette dernière, en face de La cathode correspondante (18).6. Device according to claim 5, characterized in that each anode (20) comprises a layer (34) of a cathodoluminescent substance and a thin layer (38) electrically conductive disposed on the latter, opposite the corresponding cathode (18 ). 7. Dispositif selon La revendication 5, caractérisé en ce que chaque anode (20) comprend une couche (38) électriquement conductrice et transparente et une couche (34) d'une substance cathodoluminescente disposée sur cette dernière, en face de La cathode correspondante (18).7. Device according to claim 5, characterized in that each anode (20) comprises an electrically conductive and transparent layer (38) and a layer (34) of a cathodoluminescent substance placed on the latter, opposite the corresponding cathode ( 18). 8. Dispositif selon L'une quelconque des revendications 1 à 5, caractérisé en ce que chaque anode (20) comprend une couche (34) d'une substance cathodoLuminescente et électriquement conductrice.8. Device according to any one of claims 1 to 5, characterized in that each anode (20) comprises a layer (34) of a cathodoLuminescent and electrically conductive substance. 9. Dispositif selon La revendication 2, caractérisé en ce que chaque anode (20) comprend une couche (34) d'une substance cathodoluminescente mise au potentiel de La grille (30) correspondante ou à un potentiel supérieur au potentiel de cette grille, ce dernier étant positif.9. Device according to claim 2, characterized in that each anode (20) comprises a layer (34) of a cathodoluminescent substance brought to the potential of the corresponding grid (30) or to a potential greater than the potential of this grid, this the latter being positive. 10. Dispositif selon L'une quelconque des revendications 1 à 4, caractérisé en ce qu'il comprend en outre une électrode mince et transparente (48), disposée en regard des anodes (20), sur un support transparent (36).10. Device according to any one of claims 1 to 4, characterized in that it further comprises a thin and transparent electrode (48), disposed opposite the anodes (20), on a transparent support (36). 11. Dispositif selon La revendication 2, caractérisé en ce que Les cathodes (18) sont regroupées suivant des Lignes (52) parallèles entre elles, Les cathodes d'une même Ligne étant électriquement reLiées Les unes aux autres, en ce que Les grilles (30) sont regroupées suivant des colonnes (54) parallèles entre elles et perpendiculaires aux lignes, Les grilLes d'une même cotonne étant électriquement reliee les unes aux autres et en ce que le dispositif comprend en outre des moyens électroniques de commande (58, 60) prévus pour effectuer un adressage matriciel des lignes et des colonnes.11. Device according to claim 2, characterized in that the cathodes (18) are grouped along lines (52) parallel to each other, the cathodes of the same line being electrically connected to each other, in that the grids ( 30) are grouped according to columns (54) parallel to each other and perpendicular to the lines, the grids of the same cotton being electrically connected to each other and in that the device also comprises electronic control means (58, 60) provided to perform matrix addressing of rows and columns. 12. Dispositif selon l'une quelconque des revendications 8 et 9, caractérisé en ce que les cathodes (18) sont regroupées suivant des lignes (52) parallèles entre elles, les cathodes d'une même ligne étant électriquement reliées Les unes aux autres, en ce que les anodes (18) ainsi que les grilles (30) qui leur sont éventuellement associées sont regroupées suivant des colonnes (54) parallèles entre elles et perpendiculaires aux lignes, Les grilles d'une même cotonne étant électriquement reliées Les unes aux autres, Les anodes d'une même colonne étant également électriquement reliées Les unes aux autres, et en ce que le dispositif comprend en outre des moyens électroniques de commande (58, 60) prévus pour effectuer un adressage matriciel des Lignes et des colonnes.12. Device according to any one of claims 8 and 9, characterized in that the cathodes (18) are grouped along lines (52) parallel to each other, the cathodes of the same line being electrically connected to each other, in that the anodes (18) as well as the grids (30) which are optionally associated with them are grouped according to columns (54) parallel to each other and perpendicular to the lines, the grids of the same cotton being electrically connected to each other , The anodes of the same column also being electrically connected to each other, and in that the device further comprises electronic control means (58, 60) provided for performing a matrix addressing of the rows and columns.
EP85401521A 1984-07-27 1985-07-23 Display device using field emission excited cathode luminescence Expired - Lifetime EP0172089B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR8411986A FR2568394B1 (en) 1984-07-27 1984-07-27 DEVICE FOR VIEWING BY CATHODOLUMINESCENCE EXCITED BY FIELD EMISSION
FR8411986 1984-07-27

Publications (2)

Publication Number Publication Date
EP0172089A1 true EP0172089A1 (en) 1986-02-19
EP0172089B1 EP0172089B1 (en) 1990-05-16

Family

ID=9306574

Family Applications (1)

Application Number Title Priority Date Filing Date
EP85401521A Expired - Lifetime EP0172089B1 (en) 1984-07-27 1985-07-23 Display device using field emission excited cathode luminescence

Country Status (6)

Country Link
US (1) US4908539A (en)
EP (1) EP0172089B1 (en)
JP (1) JPH0614263B2 (en)
CA (1) CA1261911A (en)
DE (1) DE3577774D1 (en)
FR (1) FR2568394B1 (en)

