EP0123277B1 - Méthode pour l'excitation d'un oscillateur ultrasonique pour pulvériser un liquide - Google Patents

Méthode pour l'excitation d'un oscillateur ultrasonique pour pulvériser un liquide Download PDF

Info

Publication number
EP0123277B1
EP0123277B1 EP84104426A EP84104426A EP0123277B1 EP 0123277 B1 EP0123277 B1 EP 0123277B1 EP 84104426 A EP84104426 A EP 84104426A EP 84104426 A EP84104426 A EP 84104426A EP 0123277 B1 EP0123277 B1 EP 0123277B1
Authority
EP
European Patent Office
Prior art keywords
oscillator
time interval
supplied
power
frequency
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
EP84104426A
Other languages
German (de)
English (en)
Other versions
EP0123277A2 (fr
EP0123277A3 (en
Inventor
Valentin Dipl.-Phys. Mágori
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Siemens AG
Original Assignee
Siemens AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens AG filed Critical Siemens AG
Priority to AT84104426T priority Critical patent/ATE41887T1/de
Publication of EP0123277A2 publication Critical patent/EP0123277A2/fr
Publication of EP0123277A3 publication Critical patent/EP0123277A3/de
Application granted granted Critical
Publication of EP0123277B1 publication Critical patent/EP0123277B1/fr
Expired legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05BSPRAYING APPARATUS; ATOMISING APPARATUS; NOZZLES
    • B05B17/00Apparatus for spraying or atomising liquids or other fluent materials, not covered by the preceding groups
    • B05B17/04Apparatus for spraying or atomising liquids or other fluent materials, not covered by the preceding groups operating with special methods
    • B05B17/06Apparatus for spraying or atomising liquids or other fluent materials, not covered by the preceding groups operating with special methods using ultrasonic or other kinds of vibrations
    • B05B17/0607Apparatus for spraying or atomising liquids or other fluent materials, not covered by the preceding groups operating with special methods using ultrasonic or other kinds of vibrations generated by electrical means, e.g. piezoelectric transducers
    • B05B17/0623Apparatus for spraying or atomising liquids or other fluent materials, not covered by the preceding groups operating with special methods using ultrasonic or other kinds of vibrations generated by electrical means, e.g. piezoelectric transducers coupled with a vibrating horn
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05BSPRAYING APPARATUS; ATOMISING APPARATUS; NOZZLES
    • B05B17/00Apparatus for spraying or atomising liquids or other fluent materials, not covered by the preceding groups
    • B05B17/04Apparatus for spraying or atomising liquids or other fluent materials, not covered by the preceding groups operating with special methods
    • B05B17/06Apparatus for spraying or atomising liquids or other fluent materials, not covered by the preceding groups operating with special methods using ultrasonic or other kinds of vibrations
