EP0092014A1 - Dispositif de réglage pour générateur de vibrations à masses non équilibrées - Google Patents

Dispositif de réglage pour générateur de vibrations à masses non équilibrées Download PDF

Info

Publication number
EP0092014A1
EP0092014A1 EP82710023A EP82710023A EP0092014A1 EP 0092014 A1 EP0092014 A1 EP 0092014A1 EP 82710023 A EP82710023 A EP 82710023A EP 82710023 A EP82710023 A EP 82710023A EP 0092014 A1 EP0092014 A1 EP 0092014A1
Authority
EP
European Patent Office
Prior art keywords
actuating
unbalanced
drive
shaft
drive means
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP82710023A
Other languages
German (de)
English (en)
Inventor
Hans-Georg Waschulewski
Hans Ing. grad. Bäumers
Manfred Polacek
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Losenhausen Maschinenbau AG and Co KG
Losenhausen Maschinenbau AG
Original Assignee
Losenhausen Maschinenbau AG and Co KG
Losenhausen Maschinenbau AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Losenhausen Maschinenbau AG and Co KG, Losenhausen Maschinenbau AG filed Critical Losenhausen Maschinenbau AG and Co KG
Priority to EP82710023A priority Critical patent/EP0092014A1/fr
Publication of EP0092014A1 publication Critical patent/EP0092014A1/fr
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02DFOUNDATIONS; EXCAVATIONS; EMBANKMENTS; UNDERGROUND OR UNDERWATER STRUCTURES
    • E02D3/00Improving or preserving soil or rock, e.g. preserving permafrost soil
    • E02D3/02Improving by compacting
    • E02D3/046Improving by compacting by tamping or vibrating, e.g. with auxiliary watering of the soil
    • E02D3/074Vibrating apparatus operating with systems involving rotary unbalanced masses
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B06GENERATING OR TRANSMITTING MECHANICAL VIBRATIONS IN GENERAL
    • B06BMETHODS OR APPARATUS FOR GENERATING OR TRANSMITTING MECHANICAL VIBRATIONS OF INFRASONIC, SONIC, OR ULTRASONIC FREQUENCY, e.g. FOR PERFORMING MECHANICAL WORK IN GENERAL
    • B06B1/00Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency
    • B06B1/10Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency making use of mechanical energy
    • B06B1/16Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency making use of mechanical energy operating with systems involving rotary unbalanced masses
    • B06B1/161Adjustable systems, i.e. where amplitude or direction of frequency of vibration can be varied
    • B06B1/166Where the phase-angle of masses mounted on counter-rotating shafts can be varied, e.g. variation of the vibration phase

Definitions

  • a directional oscillator In the case of a directional oscillator, two swing sections are provided, which rotate in the same axis or in opposite directions about axes parallel to one another. The plane of the linear vibration of the resulting centrifugal force can be changed by changing the relative phase position of the two swinging pieces. If such a directional oscillator is mounted on a vibrating plate, the position of the vibration plane determines the direction and speed of the forward movement of the vibrating plate.
  • the two intermediate gears are in turn engaged with each other. You are sitting on a swing arm that is divided by two around the Rotational axes of the unbalance pivotable, parallel link is guided. A displacement of the rocker with the intermediate gears, which is connected to a pivoting of the handlebars, causes a relative angular rotation of the swing pieces.
  • the invention has for its object to provide a device for adjusting the relative phase position of rotating flywheels in an unbalance vibration generator of the type defined in such a way that a smooth adjustment is made possible.
  • both unbalanced shafts are thus driven in parallel, the "integrating means" initially controlling the drive means in such a way that the speeds are equal. If the phase position of the flywheels is to be adjusted, the actuating device in the return path gives an actuating signal which temporarily causes the rotational speeds of the unbalanced shafts to be unequal. The integrated speed difference causes a change in the phase position of the swing pieces and a corresponding output variable. This output variable restores the speed equality in the case of a changed phase position via the feedback path.
  • the switching forces are applied by the drive and do not need to be applied by the user via the actuating device, as in the known devices described.
  • Embodiments of the invention are the subject of the dependent claims.
  • t 10 and 12 two swing pieces are designated, which rotate with unbalanced shafts 14 and 16, respectively.
  • the swing piece 10 can be driven by controllable drive means 18.
  • the swing piece 12 can be driven by controllable drive means 20.
  • the speeds of the swing pieces 10 and 12 are ⁇ 1 and ⁇ 2 , as indicated by blocks 22 and 24, respectively.
  • Integrating means 26 respond to the speed difference ⁇ 1 - ⁇ 2 of the unbalanced shafts 14 and 16, which is represented by block 28.
  • the integrating means 26 integrate the speed differences ⁇ 1 - ⁇ 2 with an integration constant ⁇ o , represented by block 30, into an output quantity ⁇ which corresponds to the relative phase position of the two unbalanced shafts 14, 16.
  • the drive means 18, 20 can be controlled from this output variable ⁇ on a return path 32 with a power distributor 34 acting in opposite directions on the drive means 18 and 20 in the sense of a negative feedback to restore the speed equality. It is a closed loop.
  • the feedback output variable 9 can be acted upon by an actuating signal ⁇ signal, represented by block 38, by an actuating device 36 located in this feedback path 32.
  • the adjustment device could be set up with electrical or electronic measuring and control means. Some mechanical and mechanical-hydraulic solutions are described below.
  • FIG. 2 shows an unbalance shaker designed as a circular oscillator with two swing pieces 42, 44 rotating in the same direction about a common axis 40.
  • the swing piece 42 is seated on a shaft 46.
  • a gear 48 is keyed to the shaft 46.
  • the gear 48 is in engagement with a gear 50 which is in drive connection with drive means to be described.
  • the swing piece 44 which surrounds the swing piece 42 in a half-shell shape, is rotatably mounted on the shaft 46 with hubs 56, 58.
  • the hubs 56, 58 form the unbalanced shaft of the flywheel 44.
  • the hub 58 is connected to a gearwheel 60 which is in engagement with a gearwheel 62.
  • the gear 62 is in drive connection with drive means, also to be described.
  • the hub 56 is connected to an adjusting sleeve 68 which likewise surrounds the shaft 46.
  • the adjusting sleeve 68 has an internal thread 70 on its inner surface. In the interior winch 70 engages in a thread 72 attached to shaft 46.
  • the adjusting sleeve 68 is rotatably mounted in a bearing 74.
  • On the right side the shaft 46 is supported in a bearing 76.
  • the shaft 46 is axially movable.
  • a relative rotation between the swinging pieces 42, 44 is assigned an axial movement of the shaft 46 by the internal thread 70 and the thread 72.
  • the two swing sections are aligned, thus generating maximum centrifugal force.
  • the two swing pieces are opposite to each other or 180 0 offset from each other so that they produce a minimum centrifugal force.
  • the drive means include a first pulley 78 connected to gear 62 via a shaft 80 and a second pulley 82 connected to gear 50 via a shaft 84.
  • the pulley 82 is divided and consists of an axially fixed pulley half 86, which sits firmly on the shaft 84, and an axially displaceable pulley half 88.
  • the axially displaceable pulley half 88 is supported by a compression spring 90, which is supported on a collar 92 of the shaft Direction pressed on the disc half 86.
  • the two shafts 80 and 84 are coupled to one another via a belt and are driven in a manner not shown.
  • the disk half 88 is adjusted by means of an adjusting device 90, which is shown in detail in FIGS. 4 and 5.
  • the actuating device 90 contains an adjustable first part 92 and a second part 94, which is adjustable in a manner similar to the first part, and a sensor 96 which responds to the adjustment of the first part 92 in relation to the second part 94.
  • the first part 92 is pivotable about a pivot axis 98 Frame.
  • the second part 94 is a double-armed lever which can be pivoted about the same pivot axis 98.
  • the frame 92 carries an actuating lever 100 for manual actuation of the actuating device 90.
  • the sensor 96 is an actuating cable (Bowden cable), the jacket 96a of which with one part, here the frame 92, and the core 96b with the other part, here the double-armed lever 94 is connected.
  • Transmission means 102 are also formed by an actuating train, the jacket 102a of which is fixed to both ends of the device and the core 102b of which is on the one hand the output member determining the relative phase position of the unbalance, i. on the shaft 46, and on the other hand on the second part of the actuator 90, i.e. the double-armed lever 94 is attached.
  • the actuating cable 96 forming the sensor acts on an arm 104 of the double-armed lever 94.
  • the actuating cable 102 which forms the transmission means acts on the other arm 106 of the double-armed lever.
  • the actuating cable 96 is guided with a V or S stroke in such a way that, when a force is exerted on the jacket 96a at the left end in the direction of the core 96b, the jacket can move transversely to the axis in at least a part of its length.
  • FIG. 3 The basic construction of the embodiment according to FIG. 3 corresponds to the embodiment according to FIG. 2. Corresponding parts are given the same reference numerals in FIG. 3 as in FIG. 2. The two embodiments differ in the drive means.
  • Fig. 3 a hydraulic drive is provided.
  • the two swing pieces 42 and 44 are driven separately via the hydraulic drive motors 108 and 110, respectively.
  • the hydraulic drive motors 108 and 110 receive a hydraulic fluid flow from a pump 112, which is distributed to the two drive motors 108 and 110 via a flow divider 114.
  • the flow divider 114 is controlled by the actuating device 90.
  • an adjustment of the adjusting device 90 changes the distribution of the oil flow from the pump 112 to the two drive motors 108 and 110, so that one drive motor runs slower and the other runs faster. This speed difference causes a change in the angle between the swinging pieces 42 and 44.
  • This change leads via the thread 72 to an axial movement of the shaft 46, which is returned to the actuating device via the transmission means 102 acting as a return, and a return of the flow divider 114 into the position causes in which the oil flow from the pump 112 is evenly transmitted to the two hydraulic drive motors 108 and 110.
  • the flow divider 114 contains a slide housing 116, in which a slide 118 is guided. Compression springs 120 and 122 seek to center the slide 118 in a central position.
  • the slide is adjustable by means of a piston rod 124 which is led out of the slide housing 116 at one end.
  • Two pairs of diametrically opposed connections 126, 128 and 130, 132 are provided in the slide housing 116 at an axial distance from one another.
  • the ports 126 and 130 are connected in parallel to the pump 112.
  • the connection 128 is connected to the hydraulic drive motor 108 and the connection 132 to the hydraulic drive motor 110.
  • the slide 118 has two transverse bores 134 and 136 which are eccentric to the connections 128 and 132 in the middle position of the slide 118 shown .
  • connection 128 is further released through the transverse bore 134, while the connection 132 is further covered by the transverse bore 136.
  • the slide 118 moves to the left in FIGS. 3 and 6, it is just the other way round. The movement of the slide 118 thus changes the distribution of the oil flow from the pump 112 to the hydraulic drive motors 108 and 110. In the middle position, both drive motors 108 and 110 receive the same pressure oil flows so that they rotate at the same speed.
  • the oscillation generator has two oscillation pieces 138 and 140 which rotate around axes 142 and 144 which are parallel to one another.
  • the flywheels are supported with their shafts 146, 148 in bearings 150, 152 and 154, 156, respectively.
  • a gear 158 sits on the shaft 146 and a gear 160 sits on the shaft 148.
  • a link 162 is mounted on the shaft 146 with bearings 164, 166 on both sides of the gear 158.
  • a link 168 is supported with bearings 170 and 172 on both sides of the gear 160 on the shaft 148.
  • a swing arm 174 (FIG. 7) is articulated on the links 162 and 168 in a similar manner, not shown.
  • the links 162 and 168 are parallel to one another and of equal length.
  • Gears 176 and 178 are mounted in the rocker 174.
  • the gears are rotatable about the same axes 180 and 182, respectively, about which the links 162 and 168 are articulated on the rocker 174.
  • the gears 176 and 178 are engaged with each other.
  • Gear 176 also meshes with gear 158
  • gear 178 meshes with gear 160.
  • Gears 158 and 160 have equal diameters that are smaller than the same diameters of gears 176 and 178 so that Gears 158 and 160 do not are engaged with each other.
  • drive means 180 and 182 are provided in parallel for the unbalanced shafts 146 and 148, the speeds of which can be varied with respect to one another by an adjusting device 184.
  • the drive means 180 and 182 for the two unbalanced shafts 146 and 148 and the actuating device 184 are constructed in the embodiment according to FIGS. 7 to 9 with pulleys 186 and 188 essentially the same as the drive means with the pulleys 78 and 82 and the actuating device 90 from Fig. 2.
  • the actuator 184 is connected to the drive means 180 via an actuating cable 190.
  • An actuating cable 192 similar to the actuating cable 102 from FIG. 2, connects the rocker arm 174, which acts as an “output member”, to the actuating device 184.
  • Fig. 10 shows a directional oscillator similar to Fig. 9. Corresponding parts in Fig. 10 are given the same reference numerals as in Fig. 9.
  • the drive means are similar to the embodiment of Fig. 3 of hydraulic drive motors formed 194,196.
  • the drive motors 194 and 196 are connected directly to the unbalanced shafts 146 and 148 via couplings 198 and 200, respectively.
  • the drive motors 194 and 196 are fed with oil flows by a pump 202 via a flow divider 204 according to the type of FIG. 6. By adjusting the flow divider 204, the distribution of the oil to the two drive motors 194 and 196 can be changed.
  • the flow divider 204 is connected in a manner similar to that in FIG. 3 via an actuating cable 190 to an actuating device 184 in the manner of FIGS. 4 and 5.
  • An actuating cable 192 (corresponding to actuating cable 102 from FIG. 3) connects the rocker arm which serves as the output member and is not shown in FIG. 10 to the adjusting device 184.
  • FIG. 11 shows a vibration generator designed as a circular oscillator. Similar to the circular oscillator of FIG. 2, this contains a swing piece 212, which is connected to a shaft 214, and a swing piece 216, which is supported on the shaft 214 with hubs 218, 220. The hub 218 is connected to a gear 222 which is meshed with a gear 224.
  • Gear 224 and shaft 214 are connected to drive means to be described.
  • the shaft 214 and thus the swing piece 212 are coupled to the swing piece 216 via a differential gear 226.
  • the differential gear 226 includes a first bevel gear 228 which is connected to the hub 218 of the flywheel 216 and a second bevel gear 230 which is keyed to the shaft 214.
  • a differential gear 232 designed as a bevel gear is mounted with a shaft 234 in a cage 236. The axis the shaft 234 is perpendicular to the axis of the shaft 214.
  • the differential gear 232 is in the usual way with the ring gears 228 and 230 in engagement.
  • a pinion 238 is seated on the shaft 234 and engages with a toothed strip 240 which is guided in a longitudinally displaceable manner in the cage 236.
  • the rack 240 is led out of the cage 236 and has an angled end 242.
  • a bore 244 coaxial with the shaft 214 is provided, in which a pin 246 is seated.
  • the pin 246 with the angled end 242 and the toothed rack 240 form the output member of the differential gear 226, the position of which determines the relative phase position of the swing pieces 212 and 216.
  • the drive means are constructed in the same way as in the embodiment according to FIG. 2. They contain an adjustable pulley 248 on the shaft 214 and a pulley 250 on a shaft 252 connected to the gear 224 Pulley 248 is adjustable by an adjusting device 254 in the manner of FIGS. 4 and 5 via an adjusting cable 256.
  • the pin 246 of the output member is connected to the actuating device 254 via an actuating cable 258.
  • FIG. 12 is constructed similarly to the embodiment according to FIG. 11. Corresponding parts are given the same reference numerals in FIG. 12 as in FIG. 11.
  • the drive means are formed by hydraulic drive motors 260, 262, which are coupled to the gearwheel 224 or the shaft 214 via clutches 264 or 266 and by a pump 268 via a flow divider 270 in the manner of FIG 6 are fed.
  • the flow divider 270 can be controlled by an actuating device 254 via an actuating train 256.
  • the pin 246 is via an actuating cable 258 serving as a transmission means of the differential gear 226 connected to the actuator 254.
  • the distribution of the oil flow supplied by the pump 268 to the two hydraulic drive motors 260 and 262 is changed via the flow divider 270.
  • one of the swing sections 214, 216 leads the other.
  • This causes the differential gear 232 to rotate via the ring gears 228, 230, as a result of which the pin 246 is adjusted via the pinion 238 and the toothed strip 240.
  • This actuating movement guides the double-armed lever via the actuating cable 258 to the frame of the actuating device 254 and thus leads the flow divider 270 back into the central position.
  • the size of the resulting unbalance is changed by the rotation of the swing pieces 214 and 216 relative to one another.

Landscapes

  • Engineering & Computer Science (AREA)
  • Structural Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Soil Sciences (AREA)
  • Environmental & Geological Engineering (AREA)
  • Agronomy & Crop Science (AREA)
  • Mining & Mineral Resources (AREA)
  • Paleontology (AREA)
  • Civil Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Apparatuses For Generation Of Mechanical Vibrations (AREA)
EP82710023A 1982-04-21 1982-04-21 Dispositif de réglage pour générateur de vibrations à masses non équilibrées Withdrawn EP0092014A1 (fr)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP82710023A EP0092014A1 (fr) 1982-04-21 1982-04-21 Dispositif de réglage pour générateur de vibrations à masses non équilibrées

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
EP82710023A EP0092014A1 (fr) 1982-04-21 1982-04-21 Dispositif de réglage pour générateur de vibrations à masses non équilibrées

Publications (1)

Publication Number Publication Date
EP0092014A1 true EP0092014A1 (fr) 1983-10-26

Family

ID=8190020

Family Applications (1)

Application Number Title Priority Date Filing Date
EP82710023A Withdrawn EP0092014A1 (fr) 1982-04-21 1982-04-21 Dispositif de réglage pour générateur de vibrations à masses non équilibrées

Country Status (1)

Country Link
EP (1) EP0092014A1 (fr)

Cited By (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2595588A1 (fr) * 1986-03-12 1987-09-18 Outboard Marine Corp Secoueur
FR2603630A1 (fr) * 1986-05-16 1988-03-11 Inst Transportnogo Stroitelstv Dispositif de commande d'appareil vibrant de battage de pieux
FR2606110A1 (fr) * 1986-11-05 1988-05-06 Alsthom Dispositif pour compenser une force vibratoire ou un couple vibratoire subi par un corps
DE3708922A1 (de) * 1987-03-19 1988-09-29 Henke Maschf Gmbh Vorrichtung zum herstellen von betonteilen
EP0337040A1 (fr) * 1988-04-14 1989-10-18 Gec Alsthom Sa Dispositif pour compenser une force vibratoire ou un couple vibratoire créé par un corps
EP0389210A2 (fr) * 1989-03-20 1990-09-26 Ono Sokki Co., Ltd. Générateur de vibrations
DE4000011A1 (de) * 1989-12-20 1991-06-27 Gedib Ingbuero Innovation Vorrichtung zur schwingungserregung
WO1991008842A2 (fr) * 1989-12-20 1991-06-27 GEDIB Ingenieurbüro und Innovationsberatung GmbH Generateur de vibrations
EP0515305A1 (fr) * 1991-05-22 1992-11-25 HESS Maschinenfabrik GmbH. & Co. KG Vibrateur
DE4116632A1 (de) * 1991-05-22 1992-11-26 Matthias Reck Vorrichtung zur drehrichtungs- und synchronisationsfehlererkennung
DE4317351A1 (de) * 1993-05-25 1994-12-01 Omag Maschinenbau Ag Betonform-Rüttelmaschine, insbesondere Kernrüttler
EP0734786A1 (fr) * 1995-03-30 1996-10-02 Zenith-Maschinenfabrik GmbH Dispositif de vibrage pour une table vibrante d'une machine de moulage
DE19523030A1 (de) * 1995-06-24 1997-01-09 Ammann Verdichtung Gmbh Schwingungserreger sowie Verfahren zur mechanischen Schwingungserzeugung
WO1998035094A1 (fr) * 1997-02-07 1998-08-13 Voith Sulzer Papiermaschinen Gmbh Secoueur
EP0886614A1 (fr) * 1995-08-18 1998-12-30 Carrier Vibrating Equipment, Inc Dispositif de reglage de la force resultante pour convoyeur vibrant
EP0945188A2 (fr) * 1998-03-24 1999-09-29 Masa AG Appareil vibrant à masses rotatives non-équilibrées pour une machine de moulage de béton
WO1999049992A1 (fr) * 1998-03-27 1999-10-07 Passavant-Roediger Umwelttechnik Gmbh Systeme de compression par vibration pour comprimer des matieres moulables dans des chassis de moule au moyen de deux corps non equilibres
WO2002011906A1 (fr) * 2000-08-04 2002-02-14 Wacker-Werke Gmbh & Co. Kg Vibreur regulable
WO2003028905A1 (fr) * 2001-09-28 2003-04-10 Wacker Construction Equipment Ag Generateur de vibrations pour dispositif de compactage du sol
EP1439010A1 (fr) * 2003-01-17 2004-07-21 Hutchinson Générateur d'efforts dynamiques à balourd
US7635261B2 (en) 2005-01-27 2009-12-22 Columbia Machine, Inc. Large pallet machine for forming molded products
DE102013020690A1 (de) * 2013-12-03 2015-06-03 Bomag Gmbh Schwingungserreger für einen Vibrationsverdichter sowie Baumaschine mit einem solchen Schwingungserreger
WO2021052684A1 (fr) * 2019-09-18 2021-03-25 Plasser & Theurer Export Von Bahnbaumaschinen Gesellschaft M.B.H. Machine et procédé de stabilisation de voie

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE659237C (de) * 1934-09-01 1938-04-29 Losenhausenwerk Duesseldorfer Geraet zum Verdichten von Boden oder anderen Massen mittels Schwingungen
GB634778A (en) * 1946-05-28 1950-03-29 Abraham Storer Improvements in and relating to vibration machines
DE1090589B (de) * 1959-03-11 1960-10-06 Losenhausenwerk Duesseldorfer Selbstbewegliches Ruettelgeraet zur Bodenverdichtung oder fuer aehnliche Zwecke
DE1149304B (de) * 1957-04-03 1963-05-22 Losenhausenwerk Duesseldorfer Bodenverdichter mit einem Unwuchtruettler zur Erzeugung gerichteter Schwingungen
DE1908810U (de) * 1959-04-25 1965-01-21 Schenck Gmbh Carl Vibrationsramme.
FR2169672A5 (fr) * 1972-01-27 1973-09-07 Vibro Verken Ab
DE2217503A1 (de) * 1972-04-12 1973-10-25 Gardisch Hochfrequenzschwingungsruettler
DE2436996A1 (de) * 1974-08-01 1976-03-04 Kloeckner Humboldt Deutz Ag Zweiwellen-regelantrieb, vorzugsweise fuer einen kohleformkoerper-ruetteltisch

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE659237C (de) * 1934-09-01 1938-04-29 Losenhausenwerk Duesseldorfer Geraet zum Verdichten von Boden oder anderen Massen mittels Schwingungen
GB634778A (en) * 1946-05-28 1950-03-29 Abraham Storer Improvements in and relating to vibration machines
DE1149304B (de) * 1957-04-03 1963-05-22 Losenhausenwerk Duesseldorfer Bodenverdichter mit einem Unwuchtruettler zur Erzeugung gerichteter Schwingungen
DE1090589B (de) * 1959-03-11 1960-10-06 Losenhausenwerk Duesseldorfer Selbstbewegliches Ruettelgeraet zur Bodenverdichtung oder fuer aehnliche Zwecke
DE1908810U (de) * 1959-04-25 1965-01-21 Schenck Gmbh Carl Vibrationsramme.
FR2169672A5 (fr) * 1972-01-27 1973-09-07 Vibro Verken Ab
DE2217503A1 (de) * 1972-04-12 1973-10-25 Gardisch Hochfrequenzschwingungsruettler
DE2436996A1 (de) * 1974-08-01 1976-03-04 Kloeckner Humboldt Deutz Ag Zweiwellen-regelantrieb, vorzugsweise fuer einen kohleformkoerper-ruetteltisch

Cited By (42)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2595588A1 (fr) * 1986-03-12 1987-09-18 Outboard Marine Corp Secoueur
FR2603630A1 (fr) * 1986-05-16 1988-03-11 Inst Transportnogo Stroitelstv Dispositif de commande d'appareil vibrant de battage de pieux
FR2606110A1 (fr) * 1986-11-05 1988-05-06 Alsthom Dispositif pour compenser une force vibratoire ou un couple vibratoire subi par un corps
DE3708922A1 (de) * 1987-03-19 1988-09-29 Henke Maschf Gmbh Vorrichtung zum herstellen von betonteilen
EP0337040A1 (fr) * 1988-04-14 1989-10-18 Gec Alsthom Sa Dispositif pour compenser une force vibratoire ou un couple vibratoire créé par un corps
EP0389210A2 (fr) * 1989-03-20 1990-09-26 Ono Sokki Co., Ltd. Générateur de vibrations
EP0389210A3 (fr) * 1989-03-20 1991-12-18 Ono Sokki Co., Ltd. Générateur de vibrations
WO1991008842A3 (fr) * 1989-12-20 1991-07-25 Gedib Ingbuero Innovation Generateur de vibrations
WO1991008842A2 (fr) * 1989-12-20 1991-06-27 GEDIB Ingenieurbüro und Innovationsberatung GmbH Generateur de vibrations
DE4000011A1 (de) * 1989-12-20 1991-06-27 Gedib Ingbuero Innovation Vorrichtung zur schwingungserregung
DE4000011C5 (de) 1989-12-20 2021-11-18 GEDIB Ingenieurbüro und Innovationsberatung GmbH Vorrichtung zur Schwingungserregung
EP0515305A1 (fr) * 1991-05-22 1992-11-25 HESS Maschinenfabrik GmbH. & Co. KG Vibrateur
DE4116632A1 (de) * 1991-05-22 1992-11-26 Matthias Reck Vorrichtung zur drehrichtungs- und synchronisationsfehlererkennung
WO1992020466A1 (fr) * 1991-05-22 1992-11-26 Hess Maschinenfabrik Gmbh & Co. Kg Vibreur
DE4116647C5 (de) * 1991-05-22 2004-07-08 Hess Maschinenfabrik Gmbh & Co. Kg Rüttelvorrichtung
DE4317351A1 (de) * 1993-05-25 1994-12-01 Omag Maschinenbau Ag Betonform-Rüttelmaschine, insbesondere Kernrüttler
EP0734786A1 (fr) * 1995-03-30 1996-10-02 Zenith-Maschinenfabrik GmbH Dispositif de vibrage pour une table vibrante d'une machine de moulage
DE19523030C2 (de) * 1995-06-24 2000-02-17 Ammann Verdichtung Gmbh Schwingungserreger, Verfahren zur mechanischen Schwingungserzeugung. sowie Vibrtationsplatte
DE19523030A1 (de) * 1995-06-24 1997-01-09 Ammann Verdichtung Gmbh Schwingungserreger sowie Verfahren zur mechanischen Schwingungserzeugung
EP0886614A1 (fr) * 1995-08-18 1998-12-30 Carrier Vibrating Equipment, Inc Dispositif de reglage de la force resultante pour convoyeur vibrant
EP0886614A4 (fr) * 1995-08-18 2001-01-24 Carrier Vibrating Equip Dispositif de reglage de la force resultante pour convoyeur vibrant
WO1998035094A1 (fr) * 1997-02-07 1998-08-13 Voith Sulzer Papiermaschinen Gmbh Secoueur
EP0945188A3 (fr) * 1998-03-24 2002-04-17 Masa AG Appareil vibrant à masses rotatives non-équilibrées pour une machine de moulage de béton
EP0945188A2 (fr) * 1998-03-24 1999-09-29 Masa AG Appareil vibrant à masses rotatives non-équilibrées pour une machine de moulage de béton
WO1999049992A1 (fr) * 1998-03-27 1999-10-07 Passavant-Roediger Umwelttechnik Gmbh Systeme de compression par vibration pour comprimer des matieres moulables dans des chassis de moule au moyen de deux corps non equilibres
US7171866B2 (en) 2000-08-04 2007-02-06 Wacker Construction Equipment Ag Controllable vibration generator
WO2002011906A1 (fr) * 2000-08-04 2002-02-14 Wacker-Werke Gmbh & Co. Kg Vibreur regulable
WO2003028905A1 (fr) * 2001-09-28 2003-04-10 Wacker Construction Equipment Ag Generateur de vibrations pour dispositif de compactage du sol
US7117758B2 (en) 2001-09-28 2006-10-10 Wacker Construction Equipment A.G.. Vibration generator for a soil compacting device
US7132817B2 (en) 2003-01-17 2006-11-07 Hutchinson Unbalance dynamic load generator
FR2850042A1 (fr) * 2003-01-17 2004-07-23 Hutchinson Generateur d'efforts dynamiques a balourd
CN100388986C (zh) * 2003-01-17 2008-05-21 哈特奇桑公司 不平衡动态负载发生器
EP1439010A1 (fr) * 2003-01-17 2004-07-21 Hutchinson Générateur d'efforts dynamiques à balourd
US7635261B2 (en) 2005-01-27 2009-12-22 Columbia Machine, Inc. Large pallet machine for forming molded products
EP2881516A1 (fr) * 2013-12-03 2015-06-10 BOMAG GmbH & Co. OHG Compacteur routier
JP2015110898A (ja) * 2013-12-03 2015-06-18 ボーマーク・ゲー・エム・ベー・ハーBomag Gmbh 振動式締固め機のための起振装置と当該起振装置を備える建設機械
US9334613B2 (en) 2013-12-03 2016-05-10 Bomag Gmbh Vibration exciter for a vibration compactor and construction machine having such a vibration exciter
EP2881516B1 (fr) 2013-12-03 2016-08-31 BOMAG GmbH & Co. OHG Compacteur routier
CN104695310B (zh) * 2013-12-03 2019-11-15 宝马格有限公司 用于振动压路机的激振器和具有该激振器的施工机械
EP2881516B2 (fr) 2013-12-03 2020-03-25 BOMAG GmbH & Co. OHG Compacteur routier
DE102013020690A1 (de) * 2013-12-03 2015-06-03 Bomag Gmbh Schwingungserreger für einen Vibrationsverdichter sowie Baumaschine mit einem solchen Schwingungserreger
WO2021052684A1 (fr) * 2019-09-18 2021-03-25 Plasser & Theurer Export Von Bahnbaumaschinen Gesellschaft M.B.H. Machine et procédé de stabilisation de voie

Similar Documents

Publication Publication Date Title
EP0092014A1 (fr) Dispositif de réglage pour générateur de vibrations à masses non équilibrées
DE69504052T2 (de) Stufenloses, automatisches, mechanisches getriebe und seine arbeitsweise
DE69005194T2 (de) Kontinuierlich verstellbares automatisches mechanisches Getriebe mit einem Übersetzungsverhältnis von unendlich bis kleiner als eins.
DE102006010453A1 (de) Stufenloses Getriebe sowie Verfahren zur Übertragung von relativen Drehbewegungen in einem stufenlosen Getriebe
DE19547043C2 (de) Schwingungserreger zum Erzeugen einer gerichteten Schwingung
EP2363212A2 (fr) Accélérateur d'oscillations réglable en continu
DE4343865A1 (de) Bodenverdichtungsgerät
DE3308413C1 (de) Spielfrei einstellbarer Schwenkantrieb fuer mindestens eine Hauptachse von Manipulatoren
DE102008008802B4 (de) Bodenverdichtungsgerät mit einem Schwingungserreger
DE10105687A1 (de) Schwingungserreger für lenkbare Bodenverdichtungsvorrichtungen
DE1129029B (de) Umlaufkurbelgetriebe
EP1080315B1 (fr) Element d'accouplement pour la liaison de deux arbres a axe parallele places coaxialement l'un derriere l'autre et avec un ecart transversal l'un par rapport a l'autre
EP0070344A1 (fr) Vibrateur à action dirigée
DE4337858C2 (de) Mechanischer Drehmomentwandler
DE331204C (de) UEbertragungsgetriebe zur selbsttaetigen Regelung des Drehmomentes
DE1930078B2 (de) Schwingungserzeuger
DE19807180A1 (de) Vorrichtung zum Massenausgleich an einer Hubkolben-Brennkraftmaschine
DE2942076C2 (fr)
DE7818542U1 (de) Schwingungserreger fuer plattenverdichter
DE3642487A1 (de) Einrichtung zum ausgleich von wechselmomenten
DE897641C (de) Stufenlos regelbares Getriebe
DE328661C (de) UEbertragungsgetriebe
DE862378C (de) Auswuchtmaschine mit Ausgleich der Unwuchten durch regelbare Gegenkraefte
DE1149304B (de) Bodenverdichter mit einem Unwuchtruettler zur Erzeugung gerichteter Schwingungen
DE916866C (de) Schaltwerksgetriebe

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Designated state(s): DE

RBV Designated contracting states (corrected)

Designated state(s): DE

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 19840627

RIN1 Information on inventor provided before grant (corrected)

Inventor name: BAEUMERS, HANS, ING. GRAD.

Inventor name: POLACEK, MANFRED

Inventor name: WASCHULEWSKI, HANS-GEORG