Cited By (47)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1988001098A1 (en) * 1986-07-30 1988-02-11 Commtech International Management Corporation Matrix-addressed flat panel display
FR2607623A1 (en) * 1986-11-27 1988-06-03 Commissariat Energie Atomique SOURCE OF POLARIZED SPIN ELECTRONS USING EMISSIVE CATHODE WITH MICROPOINTES, PHYSICAL APPLICATION OF ELECTRONS-MATTER OR ELECTRON-PARTICLE INTERACTIONS, PHYSICS OF PLASMA, ELECTRON MICROSCOPY
EP0278405A2 (en) * 1987-02-06 1988-08-17 Canon Kabushiki Kaisha Electron emission element and method of manufacturing the same
GB2209432A (en) * 1987-09-04 1989-05-10 Gen Electric Co Plc Field emission devices
US4857161A (en) * 1986-01-24 1989-08-15 Commissariat A L'energie Atomique Process for the production of a display means by cathodoluminescence excited by field emission
EP0349425A1 (en) * 1988-06-29 1990-01-03 Commissariat A L'energie Atomique Three-colour fluorescent screen using micro-tip cathodes
EP0354750A2 (en) * 1988-08-08 1990-02-14 Matsushita Electric Industrial Co., Ltd. Image display apparatus and method of fabrication thereof
FR2641108A1 (en) * 1988-12-23 1990-06-29 Thomson Csf Display device having a cathode ray tube screen
EP0385764A1 (en) * 1989-03-01 1990-09-05 THE GENERAL ELECTRIC COMPANY, p.l.c. Method of making electron emission devices
US4956574A (en) * 1989-08-08 1990-09-11 Motorola, Inc. Switched anode field emission device
US5007873A (en) * 1990-02-09 1991-04-16 Motorola, Inc. Non-planar field emission device having an emitter formed with a substantially normal vapor deposition process
US5019003A (en) * 1989-09-29 1991-05-28 Motorola, Inc. Field emission device having preformed emitters
US5030921A (en) * 1990-02-09 1991-07-09 Motorola, Inc. Cascaded cold cathode field emission devices
US5055077A (en) * 1989-11-22 1991-10-08 Motorola, Inc. Cold cathode field emission device having an electrode in an encapsulating layer
FR2662301A1 (en) * 1990-05-17 1991-11-22 Futaba Denshi Kogyo Kk ELECTRON EMITTING ELEMENT.
US5075595A (en) * 1991-01-24 1991-12-24 Motorola, Inc. Field emission device with vertically integrated active control
US5079476A (en) * 1990-02-09 1992-01-07 Motorola, Inc. Encapsulated field emission device
US5136764A (en) * 1990-09-27 1992-08-11 Motorola, Inc. Method for forming a field emission device
US5140219A (en) * 1991-02-28 1992-08-18 Motorola, Inc. Field emission display device employing an integral planar field emission control device
US5142184A (en) * 1990-02-09 1992-08-25 Kane Robert C Cold cathode field emission device with integral emitter ballasting
US5142256A (en) * 1991-04-04 1992-08-25 Motorola, Inc. Pin diode with field emission device switch
US5148078A (en) * 1990-08-29 1992-09-15 Motorola, Inc. Field emission device employing a concentric post
US5157309A (en) * 1990-09-13 1992-10-20 Motorola Inc. Cold-cathode field emission device employing a current source means
EP0513777A2 (en) * 1991-05-13 1992-11-19 Seiko Epson Corporation Multiple electrode field electron emission device and process for manufacturing it
US5173634A (en) * 1990-11-30 1992-12-22 Motorola, Inc. Current regulated field-emission device
US5173635A (en) * 1990-11-30 1992-12-22 Motorola, Inc. Bi-directional field emission device
US5176557A (en) * 1987-02-06 1993-01-05 Canon Kabushiki Kaisha Electron emission element and method of manufacturing the same
US5201681A (en) * 1987-02-06 1993-04-13 Canon Kabushiki Kaisha Method of emitting electrons
EP0541394A1 (en) * 1991-11-08 1993-05-12 Fujitsu Limited Field emitter array and cleaning method of the same
US5212426A (en) * 1991-01-24 1993-05-18 Motorola, Inc. Integrally controlled field emission flat display device
US5218273A (en) * 1991-01-25 1993-06-08 Motorola, Inc. Multi-function field emission device
US5225820A (en) * 1988-06-29 1993-07-06 Commissariat A L'energie Atomique Microtip trichromatic fluorescent screen
EP0557191A1 (en) * 1992-02-21 1993-08-25 Commissariat A L'energie Atomique Cathodoluminescent screen comprising a matrix electron source
FR2691567A1 (en) * 1992-05-22 1993-11-26 Futaba Denshi Kogyo Kk Fluorescent display appts. for e.g. seven segment display - uses substrate carrying cathode, gate electrode and emitter covered with plate carrying anode and fluorescent material
US5281890A (en) * 1990-10-30 1994-01-25 Motorola, Inc. Field emission device having a central anode
EP0616356A1 (en) * 1993-03-17 1994-09-21 Commissariat A L'energie Atomique Micropoint display device and method of fabrication
US5432407A (en) * 1990-12-26 1995-07-11 Motorola, Inc. Field emission device as charge transport switch for energy storage network
US5461280A (en) * 1990-08-29 1995-10-24 Motorola Field emission device employing photon-enhanced electron emission
US5465024A (en) * 1989-09-29 1995-11-07 Motorola, Inc. Flat panel display using field emission devices
WO1996010835A1 (en) * 1994-09-30 1996-04-11 Polaroid Corporation Film recorder light source based on field emission cathode
FR2731101A1 (en) * 1995-02-28 1996-08-30 Futaba Denshi Kogyo Kk Field-emission image display device and its control
US5717285A (en) * 1993-03-17 1998-02-10 Commissariat A L 'energie Atomique Microtip display device having a current limiting layer and a charge avoiding layer
EP0899770A1 (en) * 1997-08-28 1999-03-03 Matsushita Electronics Corporation Image display apparatus
US6236381B1 (en) 1997-12-01 2001-05-22 Matsushita Electronics Corporation Image display apparatus
US6278235B1 (en) 1997-12-22 2001-08-21 Matsushita Electronics Corporation Flat-type display apparatus with front case to which grid frame with extended electrodes fixed thereto is attached
US6320310B1 (en) 1997-09-19 2001-11-20 Matsushita Electronics Corporation Image display apparatus
US6630782B1 (en) 1997-12-01 2003-10-07 Matsushita Electric Industrial Co., Ltd. Image display apparatus having electrodes comprised of a frame and wires