    • B05B17/0607Apparatus for spraying or atomising liquids or other fluent materials, not covered by the preceding groups operating with special methods using ultrasonic or other kinds of vibrations generated by electrical means, e.g. piezoelectric transducers
    • B05B17/0623Apparatus for spraying or atomising liquids or other fluent materials, not covered by the preceding groups operating with special methods using ultrasonic or other kinds of vibrations generated by electrical means, e.g. piezoelectric transducers coupled with a vibrating horn
    • B05B17/063Apparatus for spraying or atomising liquids or other fluent materials, not covered by the preceding groups operating with special methods using ultrasonic or other kinds of vibrations generated by electrical means, e.g. piezoelectric transducers coupled with a vibrating horn having an internal channel for supplying the liquid or other fluent material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B06GENERATING OR TRANSMITTING MECHANICAL VIBRATIONS IN GENERAL
    • B06BMETHODS OR APPARATUS FOR GENERATING OR TRANSMITTING MECHANICAL VIBRATIONS OF INFRASONIC, SONIC, OR ULTRASONIC FREQUENCY, e.g. FOR PERFORMING MECHANICAL WORK IN GENERAL
    • B06B1/00Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency
    • B06B1/02Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency making use of electrical energy
    • B06B1/0207Driving circuits
    • B06B1/0223Driving circuits for generating signals continuous in time
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B06GENERATING OR TRANSMITTING MECHANICAL VIBRATIONS IN GENERAL
    • B06BMETHODS OR APPARATUS FOR GENERATING OR TRANSMITTING MECHANICAL VIBRATIONS OF INFRASONIC, SONIC, OR ULTRASONIC FREQUENCY, e.g. FOR PERFORMING MECHANICAL WORK IN GENERAL
    • B06B2201/00Indexing scheme associated with B06B1/0207 for details covered by B06B1/0207 but not provided for in any of its subgroups
    • B06B2201/50Application to a particular transducer type
    • B06B2201/55Piezoelectric transducer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B06GENERATING OR TRANSMITTING MECHANICAL VIBRATIONS IN GENERAL
    • B06BMETHODS OR APPARATUS FOR GENERATING OR TRANSMITTING MECHANICAL VIBRATIONS OF INFRASONIC, SONIC, OR ULTRASONIC FREQUENCY, e.g. FOR PERFORMING MECHANICAL WORK IN GENERAL
    • B06B2201/00Indexing scheme associated with B06B1/0207 for details covered by B06B1/0207 but not provided for in any of its subgroups
    • B06B2201/70Specific application
    • B06B2201/76Medical, dental
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B06GENERATING OR TRANSMITTING MECHANICAL VIBRATIONS IN GENERAL
    • B06BMETHODS OR APPARATUS FOR GENERATING OR TRANSMITTING MECHANICAL VIBRATIONS OF INFRASONIC, SONIC, OR ULTRASONIC FREQUENCY, e.g. FOR PERFORMING MECHANICAL WORK IN GENERAL
    • B06B2201/00Indexing scheme associated with B06B1/0207 for details covered by B06B1/0207 but not provided for in any of its subgroups
    • B06B2201/70Specific application
    • B06B2201/77Atomizers

Definitions

  • the present invention relates to a method according to the preamble of patent claim 1.
  • microinhaler An inhalation device from Siemens with the designation “microinhaler” is commercially available, in which there is a liquid atomizer according to the above-mentioned patent specification. This device also contains an electrical excitation circuit that supplies the AC supply voltage.
  • liquid atomizer of the type mentioned above are e.g. B. the fuel oil atomization for fuel oil burners.
  • an electronic excitation circuit which can operate the oscillator even under unfavorable operating (start-up) conditions in such a way that liquid atomization actually occurs.
  • an unfavorable operating condition is e.g. B. that a drop of liquid adheres to the worktop of the atomizer, which hinders the vibration of this worktop and thus the vibration of the whole ultrasonic vibrator.
  • a high excess of electrically fed continuous power has been provided as a remedy that such excessive damping of the transducer can also be overcome.
  • this has the disadvantage that the oscillator is then destroyed, in particular if the liquid supply fails, because the result is thermal overloading of the oscillator.
  • the invention is based on the consideration that a completely new operating method for such a liquid atomizer must be found in order to solve the problems at hand.
  • the concept of this new method is to feed the oscillator repetitively, in particular periodically, at a relatively low frequency (20 to 100 Hz) instead of continuously, as before, at a relatively high frequency alternating voltage.
  • a high electrical (peak) power is supplied during a first time interval ⁇ t 1 that the vibrator even with strong damping by e.g. B. attached drops swings safely.
  • ⁇ t 2 significantly lower electrical power or no power at all is supplied.
  • the clock ratio of ⁇ t 1 to ⁇ t 2 , the absolute time periods of the time intervals and the values of the electrical power values supplied in the time intervals are dimensioned in such a way that the thermal load on the oscillator resulting from the integrally resulting mean electrical power supply does not become impermissibly high and yet the corresponding amount of liquid is atomized.
  • a particularly advantageous development of the invention is to provide a repetition for the time intervals .DELTA.t 1 and .DELTA.t2, in which groups, each consisting of a plurality of successive cycles corresponding to the time intervals .DELTA.t 1 ', periodically follow one another.
  • the frequency of the succession of the groups is equal to the clock frequency already mentioned with z. B. 20 to 100 Hz selected. With a clock frequency of such a frequency value it can be achieved that a liquid drop adhering to the vibrating worktop - depending on the consistency and adhesive force of the material of this droplet - is caused to oscillate on the surface of this worktop.
  • such a drop of liquid preferably contracts in the center of this worktop.
  • the vibration amplitude or the rest of the worktop decays, it is distributed uniformly up to the edge of the worktop over its entire surface or, if the surface of the worktop is not horizontal, more or less hangs on the edge region of the worktop.
  • This response time constant is z. B. 1 ms for an oscillator with 100 kHz oscillation frequency.
  • the oscillation amplitude of the oscillator does not reach the level of the final amplitude of the oscillation, but the rise stops at a predeterminable value of an upper threshold S.
  • this oscillation then decays to a lower, predefinable threshold value.
  • a sawtooth-like time course of the oscillation amplitude of the oscillator can thus be achieved.
  • the frequency of this electrical signal to be picked up is equal to the natural resonance frequency of the vibrator and can be used for optimal control of the frequency of the excitation AC voltage for the supply in the first time interval ⁇ t 1 .
  • the occurrence of such an electrical signal in the second time interval At 2 is also a control for the oscillation and the atomization function in the first time interval ⁇ t 1 .
  • the level and the time profile - in particular the time constant - of the electrical signal in the time interval ⁇ t 2 is also a measure of the vibration amplitude achieved in the time interval ⁇ t 1 .
  • a lower level of this electrical signal recorded in the time interval ⁇ t 2 indicates stronger damping of the ultrasonic vibrator and thus a relatively large supply of liquid.
  • the supplied electrical feed power can be increased in the time interval ⁇ t, or the amount of liquid supplied per unit of time can be reduced until the electrical signal taken off in the time interval ⁇ t 2 indicates that the liquid atomizer has again achieved the optimum vibration behavior.
  • Fig. 1 denotes the entire ultrasonic vibrator. It is z. B. an ultrasonic transducer according to German patent 20 32 433. This transducer comprises a piezoceramic disk 2 as a piezoelectric converter, to which the electrical excitation voltage is to be applied. With 3 the worktop is designated, on the surface 4 of which the liquid atomization 5 takes place. 6 designates a supply line and 7 designates a pump installed in this supply line for the liquid to be atomized to be supplied to the surface 4.
  • the actual excitation electronics are designated by 11 and reference is made to an additional electronic circuit provided according to a further development, which serves to monitor the operational vibration behavior of the ultrasonic vibrator 1.
  • the electrical power output by the circuit 11 is fed to the converter 2 via the line 13.
  • the circuit 11 is at the terminals 14 z. B. fed with 220 volts AC or 12 volts DC.
  • 15 denotes a connecting line to the circuit 12, namely via which an electrical signal returned by the converter 2 can be fed to this circuit 12 during the meal break in the time interval ⁇ t 2 .
  • the converter 2 has an additional (feedback) electrode which is connected to the circuit 12 via the line 15.
  • the line 16 between the circuits 11 and 12 serve to supply evaluation signals from the circuit 12 to the circuit 11 in order to control them.
  • This control can relate in particular to the frequency f of the excitation AC voltage (for example in the range of 100 kHz), to the upper threshold S, the oscillation amplitude of the oscillator 1 and / or to the lower oscillation amplitude S 2 of the same.
  • the lines 17 indicate control signal outputs of the circuit 12, e.g. B. to a light emitting diode 18, which can serve as an operating signal lamp, and to the pump 7, the control of which from the circuit 12 can always ensure an adapted amount of liquid supply to the surface 4 of the vibrator 1.
  • the diagram in FIG. 2 shows the electrical power N supplied to the converter 2 and thus to the oscillator 1 via the line 13, plotted over time.
  • the clocks 21 with the first time intervals ⁇ t 1 are the actual feed intervals. In these intervals, the vibrator 1 receives such a large electrical power that it itself and thus also the worktop 3 is reliably set in the required ultrasonic vibration, regardless of whether on the surface 4 of the plate 3 a more or less there is a large amount of liquid or a drop adhering to it.
  • electrical power is supplied in accordance with the clocks 22.
  • the power of the clocks 22 can be so high that continuous oscillation continuously causes further atomization 5.
  • the electrical power of the clocks 22 can, however, have the value zero, ie the oscillator 1 is allowed to swing out in the second time intervals ⁇ t 2 .
  • the clock ratio At,: ( ⁇ t 1 + ⁇ t 2 ) is z. B. 4 ms: 20 ms, the latter value advantageously being derived from the mains frequency. It is important for the clock ratio that, together with the power ratio N, to N 2, the permissible mean electrical power to be supplied is not exceeded, but nevertheless safe start-up is always ensured with the power N level.
  • Fig. 3 shows the diagram of the electrical power N, again plotted against the time t, but with groups of - in this example three clocks 37.
  • Each of these clocks 31 has the length of a time interval ⁇ t 1 'of z. B. 1 ms duration.
  • the repetition of these clocks 31 within a group is preferably periodic with the frequency F.
  • the groups 32 consist of the respective number of individual clock cycles 31 and preferably also have periodic repetition with the frequency F 2 .
  • this frequency F 2 is chosen between 10 and 100 Hz, preferably 50 Hz (60 Hz).
  • the sum of the time intervals ⁇ t 1 ′ of an individual group 32 in relation to the period of the repetition frequency F 2 is important for the measure of the mean electrical power already mentioned above.
  • FIG. 4 shows an amplitude curve of the oscillation of the vibrator 1 or the worktop 3 when the excitation power is supplied according to FIG. 3. Since between the last time interval ⁇ t 1 'of one group 32 and the first time interval ⁇ t.' the group 32 is no electric power supply is provided according to Fig. 3, is performed in this time interval At 2 asymptotic decay until the next Wiederanschwingen.
  • the time intervals of the ⁇ t 1 or the time interval in which the time intervals ⁇ t 1 '(FIG. 3) are present, and the time interval ⁇ t 2 then result from the respective operating vibration behavior of the vibrator 1 and are here variable in terms of their length in time over the duration .
  • the time intervals .DELTA.t 1 and .DELTA.t2 are controlled with the aid of the circuit 12, in which a return signal of the vibrator 1 supplied via the line 15 is evaluated.
  • FIG. 6 shows a complete circuit diagram for a circuit 11 for generating the electrical power that feeds the oscillator 1.
  • the repetition frequency is supplied by the generator 61 in this circuit.
  • the circuit part 63 is a driver stage and the transistor 64 is the final stage.
  • the circuit part 65 with the zener diode serves to correct a fluctuation in the supply voltage 66.
  • the further details of the circuit are readily apparent to the person skilled in the art from the circuit diagram.
  • FIG. 7 shows a circuit example for a circuit 12.
  • the circuit part provided for a signal delay and the signal comparator 72 are designated with 71. 'Also this diagram needs no further explanation to the skilled artisan.
  • a pre-pulse is shown at 35, which is supplied to the oscillator 1 before the actual atomizing operation is started.
  • This is preferably a burst pulse (oscillation packet) with advantageously one to twenty oscillations with a frequency that is at least approximately equal to the resonance frequency of the oscillator 1.
  • the pre-pulse triggers an oscillation of the oscillator 1 and its decay oscillation 45 (in FIG. 4), as already described above, is used for the initial control of the frequency f of the alternating excitation voltage to be supplied via the line 13.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Special Spraying Apparatus (AREA)
  • Apparatuses For Generation Of Mechanical Vibrations (AREA)

Claims (19)

1. Procédé pour faire fonctionner un oscillateur ultrasonore (1) servant à la pulvérisation de liquide, selon lequel l'oscillateur (1) est alimenté par une électronique d'excitation (11) avec une tension électrique alternative dont la fréquence (F2) peut être accordée sur la puissance d'oscillation optimale de l'oscillateur (1), caractérisé en ce que l'alimentation en puissance électrique (N) s'effectue cycliquement et de façon répétitive dans le temps, la puissance (N,) appliquée pendant un premier intervalle de temps (At,) étant choisie de manière que le seuil d'entrée en action (E) de la pulvérisation de liquide effective (5) soit également dépassé dans une mesure suffisante lorsque les conditions d'amorçage de l'oscillation sont les plus défavorables, la puissance (N2) appliquée pendant un second intervalle de temps (Δt2) étant inférieure à celle appliquée dans l'intervalle de temps (Δt1), et la valeur moyenne de la puissance appliquée (N, + N2), prise sur les deux intervalles de temps (Δt1, Δt2), étant globalement adaptée à la quantité de liquide (7) à pulvériser qui est amenée par unité de temps.
2. Procédé selon la revendication 1, caractérisé en ce que, pendant un second intervalle de temps (Δt2), il n'y a pas d'alimentation en puissance électrique (N2 = 0), la poursuite de la pulvérisation de liquide (5) dans ce second intervalle étant assurée par la puissance mécanique accumulée dans l'oscillateur (1).
3. Procédé selon la revendication 1 ou 2, caractérisé en ce que la longueur d'un premier intervalle de temps (Δt1) est égale à 25 et 200 % de la constante de temps d'amorçage r de l'oscilla- teur.
4. Procédé selon la revendication 1, 2 ou 3, caractérisé en ce que la fréquence de répétition (F2) des intervalles de temps (Δt1, Δt2) est comprise entre 10 et 100 Hz.
5. Procédé selon la revendication 4, caractérisé en ce que la répétition est effectuée à une fréquence (F2) qui correspond à la fréquence du secteur (50 ou 60 Hz), avec utilisation, dans ce but, pour l'alimentation (14) du circuit d'excitation (11), de la tension alternative redressée, non filtrée, du secteur.
6. Procédé selon une des revendications 1 à 5, caractérisé par l'utilisation d'une première fréquence de répétition (F,) pour des premiers intervalles de temps (At,') d'impulsions (31) qui se succèdent dans un groupe (32), et par l'utilisation d'une seconde fréquence de répétition (F2), comprise entre 10 et 100 Hz, pour des groupes (32) qui se suivent.
7. Procédé selon la revendication 6, caractérisé en ce que la première fréquence de répétition (F,) est choisie à peu près égale à 0,2 à 2 fois la valeur réciproque de la constante de temps d'amorçage τ de l'oscillateur (1).
8. Procédé selon la revendication 6 ou 7, caractérisé en ce que le nombre des impulsions (31) d'un groupe (32) est égal à 2 à 10 ou 2'.
9. Procédé selon une des revendications 1 à 8, caractérisé par la fixation préalable d'un seuil supérieur (S,) et d'un seuil inférieur (S2) pour les amplitudes d'oscillation (A) de l'oscillateur (1), le seuil supérieur (S,) dépassant l'amplitude minimale (E) de l'oscillateur (1) nécessaire pour la pulvérisation, le passage du premier intervalle de temps (Δt1, Δt1') au second intervalle de temps (Δt2) suivant s'opérant lorsque le seuil supérieur (S.) est atteint et le passage du second intervalle de temps (Δt2) au premier intervalle de temps (Δt1, Δt1') suivant s'opérant lorsque le seuil inférieur (S2) est atteint.
10. Procédé selon une des revendications 2 à 9, caractérisé en ce qu'il comprend l'exploitation de l'évanouissement dans le temps de l'amplitude de l'oscillation (A) de l'oscillateur (1), se produisant dans le second intervalle de temps (Δt2), avec prélèvement d'un signal électrique (15) fourni par l'oscillateur et correspondant à cet évanouissement.
11. Procédé selon la revendication 10, caractérisé en ce que l'exploitation du signal électrique (15) de l'évanouissement de la vibration de l'oscillateur (1), dans le second intervalle de temps (Δt2), est utilisée pour la surveillance (18) du fonctionnement convenable de l'oscillateur.
12. Procédé selon la revendication 10 ou 11, caractérisé en ce que le signal électrique (15) de l'évanouissement de la vibration, dans le second intervalle de temps (Δt2), est utilisé pour commander l'interruption et/ou l'enclenchement ou le réenclenchement d'une alimentation en liquide (7).
13. Procédé selon la revendication 10, 11 ou 12, caractérisé en ce que le signal électrique (15) de l'évanouissement de la vibration de l'oscillateur, dans le second intervalle de temps (Δt2), est utilisé pour le réglage accordé de l'alimentation en liquide (7) et de la puissance électrique moyenne (N, + N2) appliquée.
14. Procédé selon une des revendications 10 à 13, caractérisé en ce que le signal électrique (15) de l'évanouissement de la vibration de l'oscillateur (1), dans le second intervalle de temps (Δt2), est utilisé pour surveiller et régler l'alimentation en puissance électrique (N,) au cours du premier intervalle de temps (Δt1), afin que cette puissance dépasse suffisamment le seuil (E) d'entrée en action de la pulvérisation.
15. Procédé selon une des revendications 10 à 14, caractérisé en ce que la fréquence du signal électrique (15) de l'évanouissement de la vibration de l'oscillateur (1), dans le second intervalle de temps (Δt2) est utilisée pour régler la fréquence (f) de la tension alternative d'excitation servant à l'alimentation de l'oscillateur (1).
16. Procédé selon la revendication 10, caractérisé en ce que la fréquence du signal électrique (15) de l'évanouissement de la vibration de l'oscillateur (1), signal qui peut être obtenu après l'alimentation de l'oscillateur (1) avec une préimpulsion (35) d'excitation, est utilisée pour déterminer la fréquence (f) de la tension électrique alternative (13) d'excitation de l'oscillateur (1).
17. Procédé selon la revendication 16, caractérisé en ce que la préimpulsion (35) est une salve ou paquet d'oscillations qui ne comporte qu'un faible nombre d'oscillations.
18. Procédé selon une des revendications 1 a 17, caractérisé en ce que la puissance électrique moyenne (N 1 + N 2 ) est maintenue constante, indépendamment de fluctuations de la tension d'alimentation (66), par une variation réglée de la longueur du premier et/ou du second intervalle de temps (Δt1, Δt2).
EP84104426A 1983-04-22 1984-04-18 Méthode pour l'excitation d'un oscillateur ultrasonique pour pulvériser un liquide Expired EP0123277B1 (fr)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AT84104426T ATE41887T1 (de) 1983-04-22 1984-04-18 Verfahren zum betrieb eines ultraschallschwingers zur fluessigkeitszerstaeubung.

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE19833314609 DE3314609A1 (de) 1983-04-22 1983-04-22 Verfahren zum betrieb eines ultraschall-schwingers zur fluessigkeitszerstaeubung
DE3314609 1983-04-22

Publications (3)

Publication Number Publication Date
EP0123277A2 EP0123277A2 (fr) 1984-10-31
EP0123277A3 EP0123277A3 (en) 1986-07-02
EP0123277B1 true EP0123277B1 (fr) 1989-04-05

Family

ID=6197071

Family Applications (1)

Application Number Title Priority Date Filing Date
EP84104426A Expired EP0123277B1 (fr) 1983-04-22 1984-04-18 Méthode pour l'excitation d'un oscillateur ultrasonique pour pulvériser un liquide

Country Status (3)

Country Link
EP (1) EP0123277B1 (fr)
AT (1) ATE41887T1 (fr)
DE (2) DE3314609A1 (fr)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6822372B2 (en) 1999-08-09 2004-11-23 William L. Puskas Apparatus, circuitry and methods for cleaning and/or processing with sound waves

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6016821A (en) 1996-09-24 2000-01-25 Puskas; William L. Systems and methods for ultrasonically processing delicate parts
US5834871A (en) * 1996-08-05 1998-11-10 Puskas; William L. Apparatus and methods for cleaning and/or processing delicate parts
DE3534853A1 (de) * 1985-09-30 1987-04-02 Siemens Ag Verfahren zum betrieb eines ultraschallzerstaeubers zur fluessigkeitszerstaeubung
US4736130A (en) * 1987-01-09 1988-04-05 Puskas William L Multiparameter generator for ultrasonic transducers
GB2265845B (en) * 1991-11-12 1996-05-01 Medix Ltd A nebuliser and nebuliser control system
US7211927B2 (en) 1996-09-24 2007-05-01 William Puskas Multi-generator system for an ultrasonic processing tank
US7211928B2 (en) 1996-08-05 2007-05-01 Puskas William L Apparatus, circuitry, signals and methods for cleaning and/or processing with sound
US7336019B1 (en) 2005-07-01 2008-02-26 Puskas William L Apparatus, circuitry, signals, probes and methods for cleaning and/or processing with sound
US6313565B1 (en) 2000-02-15 2001-11-06 William L. Puskas Multiple frequency cleaning system
DE60008074T2 (de) * 1999-03-05 2004-07-08 S.C. Johnson & Son, Inc., Racine Steuersystem zur zerstäubung von flüssigkeiten mit einem piezoelektrischen schwinger
FR2903331B1 (fr) * 2006-07-07 2008-10-10 Oreal Generateur pour exciter un transducteur piezoelectrique
IT1393824B1 (it) 2009-04-20 2012-05-11 Zobele Holding Spa Atomizzatore di liquidi con dispositivo di vibrazione piezoelettrico a circuito elettronico di controllo perfezionato e relativo metodo di azionamento.
EP3043927A4 (fr) 2013-09-09 2017-08-30 Omnimist Ltd. Appareil de pulvérisation du type atomiseur
CN114130547B (zh) * 2021-11-18 2023-06-16 安徽理工大学 一种药剂汽化组件及应用该组件的射流浮选柱式装置

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2129665C3 (de) * 1970-06-30 1981-02-12 Siemens Ag, 1000 Berlin Und 8000 Muenchen Vorrichtung zum Zerstäuben von Flüssigkeiten mit einem piezoelektrisch angeregten Schwingungssystem
JPS5123342B2 (fr) * 1972-07-31 1976-07-16
DE2312442A1 (de) * 1973-03-13 1974-10-03 Siemens Ag Zerstaeuber fuer fluessigkeiten mit piezoelektrischem ultraschallschwinger
GB1537058A (en) * 1975-05-20 1978-12-29 Matsushita Electric Ind Co Ltd Ultrasonic generators
FR2421513A1 (fr) * 1978-03-31 1979-10-26 Gaboriaud Paul Atomiseur ultra-sonique a pilotage automatique
JPS5848225B2 (ja) * 1979-01-09 1983-10-27 オムロン株式会社 超音波液体霧化装置の霧化量制御方式
DE3009975C2 (de) * 1980-03-14 1983-01-27 Siemens AG, 1000 Berlin und 8000 München Verfahren zur Impulsanregung eines piezoelektrischen Schall-Sendewandlers
DE3013964C2 (de) * 1980-04-11 1982-09-30 Jürgen F. 8011 Poing Strutz Ultraschallgenerator

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6822372B2 (en) 1999-08-09 2004-11-23 William L. Puskas Apparatus, circuitry and methods for cleaning and/or processing with sound waves

Also Published As

Publication number Publication date
EP0123277A2 (fr) 1984-10-31
DE3314609A1 (de) 1984-10-25
DE3477550D1 (en) 1989-05-11
EP0123277A3 (en) 1986-07-02
ATE41887T1 (de) 1989-04-15

Similar Documents

Publication Publication Date Title
EP0123277B1 (fr) Méthode pour l'excitation d'un oscillateur ultrasonique pour pulvériser un liquide
DE60012566T2 (de) Schaltnetzteilumwandler mit einem piezoelektrischen umwandler
DE69218901T2 (de) Ultraschallzerstäuber
EP0254237B1 (fr) Procédé d'ajustement de la puissance et de la fréquence d'un transducteur ultrasonore par commande de phase et dispositif pour l'application du procédé
DE602005003340T2 (de) Elektronisches antriebssystem für eine tropfensprayerzeugungsvorrichtung
DE10122065B4 (de) Vorrichtung zur Erzeugung von Flüssigkeitströpfchen mit einer in Schwingungen versetzten Membran
CH668877A5 (de) Vorrichtung zum betrieb eines piezoelektrischen ultraschallwandlers.
DE3534853A1 (de) Verfahren zum betrieb eines ultraschallzerstaeubers zur fluessigkeitszerstaeubung
DE69619720T2 (de) Geschalteter Invertermodulator
EP0340470A1 (fr) Procédé et circuit pour exciter un transducteur par ultrasons, et leur utilisation pour l'atomisation d'un liquide
EP0810423A2 (fr) Résonateur vibrant et procédé pour utiliser un tel résonateur dans un interrupteur de détection de niveau discret
DE69211301T2 (de) Gewichteter wandler mit rückkopplungsschaltung
DE3431481A1 (de) Verfahren zum betrieb von ultraschall-leistungsschwingern, insbesondere in geraeten zur zahnsteinentfernung
DE2823155A1 (de) Elektrische steuerschaltung fuer einen piezoelektrischen schwinger
DE2201156A1 (de) Elektrischer Signalgenerator,insbesondere Messsender
WO1998048597A1 (fr) Circuiterie pour fonctionnement modulable d'un tube fluorescent
DE4036618A1 (de) Vorrichtung zum ansteuern eines piezoelektrischen vibrators
DE920193C (de) Schwingungserzeuger
DE69009256T2 (de) Hochfrequenz-Hochspannungsleistungsversorgung mit Ausgangsleistungssteuerung.
EP0736639B1 (fr) Dispositif pour la deshumidification de maçonnerie
DE1205319B (de) Schwingschaltung fuer einen Generator fuer Ultraschall
EP4124310A1 (fr) Générateur pourvu de dispositif de récupération
DE10052899A1 (de) Stromversorgungseinheit für einen Festkörper-Laser, Festkörperlaser und Laserstrahlgenerator
DE2129665C3 (de) Vorrichtung zum Zerstäuben von Flüssigkeiten mit einem piezoelektrisch angeregten Schwingungssystem
EP0133570A2 (fr) Circuit d'attaque pour transducteur piézoélectrique

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Designated state(s): AT BE CH DE FR GB IT LI NL SE

17P Request for examination filed

Effective date: 19841221

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): AT BE CH DE FR GB IT LI NL SE

17Q First examination report despatched

Effective date: 19880531

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE CH DE FR GB IT LI NL SE

REF Corresponds to:

Ref document number: 41887

Country of ref document: AT

Date of ref document: 19890415

Kind code of ref document: T

REF Corresponds to:

Ref document number: 3477550

Country of ref document: DE

Date of ref document: 19890511

ET Fr: translation filed
ITF It: translation for a ep patent filed

Owner name: STUDIO JAUMANN

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
ITTA It: last paid annual fee
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 19930319

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 19930420

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 19930430

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 19930712

Year of fee payment: 10

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Effective date: 19940418

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Effective date: 19940430

Ref country code: CH

Effective date: 19940430

Ref country code: BE

Effective date: 19940430

BERE Be: lapsed

Owner name: SIEMENS A.G. BERLIN UND MUNCHEN

Effective date: 19940430

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Effective date: 19941101

NLV4 Nl: lapsed or anulled due to non-payment of the annual fee
REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

EAL Se: european patent in force in sweden

Ref document number: 84104426.6

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 19980618

Year of fee payment: 15

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 19990413

Year of fee payment: 16

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 19990414

Year of fee payment: 16

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 19990422

Year of fee payment: 16

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20000201

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20000418

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20000419

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20000418

EUG Se: european patent has lapsed

Ref document number: 84104426.6

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20001229

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST