EP0149448B1 - Galvanic element, in particular a secondary element, and method of production - Google Patents

Galvanic element, in particular a secondary element, and method of production Download PDF

Info

Publication number
EP0149448B1
EP0149448B1 EP84890249A EP84890249A EP0149448B1 EP 0149448 B1 EP0149448 B1 EP 0149448B1 EP 84890249 A EP84890249 A EP 84890249A EP 84890249 A EP84890249 A EP 84890249A EP 0149448 B1 EP0149448 B1 EP 0149448B1
Authority
EP
European Patent Office
Prior art keywords
channel
electrolyte
electrodes
galvanic element
separators
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP84890249A
Other languages
German (de)
French (fr)
Other versions
EP0149448A3 (en
EP0149448A2 (en
Inventor
Gerd Dr. Tomazic
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
S.E.A. STUDIENGESELLSCHAFT FUER ENERGIESPEICHER UN
Original Assignee
Sea Studiengesellschaft fur Energiespeicher und Antriebssysteme GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sea Studiengesellschaft fur Energiespeicher und Antriebssysteme GmbH filed Critical Sea Studiengesellschaft fur Energiespeicher und Antriebssysteme GmbH
Publication of EP0149448A2 publication Critical patent/EP0149448A2/en
Publication of EP0149448A3 publication Critical patent/EP0149448A3/en
Application granted granted Critical
Publication of EP0149448B1 publication Critical patent/EP0149448B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/70Arrangements for stirring or circulating the electrolyte
    • H01M50/77Arrangements for stirring or circulating the electrolyte with external circulating path
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/04Construction or manufacture in general
    • H01M10/0413Large-sized flat cells or batteries for motive or stationary systems with plate-like electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/36Accumulators not provided for in groups H01M10/05-H01M10/34
    • H01M10/365Zinc-halogen accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/24Grouping of fuel cells, e.g. stacking of fuel cells
    • H01M8/2404Processes or apparatus for grouping fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/49002Electrical device making
    • Y10T29/49108Electric battery cell making
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/49002Electrical device making
    • Y10T29/49108Electric battery cell making
    • Y10T29/4911Electric battery cell making including sealing

Definitions

  • the invention relates to a galvanic element, in particular a secondary element, with circulating electrolyte liquid, electrolyte suspension or the like, e.g. a zinc-bromine battery and a method for producing the same.
  • a battery has already become known which has separators made of plastic and plastic-bonded carbon-filled electrodes. Depressions are provided in the separators, through which a distribution channel for the electrolyte is formed in the electrode space, the electrodes and the separators being constructed with polypropylene and being connected to one another by a suitable adhesive.
  • this application of adhesive is extremely difficult to master technically, since both too little and too large an application of adhesive must be avoided, since otherwise an insufficiently dense liquid connection will not be established, or the distribution channels will be closed by the adhesive, with an insufficient supply of the electrolyte into a cell.
  • the object of the present invention is to provide a galvanic element, in particular a secondary element, preferably zinc-bromine element, which is particularly reliable, in which the electrodes and / or the separators are connected to one another in a liquid-tight manner, e.g. can be glued and the supply or discharge of the electrolyte can be carried out without interference, and at the same time the electrical resistances of the supply and discharge lines can be selected independently of the construction of the galvanic element.
  • a galvanic element in particular a secondary element, preferably zinc-bromine element, which is particularly reliable, in which the electrodes and / or the separators are connected to one another in a liquid-tight manner, e.g. can be glued and the supply or discharge of the electrolyte can be carried out without interference, and at the same time the electrical resistances of the supply and discharge lines can be selected independently of the construction of the galvanic element.
  • the galvanic element according to the invention in particular secondary element with circulating electrolyte liquid, a plurality of electrodes, preferably bipolar plastic-containing carbon, containing electrodes, a large number of separators, the separators and the electrodes being directly connected to one another in a liquid-tight manner, at least in the region of their outer edges, e.g.
  • anode and cathode spaces are formed, with distribution channels for the electrolyte in the arrangement spaces or cathode spaces, which are preferably formed by depressions in the region of the electrode edges and / or separator edges, which are connected to one another in a liquid-conducting manner, consists essentially in that the anode compartments and the cathode compartments via at least one electrolyte feed and at least one drain opening each, which penetrate the edges of electrodes and / or separators, which edges extend essentially transversely to the electrodes or separators and via separate electrolyte-conducting connecting pieces over each other Corresponding openings are each connected to one another in a liquid-tight manner for the supply or removal of electrolyte from the anode compartments or cathode compartments.
  • a galvanic element is created in which it is possible to ensure both the electrolyte supply and discharge in a particularly fluidly reliable manner, the galvanic element simultaneously taking up a particularly small space, and a very simple and safe type and Is given for the generation of the galvanic elements and enables a high energy density with uniform loading of the individual electrodes.
  • each opening is connected to a channel in the connecting piece, the channels opening directly or indirectly in at least one electrolyte supply or discharge main channel, a construction is provided which can have a particularly low flow resistance, which results in a particularly low consumption of auxiliary energy is required.
  • openings of at least one connecting piece for the supply and / or discharge of the electrolyte of the anode space and / or the cathode space are connected via a transverse channel in addition to the main electrolyte channel, this can result in undesired zinc deposition, e.g. can lead to overgrowth of openings by generating an electrical countercurrent.
  • the cross-channel has a cross-section that varies in area, in particular in the form that the cross-sectional area decreases to the center of the cross-channel and then increases again, energy losses can be kept particularly low, while at the same time preventing undesired zinc deposition in the supply channels.
  • the channels in the connecting piece are arranged in a row, in particular staggered in two rows, there is a particularly simple connection to the respective main electrolyte channels, for example only two connecting pieces to be provided, one row each being assigned to the anode compartments and the other row to Is assigned to cathode spaces, and each with its own electrolyte main channel, for example for the supply or discharge of the electrolyte.
  • Is the transverse channel of the connection piece with individual sections between the respective feed and discharge lines from the anode or Unnecessary zinc deposition can be prevented in a particularly simple manner, cathode spaces with at least partially different lengths, preferably with a constant cross-section, in particular with a length increasing towards the central electrode space, the electrical currents flowing thereby being dimensioned particularly precisely by forming the length of the individual sections can be.
  • the individual sections are constructed with pipe sections, hoses or the like, particularly simple sections can be obtained.
  • two parts of the connecting piece have a connecting plane through which the inlets and / or outlets lead, and in at least one piece in the connecting plane the inlets and / or outlets respectively interconnecting in cross-section approximately semicircular or the like. Recesses, so there is an intermediate piece which takes into account both the electrical and the fluidic requirements in a particularly favorable manner, and which at the same time is particularly suitable for molding from plastic, for example by injection molding or the like.
  • the openings have a rectangular cross-section and the channels in the connecting piece have a corresponding cross-section in the area adjoining the opening, the channel merging into a circular cross-section, there is a particularly advantageous supply and discharge option for the electrolyte.
  • the openings penetrate a layer that surrounds the edges of the electrodes and separators, there is a particularly simple construction of the galvanic element, since a liquid-tight connection of the electrodes and separators can be achieved through this layer.
  • the layer is formed from the material of the electrodes and / or separators by melting them, there is a particularly easy to produce and particularly tight connection.
  • the edges of the electrodes or separators can be of any design, e.g. filled with carbon without the risk of additional impairment e.g. Short circuit formation and the like.
  • the battery exists.
  • a particularly simple manufacture of the galvanic element can be achieved if the connecting piece, the electrodes and / or separators have guide elements, in particular grooves and tongues, on their cooperating surfaces.
  • At least one channel is divided in the intermediate piece and, in addition to the mouth into an electrolyte supply or discharge main channel and possibly a transverse channel, a junction into a lockable channel, there is the possibility that a certain one in each case without disturbing the operation of the battery Anode or cathode compartment can be examined for its condition.
  • a thermocouple can be inserted, electrolyte liquid can be removed, this cell can be specifically subjected to a liquid exchange, for example to remove gas bubbles, and the like. In this way, the operating state can be checked in the simplest way and also partial corrections can be made will.
  • the channel opening in the middle of the electrolyte feed or discharge channel is partially curved, and the closable channel extends essentially in a straight line with the channel adjoining the opening, it is particularly easy to use probes, even with the smallest cross section. Tubes and the like are introduced into the anode or cathode compartment. If at least part of the wall of the curved duct is constructed with at least one filler in the connecting piece, the filler (s) optionally having the closable ducts and preferably being connected to one another, such a configuration meets the requirements of a zinc-bromine battery both in terms of flow technology as well as electrical particularly inexpensive invoice, which also creates a particularly simple shape that is excellently suitable for manufacturing from plastic.
  • the method according to the invention for the production of galvanic elements, in particular secondary elements with circulating electrolyte liquid, a large number, in particular bipolar electrodes, which are constructed with thermoplastic material and in their inner area have an electroactive substance, in particular plastic-bonded carbon, and separators, which are composed of thermoplastic Material are built up, welded together at their edges, consists essentially in that the electrodes and / or the separators are held together and pressed together, optionally with stiffening end plates, and the edges of the electrodes and separators, optionally the end plates, transversely to the flat surface Extension of the electrodes or separators are melted, in particular via a heated metal mirror which is moved adjacent to the edges or in abutment thereon, and then the melt, preferably under pressure storage with a coolant, e.g.
  • a coolant e.g.
  • both electrodes and separators can be constructed, for example, of polypropylene, and polypropylene, due to its chemically highly inert composition, is only particularly suitable for gluing, in particular If no preparations, such as etching, roughening, by means of silent electrical discharges and the like, are carried out, it has been an unsolved problem up to now that the components of a galvanic zinc-bromine cell, which must be made of a material that is bromine-resistant, are sealed to connect, at the same time no clogging of fine channels, for example supply channels, which are provided in the separators or in the electrodes, occurs. It was completely surprising that a galvanic element can be obtained by the method according to the invention, which also has the necessary mechanical strength, and ensures complete freedom from leaks.
  • a galvanic element which allows a particularly simple connection to the electrolyte storage containers via an intermediate piece, can be obtained if openings which pass through the edges of electrodes and / or separators, which edges extend essentially transversely to them, before or during melting the edges with, in particular, thermally insulating fillers, for example be sealed with release agent loaded cones, polytetrafluoroethylene filler pieces, or the like. It can thereby be achieved that the openings, which are formed by the lines leading through the anode or cathode spaces to the edges, have a certain geometrical design and have a reproducible distance in relation to series production, so that a high degree of tightness can be ensured .
  • pipes or hoses made of thermoplastic material are introduced into the openings before melting, for example with a mirror which has openings through which the pipes are passed, pipes or hoses can be melted, these hoses, e.g. open into an intermediate piece that has a main electrolyte feed or discharge channel.
  • an electrolyte-conducting connecting piece of the galvanic element for the individual cathode or anode spaces can also be produced, a thermoplastic part having a plurality of spaced-apart, preferably cylindrical recesses into which pipes or hoses made of thermoplastic Material is introduced into the part, whereupon the thermoplastic material of the part and the pipes or hoses is preferably in part preferably via a heated plate, for example Melted metal mirror, and then allowed to solidify.
  • a chemically essentially inert material e.g.
  • polypropylene wherein the tubes or pipes can be kept at the desired distances from each other, and a maximum tightness, since the thermoplastic material is fused together, can be achieved.
  • fillers e.g. before and / or during melting and possibly solidification, e.g. pins provided with release agent, in particular thermally insulating filler pieces e.g. Teflon, which are optionally fastened to the plate, in particular metal mirrors, are closed, so an intermediate piece can be manufactured in a material-specific manner with high precision and with little manufacturing outlay.
  • FIG. 1 shows a separator in plan view
  • FIG. 2 shows a section of a battery
  • FIGS. 3 and 4 show a section through a connecting piece
  • FIGS. 5 and 6 show the connecting piece in plan view
  • FIGS. 7 and 8 components for connecting pieces and 9 to 10 devices for producing a galvanic element.
  • the zinc-bromine battery described below basically consists of three main components.
  • the central part is formed by the actual galvanic element, which consists of a large number of electrodes and separators connected to each other in a liquid-tight manner.
  • the electrodes are provided in a bipolar arrangement and essentially consist of plastic-bonded carbon with a frame surrounding it made of a thermoplastic material. Due to the bipolar arrangement, one side of the electrode acts as a positive pole (bromine electrode) and the other side acts as a negative pole (zinc electrode). Due to the relatively thin design of the separator, the electrical resistance can be kept particularly low, the separator simultaneously acting as a diaphragm, i.e. as an effective barrier against the undesired transport of bromine to the zinc electrode and vice versa.
  • the second essential component of the galvanic element is the electrolyte, which is built up with an aqueous zinc bromide solution and an organic complexing agent to bind the elemental bromine.
  • the electrolyte circulates through the galvanic element in two separate circuits.
  • a further component of the galvanic element is provided for the circulation of the electrolyte, namely the pumps and the storage containers for the electrolyte.
  • the bromine formed reacts during charging to form an organic bromine complex, which acts as the second liquid phase to store the bromine. Due to the higher specific density, this bromine-rich phase in the reservoir for the cathode liquid separates from the rest of the solution. In the charged state, therefore, the reaction partner for the positive electrode is kept outside the electrochemical cell and cannot react with the zinc. Losses due to self-discharge are therefore eliminated, the battery can be stored maintenance-free for any length of time. (The anode liquid depletes during charging of zinc, which is deposited in metallic form on the negative electrodes).
  • the bromine-rich organic phase is fed to the passivated electrode with the circulated electrolyte, while zinc dissolves in the electrolyte at the negative electrode.
  • Another characteristic inherent to the system is the leakage or parasitic currents caused by the bipolar electrode arrangement in series, which occur as a result of the electrolyte supply, which is parallel to the individual cells and takes place via a common main line, and lead to energy losses and uneven zinc deposition (dendrite formation). This effect increases with increasing number of individual cells and has the greatest effect on zinc accumulation with the electrolyte feed near the negative end pole of the bipolar cell block. The normal electrolyte circulation is disturbed, the zinc deposition in the individual cells becomes inconsistent, so that their mutually different behavior can ultimately cause the battery to fail.
  • FIG. 2 A galvanic element is shown in sections in FIG. 2, which is composed of individual electrodes 1 and separators 2.
  • the electrodes and separators have a common sheath 3, which was formed by melting the electrode and separator material.
  • the separator has a depression through which distributor channels 4 and 5 are formed. Access openings 7 of different sizes are provided on their central surface 6, so that a uniform distribution of the electrolyte is ensured both when the supply line is supplied and when it is discharged from the anode or cathode compartment.
  • the electrodes can either be constructed analogously to the separators or there is also the possibility that the separators are essentially planar and only the electrodes are designed as described here. In any case, it must be ensured that a space is formed between the separator and the electrode which is sufficient for the access of the electrolyte and for the handling of the electro-chemical reaction.
  • the bundle of electrodes and separators has openings 8 in the distribution channels 4 which penetrate the separators essentially transversely to their planar extent.
  • a prismatic recess 9, which has grooves 10, is provided in the galvanic element.
  • the connecting piece 11, which has springs 12, can be inserted in a liquid-tight manner in this prismatic recess.
  • the connecting piece of which at least four or at least two, depending on the construction, can be designed only for connecting every second electrolyte space, in which case either the supply line or the discharge line of the electrolyte are formed through this connecting piece the anode or cathode compartment.
  • Each opening 8 is assigned to a channel 13, the channels 13 (cf. FIG.
  • a transverse channel 15 can be provided, which is closed at both ends by an O-ring 16 and a graft plate 17.
  • the cross-channel has a cross-section which varies in area, the cross-sectional area decreasing up to the center of the cross-channel and then increasing again.
  • the channels 13 can - as shown in Fig. 4 - be arranged offset.
  • the channels in the connecting piece widen to a rectangular cross section, which then corresponds to each of the openings 8 in the separator or in the electrode.
  • This rectangular cross section then changes into a circular one, wherein the electrical resistance can be set by the length of the channels, which are formed, for example, by attached hose lines or the like.
  • the connecting pieces can be connected to the electrode and separator bundle in a liquid-tight manner either by means of a clamp seat 16, 17 by means of their own mechanical clamping devices or by a fusion connection.
  • a plurality of separators can also be provided per electrolyte compartment if a larger volume is desired.
  • the component 18 of a connecting piece shown in FIG. 7 is partially closed by a further part by mirror welding on its connecting plane 19 facing the observer.
  • the transverse channel which the individual channels 13 e.g. connects from the anode spaces to one another, is formed by sections 15a, 15b, 15c of the same cross section but of different lengths, the length increasing in the direction of the central electrode spaces, so that the resistance between the individual channels in the area of the central electrodes is greater than in the case of the electrodes arranged on the edge.
  • the connecting piece 11 shown partially in section in FIG. 8 has, as can be seen in FIG. 8b, a curved channel 13a which opens into further closable channels 20.
  • a filler 21 Part of the wall of the curved channel 13a is formed by a filler 21, which has the channels 20.
  • This filler is in 8c and is inserted into the slots 22 of the intermediate piece according to FIG. 8a, the individual webs with the channels 20 being able to be arranged at a distance from one another on a continuous bar 23, so that all slots 22 are provided with one filler piece can be closed.
  • These channels 20 can be used, for example, for the introduction of various probes, e.g.
  • thermocouple pressure sensor, comparison electrode, conductivity electrode, optical sensor, or the like, but there is also the possibility of actively intervening in the electrochemical process, e.g. inert gas purging, gas discharge, but also measuring the speed of the electrolyte flow by introducing gas bubbles and observing the speed at which it moves. Via these channels 20 there is therefore the possibility of establishing a diagnostic center for a galvanic element without thereby endangering the normal operation of this element.
  • the filler can also be used to close a channel 13, for example to separate this electrode space from the rest of the cell.
  • a packet 24 which is made up of the electrodes and separators to be connected to one another, is melted at the edges by mirrors 25, which are formed 25a and 25b, and simultaneously pressed against one another , with a plate 26, e.g. a front plate made of thermoplastic material is melted at the same time.
  • the packet of electrodes and separators which is also pressed against one another by punches 28, is melted at its edges by the heating mirrors 25 pressed against one another, the channels which serve for the supply and discharge of the electrolyte being kept free or provided with connecting hoses by the filler pieces can.
  • the split mirror 25a, 25b is extended and the front plates are pressed against the package, whereby a tight connection is obtained.
  • a wire e.g. with a diameter of 0.5 mm or a triangular or polygonal cross-section are placed during the connection and then pulled out, thereby creating a channel through which the cells are vented without electrical connection thereof.
  • FIG. 10a, 10b and 10c illustrate particularly clearly how it is achieved that e.g. the channels 4, which lead to the electrode spaces, are not closed during the mirror welding, whereby this method can also serve for the production of the connecting piece.
  • a welding spatula 25 is arranged between the package of electrodes and separators and the front plate 26, Teflon tubes 29 being able to be passed through both the front plate and the welding mirror.
  • Teflon hoses 29 lead into the channels 4 and thus ensure that the channels 4 are not closed after the split mirror 25a and 25b has been extended and the partially melted package and the partially melted front plate have been pressed against it.
  • hoses made of thermoplastic material e.g. Polypropylene, are used, in which case these tubes are welded in front of or in the channels 4, with either a series of bores or a continuous slot in the front plate or the like through which the tubes are guided being provided can be.
  • a separate comb piece 30 is provided, which is thermally insulated and optionally has a release agent applied to it, as a result of which the openings of the channels 4 are also kept free even after welding, while the packet 24 and the End plate 26 extend the extensions of the comb piece 30 in the channels 4.