Families Citing this family (95)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63105437A (en) * 1986-10-22 1988-05-10 Canon Inc Image formation device
JP2616918B2 (en) * 1987-03-26 1997-06-04 キヤノン株式会社 Display device
JP2713569B2 (en) * 1987-03-24 1998-02-16 キヤノン株式会社 Electron emission device
FR2634059B1 (en) * 1988-07-08 1996-04-12 Thomson Csf AUTOSCELLED ELECTRONIC MICROCOMPONENT IN VACUUM, ESPECIALLY DIODE, OR TRIODE, AND MANUFACTURING METHOD THEREOF
US5160871A (en) * 1989-06-19 1992-11-03 Matsushita Electric Industrial Co., Ltd. Flat configuration image display apparatus and manufacturing method thereof
US5412285A (en) * 1990-12-06 1995-05-02 Seiko Epson Corporation Linear amplifier incorporating a field emission device having specific gap distances between gate and cathode
JP2605161B2 (en) * 1990-03-27 1997-04-30 工業技術院長 Image display device
JP2656843B2 (en) * 1990-04-12 1997-09-24 双葉電子工業株式会社 Display device
US5470265A (en) * 1993-01-28 1995-11-28 Canon Kabushiki Kaisha Multi-electron source, image-forming device using multi-electron source, and methods for preparing them
US5103145A (en) * 1990-09-05 1992-04-07 Raytheon Company Luminance control for cathode-ray tube having field emission cathode
FR2669124B1 (en) * 1990-11-08 1993-01-22 Commissariat Energie Atomique BISTABLE ELECTROOPTIC DEVICE, SCREEN COMPRISING SUCH A DEVICE AND METHOD FOR IMPLEMENTING THE SCREEN.
DE69130252T2 (en) * 1990-12-28 1999-04-29 Canon Kk Imaging device
DE69130920T2 (en) * 1990-12-28 1999-09-16 Sony Corp Flat display device
EP0720199B1 (en) * 1991-02-01 1999-06-23 Fujitsu Limited Field emission microcathode array devices
US5347201A (en) * 1991-02-25 1994-09-13 Panocorp Display Systems Display device
US5489817A (en) * 1991-04-19 1996-02-06 Scitex Corporation Ltd. Electron-optical terminal image device based on a cold cathode
US5818500A (en) * 1991-05-06 1998-10-06 Eastman Kodak Company High resolution field emission image source and image recording apparatus
US5283501A (en) * 1991-07-18 1994-02-01 Motorola, Inc. Electron device employing a low/negative electron affinity electron source
US5227699A (en) * 1991-08-16 1993-07-13 Amoco Corporation Recessed gate field emission
AU655677B2 (en) * 1991-10-08 1995-01-05 Canon Kabushiki Kaisha Electron-emitting device, and electron beam-generating apparatus and image-forming apparatus employing the device
US5536193A (en) * 1991-11-07 1996-07-16 Microelectronics And Computer Technology Corporation Method of making wide band gap field emitter
US5237180A (en) * 1991-12-31 1993-08-17 Eastman Kodak Company High resolution image source
US5548185A (en) * 1992-03-16 1996-08-20 Microelectronics And Computer Technology Corporation Triode structure flat panel display employing flat field emission cathode
US5600200A (en) * 1992-03-16 1997-02-04 Microelectronics And Computer Technology Corporation Wire-mesh cathode
US5679043A (en) * 1992-03-16 1997-10-21 Microelectronics And Computer Technology Corporation Method of making a field emitter
US5543684A (en) 1992-03-16 1996-08-06 Microelectronics And Computer Technology Corporation Flat panel display based on diamond thin films
US5675216A (en) * 1992-03-16 1997-10-07 Microelectronics And Computer Technololgy Corp. Amorphic diamond film flat field emission cathode
US5763997A (en) * 1992-03-16 1998-06-09 Si Diamond Technology, Inc. Field emission display device
US6127773A (en) * 1992-03-16 2000-10-03 Si Diamond Technology, Inc. Amorphic diamond film flat field emission cathode
US5449970A (en) * 1992-03-16 1995-09-12 Microelectronics And Computer Technology Corporation Diode structure flat panel display
JP2661457B2 (en) * 1992-03-31 1997-10-08 双葉電子工業株式会社 Field emission cathode
US5721472A (en) * 1992-04-07 1998-02-24 Micron Display Technology, Inc. Identifying and disabling shorted electrodes in field emission display
US5410218A (en) * 1993-06-15 1995-04-25 Micron Display Technology, Inc. Active matrix field emission display having peripheral regulation of tip current
US5459480A (en) * 1992-04-07 1995-10-17 Micron Display Technology, Inc. Architecture for isolating display grid sections in a field emission display
US5581159A (en) * 1992-04-07 1996-12-03 Micron Technology, Inc. Back-to-back diode current regulator for field emission display
US5638086A (en) * 1993-02-01 1997-06-10 Micron Display Technology, Inc. Matrix display with peripheral drive signal sources
US5210472A (en) * 1992-04-07 1993-05-11 Micron Technology, Inc. Flat panel display in which low-voltage row and column address signals control a much pixel activation voltage
US5616991A (en) * 1992-04-07 1997-04-01 Micron Technology, Inc. Flat panel display in which low-voltage row and column address signals control a much higher pixel activation voltage
US5424605A (en) * 1992-04-10 1995-06-13 Silicon Video Corporation Self supporting flat video display
US5477105A (en) * 1992-04-10 1995-12-19 Silicon Video Corporation Structure of light-emitting device with raised black matrix for use in optical devices such as flat-panel cathode-ray tubes
KR950004516B1 (en) * 1992-04-29 1995-05-01 삼성전관주식회사 Field emission display and manufacturing method
DE4216938A1 (en) * 1992-05-22 1993-11-25 Philips Patentverwaltung Permanent magnet excited electric motor - has radial cross=section of soft magnetic yoke areas dimensioned w.r.t. the cross=section of the pole cores
US5347292A (en) * 1992-10-28 1994-09-13 Panocorp Display Systems Super high resolution cold cathode fluorescent display
US5313140A (en) * 1993-01-22 1994-05-17 Motorola, Inc. Field emission device with integral charge storage element and method for operation
JP2720748B2 (en) * 1993-02-10 1998-03-04 双葉電子工業株式会社 Field emission device and method of manufacturing the same
US5856812A (en) * 1993-05-11 1999-01-05 Micron Display Technology, Inc. Controlling pixel brightness in a field emission display using circuits for sampling and discharging
KR0156032B1 (en) * 1993-05-28 1998-10-15 호소야 레이지 Image display device and driver therefor
US5469021A (en) * 1993-06-02 1995-11-21 Btl Fellows Company, Llc Gas discharge flat-panel display and method for making the same
US5686790A (en) * 1993-06-22 1997-11-11 Candescent Technologies Corporation Flat panel device with ceramic backplate
US6034480A (en) * 1993-07-08 2000-03-07 Micron Technology, Inc. Identifying and disabling shorted electrodes in field emission display
US5909203A (en) * 1993-07-08 1999-06-01 Micron Technology, Inc. Architecture for isolating display grids in a field emission display
JP3252545B2 (en) * 1993-07-21 2002-02-04 ソニー株式会社 Flat display using field emission cathode
US5462467A (en) * 1993-09-08 1995-10-31 Silicon Video Corporation Fabrication of filamentary field-emission device, including self-aligned gate
US5340997A (en) * 1993-09-20 1994-08-23 Hewlett-Packard Company Electrostatically shielded field emission microelectronic device
TW272322B (en) * 1993-09-30 1996-03-11 Futaba Denshi Kogyo Kk
US5404070A (en) * 1993-10-04 1995-04-04 Industrial Technology Research Institute Low capacitance field emission display by gate-cathode dielectric
US5999149A (en) * 1993-10-15 1999-12-07 Micron Technology, Inc. Matrix display with peripheral drive signal sources
AU1043895A (en) * 1993-11-04 1995-05-23 Microelectronics And Computer Technology Corporation Methods for fabricating flat panel display systems and components
JP3267432B2 (en) * 1993-12-20 2002-03-18 双葉電子工業株式会社 Display device
GB2285168B (en) * 1993-12-22 1997-07-16 Marconi Gec Ltd Electron field emission devices
US5480843A (en) * 1994-02-10 1996-01-02 Samsung Display Devices Co., Ltd. Method for making a field emission device
JP3387617B2 (en) * 1994-03-29 2003-03-17 キヤノン株式会社 Electron source
US5509839A (en) * 1994-07-13 1996-04-23 Industrial Technology Research Institute Soft luminescence of field emission display
WO1996018204A1 (en) * 1994-12-05 1996-06-13 Color Planar Displays, Inc. Support structure for flat panel displays
US5595519A (en) * 1995-02-13 1997-01-21 Industrial Technology Research Institute Perforated screen for brightness enhancement
FR2732159B1 (en) * 1995-03-22 1997-06-13 Pixtech Sa DOUBLE GRID DISPLAY FLAT SCREEN
JP3239038B2 (en) * 1995-04-03 2001-12-17 シャープ株式会社 Method of manufacturing field emission electron source
US6296740B1 (en) 1995-04-24 2001-10-02 Si Diamond Technology, Inc. Pretreatment process for a surface texturing process
US5628659A (en) * 1995-04-24 1997-05-13 Microelectronics And Computer Corporation Method of making a field emission electron source with random micro-tip structures
US5644188A (en) * 1995-05-08 1997-07-01 Advanced Vision Technologies, Inc. Field emission display cell structure
US5630741A (en) * 1995-05-08 1997-05-20 Advanced Vision Technologies, Inc. Fabrication process for a field emission display cell structure
US5543691A (en) * 1995-05-11 1996-08-06 Raytheon Company Field emission display with focus grid and method of operating same
US5644327A (en) * 1995-06-07 1997-07-01 David Sarnoff Research Center, Inc. Tessellated electroluminescent display having a multilayer ceramic substrate
US5721560A (en) * 1995-07-28 1998-02-24 Micron Display Technology, Inc. Field emission control including different RC time constants for display screen and grid
US5910791A (en) * 1995-07-28 1999-06-08 Micron Technology, Inc. Method and circuit for reducing emission to grid in field emission displays
US5610478A (en) * 1995-10-30 1997-03-11 Motorola Method of conditioning emitters of a field emission display
US5669802A (en) * 1995-10-30 1997-09-23 Advanced Vision Technologies, Inc. Fabrication process for dual carrier display device
US5831384A (en) * 1995-10-30 1998-11-03 Advanced Vision Technologies, Inc. Dual carrier display device
US6118417A (en) * 1995-11-07 2000-09-12 Micron Technology, Inc. Field emission display with binary address line supplying emission current
US6252347B1 (en) 1996-01-16 2001-06-26 Raytheon Company Field emission display with suspended focusing conductive sheet
JP3765901B2 (en) * 1996-02-26 2006-04-12 株式会社東芝 Plasma display and plasma liquid crystal display
US5880554A (en) * 1996-02-26 1999-03-09 Industrial Technology Research Institute Soft luminescence of field emission display
US5831382A (en) * 1996-09-27 1998-11-03 Bilan; Frank Albert Display device based on indirectly heated thermionic cathodes
US5847515A (en) * 1996-11-01 1998-12-08 Micron Technology, Inc. Field emission display having multiple brightness display modes
FR2756969B1 (en) * 1996-12-06 1999-01-08 Commissariat Energie Atomique DISPLAY SCREEN COMPRISING A SOURCE OF MICROPOINT ELECTRONS, OBSERVABLE THROUGH THE SUPPORT OF MICROPOINTS, AND METHOD FOR MANUFACTURING THE SOURCE
JP3764906B2 (en) * 1997-03-11 2006-04-12 独立行政法人産業技術総合研究所 Field emission cathode
US6897855B1 (en) 1998-02-17 2005-05-24 Sarnoff Corporation Tiled electronic display structure
US6255772B1 (en) * 1998-02-27 2001-07-03 Micron Technology, Inc. Large-area FED apparatus and method for making same
US6137212A (en) * 1998-05-26 2000-10-24 The United States Of America As Represented By The Secretary Of The Army Field emission flat panel display with improved spacer architecture
KR100277691B1 (en) * 1998-09-17 2001-02-01 정선종 Apparatus for manufacturing short wavelength optoelectronic device and method for manufacturing short wavelength optoelectronic device using same
US6498592B1 (en) 1999-02-16 2002-12-24 Sarnoff Corp. Display tile structure using organic light emitting materials
JP4196490B2 (en) 1999-05-18 2008-12-17 ソニー株式会社 Cathode panel for cold cathode field emission display, cold cathode field emission display, and method for manufacturing cathode panel for cold cathode field emission display
FR2821982B1 (en) * 2001-03-09 2004-05-07 Commissariat Energie Atomique FLAT SCREEN WITH ELECTRONIC EMISSION AND AN INTEGRATED ANODE CONTROL DEVICE
JP2008091279A (en) * 2006-10-04 2008-04-17 Fuji Heavy Ind Ltd Light emitting device
CN101540260B (en) * 2008-03-19 2011-12-14 清华大学 Field emission display

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2926286A (en) * 1958-09-19 1960-02-23 Tung Sol Electric Inc Cold cathode display device
US3500102A (en) * 1967-05-15 1970-03-10 Us Army Thin electron tube with electron emitters at intersections of crossed conductors
US3622828A (en) * 1969-12-01 1971-11-23 Us Army Flat display tube with addressable cathode
US3921022A (en) * 1974-09-03 1975-11-18 Rca Corp Field emitting device and method of making same
FR2437661A1 (en) * 1978-09-27 1980-04-25 Smiths Industries Ltd CATHODE LUMINESCENCE DISPLAY DEVICE
FR2443085A1 (en) * 1978-07-24 1980-06-27 Thomson Csf ELECTRONIC BOMBARD MICROLITHOGRAPHY DEVICE

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3581148A (en) * 1969-06-04 1971-05-25 Roger Raoul Brignet Direct current static transformer
US3755704A (en) * 1970-02-06 1973-08-28 Stanford Research Inst Field emission cathode structures and devices utilizing such structures
US3634714A (en) * 1970-02-16 1972-01-11 G T Schijeldahl Co Electroluminescent display device with apertured electrodes
JPS4889678A (en) * 1972-02-25 1973-11-22
JPS5325632B2 (en) * 1973-03-22 1978-07-27
JPS50107858A (en) * 1974-01-30 1975-08-25
US4020381A (en) * 1974-12-09 1977-04-26 Texas Instruments Incorporated Cathode structure for a multibeam cathode ray tube
US4149147A (en) * 1976-04-15 1979-04-10 Futaba Denshi Kogyo K.K. Luminescent character display device
JPS53121454A (en) * 1977-03-31 1978-10-23 Toshiba Corp Electron source of thin film electric field emission type and its manufacture
US4178531A (en) * 1977-06-15 1979-12-11 Rca Corporation CRT with field-emission cathode
DE2916368C2 (en) * 1979-04-23 1982-10-21 Siemens AG, 1000 Berlin und 8000 München Cathode for a gas discharge display device
JPS57162692U (en) * 1981-04-03 1982-10-13
US4513308A (en) * 1982-09-23 1985-04-23 The United States Of America As Represented By The Secretary Of The Navy p-n Junction controlled field emitter array cathode
DE3243596C2 (en) * 1982-11-25 1985-09-26 M.A.N. Maschinenfabrik Augsburg-Nürnberg AG, 8000 München Method and device for transferring images to a screen
FR2561019B1 (en) * 1984-03-09 1987-07-17 Etude Surfaces Lab PROCESS FOR PRODUCING FLAT VISUALIZATION SCREENS AND FLAT SCREENS OBTAINED BY IMPLEMENTING SAID METHOD

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2926286A (en) * 1958-09-19 1960-02-23 Tung Sol Electric Inc Cold cathode display device
US3500102A (en) * 1967-05-15 1970-03-10 Us Army Thin electron tube with electron emitters at intersections of crossed conductors
US3622828A (en) * 1969-12-01 1971-11-23 Us Army Flat display tube with addressable cathode
US3921022A (en) * 1974-09-03 1975-11-18 Rca Corp Field emitting device and method of making same
FR2443085A1 (en) * 1978-07-24 1980-06-27 Thomson Csf ELECTRONIC BOMBARD MICROLITHOGRAPHY DEVICE
FR2437661A1 (en) * 1978-09-27 1980-04-25 Smiths Industries Ltd CATHODE LUMINESCENCE DISPLAY DEVICE

Cited By (69)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0234989B1 (en) * 1986-01-24 1990-09-05 Commissariat A L'energie Atomique Method of manufacturing an imaging device using field emission cathodoluminescence
US4857161A (en) * 1986-01-24 1989-08-15 Commissariat A L'energie Atomique Process for the production of a display means by cathodoluminescence excited by field emission
US4857799A (en) * 1986-07-30 1989-08-15 Sri International Matrix-addressed flat panel display
WO1988001098A1 (en) * 1986-07-30 1988-02-11 Commtech International Management Corporation Matrix-addressed flat panel display
FR2607623A1 (en) * 1986-11-27 1988-06-03 Commissariat Energie Atomique SOURCE OF POLARIZED SPIN ELECTRONS USING EMISSIVE CATHODE WITH MICROPOINTES, PHYSICAL APPLICATION OF ELECTRONS-MATTER OR ELECTRON-PARTICLE INTERACTIONS, PHYSICS OF PLASMA, ELECTRON MICROSCOPY
EP0272178A1 (en) * 1986-11-27 1988-06-22 Commissariat A L'energie Atomique Spin-polarized electron source using a multiple microtip emission cathode, use in electron matter or electron particle interaction physics, plasma physics, electron microscopy
US4835438A (en) * 1986-11-27 1989-05-30 Commissariat A L'energie Atomique Source of spin polarized electrons using an emissive micropoint cathode
AU631327B2 (en) * 1987-02-06 1992-11-19 Canon Kabushiki Kaisha Electron emission element and method of manufacturing the same
US5201681A (en) * 1987-02-06 1993-04-13 Canon Kabushiki Kaisha Method of emitting electrons
US5176557A (en) * 1987-02-06 1993-01-05 Canon Kabushiki Kaisha Electron emission element and method of manufacturing the same
EP0278405A3 (en) * 1987-02-06 1990-05-16 Canon Kabushiki Kaisha Electron emission element and method of manufacturing the same
EP0713241A2 (en) * 1987-02-06 1996-05-22 Canon Kabushiki Kaisha A display device comprising an electron emission element
EP0278405A2 (en) * 1987-02-06 1988-08-17 Canon Kabushiki Kaisha Electron emission element and method of manufacturing the same
EP0713241A3 (en) * 1987-02-06 1996-06-05 Canon Kk
GB2209432A (en) * 1987-09-04 1989-05-10 Gen Electric Co Plc Field emission devices
US4983878A (en) * 1987-09-04 1991-01-08 The General Electric Company, P.L.C. Field induced emission devices and method of forming same
GB2209432B (en) * 1987-09-04 1992-04-22 Gen Electric Co Plc Field emission devices
FR2633763A1 (en) * 1988-06-29 1990-01-05 Commissariat Energie Atomique MICROPOINT TRICHROME FLUORESCENT SCREEN
EP0349425A1 (en) * 1988-06-29 1990-01-03 Commissariat A L'energie Atomique Three-colour fluorescent screen using micro-tip cathodes
US5225820A (en) * 1988-06-29 1993-07-06 Commissariat A L'energie Atomique Microtip trichromatic fluorescent screen
EP0354750A3 (en) * 1988-08-08 1990-10-17 Matsushita Electric Industrial Co., Ltd. Image display apparatus and method of fabrication thereof
EP0354750A2 (en) * 1988-08-08 1990-02-14 Matsushita Electric Industrial Co., Ltd. Image display apparatus and method of fabrication thereof
FR2641108A1 (en) * 1988-12-23 1990-06-29 Thomson Csf Display device having a cathode ray tube screen
EP0385764A1 (en) * 1989-03-01 1990-09-05 THE GENERAL ELECTRIC COMPANY, p.l.c. Method of making electron emission devices
US4956574A (en) * 1989-08-08 1990-09-11 Motorola, Inc. Switched anode field emission device
US5465024A (en) * 1989-09-29 1995-11-07 Motorola, Inc. Flat panel display using field emission devices
US5019003A (en) * 1989-09-29 1991-05-28 Motorola, Inc. Field emission device having preformed emitters
US5055077A (en) * 1989-11-22 1991-10-08 Motorola, Inc. Cold cathode field emission device having an electrode in an encapsulating layer
US5142184A (en) * 1990-02-09 1992-08-25 Kane Robert C Cold cathode field emission device with integral emitter ballasting
US5007873A (en) * 1990-02-09 1991-04-16 Motorola, Inc. Non-planar field emission device having an emitter formed with a substantially normal vapor deposition process
US5079476A (en) * 1990-02-09 1992-01-07 Motorola, Inc. Encapsulated field emission device
US5030921A (en) * 1990-02-09 1991-07-09 Motorola, Inc. Cascaded cold cathode field emission devices
FR2662301A1 (en) * 1990-05-17 1991-11-22 Futaba Denshi Kogyo Kk ELECTRON EMITTING ELEMENT.
US5148078A (en) * 1990-08-29 1992-09-15 Motorola, Inc. Field emission device employing a concentric post
US5461280A (en) * 1990-08-29 1995-10-24 Motorola Field emission device employing photon-enhanced electron emission
US5157309A (en) * 1990-09-13 1992-10-20 Motorola Inc. Cold-cathode field emission device employing a current source means
US5136764A (en) * 1990-09-27 1992-08-11 Motorola, Inc. Method for forming a field emission device
US5281890A (en) * 1990-10-30 1994-01-25 Motorola, Inc. Field emission device having a central anode
US5173635A (en) * 1990-11-30 1992-12-22 Motorola, Inc. Bi-directional field emission device
US5173634A (en) * 1990-11-30 1992-12-22 Motorola, Inc. Current regulated field-emission device
US5432407A (en) * 1990-12-26 1995-07-11 Motorola, Inc. Field emission device as charge transport switch for energy storage network
US5075595A (en) * 1991-01-24 1991-12-24 Motorola, Inc. Field emission device with vertically integrated active control
US5212426A (en) * 1991-01-24 1993-05-18 Motorola, Inc. Integrally controlled field emission flat display device
US5218273A (en) * 1991-01-25 1993-06-08 Motorola, Inc. Multi-function field emission device
GB2261766B (en) * 1991-02-28 1995-03-08 Motorola Inc A field emission display device employing an integral planar field emission control device
US5140219A (en) * 1991-02-28 1992-08-18 Motorola, Inc. Field emission display device employing an integral planar field emission control device
US5142256A (en) * 1991-04-04 1992-08-25 Motorola, Inc. Pin diode with field emission device switch
EP0513777A2 (en) * 1991-05-13 1992-11-19 Seiko Epson Corporation Multiple electrode field electron emission device and process for manufacturing it
US5386172A (en) * 1991-05-13 1995-01-31 Seiko Epson Corporation Multiple electrode field electron emission device and method of manufacture
EP0513777A3 (en) * 1991-05-13 1993-10-20 Seiko Epson Corp Multiple electrode field electron emission device and process for manufacturing it
US5587720A (en) * 1991-11-08 1996-12-24 Fujitsu Limited Field emitter array and cleaning method of the same
EP0541394A1 (en) * 1991-11-08 1993-05-12 Fujitsu Limited Field emitter array and cleaning method of the same
US5394066A (en) * 1992-02-21 1995-02-28 Commissariat A L'energie Atomique Cathodoluminescent screen including a matrix source of electrons
FR2687841A1 (en) * 1992-02-21 1993-08-27 Commissariat Energie Atomique CATHODOLUMINESCENT SCREEN COMPRISING A MATRIX SOURCE OF ELECTRONS.
EP0557191A1 (en) * 1992-02-21 1993-08-25 Commissariat A L'energie Atomique Cathodoluminescent screen comprising a matrix electron source
FR2691567A1 (en) * 1992-05-22 1993-11-26 Futaba Denshi Kogyo Kk Fluorescent display appts. for e.g. seven segment display - uses substrate carrying cathode, gate electrode and emitter covered with plate carrying anode and fluorescent material
EP0616356A1 (en) * 1993-03-17 1994-09-21 Commissariat A L'energie Atomique Micropoint display device and method of fabrication
FR2702869A1 (en) * 1993-03-17 1994-09-23 Commissariat Energie Atomique Microtip display device and method of manufacturing the device
US5717285A (en) * 1993-03-17 1998-02-10 Commissariat A L 'energie Atomique Microtip display device having a current limiting layer and a charge avoiding layer
WO1996010835A1 (en) * 1994-09-30 1996-04-11 Polaroid Corporation Film recorder light source based on field emission cathode
FR2731101A1 (en) * 1995-02-28 1996-08-30 Futaba Denshi Kogyo Kk Field-emission image display device and its control
FR2734074A1 (en) * 1995-02-28 1996-11-15 Futaba Denshi Kogyo Kk FIELD EMISSION TYPE DEVICE, FIELD EMISSION TYPE IMAGE DISPLAY DEVICE, AND METHOD FOR CONTROLLING SUCH DEVICES
FR2734073A1 (en) * 1995-02-28 1996-11-15 Futaba Denshi Kogyo Kk FIELD EMISSION TYPE DEVICE, FIELD EMISSION TYPE IMAGE DISPLAY DEVICE, AND METHOD FOR CONTROLLING SUCH DEVICES
EP0899770A1 (en) * 1997-08-28 1999-03-03 Matsushita Electronics Corporation Image display apparatus
US6208072B1 (en) 1997-08-28 2001-03-27 Matsushita Electronics Corporation Image display apparatus with focusing and deflecting electrodes
US6320310B1 (en) 1997-09-19 2001-11-20 Matsushita Electronics Corporation Image display apparatus
US6236381B1 (en) 1997-12-01 2001-05-22 Matsushita Electronics Corporation Image display apparatus
US6630782B1 (en) 1997-12-01 2003-10-07 Matsushita Electric Industrial Co., Ltd. Image display apparatus having electrodes comprised of a frame and wires
US6278235B1 (en) 1997-12-22 2001-08-21 Matsushita Electronics Corporation Flat-type display apparatus with front case to which grid frame with extended electrodes fixed thereto is attached

Also Published As

Publication number Publication date
CA1261911A (en) 1989-09-26
JPS61221783A (en) 1986-10-02
FR2568394B1 (en) 1988-02-12
DE3577774D1 (en) 1990-06-21
US4908539A (en) 1990-03-13
JPH0614263B2 (en) 1994-02-23
EP0172089B1 (en) 1990-05-16
FR2568394A1 (en) 1986-01-31

Similar Documents

Publication Publication Date Title
EP0172089B1 (en) Display device using field emission excited cathode luminescence
EP0558393B1 (en) Micropoint cathode electron source and display device with cathodo-luminescence excited by field emission using same source
EP0316214B1 (en) Electron source comprising emissive cathodes with microtips, and display device working by cathodoluminescence excited by field emission using this source
FR2796489A1 (en) Field effect display mechanism construction having carbon nanotube cathode base substrate mounted and base spaced/gap spaced grid electrode sections.
FR2663462A1 (en) SOURCE OF ELECTRON WITH EMISSIVE MICROPOINT CATHODES.
EP0704877A1 (en) Electric protection of an anode of a plat viewing screen
EP1885649A2 (en) Method for making an emissive cathode
FR2760893A1 (en) Cold cathode field emission cathode
EP0550335B1 (en) System to control the form of a charged particle beam
EP0734042B1 (en) Anode of a flat viewing screen with resistive strips
EP0697710B1 (en) Manufacturing method for a micropoint-electron source
EP0671755B1 (en) Electron source comprising emissive cathodes with microtips
EP1210721B1 (en) Field emission flat screen with modulating electrode
EP0734043B1 (en) Double-gated flat display screen
EP1023741B1 (en) Electron source with microtips, with focusing grid and high microtip density, and flat screen using same
WO1998025291A1 (en) Display screen comprising a source of electrons with microtips, capable of being observed through the microtip support, and method for making this source
FR2764729A1 (en) METHOD OF MANUFACTURING SPACERS FOR FLAT VISUALIZATION SCREEN
EP0877407A1 (en) Anode of a flat display screen
WO1994014153A1 (en) Flat screen having individually dipole-protected microdots
FR2798507A1 (en) Device for producing electric field between electrodes in field emission flat screen has series of metallic strips forming modulating electrodes, and controller applying potential difference between first and modulating electrodes
WO2008074825A1 (en) Cathode structure for a flat screen with refocusing grid
FR2779243A1 (en) METHOD FOR REALIZING SELF-ALIGNED OPENINGS ON A STRUCTURE BY PHOTOLITHOGRAPHY, PARTICULARLY FOR MICROPOINT FLAT SCREEN
EP1029338A1 (en) Method for making an electron source with microtips
FR2797092A1 (en) METHOD FOR MANUFACTURING AN ANODE OF A FLAT VISUALIZATION SCREEN
FR2902574A1 (en) Cathodic element for field emission display type image display panel, has control electrodes supplied with respective voltages and comprising conductor elements, where voltage of one electrode is less than voltage of another electrode

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Designated state(s): CH DE GB IT LI NL SE

17P Request for examination filed

Effective date: 19860721

17Q First examination report despatched

Effective date: 19880212

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): CH DE GB IT LI NL SE

REF Corresponds to:

Ref document number: 3577774

Country of ref document: DE

Date of ref document: 19900621

ITF It: translation for a ep patent filed

Owner name: JACOBACCI & PERANI S.P.A.

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
ITTA It: last paid annual fee
EAL Se: european patent in force in sweden

Ref document number: 85401521.1

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 19970625

Year of fee payment: 13

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 19970717

Year of fee payment: 13

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 19970728

Year of fee payment: 13

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19980724

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19980731

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19980731

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19990201

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

EUG Se: european patent has lapsed

Ref document number: 85401521.1

NLV4 Nl: lapsed or anulled due to non-payment of the annual fee

Effective date: 19990201

REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20030724

Year of fee payment: 19

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20040721

Year of fee payment: 20

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20050201

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 20050722

REG Reference to a national code

Ref country code: GB

Ref legal event code: PE20