Abstract

An electrochemical device having one or more cells, a bipolar carbon-plastic electrode element providing in combination a separator, cathode and anode, the cathode and anode each having a space formed therebetween, catholyte and anolyte electrolytes circulated from and to reservoirs therefor via distribution connector means to or from a feed or discharge orifice in the appropriate cathode space or anode space. The distribution connector means is provided with at least a configured offset pathways interconnecting feed or discharge channels and the cathode or anode orifices. The pathways of a connector can be interconnected by a cross-channel having a varying area cross-section whereby shunt current protection capabilities are provided so as to reduce or eliminate detrimental orifice blocking depositions. In one embodiment the cross channel can be provided by means having a constant cross section, but variable length. A variable length cross channel is provided by either arcuate interconnected channels having various arcuate lengths or it can be provided by separate arcuate hose-like members of the various lengths. The distribution connector means can be provided with bifurcated distribution channel means feeding it electrolyte. The bifurcated distribution channel means provide means for access into the battery whereby the battery's operating conditions and parameters can be sensed or the electrolyte can be tested or modified as the battery's operation dictates.

Description

Die Erfindung bezieht sich auf ein galvanisches Element, insbesondere Sekundärelement, mit umlaufender Elektrolytflüssigkeit, Elektrolytsuspension od. dgl., z.B. eine Zink-Brom-Batterie sowie auf ein Verfahren zur Herstellung desselben.The invention relates to a galvanic element, in particular a secondary element, with circulating electrolyte liquid, electrolyte suspension or the like, e.g. a zinc-bromine battery and a method for producing the same.

Bei galvanischen Elementen mit umlaufenden Elektrolyten besteht der Wunsch, das galvanische Element so auszugestalten, daß ein möglichst geringes Volumen beansprucht wird, wobei der Katholyt und der Anolyt in einem eigenen Reservoir gelagert werden, welche mit entsprechenden Pumpen z.B. über einen gemeinsamen Motor durch das System gepumpt werden. Sowohl für die Separatoren als auch für die Elektroden haben sich Kunststoffmaterialien besonders bewährt, wobei die Elektroden einen inneren Bereich aufweisen, der kunststoffgebundenen Kohlenstoff, z.B. Grafit, Aktivkohle, hat, od dgl. aufweist. Derartige Elektroden eignen sich vor allem für die bipolare Bauweise von Akkumulatoren.In the case of galvanic elements with circulating electrolytes, there is a desire to design the galvanic element in such a way that the smallest possible volume is used, the catholyte and the anolyte being stored in a separate reservoir, which can be pumped with appropriate pumps, e.g. can be pumped through the system via a common motor. Plastic materials have proven particularly useful for both the separators and the electrodes, the electrodes having an inner region which contains plastic-bonded carbon, e.g. Has graphite, activated carbon, or the like. Such electrodes are particularly suitable for the bipolar construction of batteries.

Es ist bereits eine Batterie bekannt geworden, die Separatoren aus Kunststoff und kunststoffgebundenen kohlenstoffgefüllten Elektroden aufweist. In den Separatoren sind Vertiefungen vorgesehen, durch die ein Verteilerkanal für den Elektrolyten im Elektrodenraum gebildet wird, wobei die Elektroden und die Separatoren mit Polypropylen aufgebaut sind und durch einen geeigneten Klebstoff miteinander verbunden werden. Dieser Klebstoffauftrag ist jedoch außerordentlich schwierig technisch zu beherrschen, da sowohl ein zu geringer als auch ein zu großer Klebstoffauftrag vermieden werden muß, da sonst keine ausreichende dichte Flüssigkeitsverbindung aufgebaut wird, bzw. die Verteilerkanäle durch den Klebstoff verschlossen werden, womit eine unzureichende Zufuhr des Elektrolyten in eine Zelle verursacht wird.A battery has already become known which has separators made of plastic and plastic-bonded carbon-filled electrodes. Depressions are provided in the separators, through which a distribution channel for the electrolyte is formed in the electrode space, the electrodes and the separators being constructed with polypropylene and being connected to one another by a suitable adhesive. However, this application of adhesive is extremely difficult to master technically, since both too little and too large an application of adhesive must be avoided, since otherwise an insufficiently dense liquid connection will not be established, or the distribution channels will be closed by the adhesive, with an insufficient supply of the electrolyte into a cell.

Aufgabe der vorliegenden Erfindung besteht darin, ein galvanisches Element, insbesondere Sekundärelement, vorzugsweise Zink-Brom-Element, das besonders betriebssicher ist, zu schaffen, bei welchem die Elektroden und/oder die Separatoren flüssigkeitsdicht miteinander verbunden, z.B. verklebt werden können und die Zuleitung bzw. die Ableitung des Elektrolyten störungsfrei bewerkstelligt werden kann, wobei gleichzeitig die elektrischen Widerstände der Zu-und Ableitungen unabhängig von der Konstruktion des galvanischen Elementes gewählt werden können.The object of the present invention is to provide a galvanic element, in particular a secondary element, preferably zinc-bromine element, which is particularly reliable, in which the electrodes and / or the separators are connected to one another in a liquid-tight manner, e.g. can be glued and the supply or discharge of the electrolyte can be carried out without interference, and at the same time the electrical resistances of the supply and discharge lines can be selected independently of the construction of the galvanic element.

Das erfindungsgemäße galvanische Element, insbesondere Sekundärelement mit umlaufender Elektrolytflüssigkeit, einer Vielzahl von, vorzugsweise bipolaren kunststoffgebundenen Kohlenstoff enthaltenden, Elektroden, einer Vielzahl von Separatoren, wobei die Separatoren und die Elektroden zumindest im Bereich ihrer äußeren Ränder unmittelbar miteinander flüssigkeitsdicht verbunden, z.B. verklebt sind, wodurch Anoden- und Kathodenräume gebildet sind, mit Verteilerkanäle für den Elektrolyten in den Anordenräumen bzw. Kathodenräumen, welche vorzugsweise durch Vertiefungen im Bereich der Elektrodenränder und/oder Separatorränder gebildet sind, welche untereinander flüssigkeitsleitend verbunden sind, besteht im wesentlichen darin, daß die Anodenräume und die Kathodenräume über, zumindest je eine Elektrolytzuleitungs- und zumindest je eine Ableitungsöffnung, welche die Ränder von Elektroden und/oder Separatoren durchsetzen, welche Ränder sich im wesentlichen quer zu den Elektroden bzw. Separatoren erstrecken und über gesonderte elektrolytleitende Verbindungsstücke über die einander entsprechenden Öffnungen jeweils untereinander flüssigkeitsdicht zur Elektrolytzu- bzw. -ableitung aus den Anodenräumen bzw. Kathodenräumen verbunden sind. Dadurch ist ein galvanisches Element geschaffen, bei dem es möglich ist, sowohl die Elektrolyt- zu- bzw. -ableitung besonders strömungstechnisch sicher zu gewährleisten, wobei gleichzeitig das galvanische Element einen besonder geringen Raum im Anspruch nimmt, und eine sehr einfache und sichere Art und Weise zur Erzeugung der galvanischen Elemente gegeben ist und eine hohe Energiedichte bei gleichmäßiger Belastung der einzelnen Elektroden ermöglicht.The galvanic element according to the invention, in particular secondary element with circulating electrolyte liquid, a plurality of electrodes, preferably bipolar plastic-containing carbon, containing electrodes, a large number of separators, the separators and the electrodes being directly connected to one another in a liquid-tight manner, at least in the region of their outer edges, e.g. are glued, whereby anode and cathode spaces are formed, with distribution channels for the electrolyte in the arrangement spaces or cathode spaces, which are preferably formed by depressions in the region of the electrode edges and / or separator edges, which are connected to one another in a liquid-conducting manner, consists essentially in that the anode compartments and the cathode compartments via at least one electrolyte feed and at least one drain opening each, which penetrate the edges of electrodes and / or separators, which edges extend essentially transversely to the electrodes or separators and via separate electrolyte-conducting connecting pieces over each other Corresponding openings are each connected to one another in a liquid-tight manner for the supply or removal of electrolyte from the anode compartments or cathode compartments. As a result, a galvanic element is created in which it is possible to ensure both the electrolyte supply and discharge in a particularly fluidly reliable manner, the galvanic element simultaneously taking up a particularly small space, and a very simple and safe type and Is given for the generation of the galvanic elements and enables a high energy density with uniform loading of the individual electrodes.

Ist jede Öffnung jeweils mit einem Kanal im Verbindungsstück verbunden, wobei die Kanäle jeweils mittel- bzw. unmittelbar in zumindest einem Elektrolyt Zu- bzw. Ableitungshauptkanal münden, so ist eine Konstruktion gegeben, die einen besonders geringen Strömungswiderstand aufweisen kann, wodurch ein besonders geringer Verbrauch an Hilfsenergie erforderlich wird.If each opening is connected to a channel in the connecting piece, the channels opening directly or indirectly in at least one electrolyte supply or discharge main channel, a construction is provided which can have a particularly low flow resistance, which results in a particularly low consumption of auxiliary energy is required.

Sind die Öffnungen von zumindest einem Verbindungsstück für die Zufuhr und/oder Ableitung des Elektrolyten des Anodenraumes und/oder des Kathodenraumes zusätzlich zum Elektrolythauptkanal über einen Querkanal verbunden, so kann dadurch eine unerwünschte Zinkablagerung, die z.B. zum Zuwachsen von Öffnungen führen kann, durch Erzeugen eines elektrischen Gegenstromes vermieden werden.If the openings of at least one connecting piece for the supply and / or discharge of the electrolyte of the anode space and / or the cathode space are connected via a transverse channel in addition to the main electrolyte channel, this can result in undesired zinc deposition, e.g. can lead to overgrowth of openings by generating an electrical countercurrent.

Weist der Querkanal einen der Fläche variierenden Querschnitt auf, insbesondere in der Form, daß die Querschnittsfläche bis zur Mitte des Querkanals abnimmt und dann wieder zunimmt, so können Energieverluste besonders gering gehalten werden, wobei gleichzeitig eine unerwünchte Zinkablagerung in den Zuführungskanälen vermeidbar wird.If the cross-channel has a cross-section that varies in area, in particular in the form that the cross-sectional area decreases to the center of the cross-channel and then increases again, energy losses can be kept particularly low, while at the same time preventing undesired zinc deposition in the supply channels.

Sind die Kanäle im Verbindungsstück in Reihe, insbesondere versetzt in zwei Reihen angeordnet, so ist eine besonders einfache Verbindungs mit den jeweiligen Elektrolythauptkanälen gegeben, wobei so beispielsweise nur zwei Verbindungsstücke vorgesehen werden sollen, jeweils eine Reihe den Anodenräumen zugeordnet ist, und die andere Reihe den Kathodenräumen zugeordnet ist, und die jeweils mit einem eigenen Elektrolythauptkanal, z.B. für die Zuleitung bzw. Ableitung des Elektrolyts, verbunden sind.If the channels in the connecting piece are arranged in a row, in particular staggered in two rows, there is a particularly simple connection to the respective main electrolyte channels, for example only two connecting pieces to be provided, one row each being assigned to the anode compartments and the other row to Is assigned to cathode spaces, and each with its own electrolyte main channel, for example for the supply or discharge of the electrolyte.

Ist der Querkanal des Verbindungstückes mit einzelnen Teilstücken zwischen den jeweiligen Zu- bzw. Ableitungen aus des Anoden- bzw. Kathodenräumen mit zumindest teilweise unterschiedlichen Längen bei vorzugsweise gleichbleibendem Querschnitt, insbesondere mit zum mittleren Elektrodenraum zunehmender Länge aufgebaut, so kann auf besonders einfache Art und Weise eine unerwünschte Zinkablagerung verhindert werden, wobei die dabei fließenden elektrischen Ströme durch Ausbildung der Länge der einzelnen Teilstücke besonders genau dimensioniert werden kann. Sind die einzelnen Teilstücke mit Rohrstücken, Schläuchen od. dgl. aufgebaut, so sind besonders einfache Teilstücke erhaltbar. Weisen zwei Teile des Verbindungstückes eine Verbindungsebene auf, durch welche die Zu- und/ oder Ableitungen führen, und in zumindest einem Stück in der Verbindungsebene die Zu- und/oder Ableitungen jeweils untereinander verbindende im Querschnitt etwa halbkreisförmige od. dgl. Ausnehmungen auf, so ist ein Zwischenstück gegeben, das sowohl den elektrischen als auch den strömungstechnischen Erfordernissen besonders günstig Rechnung trägt, und welches gleichzeitig besonders günstig für die Formgebung aus Kunststoff, z.B. durch Spritzguß od. dgl. geeignet ist.Is the transverse channel of the connection piece with individual sections between the respective feed and discharge lines from the anode or Unnecessary zinc deposition can be prevented in a particularly simple manner, cathode spaces with at least partially different lengths, preferably with a constant cross-section, in particular with a length increasing towards the central electrode space, the electrical currents flowing thereby being dimensioned particularly precisely by forming the length of the individual sections can be. If the individual sections are constructed with pipe sections, hoses or the like, particularly simple sections can be obtained. If two parts of the connecting piece have a connecting plane through which the inlets and / or outlets lead, and in at least one piece in the connecting plane the inlets and / or outlets respectively interconnecting in cross-section approximately semicircular or the like. Recesses, so there is an intermediate piece which takes into account both the electrical and the fluidic requirements in a particularly favorable manner, and which at the same time is particularly suitable for molding from plastic, for example by injection molding or the like.

Weisen die Öffnungen einen rechteckigen Querschnitt auf, und weisen die Kanäle im Verbindungsstück im an die Öffnung anschließenden Bereich einen entsprechenden Querschnitt auf, wobei der Kanal in einen kreisförmigen Querschnitt übergeht, so ist eine besonders vorteilhafte Zuführungsmöglichkeit und Ableitungsmöglichkeit für den Elektrolyten gegeben.If the openings have a rectangular cross-section and the channels in the connecting piece have a corresponding cross-section in the area adjoining the opening, the channel merging into a circular cross-section, there is a particularly advantageous supply and discharge option for the electrolyte.

Durchsetzen die Öffnungen eine Schicht, die die Elektroden- und Separatorenränder umgibt, so ist eine besonders einfache Konstruktion des galvanischen Elementes gegeben, da durch diese Schicht eine flüssigkeitsdichte Verbindung der Elektroden und Separatoren erreichbar ist.If the openings penetrate a layer that surrounds the edges of the electrodes and separators, there is a particularly simple construction of the galvanic element, since a liquid-tight connection of the electrodes and separators can be achieved through this layer.

Ist die Schichte aus dem Material der Elektroden und/oder Separatoren durch Aufschmelzen derselben gebildet, so ist eine besonders einfach herzustellende und besonders dichte Verbindung gegeben.If the layer is formed from the material of the electrodes and / or separators by melting them, there is a particularly easy to produce and particularly tight connection.

Wird die Schichte durch eine Umhüllung der Ränder gebildet, so können die Ränder der Elektroden bzw. der Separatoren beliebig ausgeführt sein, z.B. mit Kohlenstoff gefüllt werden, ohne daß die Gefahr einer zusätzlichen Beeinträchtigung z.B. Kurzschlußbildung und dgl. der Batterie besteht.If the layer is formed by wrapping the edges, the edges of the electrodes or separators can be of any design, e.g. filled with carbon without the risk of additional impairment e.g. Short circuit formation and the like. The battery exists.

Eine besonders einfache Herstellung des galvanischen Elementes ist dann erreichbar, wenn das Verbindungsstück, die Elektroden und/oder Separatoren an ihren kooperierenden Flächen Führungselemente, insbesondere Nuten und Federn, aufweisen.A particularly simple manufacture of the galvanic element can be achieved if the connecting piece, the electrodes and / or separators have guide elements, in particular grooves and tongues, on their cooperating surfaces.

Ist zumindest ein Kanal im Zwischenstück geteilt, und weist neben der Mündung in einen Elektrolytzu- bzw. -ableitungshauptkanal und gegebenenfalls einen Querkanal eine Einmündung in einen verschließbaren Kanal auf, so besteht die Möglichkeit, daß ohne den Betrieb der Batterie zu stören, jeweils ein bestimmter Anoden- bzw. Kathodenraum auf seinen Zustand untersucht werden kann. So kann beispielsweise ein Thermoelement eingeführt werden, Elektrolytflüssigkeit entnommen werden, diese Zelle spezifisch einem Flüssigkeitsaustausch unterworfen werden, um beispielsweise Gasblasen zu entfernen, und dgl. Auf diese Art und Weise kann somit auf einfachste Art und Weise eine Überprüfung des Betriebszustandes und auch teilweise Korrekturen vorgenommen werden.If at least one channel is divided in the intermediate piece and, in addition to the mouth into an electrolyte supply or discharge main channel and possibly a transverse channel, a junction into a lockable channel, there is the possibility that a certain one in each case without disturbing the operation of the battery Anode or cathode compartment can be examined for its condition. For example, a thermocouple can be inserted, electrolyte liquid can be removed, this cell can be specifically subjected to a liquid exchange, for example to remove gas bubbles, and the like. In this way, the operating state can be checked in the simplest way and also partial corrections can be made will.

Ist der in dem Elektrolytzu- bzw. -ableitungskanal mittel- bzw. unmittelbar mündende Kanal teilweise gekrümmt ausgebildet, und erstreckt sich der verschließbare Kanal im wesentlichen geradlinig mit dem bis zur Öffnung anschließenden Kanal, so können auf besonders einfache Weise auch bei kleinstem Querschnitt Sonden, Schläuchse und dgl. in den Anoden- bzw. Kathodenraum eingeführt werden. Ist zumindest ein Teil der Wandung des gekrümmt ausgebildeten Kanals mit zumindest einem Füllstück im Verbindungsstück aufgebaut, wobei das/die Füllstücke gegebenenfalls die verschließbaren Kanäle aufweisen, und vorzugsweise miteinander verbunden sind, so trägt eine derartige Ausbildung den Erfordernissen eine Zink-Brom-Batterie sowohl strömungstechnisch als auch elektrische besonders günstig Rechnung, wobei weiters eine besonders einfache Form geschaffen ist, die sich für die Fertigung aus Kunststoff hervorragend eignet.If the channel opening in the middle of the electrolyte feed or discharge channel is partially curved, and the closable channel extends essentially in a straight line with the channel adjoining the opening, it is particularly easy to use probes, even with the smallest cross section. Tubes and the like are introduced into the anode or cathode compartment. If at least part of the wall of the curved duct is constructed with at least one filler in the connecting piece, the filler (s) optionally having the closable ducts and preferably being connected to one another, such a configuration meets the requirements of a zinc-bromine battery both in terms of flow technology as well as electrical particularly inexpensive invoice, which also creates a particularly simple shape that is excellently suitable for manufacturing from plastic.

Das erfindungsgemäße Verfahren zur Herstellung von galvanischen Elementen, insbesondere Sekundärelementen mit umlaufender Elektrolytflüssigkeit, wobei eine Vielzahl, insbesondere bipolarer Elektroden, welche mit thermoplastischem Material aufgebaut sind, und in ihrem inneren Bereich eine elektroaktive Substanz, insbesondere kunststoffgebundenen Kohlenstoff aufweisen, und Separatoren, welche mit thermoplastischem Material aufgebaut sind, an ihren Rändern miteinander verschweißt werden, besteht im wesentlichen darin, daß die Elektroden und/oder die Separatoren gemeinsam, gegebenenfalls mit versteifenden Endplatten, gegeneinander gehalten und gepreßt werden und die Ränder der Elektroden und Separatoren, gegebenenfalls der Endplatten quer zur flächigen Erstrekkung der Elektroden bzw. Separatoren aufgeschmolzen werden, insbesondere über eine benachbart zu den Rändern bzw. in Anlage auf diese verfahrener erhitzter Metallspiegel und sodann die Schmelze, vorzugsweise unter Beaufschlagung mit einem Kühlmittel, z.B. Luft erstartt wird, nachdem der Metallspiegel ausgefahren wird. Bei den bislang bekannten Akkumulatoren eingangs beschriebener Art, wurden die einzelnen Bauteile miteinander verklebt, wobei das galvanische Element in Betriebszustand zur weiteren Abdichtung z.B. durch Spannschrauben, oder dgl. zusammengepreßt wurde. Da sowohl Elektroden als auch Separatoren beispielsweise aus Polypropylen aufgebaut sein können, und Polypropylen aufgrund seiner chemisch hochinerten Zusammensetzung nur ausgesprochen schleucht zur Klebung geeignet ist, insbesondere wenn keine Vorbereitungen, wie z.B. Anätzen, Aufrauhen, durch stille elektrische Entladungen und dgl. durchgeführt wird, war es bislang ein ungelöstes Problem, die Bauteile einer galvanischen Zink-Brom-Zelle, die aus einem Material bestehen müssen, welches brom resistent ist, dicht zu verbinden, wobei gleichzeitig keine Verstopfung von feinen Kanälen, z.B. Zuleitungskanälen, welche in den Separatoren bzw. in den Elektroden vorgesehen sind, auftritt. Es war völlig überraschend, daß nach dem erfindungsgemäßen Verfahren ein galvanisches Element erhalten werden kann, das auch die erforderliche mechanische Beanspruchbarkeit aufweist, und eine vollkommene Freiheit von Leckagen gewährleistet.The method according to the invention for the production of galvanic elements, in particular secondary elements with circulating electrolyte liquid, a large number, in particular bipolar electrodes, which are constructed with thermoplastic material and in their inner area have an electroactive substance, in particular plastic-bonded carbon, and separators, which are composed of thermoplastic Material are built up, welded together at their edges, consists essentially in that the electrodes and / or the separators are held together and pressed together, optionally with stiffening end plates, and the edges of the electrodes and separators, optionally the end plates, transversely to the flat surface Extension of the electrodes or separators are melted, in particular via a heated metal mirror which is moved adjacent to the edges or in abutment thereon, and then the melt, preferably under pressure storage with a coolant, e.g. air, after the metal mirror is extended. In the previously known accumulators of the type described at the outset, the individual components were glued to one another, the galvanic element being pressed together in the operating state for further sealing, for example by means of tensioning screws or the like. Since both electrodes and separators can be constructed, for example, of polypropylene, and polypropylene, due to its chemically highly inert composition, is only particularly suitable for gluing, in particular If no preparations, such as etching, roughening, by means of silent electrical discharges and the like, are carried out, it has been an unsolved problem up to now that the components of a galvanic zinc-bromine cell, which must be made of a material that is bromine-resistant, are sealed to connect, at the same time no clogging of fine channels, for example supply channels, which are provided in the separators or in the electrodes, occurs. It was completely surprising that a galvanic element can be obtained by the method according to the invention, which also has the necessary mechanical strength, and ensures complete freedom from leaks.

Ein galvanisches Element, das eine besonders einfache Verbindung mit den Elektrolytvorratsbehälten über ein Zwischenstück erlaubt, kann dann erhalten werden, wenn Öffnungen, die die Ränder von Elektroden und/oder Separatoren durchsetzen, welche Ränder sich im wesentlichen quer zu denselben erstrecken, vor bzw. während dem Schmelzen der Ränder mit insbesondere thermisch isolierenden Füllstücken, z.B. mit Trennmittel beaufschlagten Zapfen, Polytetrafluoräthylenfüllstücken, oder dgl. verschlossen werden. Dadurch kann erreichtwerden, daß die Öffnungen, welche durch die durch die Anoden- bzw. Kathodenräume führenden Leitungen zu den Rändern gebildet werden, eine bestimmte geometrische Ausbildung besitzen, und einen, bezogen auf die Serienproduktion reproduzierbaren Abstand aufweisen, sodaß eine hohe Dichtigkeit gewährleistet sein kann.A galvanic element, which allows a particularly simple connection to the electrolyte storage containers via an intermediate piece, can be obtained if openings which pass through the edges of electrodes and / or separators, which edges extend essentially transversely to them, before or during melting the edges with, in particular, thermally insulating fillers, for example be sealed with release agent loaded cones, polytetrafluoroethylene filler pieces, or the like. It can thereby be achieved that the openings, which are formed by the lines leading through the anode or cathode spaces to the edges, have a certain geometrical design and have a reproducible distance in relation to series production, so that a high degree of tightness can be ensured .

Werden in die Öffnungen vor dem Aufschmelzen Rohre bzw. Schläuche aus thermoplastischem Material eingeführt, so kann beispielsweise mit einem Spiegel, welcher Öffnungen aufweist, durch die die Rohre hindurchgeführt werden, ein Einschmelzen von Rohren bzw. Schlächen erreicht werden, wobei diese Schläuche, z.B. in einem Zwischenstück münden das einen Elektrolythauptzuleitungs- bzw. -ableitungskanal aufweist.If pipes or hoses made of thermoplastic material are introduced into the openings before melting, for example with a mirror which has openings through which the pipes are passed, pipes or hoses can be melted, these hoses, e.g. open into an intermediate piece that has a main electrolyte feed or discharge channel.

Entsprechend dem Verfahren zur Herstellung des galvanischen Hauptelementes kann auch ein elektrolytleitendes Verbindungsstück des galvanischen Elementes für die einzelnen Kathoden- oder Anodenräume hergestellt werden, wobei ein thermoplastischer Teil mit einer Vielzahl in Abstand voneinander angeordneten, vorzugsweise zylindrischen Ausnehmungen, in welche Rohre bzw. Schläuche aus thermoplastischem Material in das Teil eingeführt werden, worauf das thermoplastische Material des Teiles und der Rohre bzw. Schläuche teilweise vorzugsweise über ein erhitzte Platte, z.B. Metallspiegel aufgeschmolzen, und sodann erstarren gelassen wird. Bei einem derartige hergestellten Zwischenstück ist es möglich, es aus einem chemisch im wesentlichen inerten Material z.B. Polypropylen zu erzeugen, wobei die Schläche bzw. Rohre in den erwünschten Abständen voneinander gehalten sein können, und ein höchste Dichtheit, da das thermoplastische Material ineinander verschmolzen ist, erreichbar wird.According to the method for producing the main galvanic element, an electrolyte-conducting connecting piece of the galvanic element for the individual cathode or anode spaces can also be produced, a thermoplastic part having a plurality of spaced-apart, preferably cylindrical recesses into which pipes or hoses made of thermoplastic Material is introduced into the part, whereupon the thermoplastic material of the part and the pipes or hoses is preferably in part preferably via a heated plate, for example Melted metal mirror, and then allowed to solidify. With such an intermediate piece produced, it is possible to make it from a chemically essentially inert material e.g. To produce polypropylene, wherein the tubes or pipes can be kept at the desired distances from each other, and a maximum tightness, since the thermoplastic material is fused together, can be achieved.

Werden vor und/oder während des Aufschmelzens und gegebenenfalls dem Erstarren die Seelen der Rohre bzw. Schläuche mit Füllstücken z.B. mit Trennmittel versehenen Zapfen, insbesondere thermisch isolierende Füllstücke z.B. Teflon, die gegebenenfalls auf der Platte, insbesondere Metallspiegel befestigt sind, verschlossen, so kann mit hoher Präzision und geringem fertigungstechnischen Aufwand ein Zwischenstück materialspezifisch gefertigt werden.If the souls of the pipes or hoses are filled with fillers, e.g. before and / or during melting and possibly solidification, e.g. pins provided with release agent, in particular thermally insulating filler pieces e.g. Teflon, which are optionally fastened to the plate, in particular metal mirrors, are closed, so an intermediate piece can be manufactured in a material-specific manner with high precision and with little manufacturing outlay.

Im folgenden wird die Erfindung anhand der Beispiele näher erläutert.The invention is explained in more detail below with the aid of the examples.

Es zeigen Fig. 1 einen Separator in Draufsicht, Fig. 2 einen Ausschnitt aus einer Batterie, Fig. 3 und 4 einen Schnitt durch ein Verbindungsstück und Fig. 5 und 6 das Verbindungsstück in Draufsicht, Fig. 7 und 8 Bauteile für Verbindungsstücke und Fig. 9 bis 10 Vorrichtungen zur Herstellung eines galvanischen Elementes.1 shows a separator in plan view, FIG. 2 shows a section of a battery, FIGS. 3 and 4 show a section through a connecting piece, and FIGS. 5 and 6 show the connecting piece in plan view, FIGS. 7 and 8 components for connecting pieces and 9 to 10 devices for producing a galvanic element.

Die im folgenden beschriebene Zink-Brom-Batterie besteht im Prinzip aus drei Hauptkomponenten. Der zentrale Teil wird durch das eigentliche galvanische Elemente gebildet, das aus einer Vielzahl miteinander flüssigkeitsdicht verbundener Elektroden und Separatoren besteht. Die Elektroden sind in bipolarer Anordnung vorgesehen und bestehen im wesentlichen aus kunststoffgebundenem Kohlenstoff mit einem dieses umgebenden Rahmen aus einem thermoplastischen Material. Durch die bipolare Anordnung wirkt eine Seite der Elektrode als positiver Pol (Brom-Elektrode) und die andere Seite als negativer Pol (ZinkElektrode). Durch die relativ dünne Ausbildung des Separators kann der elektrische Widerstand besonders gering gehalten werden, wobei gleichzeitig der Separator als Diaphragma wirkt, d.h. als wirksame Barriere gegen den unerwünschten Transport von Brom an die Zinkelektrode und umgekehrt. Der zweite wesentliche Bestandteil des galvanischen Elementes ist der Elektrolyt, der mit einer wäßrigen Zink-Bromid-Lösung und einem organischen Komplexbildner zur Bindung des elementaren Broms aufgebaut ist. Der Elektrolyt zirkuliert in zwei voneinander getrennten Kreisläufen durch das galvanische Element. ZurZirkulation des Elektrolyten ist ein weiterer Bestandteil des galvanischen Elementesvorgesehen und zwar sind dies die Pumpen sowie die Vorratsbehälter für den Elektrolyten.The zinc-bromine battery described below basically consists of three main components. The central part is formed by the actual galvanic element, which consists of a large number of electrodes and separators connected to each other in a liquid-tight manner. The electrodes are provided in a bipolar arrangement and essentially consist of plastic-bonded carbon with a frame surrounding it made of a thermoplastic material. Due to the bipolar arrangement, one side of the electrode acts as a positive pole (bromine electrode) and the other side acts as a negative pole (zinc electrode). Due to the relatively thin design of the separator, the electrical resistance can be kept particularly low, the separator simultaneously acting as a diaphragm, i.e. as an effective barrier against the undesired transport of bromine to the zinc electrode and vice versa. The second essential component of the galvanic element is the electrolyte, which is built up with an aqueous zinc bromide solution and an organic complexing agent to bind the elemental bromine. The electrolyte circulates through the galvanic element in two separate circuits. A further component of the galvanic element is provided for the circulation of the electrolyte, namely the pumps and the storage containers for the electrolyte.

Während der Ladung reagiert das entstehende Brom unter Bildung eines organischen Bromkomplexes, der als zweite flüssige Phase die Speicherung des Broms bewirkt. Infolge der höheren spezifischen Dichte trennt sich diese bromreiche Phase im Reservoir für die Kathodenflüssigkeit von der übrigen Lösung. Im geladenen Zustand wird daher der Reaktionspartner für die positive Elektrode außerhalb der elektrochemischen Zelle aufbewahrt, und kann in keine Reaktion mit dem Zink treten. Verluste durch Selbstentladung werden daher ausgeschaltet, die Batterie kann beliebig lange wartungsfrei gelagert werden. (Die Anodenflüssigkeit verarmt während der Ladung an Zink, das in metallischer Form an der negativen Elektroden abgeschieden wird).The bromine formed reacts during charging to form an organic bromine complex, which acts as the second liquid phase to store the bromine. Due to the higher specific density, this bromine-rich phase in the reservoir for the cathode liquid separates from the rest of the solution. In the charged state, therefore, the reaction partner for the positive electrode is kept outside the electrochemical cell and cannot react with the zinc. Losses due to self-discharge are therefore eliminated, the battery can be stored maintenance-free for any length of time. (The anode liquid depletes during charging of zinc, which is deposited in metallic form on the negative electrodes).

Während der Entladung wird die bromreiche organische Phase der passivierten Elektrode mit dem umgewälzten Elektrolyten zugeführt, während an der negativen Elektrode Zink in den Elektrolyten in Lösung geht. Als weiteres systemimmanentes Charakteristikum können die durch die bipolare Elektrodenanordnung in Serie bedingten leck- oder parasitären Ströme gelten, die infolge der zu den einzelnen Zellen parallelen, über eine gemeinsame Hauptleitung erfolgenden Elektrolytzuführung auftreten und zu Energieverlusten und ungleichmäßiger Zinkabscheidung (Dendritenbildung) führen. Dieser Effekt nimmt mit steigender Zahl der Einzelzellen zu, und wirkt sich hinsichtlich einer Zinkakkumulation am stärksten bei den Elektrolytzuführungen in der Nähe des negativen Endpols des bipolaren Zellblockes aus. Die normale Elektrolytzirkulation wird gestört, die Zinkabscheidung in den einzelnen Zellen wird uneinheitlich, so daß schließlich deren voneinander abweichendes Verhalten Funktionsuntüchtigkeit der Batterie verursachen kann.During the discharge, the bromine-rich organic phase is fed to the passivated electrode with the circulated electrolyte, while zinc dissolves in the electrolyte at the negative electrode. Another characteristic inherent to the system is the leakage or parasitic currents caused by the bipolar electrode arrangement in series, which occur as a result of the electrolyte supply, which is parallel to the individual cells and takes place via a common main line, and lead to energy losses and uneven zinc deposition (dendrite formation). This effect increases with increasing number of individual cells and has the greatest effect on zinc accumulation with the electrolyte feed near the negative end pole of the bipolar cell block. The normal electrolyte circulation is disturbed, the zinc deposition in the individual cells becomes inconsistent, so that their mutually different behavior can ultimately cause the battery to fail.

Als wirkt Maßnahme zur Eliminierung der parasitären Ströme hat sich eine elektrische Schaltung bewährt, bei welcher der Batteriespannung an den Elektrolyleitungen eine etwa gleich große Gegenspannung aufgezwungen wird, welche den Stromfluß kompensiert. Dieser Leckstromschutz erfordert nur geringen Energieaufwand, der direkt von der Batterieleistung abgezweigt wird.An electrical circuit has proven itself as a measure for eliminating the parasitic currents, in which an approximately equal counter voltage is forced on the battery voltage on the electrolyte lines, which compensates for the current flow. This leakage current protection requires only a small amount of energy, which is branched off directly from the battery power.

In Fig. 2 ist ein galvanisches Element abschnittsweise dargestellt, das aus einzelnen Elektroden 1 und Separetoren 2 aufgebaut ist. Die Elektroden und Separatoren weisen eine gemeinsame Umhüllung 3 auf, die durch Aufschmelzen des Elektroden- und Separatorenmaterials gebildet wurde. Wie aus Fig. 1 ersichtlich, weist der Separator eine Vertiefung auf, durch welche Verteilerkanäle 4 und 5 gebildet sind. Zu ihrer zentralen Fläche 6 sind verschieden große Zutrittsöffnungen 7 vorgesehen, sodaß eine gleichmäßige Verteilung des Elektrolyten sowohl bei der Zuleitung als auch bei der Ableitung desselben aus der Anoden- bzw. Kathodenraum gewährleistet ist. Die Elektroden können entweder analog zu den Separatoren aufgebaut sein oder es besteht auch die Möglichkeit, daß die Separatoren im wesentlichen plan und lediglich die Elektroden, wie hier beschrieben ausgeführt sind. Jedenfalls muß gewährleistet sein, daß zwischen Separator und Elektrode ein Raum gebildet ist, welcher für den Zutritt des Elektrolyten und zur Abwicklung der eletrochemischen Reaktion ausreichend ist.A galvanic element is shown in sections in FIG. 2, which is composed of individual electrodes 1 and separators 2. The electrodes and separators have a common sheath 3, which was formed by melting the electrode and separator material. As can be seen from FIG. 1, the separator has a depression through which distributor channels 4 and 5 are formed. Access openings 7 of different sizes are provided on their central surface 6, so that a uniform distribution of the electrolyte is ensured both when the supply line is supplied and when it is discharged from the anode or cathode compartment. The electrodes can either be constructed analogously to the separators or there is also the possibility that the separators are essentially planar and only the electrodes are designed as described here. In any case, it must be ensured that a space is formed between the separator and the electrode which is sufficient for the access of the electrolyte and for the handling of the electro-chemical reaction.

Wie aus Fig. 2 ersichtlich, weist das Bündel aus Elektroden und Separatoren Öffnungen 8 der Verteilerkanäle 4 auf, die die Separatoren im wesentlichen quer zur ihrer flächigen Erstreckung durchsetzen. Im galvanischen Element ist eine prismatische Ausnehmung 9 vorgesehen, die Nuten 10 aufweist. In dieser prismatischen Ausnehmung kann das Verbindungsstück 11, das Federn 12 aufweist, flüssigkeitsdicht eingeschoben werden. Es kann, wie aus Fig. 2 ersichtlich, das Verbindungstück, von welchem je nach Konstruktion zumindest vier oder zumindest zwei vorgesehen sein können, lediglich zur Verbindung jedes zweiten Elektrolytraumes ausgebildet sein, wobei dann durch dieses Verbungsstück entweder die Zuleitung oder die Ableitung des Elektrolyten aus dem Anoden- oder Kathodenraum erfolgt. Jede Öffnung 8 ist einem Kanal 13 zugeordnet, wobei die Kanäle 13 (vgl. Fig. 5) in einem Elektrolytzu- bzw. -ableitungskanal 14 münden, der seinerseits mit dem Reservoir und der Pumpe flüssigkeitsdicht verbunden ist. Die Kanäle 13 führen durch einen Wärmetauscher 31 mit Wasserzu- 32 und -ableitungsöffnung 33, wodurch eine wirksame Temperatursteuerung des Elektrolyten zum Betrieb des Elementes bei optimaler Temperatur ermöglicht ist.As can be seen from FIG. 2, the bundle of electrodes and separators has openings 8 in the distribution channels 4 which penetrate the separators essentially transversely to their planar extent. A prismatic recess 9, which has grooves 10, is provided in the galvanic element. The connecting piece 11, which has springs 12, can be inserted in a liquid-tight manner in this prismatic recess. As can be seen from FIG. 2, the connecting piece, of which at least four or at least two, depending on the construction, can be designed only for connecting every second electrolyte space, in which case either the supply line or the discharge line of the electrolyte are formed through this connecting piece the anode or cathode compartment. Each opening 8 is assigned to a channel 13, the channels 13 (cf. FIG. 5) opening into an electrolyte feed or discharge channel 14, which in turn is connected to the reservoir and the pump in a liquid-tight manner. The channels 13 lead through a heat exchanger 31 with water inlet and outlet opening 33, which enables effective temperature control of the electrolyte to operate the element at an optimal temperature.

Im Verbindungsstück kann, wie besonders deutlich aus Fig. 3 und Fig. 4 ersichtlich, ein Querkanal 15 vorgesehen sein, der an seinen beiden Enden über einen O-Ring 16 und eine Graftiplatte 17 abgeschlossen ist. Wie insbesondere aus Fig. 4 ersichtlich, weist der Querkanal einen in der Fläche variierenden Querschnitt auf, wobei die Querschnittsfläche bis zur Mitte des Querkanals abnimmt und dann wieder zunimmt.In the connecting piece, as can be seen particularly clearly from FIGS. 3 and 4, a transverse channel 15 can be provided, which is closed at both ends by an O-ring 16 and a graft plate 17. As can be seen in particular from FIG. 4, the cross-channel has a cross-section which varies in area, the cross-sectional area decreasing up to the center of the cross-channel and then increasing again.

Die Kanäle 13 können-wie in Fig. 4 dargestellt--versetzt angeordnet sein. Die Kanäle im Verbindungsstück erweitern sich-wie im Schnitt der Fig. 6 zu sehen-zu einem rechteckigen Querschnitt, welcher dann jeden der Öffnungen 8 im Separator bzw. in der Elektrode entspricht. Dieser rechteckige Querschnitt geht sodann in einen kreisförmigen über, wobei durch die Länge der Kanäle, die beispielsweise durch angesetzte Schlauchleitungen od. dgl. gebildet werden, der elektrische Widerstand eingestellt werden kann.The channels 13 can - as shown in Fig. 4 - be arranged offset. As can be seen in the section in FIG. 6, the channels in the connecting piece widen to a rectangular cross section, which then corresponds to each of the openings 8 in the separator or in the electrode. This rectangular cross section then changes into a circular one, wherein the electrical resistance can be set by the length of the channels, which are formed, for example, by attached hose lines or the like.

Die Verbindungsstücke können entweder durch Klemmsitz 16, 17 durch eigene mechanische Spannvorrichtungen oder Schmelzverbindung mit dem Elektroden- und Separatorbündel flüssigkeitsdicht verbunden sein.The connecting pieces can be connected to the electrode and separator bundle in a liquid-tight manner either by means of a clamp seat 16, 17 by means of their own mechanical clamping devices or by a fusion connection.

Falls erforderlich, kann pro Elektrolytraum auch eine Mehrzahl von Separatoren vorgesehen sein, falls ein größeres Volumen erwünscht ist.If necessary, a plurality of separators can also be provided per electrolyte compartment if a larger volume is desired.

Der in Fig. 7 dargestellte Bauteil 18 eines Verbindungsstückes wird an seiner zum Betrachter weisenden Verbindungsebene 19 durch einen weiteren Teil durch Spiegelschweißen teilweise verschlossen. Der Querkanal, welcher die einzelnen Kanäle 13 z.B. aus den Anodenräumen untereinander verbindet, wird durch Teilstücke 15a, 15b, 15c gleichen Querschnittes aber unterschiedlicher Länge gebildet, wobei die Länge in Richtung zu den mittleren Elektrodenräumen zunimmt, sodaß der Widerstand zwischen den einzelnen Kanälen im Bereich der mitteleren Elektroden größer ist, als bei den am Rand angeordneten Elektroden.The component 18 of a connecting piece shown in FIG. 7 is partially closed by a further part by mirror welding on its connecting plane 19 facing the observer. The transverse channel, which the individual channels 13 e.g. connects from the anode spaces to one another, is formed by sections 15a, 15b, 15c of the same cross section but of different lengths, the length increasing in the direction of the central electrode spaces, so that the resistance between the individual channels in the area of the central electrodes is greater than in the case of the electrodes arranged on the edge.

Das in Fig. 8 teilweise im Schnitt dargestellte Verbindungsstück 11 weist, wie in Fig. 8b ersichtlich, einen gekrümmten Kanal 13a auf, welcher in weitere verschließbare Kanäle 20 mündet. Ein Teil der Wandung des gekrümmt ausgebildeten Kanales 13a wird durch ein Füllstück 21, das die Kanäle 20 aufweist, gebildet. Dieses Füllstück ist in Ansicht von vorne in Fig. 8c dargestellt und wird in die Schlitze 22 des Zwischenstücks gemäß Fig. 8a eingeführt, wobei auf einer durchgehenden Leiste 23 jeweils die einzelnen Stege mit den Kanälen 20 in Abstand voneinander angeordnet sein können, sodaß mit einem Füllstück sämtliche Schlitze 22 verschlossen werden können. Diese Kanäle 20 können beispielsweise zur Einführung von verschiedenen Sonden, z.B. Thermoelement, Drucksensor, Vergleichselektrode, Leitfähigkeitselektrode, optischer Sensor, od. dgl. verwendet werden, es besteht jedoch auch die Möglichkeit, aktiv in den elektrochemischen Vorgang einzugreifen, z.B. Inertgasspülung, Gasableitung, aber auch Geschwindigkeitsmessung der Elektrolytströmung durch Einbringen von Gasblasen und Beobachtung der Fortbewegungsgeschwindigkeit desselben. Über diese Kanäle 20 besteht somit die Möglichkeit, ein Diagnosezentrum für ein galvanisches Element aufzubauen, ohne dadurch den normalen Betrieb dieses Elementes zu gefährden. Das Füllstück kann aber auch zum Verschließen eines Kanals 13 dienen, z.B. um diesen Elektrodenraum von der restlichen Zelle zu trennen.The connecting piece 11 shown partially in section in FIG. 8 has, as can be seen in FIG. 8b, a curved channel 13a which opens into further closable channels 20. Part of the wall of the curved channel 13a is formed by a filler 21, which has the channels 20. This filler is in 8c and is inserted into the slots 22 of the intermediate piece according to FIG. 8a, the individual webs with the channels 20 being able to be arranged at a distance from one another on a continuous bar 23, so that all slots 22 are provided with one filler piece can be closed. These channels 20 can be used, for example, for the introduction of various probes, e.g. thermocouple, pressure sensor, comparison electrode, conductivity electrode, optical sensor, or the like, but there is also the possibility of actively intervening in the electrochemical process, e.g. inert gas purging, gas discharge, but also measuring the speed of the electrolyte flow by introducing gas bubbles and observing the speed at which it moves. Via these channels 20 there is therefore the possibility of establishing a diagnostic center for a galvanic element without thereby endangering the normal operation of this element. The filler can also be used to close a channel 13, for example to separate this electrode space from the rest of the cell.

Bei der in Fig. 9 schematisch dargestellten Vorrichtung zur Durchführung des erfindungsgemäßen Verfahrens, wird ein Paket 24, das aus den miteinander zu verbindenden Elektroden und Separatoren durch Spiegel 25, die geteilt 25a und 25b ausgebildet sind, an den Rändern aufgeschmolzen, und gleichzeitig gegeneinander gepreßt, wobei eine Platte 26, z.B. eine Frontplatte aus thermoplastischem Material gleichzeitig aufgeschmolzen wird. In dieser Platte können aber auch beispielsweise Füllstücke 27, z.B. Teflonfüllstücke (Teflon ist ein eingetrogeues Warenzeichen), Zapfen, die mit Trennmittel beaufschlagt sind, od.dgl., vorgesehen werden. Durch die gegeneinander gepreßten Heizspiegel 25 wird das auch durch Stempel 28 gegeneinandergedrückte Paket aus Elektroden und Separatoren an seinen Rändern aufgeschmolzen, wobei durch die Füllstücke die Kanäle, welche für die Zu- und Abführung des Elektrolyten dienen, freigehalten werden, bzw. mit Verbindungsschläuchen versehen werden können. Nachdem sowohl die Ränder als auch die Frontplatte 26 genügend aufgeschmolzen sind, wird der geteilte Spiegel 25a, 25b ausgefahren und es werden die Frontplatten gegen das Paket gedrückt, wodurch eine dichte Verbindung erhalten wird. Soll ein z.B. die Kathodenräume verbindender Gasableitungskanal gleichzeitig gebildet werden, so kann auf das Paket ein Draht z.B. mit einem Durchmesser von 0,5 mm oder drei- bzw. vieleckigem Querschnitt während des Verbindens aufgelegt und sodann herausgezogen werden, womit ein Kanal geschaffen wird, über welchen eine Entlüftung der Zellen ohne elektrische Verbindung derselben erhalten wird.In the device for carrying out the method according to the invention shown schematically in FIG. 9, a packet 24, which is made up of the electrodes and separators to be connected to one another, is melted at the edges by mirrors 25, which are formed 25a and 25b, and simultaneously pressed against one another , with a plate 26, e.g. a front plate made of thermoplastic material is melted at the same time. Filling pieces 27, e.g. Teflon filler pieces (Teflon is a trusted trademark), pegs that are exposed to the release agent, or the like. The packet of electrodes and separators, which is also pressed against one another by punches 28, is melted at its edges by the heating mirrors 25 pressed against one another, the channels which serve for the supply and discharge of the electrolyte being kept free or provided with connecting hoses by the filler pieces can. After both the edges and the front plate 26 have melted sufficiently, the split mirror 25a, 25b is extended and the front plates are pressed against the package, whereby a tight connection is obtained. Should a e.g. gas discharge duct connecting the cathode spaces are formed at the same time, a wire, e.g. with a diameter of 0.5 mm or a triangular or polygonal cross-section are placed during the connection and then pulled out, thereby creating a channel through which the cells are vented without electrical connection thereof.

In den Fig. 10a, 10b und 10c ist besonders deutlich veranschaulicht, wie erreicht wird, daß z.B. die Kanäle 4, welche zu den Elektrodenräumen führen, bei dem Spiegelschweißen nicht verschlossen werden, wobei diese Verfahren ebenfalls für die Herstellung des Verbindungsstückes dienen kann. Zwischen dem Paket aus Elektroden und Separatoren und der Frontplatte 26 ist ein Schweißspeigel 25 angeordnet, wobei sowohl durch die Frontplatte als auch durch den Schweißspiegel Teflonschläuche 29 geführt sein können. Diese Teflonschläuche 29 führen bis in die Kanäle 4 und sichern so nach Ausfahren des geteilten Spiegels 25a und 25b und Gegendrükken des teilweise aufgeschmolzenen Paketes und der teilweise aufgeschmolzenen Frontplatte, daß die Kanäle 4 nicht verschlossen werden. Ansteelle der Teflonschläuche können auch Schläuche aus thermoplastischem Material, z.B. Polypropylen, eingesetzt werden, wobei dann ein Verschweißen dieser Schläuche vor bzw. in den Kanälen 4 stattfindet, wobei gleichzeitig in der Frontplatte od. dgl. entweder eine Reihe von Bohrungen oder ein durchgehender Schlitz, durch welche(n) die Schläuche geführt sind, vorgesehen sein kann.10a, 10b and 10c illustrate particularly clearly how it is achieved that e.g. the channels 4, which lead to the electrode spaces, are not closed during the mirror welding, whereby this method can also serve for the production of the connecting piece. A welding spatula 25 is arranged between the package of electrodes and separators and the front plate 26, Teflon tubes 29 being able to be passed through both the front plate and the welding mirror. These Teflon hoses 29 lead into the channels 4 and thus ensure that the channels 4 are not closed after the split mirror 25a and 25b has been extended and the partially melted package and the partially melted front plate have been pressed against it. Instead of the Teflon hoses, hoses made of thermoplastic material, e.g. Polypropylene, are used, in which case these tubes are welded in front of or in the channels 4, with either a series of bores or a continuous slot in the front plate or the like through which the tubes are guided being provided can be.

Bei der Ausführungsform gemäß 10b ist anstelle der Teflonschläuche ein eigenes Kammstück 30 vorgesehen, welches thermisch isoliert ist und gegebenenfalls mit einem Trennmittel beaufschlagt ist, wodurch ebenfalls die Öffnungen der Kanäle 4 auch nach dem Verschweißen freigehalten sind, wobei während des Gegeneinanderdrückens des Paketes 24 und der Endplatte 26 die Fortsätze des Kammstückes 30 in die Kanäle 4 reichen.In the embodiment according to FIG. 10b, instead of the Teflon hoses, a separate comb piece 30 is provided, which is thermally insulated and optionally has a release agent applied to it, as a result of which the openings of the channels 4 are also kept free even after welding, while the packet 24 and the End plate 26 extend the extensions of the comb piece 30 in the channels 4.

Claims (23)

1. A galvanic element, in particular a secondary element, having circulating liquid electrolyte, a plurality of preferably bipolar plastics-bonded carbon-containing electrodes (1) and a plurality of separators (2), the separators (2) and the electrodes (1) at least in the region of their outer edges being connected, e.g., glued essentially directly together to be liquid tight, whereby anode and cathode spaces are formed which for the electrolyte in the anode spaces and cathode spaces respectively have distributor channels (4, 5) which are preferably formed by depressions lying in the region of the edges of the electrodes and/or separators and connected together to conduct liquid, characterized in that the anode spaces and the cathode spaces are connected via openings (8), at least one each for leading in electrolyte and at least one each for leading out electrolyte, which pass through the edges of the electrodes (1) and/or separators (2), the said edges extending essentially transversely to the latter, and through separate, in particular one piece electrolyte-conducting connectors (11), via the openings corresponding with one another and in each case in a manner liquid tight from one another for leading electrolyte respectively into and out of the anode spaces and cathode spaces respectively.
2. A galvanic element as in Claim 1, characterized in that each opening (8) is connected to a respective channel (13) in the connector (11), the channels being preferably led through a heat- exchanger (31) and in each case opening out directly or indirectly into a main channel (14) arranged if necessary in the connector, for leading electrolyte in or out respectively.
3. A galvanic element as in Claim 1 or 2, characterized in that in at least one connector the openings (8) for leading electrolyte into and/or out of the anode space and/or cathode space are connected via a cross-channel (15) in addition to the main electrolyte channel (14).
4. A galvanic element as in Claim 3, characterized in that the cross-channel (15) exhibits a cross-section which varies in area.
5. A galvanic element as in Claim 4, characterized in that the area of cross-section decreases up to the centre of the cross-channel (15) and then increases again.
6. A galvanic element as in Claim 1, 2 or 3, characterized in that the cross-channel (15) in the connector (11) is built up of individual portions (15a, 15b, 15c) between the respective leads into and out of the anode or cathode spaces, of at least partially different lengths with the cross-section preferably remaining constant, in particular with the length increasing up to the middle electrode space.
7. A galvanic element as in Claim 6, characterized in that the individual portions are built up of pieces of tube, hoses or the like.
8. A galvanic element as in Claim 6, characterized in that two parts (18) of the connector (11) exhibit a plane (19) of connection, through which pass the leads in and out and in at least portions (15a, 15b, 15c) of the crosschannel which in one part connect the leads in and/or out respectively together in the plane (19) of connection exhibit recesses approximately semicircular or the like in cross-section.
9. A galvanic element as in one of the Claims 1 to 8, characterized in that the channels (13) in the connector (11) are arranged in rows, in particular in two rows offset.
10. A galvanic element as in one of the Claims 1 to 9, characterized in that the openings (8) exhibit a rectangular cross-section and that the channels (13) in the connector (11) in the region adjoining the openings exhibit a corresponding cross-section, though the channel continues into an approximately circular channel.
11. A galvanic element as in one of the Claims 1 to 10, characterized in that the openings (8) pass through a layer (3) which surrounds the edges of the electrodes and separators.
12. A galvanic element as in Claim 11, characterized in that the layer is formed from the material of the electrodes (1) and/or separators (2) by fusing them.
13. A galvanic element as in Claim 11, characterized in that the layer is formed by sheathing the edges.
14. A galvanic element as in one of the Claims 11,12 or 13, characterized in that in the layer of a gas discharge channel is provided, which connects the anode or cathode spaces respectively and if necessary is closable.
15. A galvanic element as in one of the Claims 1 to 14, characterized in that the connector and the electrodes and/or separators exhibit at their cooperating areas guide members, in particular tongues (12) and grooves (10).
16. A galvanic element as in one of the Claims 1 to 15, characaterized in that at least one channel (13a) in the connector (11) is divided and exhibits besides the mouth into a channel leading electrolyte in or out and if necessary into a crosschannel (15), a further junction with a closable channel (20).
17. A galvanic element as in Claim 16, characterized in that the channel (13a) opening into the main channel which leads electrolyte in or out respectively, is made partially curved and that the closable channel (20) extends essentially in a straight line with the adjoining channel up to the opening (8).
18. A galvanic element as in Claim 17, characterized in that at least one part of the wall of the curved channel (13a) is built up in the connector by at least one filler (21), the filler or fillers exhibiting if necessary the closable channels (20) and being preferably connected together.
19. A method of production of galvanic elements, in particular secondary elements, which have circulating liquid electrolyte and in which a plurality of electrodes, in particular bipolar electrodes, which are built up from thermoplastic material and in their interior exhibit an electrochemically active substance, in particular plastics-bonded carbon, and separators which are built up from thermoplastic material, are welded together at their edges, characterized in that the electrodes and/or separators are held together and pressed against one another, if necessary by stiffening endplates, and the edges of the electrodes and separators and if necessary of the endplates are fused transversely to their plane extent via a heated metal mirror adjacent to the edges or run into contact with them, and then the melt, if necessary with a plane material brought into contact, preferably fused at the same time by the metal mirror, is solidified, preferably under the action of a cooling medium, after the metal mirror has been run out.
20. A method as in Claim 19, characterized in that the openings which pass through the edges of the electrodes and/or separators, the said edges extending essentially transversely to the latter, are closed before or during the fusion of the edges by fillers, in particular thermally insulating fillers, e.g., pegs acted upon by separating agent, which if necessary are provided on a special work-carrier, or polytetrafluoroethylene fillers or the like, where if necessary a plate divided at the fillers is run in between what is to be fused and the work-carrier.
21. A method as in Claim 19 or 20, characterized in that before fusion tubes or hoses of thermoplastic material are introduced into the openings.
22. A method of production of the electrolyte-conducting connector of the galvanic element as in one of the Claims 1 to 18, for the anode and cathode spaces, where a thermoplastic part having a plurality of preferably cylindrical recesses arranged at intervals from one another or respectively one slit, and tubes or hoses of thermoplastic material are introduced into the part, whereupon the thermoplastic material of the part and of the tubes or hoses is partially fused, preferably via a heated plate, e.g., a metal mirror, and then is made to solidify with a part which is to be connected to it, if necessary a pack of the electrodes and/or separators fused at the same time.
23. A method as in Claim 22, characterized in that before and/or during the fusion and if necessary before solidification of the bores of the tubes or hoses they are filled by fillers, e.g. pegs provided with separating agent, in particular thermally insulating fillers which if necessary are fastened to the plate or to a special carrier.
EP84890249A 1983-12-19 1984-12-18 Galvanic element, in particular a secondary element, and method of production Expired - Lifetime EP0149448B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
AT4426/83 1983-12-19
AT442683 1983-12-19

Publications (3)

Publication Number Publication Date
EP0149448A2 EP0149448A2 (en) 1985-07-24
EP0149448A3 EP0149448A3 (en) 1987-09-09
EP0149448B1 true EP0149448B1 (en) 1990-11-07

Family

ID=3563866

Family Applications (1)

Application Number Title Priority Date Filing Date
EP84890249A Expired - Lifetime EP0149448B1 (en) 1983-12-19 1984-12-18 Galvanic element, in particular a secondary element, and method of production

Country Status (5)

Country Link
US (1) US4615108A (en)
EP (1) EP0149448B1 (en)
JP (1) JPS60185375A (en)
AT (1) ATE58262T1 (en)
DE (1) DE3483570D1 (en)

Families Citing this family (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ATE62087T1 (en) * 1984-06-15 1991-04-15 Energiespeicher & Antriebssyst GALVANIC ELEMENT.
JPS6145572A (en) * 1984-08-08 1986-03-05 Meidensha Electric Mfg Co Ltd Method of operating zinc-bromine battery
AT388469B (en) * 1986-01-03 1989-06-26 Energiespeicher & Antriebssyst GALVANIC BATTERY AND METHOD FOR STORING AND DELIVERING ELECTRICAL ENERGY
AT389599B (en) * 1987-05-14 1989-12-27 Energiespeicher & Antriebssyst METAL / HALOGEN BATTERY
AT389781B (en) * 1988-02-01 1990-01-25 Energiespeicher & Antriebssyst METAL / HALOGEN BATTERY
US5188911A (en) * 1991-02-25 1993-02-23 Magnavox Electronic Systems Company Tapered manifold for batteries requiring forced electrolyte flow
AT398142B (en) * 1991-05-24 1994-09-26 Elin Energieanwendung METHOD FOR DETERMINING THE CHARGE STATE OF A ZINC-BROM BATTERY, AND METHOD FOR CHARGING THE SAME
AT396312B (en) * 1991-05-24 1993-08-25 Energiespeicher & Antriebssyst METHOD FOR CHARGING A NUMBER OF BATTERIES
US5439757A (en) * 1992-10-14 1995-08-08 National Power Plc Electrochemical energy storage and/or power delivery cell with pH control
US5422197A (en) * 1992-10-14 1995-06-06 National Power Plc Electrochemical energy storage and power delivery process utilizing iron-sulfur couple
US5496659A (en) * 1992-10-14 1996-03-05 National Power Plc Electrochemical apparatus for energy storage and/or power delivery comprising multi-compartment cells
US5545492A (en) * 1992-10-14 1996-08-13 National Power Plc Electrochemical apparatus for power delivery utilizing an air electrode
AT399246B (en) * 1992-12-23 1995-04-25 Elin Energieanwendung METHOD FOR CHARGING AND DISCHARGING ZINC / BROM BATTERIES
EP2270526A1 (en) 2003-07-09 2011-01-05 Premium Power Corporation Device for monitoring and charging of a selected group of battery cells
US7820321B2 (en) 2008-07-07 2010-10-26 Enervault Corporation Redox flow battery system for distributed energy storage
US8785023B2 (en) 2008-07-07 2014-07-22 Enervault Corparation Cascade redox flow battery systems
US8911612B2 (en) 2010-03-22 2014-12-16 Bromine Compounds Ltd. Method of operating metal-bromine cells
US8980484B2 (en) 2011-03-29 2015-03-17 Enervault Corporation Monitoring electrolyte concentrations in redox flow battery systems
US8916281B2 (en) 2011-03-29 2014-12-23 Enervault Corporation Rebalancing electrolytes in redox flow battery systems
WO2013042103A1 (en) 2011-09-21 2013-03-28 Bromine Compounds Ltd. A method of operating metal- bromine cells
JP6183348B2 (en) * 2014-12-19 2017-08-23 トヨタ自動車株式会社 Electrode body and method for producing electrode body

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5714368B2 (en) * 1973-03-27 1982-03-24
US4152825A (en) * 1974-06-10 1979-05-08 Polaroid Corporation Method of making a flat battery
US4125680A (en) * 1977-08-18 1978-11-14 Exxon Research & Engineering Co. Bipolar carbon-plastic electrode structure-containing multicell electrochemical device and method of making same
NL7809298A (en) * 1978-09-13 1980-03-17 Electrochem Energieconversie METHOD FOR MANUFACTURING AN ELECTROCHEMICAL CELL OR BATTERY.
JPS5714368U (en) * 1980-06-27 1982-01-25
US4346150A (en) * 1981-06-01 1982-08-24 Exxon Research & Engineering Co. Electrochemical construction

Also Published As

Publication number Publication date
JPH0564432B2 (en) 1993-09-14
EP0149448A3 (en) 1987-09-09
ATE58262T1 (en) 1990-11-15
EP0149448A2 (en) 1985-07-24
JPS60185375A (en) 1985-09-20
US4615108A (en) 1986-10-07
DE3483570D1 (en) 1990-12-13

Similar Documents

Publication Publication Date Title
EP0149448B1 (en) Galvanic element, in particular a secondary element, and method of production
DE3044380C2 (en)
DE10223782B4 (en) Battery with at least one electrochemical storage cell and a cooling device and use of a battery
DE2927682C2 (en) Electrochemical fuel cell
DE10049801A1 (en) Fuel cell system for supplying electromotive power to vehicles, has at least one stack of individual cells in which each stack is formed by fixing of end plates
CH665732A5 (en) COOLING SYSTEM ON A STACK OF ELECTROCHEMICAL CELLS.
DE102013107516A1 (en) Cell and cell stack of a redox flow battery
EP3440729B1 (en) Cell and cell stack of a redox flow battery, and method for producing said cell stack
EP2795710B1 (en) Redox flow battery with external supply line and/or disposal line
DE2631132C2 (en) Fuel cell cooling system
DE3221161A1 (en) METHOD FOR MINIMIZING THE IMPACT OF FOREIGN CURRENTS
DE102009016635A1 (en) Bipolar plate for fuel or electrolysis cells
DE2322569A1 (en) PIPE JOINT SEAL
DE102014103291A1 (en) Electrochemical cell and composite of electrochemical cells
EP0438044B1 (en) Galvanic cell, especially a rechargeable zinc/bromine battery
DE102014104601A1 (en) Electrochemical cell, in particular for a redox flow battery, and method of production
EP0168377B1 (en) Galvanic cell
DE102020108699A1 (en) Storage device for storing electrical energy for a motor vehicle
DE102021107627B3 (en) Electrical energy store for a motor vehicle and motor vehicle
EP0207057A2 (en) Galvanic element, for example a zinc-bromine battery
DE102021106068B3 (en) Fuel cell and method of manufacturing fuel cells
DE102020117367B4 (en) Cell frame, electrochemical cell, cell stack and method of operation
DE102022120576A1 (en) Temperature control frame and temperature control arrangement for a battery cell stack, channel branching element, cell frame unit and battery cell stack
WO2015135771A1 (en) Composite structure of electrochemical cells
DE102021100843A1 (en) Electrical energy storage

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE CH DE FR GB IT LI LU NL SE

Designated state(s): AT BE CH DE FR GB IT LI LU NL SE

17P Request for examination filed

Effective date: 19851230

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: S.E.A. STUDIENGESELLSCHAFT FUER ENERGIESPEICHER UN

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): AT BE CH DE FR GB IT LI LU NL SE

17Q First examination report despatched

Effective date: 19881020

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE CH DE FR GB IT LI LU NL SE

REF Corresponds to:

Ref document number: 58262

Country of ref document: AT

Date of ref document: 19901115

Kind code of ref document: T

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)
REF Corresponds to:

Ref document number: 3483570

Country of ref document: DE

Date of ref document: 19901213

ITTA It: last paid annual fee
ET Fr: translation filed
ITF It: translation for a ep patent filed

Owner name: MODIANO & ASSOCIATI S.R.L.

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
REG Reference to a national code

Ref country code: CH

Ref legal event code: PUE

Owner name: ELIN ENERGIEANWENDUNG GMBH

ITPR It: changes in ownership of a european patent

Owner name: CESSIONE;ELIN ENERGIEANWENDUNG GESELLSCHAFT M.B.H.

REG Reference to a national code

Ref country code: GB

Ref legal event code: 732E

NLS Nl: assignments of ep-patents

Owner name: ELIN ENERGIEANWENDUNG GESELLSCHAFT M.B.H. TE WENEN

EPTA Lu: last paid annual fee
REG Reference to a national code

Ref country code: FR

Ref legal event code: TP

Ref country code: FR

Ref legal event code: RR

EAL Se: european patent in force in sweden

Ref document number: 84890249.0

REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: LU

Payment date: 20021024

Year of fee payment: 19

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20021104

Year of fee payment: 19

Ref country code: AT

Payment date: 20021104

Year of fee payment: 19

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20021112

Year of fee payment: 19

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20021202

Year of fee payment: 19

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 20021203

Year of fee payment: 19

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 20021223

Year of fee payment: 19

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20021230

Year of fee payment: 19

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 20030116

Year of fee payment: 19

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20031218

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20031218

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20031218

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20031219

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20031231

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20031231

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20031231

BERE Be: lapsed

Owner name: *ELIN ENERGIEANWENDUNG G.M.B.H.

Effective date: 20031231

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20040701

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20040701

EUG Se: european patent has lapsed
GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20031218

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20040831

NLV4 Nl: lapsed or anulled due to non-payment of the annual fee

Effective date: 20040701

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST