EP0073355B1 - Production of liquid hydrocarbons - Google Patents

Production of liquid hydrocarbons Download PDF

Info

Publication number
EP0073355B1
EP0073355B1 EP82107035A EP82107035A EP0073355B1 EP 0073355 B1 EP0073355 B1 EP 0073355B1 EP 82107035 A EP82107035 A EP 82107035A EP 82107035 A EP82107035 A EP 82107035A EP 0073355 B1 EP0073355 B1 EP 0073355B1
Authority
EP
European Patent Office
Prior art keywords
coal
water
pressure
temperature
gas phase
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
EP82107035A
Other languages
German (de)
French (fr)
Other versions
EP0073355A1 (en
Inventor
Hubert Dr. Coenen
Rainer Hagen
Ernst Dr. Kriegel
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fried Krupp AG
Original Assignee
Fried Krupp AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fried Krupp AG filed Critical Fried Krupp AG
Publication of EP0073355A1 publication Critical patent/EP0073355A1/en
Application granted granted Critical
Publication of EP0073355B1 publication Critical patent/EP0073355B1/en
Expired legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G1/00Production of liquid hydrocarbon mixtures from oil-shale, oil-sand, or non-melting solid carbonaceous or similar materials, e.g. wood, coal
    • C10G1/08Production of liquid hydrocarbon mixtures from oil-shale, oil-sand, or non-melting solid carbonaceous or similar materials, e.g. wood, coal with moving catalysts
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G1/00Production of liquid hydrocarbon mixtures from oil-shale, oil-sand, or non-melting solid carbonaceous or similar materials, e.g. wood, coal
    • C10G1/002Production of liquid hydrocarbon mixtures from oil-shale, oil-sand, or non-melting solid carbonaceous or similar materials, e.g. wood, coal in combination with oil conversion- or refining processes
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G1/00Production of liquid hydrocarbon mixtures from oil-shale, oil-sand, or non-melting solid carbonaceous or similar materials, e.g. wood, coal
    • C10G1/08Production of liquid hydrocarbon mixtures from oil-shale, oil-sand, or non-melting solid carbonaceous or similar materials, e.g. wood, coal with moving catalysts
    • C10G1/086Characterised by the catalyst used
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S208/00Mineral oils: processes and products
    • Y10S208/952Solid feed treatment under supercritical conditions

Definitions

  • the invention relates to a process for the production of liquid hydrocarbons from coal, in which the comminuted coal is treated simultaneously with water and hydrogenated with hydrogen in the presence of a catalyst.
  • the liquid hydrocarbons which are produced by this process include the alkanes, the cycloalkanes and the aromatics, which have a boiling point of 20 to approx. 350 ° C. and whose molecules contain 5 to approx. 30 carbon atoms.
  • These liquid hydrocarbons are processed into fuels and lubricants in particular and used as heating oil and chemical raw materials.
  • hydrocarbons can be obtained from coal by catalytic hydrogenation.
  • finely ground coal is mixed with heavy oil or tar with the addition of a molybdenum-containing catalyst to form a dough and then hydrogenated at 200 to 300 atm and 450 to 500 ° C. with hydrogen.
  • the reaction mixture obtained after the hydrogenation is separated by distillation and provides gasoline, gas oil and a return sand which is mixed again with coal dust and is returned to the hydrogenation process.
  • the hydrocarbons produced by the Bergius process mainly consist of alkanes and cycloalkanes (see H. Beyer, "Textbook of Organic Chemistry •, S. Hirzel Verlag, Leipzig, 1962, pages 63 to 64).
  • a process for liquefying coal is known from US Pat. No. 3,850,738, in which the coal is treated for 1 to 10 minutes with supercritical water and hydrogen at a temperature of 380 to 650 ° C. and a pressure of 230 to 700 atm .
  • the weight ratio of water to coal is 1: to 10: 1, and 1 to 10% by weight of hydrogen, based on coal, is used in the reaction.
  • the invention is therefore based on the object of providing a process for the recovery of liquid hydrocarbons from coal which provides a high yield, is inexpensive and reliable, can be operated with coal of different origins and only provides a small amount of waste products.
  • the object underlying the invention is achieved in that the coal, which has a particle size of 1 pm to 5 mm, for 10 to 120 minutes at 380 to 600 ° C and 260 to 450 bar with 100 to 1000 wt .-% water and 2 to 10% by weight of hydrogen, both based on coal, are reacted using NaOH, KOH, Na 4 Si0 4 , KB0 2 or NaB0 2 as catalyst, which is present in water in an amount of 0.001 to 0 , 5 wt .-%, based on water, that the gas phase is then broken down by lowering the pressure and temperature into its components, which are obtained in several fractions, and that energy and / or gas is obtained from the coal residue.
  • liquid hydrocarbons obtained by the process according to the invention consist predominantly of paraffin hydrocarbons and contain a fluctuating amount of aromatic hydrocarbons, the proportion of aromatics in the higher-boiling fractions being greater than in the low-boiling fractions.
  • aromatic content depends on the origin of the coal, the composition of the coal and the reaction conditions of the process according to the invention.
  • the cost-effective and environmentally friendly method of operation of the process is based primarily on the fact that the coal residue that arises after the water treatment and hydrogenation is very suitable for gasification because of its high porosity and that the water can be easily separated from the liquid hydrocarbons.
  • the water prevents the coal bed from caking, which favors an even reaction process.
  • the gas phase is separated from the coal so that its pressure is reduced to 230 to 250 bar and that the resulting inorganic compounds are separated in a cyclone or filter.
  • This measure according to the invention ensures that the inorganic compounds dissolved in the gas phase, which are ash constituents of the coal and the catalyst, are separated in solid form from the gas phase, which considerably facilitates the subsequent separation of the reaction mixture.
  • the gas phase is separated from the coal, that its pressure is reduced to 200 to 220 bar and its temperature to 360 to 370 ° C and that the solid inorganic compounds and the water precipitate out of the gas phase and be separated as a solution or suspension.
  • This procedure is possible because, under the conditions mentioned, both the inorganic compounds, which are ash constituents and the dissolved catalyst, and the water precipitate out of the gas phase.
  • the water can only be partially circulated, but on the other hand it facilitates the separation of the reaction mixture, which is carried out according to the invention in such a way that the gas phase freed from the solid inorganic compounds and the water to a pressure of 20 to 25 relaxed and then broken down in a rectification column at a top temperature of 360 to 370 ° C and a bottom temperature of 210 to 335 ° C into a heavy oil, medium oil and crude gasoline fraction.
  • the position of the high-pressure phase equilibrium means that, according to the invention, crude gasoline is obtained as the top product and heavy oil as the bottom product in the rectification column.
  • the middle oil fraction is taken from the rectification column as a side stream.
  • the heavy oil fraction is wholly or partly mixed with the comminuted coal, as a result of which the higher-boiling hydrocarbons are recycled.
  • This process procedure increases the yield of lower-boiling hydrocarbons and paraffin hydrocarbons, and the comminuted coal can be stored and transported with minimal dust formation, it being entirely possible to use a pumpable coal-heavy oil mixture as raw material in the process according to the invention.
  • the economy of the process according to the invention can be improved in that the gases remaining after the separation of the solid inorganic compounds, the liquid hydrocarbons and the water are first freed of H 2 S and / or NH 3 and then burned to obtain energy.
  • the coal is conveyed from the storage bunker 1 into the mill 2, where it is ground to a grain size of approximately 0.2 to 1 mm. During the grinding process, the coal is mixed with water, which reaches the mill 2 via the line 3.
  • the coal-water suspension is mixed in the mixer 4 via line 5 with heavy oil.
  • the catalyst is conveyed from the reservoir 49 into the mixer 4.
  • the amount of catalyst fed to the mixer 4 is 0.001 to 0.5% by weight, based on the water fed via the line 3.
  • the coal-water-oil-catalyst mixture reaches the heated high-pressure reactor 8 via line 6 and the pressure pump 7. Hydrogen heated from line 50 is metered into this mixture before it enters the high-pressure reactor 8.
  • extraction processes and cracking and hydrogenation reactions take place at a pressure of 350 to 380 bar and a temperature of 450 to 550 ° C. for a reaction time of about 40 minutes under the influence of the catalyst.
  • the coal residue is discharged from the high-pressure reactor 8 via the line 51, while the supercritical water vapor phase loaded with organic compounds, which also contains the catalyst in dissolved form, emerges from the high-pressure reactor 8 via the line 52.
  • the supercritical water vapor phase is expanded to a pressure of approx. 210 bar in the expansion valve 53 and cooled to a temperature of 360 ° C. in the heat exchanger 54. Under these conditions, the inorganic compounds dissolved in the supercritical gas phase and the water precipitate out in the separator 55. Both components are discharged as a suspension or solution via line 56.
  • the gas phase passes from the separator 55 via the line 57 into the expansion valve 58, where the pressure is reduced to approximately 40 bar.
  • the gas phase is then fed via line 59 into the heated rectification column 60, at the top of which a temperature of 360 ° C., in the middle part of which a temperature of 280 ° C. and in the bottom thereof a temperature of 210 ° C.
  • a gas phase is removed from the top of the rectification column 60 via line 61, the middle oil fraction in the middle part via line 62 and the heavy oil fraction from the bottom via line 63.
  • the heavy oil fraction or the middle oil fraction is expanded in the expansion vessels 64 and 66, the gases released being fed to the line 76.
  • the medium oil fraction is fed into tank 67 and the heavy oil fraction into tank 65.
  • the gas phase passes from the line 61 into the expansion valve 68 and the heat exchanger 69, where the pressure and the temperature are reduced to the values prevailing in the environment.
  • the crude gasoline fraction precipitates, which flows through the line 72 into the tank 71, at the bottom of which the remaining water collects, which is taken off discontinuously via the line 73.
  • the gas emerging from the separator 70 consists of H 2 , CO, C0 2 and a hydrocarbon fraction (e 1 to C 4 ) and is contaminated with NH 3 and / or H 2 S. This gas is conveyed into a gas cleaning device 34, where H z S and / or NH 3 are deposited. The cleaned gas is then burned in the boiler system 35, energy being obtained.
  • the heavy oil fraction from the tank 65 is fed to the mixer 4 via the line 5 in whole or in part.
  • the middle and raw gasoline fractions are processed according to known distillation methods.
  • the coal residue passes through line 51 into the reactor 41, where it is gasified with air and water. All or part of the gas produced in the reactor 41 is fed to the conversion system 42 via the line 47 and processed there to form hydrogen, which, after the CO 2 has been separated off in the pressure washer 46, is fed to the tank 43 via the line 44.
  • Energy can be obtained from the part of the gas that is not processed to hydrogen by combustion in the boiler system 35, the gas being supplied to the boiler system 35 via line 48.
  • the solids are filtered off in the filter 74 from the aqueous suspension which emerges from the line 56 and are deposited together with the ash obtained in the reactor 41 in a landfill.
  • the filtrate emerging from the filter 74 is introduced via line 75 into a wastewater treatment plant.
  • the water has the following critical data:

Description

Die Erfindung bezieht sich auf ein Verfahren zur Herstellung flüssiger Kohlenwasserstoffe aus Kohle, bei dem die zerkleinerte Kohle gleichzeitig mit Wasser behandelt und mit Wasserstoff in Gegenwart eines Katalysators hydriert wird. Zu den flüssigen Kohlenwasserstoffen, die nach diesem Verfahren hergestellt werden, gehören die Alkane, die Cycloalkane und die Aromaten, welche einen Siedepunkt von 20 bis ca. 350 °C haben und deren Moleküle 5 bis ca. 30 Kohlenstoffatome enthalten. Diese flüssigen Kohlenwasserstoffe werden insbesondere zu Treib- und Schmierstoffen verarbeitet sowie als Heizöl und Chemierohstoff eingesetzt.The invention relates to a process for the production of liquid hydrocarbons from coal, in which the comminuted coal is treated simultaneously with water and hydrogenated with hydrogen in the presence of a catalyst. The liquid hydrocarbons which are produced by this process include the alkanes, the cycloalkanes and the aromatics, which have a boiling point of 20 to approx. 350 ° C. and whose molecules contain 5 to approx. 30 carbon atoms. These liquid hydrocarbons are processed into fuels and lubricants in particular and used as heating oil and chemical raw materials.

Es ist bereits bekannt, daß aus Kohle durch katalytische Hydrierung Kohlenwasserstoffe gewonnen werden können. Nach dem Bergius-Verfahren wird fein vermahlene Kohle mit Schweröl oder Teer unter Zusatz eines molybdänhaltigen Katalysators zu einem Teig verrührt und anschließend bei 200 bis 300 atü und 450 bis 500 °C mit Wasserstoff hydriert. Das nach der Hydrierung anfallende Reaktionsgemisch wird durch Destillation getrennt und liefert Benzin, Gasöl und einen Rücksand, der erneut mit Kohlenstaub vermischt und in den Hydrierungsprozeß zurückgeführt wird. Die nach dem Bergius-Verfahren hergestellten Kohlenwasserstoffe bestehen zum überwiegenden Teil aus Alkanen und Cycloalkanen (siehe H. Beyer, « Lehrbuch der organischen Chemie •, S. Hirzel Verlag, Leipzig, 1962, Seiten 63 bis 64).It is already known that hydrocarbons can be obtained from coal by catalytic hydrogenation. According to the Bergius process, finely ground coal is mixed with heavy oil or tar with the addition of a molybdenum-containing catalyst to form a dough and then hydrogenated at 200 to 300 atm and 450 to 500 ° C. with hydrogen. The reaction mixture obtained after the hydrogenation is separated by distillation and provides gasoline, gas oil and a return sand which is mixed again with coal dust and is returned to the hydrogenation process. The hydrocarbons produced by the Bergius process mainly consist of alkanes and cycloalkanes (see H. Beyer, "Textbook of Organic Chemistry •, S. Hirzel Verlag, Leipzig, 1962, pages 63 to 64).

Aus des US-PS 3 850 738 ist ein Verfahren zur Verflüssigung von Kohle bekannt, bei dem die Kohle während 1 bis 10 Minuten mit überkritischem Wasser und Wasserstoff bei einer Temperatur von 380 bis 650 °C und einem Druck von 230 bis 700 atm behandelt wird. Das Gewichtsverhältnis von Wasser zu Kohle beträgt 1 : bis 10 : 1, und es werden 1 bis 10 Gew.-% Wasserstoff, bezogen auf Kohle, in die Reaktion eingesetzt.A process for liquefying coal is known from US Pat. No. 3,850,738, in which the coal is treated for 1 to 10 minutes with supercritical water and hydrogen at a temperature of 380 to 650 ° C. and a pressure of 230 to 700 atm . The weight ratio of water to coal is 1: to 10: 1, and 1 to 10% by weight of hydrogen, based on coal, is used in the reaction.

Aus der US-PS 4 019 975 ist ein Verfahren zur Hydrierung von Kohle bekannt, bei dem die Kohle mit Wasserstoff und einem organischen Lösungsmittel, das auch Wasser enthalten kann, in Gegenwart eines Katalysators behandelt wird, der aus einem Salz oder einem Oxid eines unedelen Metalls besteht und der während der Hydrierung flüssig oder fest ist. Dieses bekannte Verfahren arbeitet bei einem Druck von 30 bis 300 atm und einer Temperatur, die größer als die kritische Temperatur des Lösungsmittels und kleiner als 550 °C ist. Als Katalysatoren haben sich insbesondere die Salze des Zinns, Zinks, Arsens, Antimons, Wismuts, Titans, Galliums und Quecksilbers bewährt.From US Pat. No. 4,019,975 a process for the hydrogenation of coal is known, in which the coal is treated with hydrogen and an organic solvent, which may also contain water, in the presence of a catalyst which consists of a salt or an oxide of a base Metal exists and which is liquid or solid during the hydrogenation. This known method works at a pressure of 30 to 300 atm and a temperature which is greater than the critical temperature of the solvent and less than 550 ° C. The salts of tin, zinc, arsenic, antimony, bismuth, titanium, gallium and mercury have proven particularly useful as catalysts.

Der Erfindung liegt daher die Aufgabe zugrunde, ein Verfahren zur Gewinnung flüssiger Kohlenwasserstoffe aus Kohle zu schaffen, das eine große Ausbeute erbringt, kostengünstig sowie betriebssicher arbeitet, mit Kohle verschiedener Herkunft betrieben werden kann und lediglich eine kleine Menge Abfallprodukte liefert.The invention is therefore based on the object of providing a process for the recovery of liquid hydrocarbons from coal which provides a high yield, is inexpensive and reliable, can be operated with coal of different origins and only provides a small amount of waste products.

Die der Erfindung zugrundeliegende Aufgabe wird dadurch gelöst, daß die Kohle, welche eine Teilchengröße von 1 p.m bis 5 mm hat, während 10 bis 120 Minuten bei 380 bis 600 °C und 260 bis 450 bar mit 100 bis 1 000 Gew.-% Wasser sowie 2 bis 10 Gew.-% Wasserstoff, beides bezogen auf Kohle, zur Reaktion gebracht wird, wobei NaOH, KOH, Na4Si04, KB02 oder NaB02 als Katalysator verwendet wird, der im Wasser in einer Menge von 0,001 bis 0,5 Gew.-%, bezogen auf Wasser, gelöst ist, daß die Gasphase danach durch Senkung des Drucks und der Temperatur in ihre Bestandteile zerlegt wird, die in mehreren Fraktionen anfallen, und daß aus dem Kohlerückstand Energie und/oder Gas gewonnen wird. Mit diesem Verfahren können bis zu 50 Gew.-% der Kohle in flüssige Kohlenwasserstoffe umgewandelt werden, wobei Ausbeute und Zusammensetzung der flüssigen Produkte unter anderem von der Herkunft und Zusammensetzung der Kohle abhängig sind. Die nach dem erfindungsgemäßen Verfahren gewonnenen flüssigen Kohlenwasserstoffe bestehen zum überwiegenden Teil aus Paraffinkohlenwasserstoffen und enthalten eine schwankende Menge aromatische Kohlenwasserstoffe, wobei der Anteil der Aromaten in den höher siedenden Fraktionen größer ist als in den niedrig siedenden Fraktionen. Der Gehalt an Aromaten ist von der Herkunft der Kohle, der Zusammensetzung der Kohle und den Reaktionsbedingungen des erfindungsgemäßen Verfahrens abhängig. Das Verfahren nach der Erfindung arbeitet trotz der angewendeten hohen Temperaturen und Drücke kostengünstig, betriebssicher und insbesonder umweltfreundlich. Die kostengünstige und umweltfreundliche Arbeitsweise des Verfahrens beruht vor allem darauf, daß sich der Kohlerückstand, der nach der Wasserbehandlung und Hydrierung anfällt, wegen seiner hohen Porosität sehr gut zur Vergasung eignet und daß das Wasser von den flüssigen Kohlenwasserstoffen einfach abgetrennt werden kann. Außerdem verhindert das Wasser ein Zusammenbacken der Kohleschüttung, was einen gleichmäßigen Reaktionsverlauf begünstigt.The object underlying the invention is achieved in that the coal, which has a particle size of 1 pm to 5 mm, for 10 to 120 minutes at 380 to 600 ° C and 260 to 450 bar with 100 to 1000 wt .-% water and 2 to 10% by weight of hydrogen, both based on coal, are reacted using NaOH, KOH, Na 4 Si0 4 , KB0 2 or NaB0 2 as catalyst, which is present in water in an amount of 0.001 to 0 , 5 wt .-%, based on water, that the gas phase is then broken down by lowering the pressure and temperature into its components, which are obtained in several fractions, and that energy and / or gas is obtained from the coal residue. With this method, up to 50% by weight of the coal can be converted into liquid hydrocarbons, the yield and composition of the liquid products being dependent, inter alia, on the origin and composition of the coal. The liquid hydrocarbons obtained by the process according to the invention consist predominantly of paraffin hydrocarbons and contain a fluctuating amount of aromatic hydrocarbons, the proportion of aromatics in the higher-boiling fractions being greater than in the low-boiling fractions. The aromatic content depends on the origin of the coal, the composition of the coal and the reaction conditions of the process according to the invention. The method according to the invention works in spite of the high temperatures and pressures used inexpensively, reliably and in particular environmentally friendly. The cost-effective and environmentally friendly method of operation of the process is based primarily on the fact that the coal residue that arises after the water treatment and hydrogenation is very suitable for gasification because of its high porosity and that the water can be easily separated from the liquid hydrocarbons. In addition, the water prevents the coal bed from caking, which favors an even reaction process.

Da sich die in der Kohle vorhandenen Aschebestandteile teilweise in der Gasphase lösen und da in der Gasphase auch der Katalysator in gelöster Form vorliegt, ist nach der Erfindung vorgesehen, daß die Gasphase von der Kohle abgetrennt wird, daß ihr Druck auf 230 bis 250 bar gesenkt wird und daß die dabei in fester Form anfallenden anorganischen Verbindungen in einem Zyklon oder Filter abgetrennt werden. Durch diese erfindungsgemäße Maßnahme wird erreicht, daß die in der Gasphase gelösten anorganischen Verbindungen, bei denen es sich um Aschebestandteile der Kohle und um den Katalysator handelt, in fester Form von der Gasphase abgetrennt werden, wodurch die nachfolgende Auftrennung des Reaktionsgemisches wesentlich erleichtert wird.Since the ash components present in the coal partially dissolve in the gas phase and since the catalyst is also present in dissolved form in the gas phase, it is provided according to the invention that the gas phase is separated from the coal so that its pressure is reduced to 230 to 250 bar and that the resulting inorganic compounds are separated in a cyclone or filter. This measure according to the invention ensures that the inorganic compounds dissolved in the gas phase, which are ash constituents of the coal and the catalyst, are separated in solid form from the gas phase, which considerably facilitates the subsequent separation of the reaction mixture.

Zur Auftrennung des Reaktionsgemisches hat es sich nach der Erfindung als besonders vorteilhaft erwiesen, wenn aus der von festen anorganischen Verbindungen befreiten Gasphase zunächst durch Senkung ihres Druck und ihrer Temperatur auf 140 bis 160 bar und 350 °C eine Schwerölfraktion, dann durch Senkung ihres Drucks und ihrer Temperatur auf 2 bis 10 bar und 150 bis 200 °C eine Mittelölfraktion und schließlich durch Senkung ihres Drucks und ihrer Temperatur auf 1 bar und 25 °C eine Wasser-Rohbenzin-Fraktion abgeschieden wird. Dabei ist es besonders zweckmäßig, wenn die Wasser-Rohbenzin-Fraktion durch Dekantieren getrennt und das Wasser erneut zur Behandlung der Kohle verwendet wird. Durch die erfindungsgemäße Auftrennung der Gasphase werden in vorteilhafter Weise drei Fraktionen flüssiger Kohlenwasserstoffe gewonnen, die nach bekannten Methoden weiter aufgetrennt oder für sich weiterverarbeitet werden können.Has to separate the reaction mixture it has proven to be particularly advantageous according to the invention if, from the gas phase freed from solid inorganic compounds, first a heavy oil fraction by lowering its pressure and temperature to 140 to 160 bar and 350 ° C., then by lowering its pressure and temperature to 2 to 10 bar and 150 to 200 ° C a middle oil fraction and finally by lowering their pressure and temperature to 1 bar and 25 ° C a water-raw gasoline fraction is separated. It is particularly expedient if the water-crude gasoline fraction is separated by decanting and the water is used again to treat the coal. By separating the gas phase according to the invention, three fractions of liquid hydrocarbons are obtained in an advantageous manner, which can be further separated or further processed by known methods.

Alternativ ist nach der Erfindung vorgesehen, daß die Gasphase von der Kohle abgetrennt wird, daß ihr Druck auf 200 bis 220 bar und ihre Temperatur auf 360 bis 370 °C gesenkt wird und daß dabei die festen anorganischen Verbindungen sowie das Wasser aus der Gasphase ausfallen und als Lösung bzw. Suspension abgetrennt werden. Diese Verfahrensführung ist möglich, da unter den genannten Bedingungen sowohl die anorganischen Verbindungen, bei denn es sich um Aschebestandteile und den gelösten Katalysator handelt, als auch das Wasser aus der Gasphase ausfallen. Nach dieser Verfahrensvariante kann das Wasser nur teilweise im Kreislauf geführt werden, aber andererseits erleichtert sie die Auftrennung des Reaktionsgemisches, die nach der Erfindung in der Weise erfolgt, daß die von den festen anorganischen Verbindungen und dem Wasser befreite Gasphase auf einen Druck von 20 bis 25 entspannt und anschließend in einer Rektifizierkolonne bei einer Kopftemperatur von 360 bis 370 °C und einer Sumpftemperatur von 210 bis 335 °C in eine Schweröl-, Mittelöl- und Rohbenzin-Fraktion zerlegt wird. Die Lage der Hochdruckphasengleichgewichte führt dazu, daß nach der Erfindung Rohbenzin als Kopfprodukt und Schweröl als Sumpfprodukt in der Rektifizierkolonne anfällt. Die Mittelölfraktion wird der Rektifizierkolonne als Seitenstrom entnommen.Alternatively, according to the invention it is provided that the gas phase is separated from the coal, that its pressure is reduced to 200 to 220 bar and its temperature to 360 to 370 ° C and that the solid inorganic compounds and the water precipitate out of the gas phase and be separated as a solution or suspension. This procedure is possible because, under the conditions mentioned, both the inorganic compounds, which are ash constituents and the dissolved catalyst, and the water precipitate out of the gas phase. According to this process variant, the water can only be partially circulated, but on the other hand it facilitates the separation of the reaction mixture, which is carried out according to the invention in such a way that the gas phase freed from the solid inorganic compounds and the water to a pressure of 20 to 25 relaxed and then broken down in a rectification column at a top temperature of 360 to 370 ° C and a bottom temperature of 210 to 335 ° C into a heavy oil, medium oil and crude gasoline fraction. The position of the high-pressure phase equilibrium means that, according to the invention, crude gasoline is obtained as the top product and heavy oil as the bottom product in the rectification column. The middle oil fraction is taken from the rectification column as a side stream.

In weiterer Ausgestaltung der Erfindung ist vorgesehen, daß die Schwerölfraktion ganz oder teilweise mit der zerkleinerten Kohle gemischt wird, wodurch eine Kreislaufführung der höher siedenden Kohlenwasserstoffe erfolgt. Durch diese Verfahrensführung wird die Ausbeute an niedriger siedenden Kohlenwasserstoffen sowie an Paraffinkohlenwasserstoffen erhöht, und die zerkleinerte Kohle kann bei minimaler Staubentwicklung gelagert und transportiert werden, wobei es durchaus möglich ist, ein pumpfähiges Kohle-Schweröl-Gemisch als Rohstoff in das erfindungsgemäße Verfahren einzusetzen.In a further embodiment of the invention it is provided that the heavy oil fraction is wholly or partly mixed with the comminuted coal, as a result of which the higher-boiling hydrocarbons are recycled. This process procedure increases the yield of lower-boiling hydrocarbons and paraffin hydrocarbons, and the comminuted coal can be stored and transported with minimal dust formation, it being entirely possible to use a pumpable coal-heavy oil mixture as raw material in the process according to the invention.

Die Wirtschaftlichkeit des erfindungsgemäßen Verfahrens kann dadurch verbessert werden, daß die nach der Abscheidung der festen anorganischen Verbindungen, der flüssigen Kohlenwasserstoffe und des Wassers zurückbleibenden Gase zunächst von H2S und/oder NH3 befreit und dann zur Gewinnung von Energie verbrannt werden.The economy of the process according to the invention can be improved in that the gases remaining after the separation of the solid inorganic compounds, the liquid hydrocarbons and the water are first freed of H 2 S and / or NH 3 and then burned to obtain energy.

Der Gegenstand der Erfindung wird nachfolgend anhand der Zeichnung näher erläutert.The object of the invention is explained in more detail with reference to the drawing.

Die Kohle wird aus dem Vorratsbunker 1 in die Mühle 2 gefördert, in der sie auf eine Korngröße von ca. 0,2 bis 1 mm vermahlen wird. Während des Mahlvorgangs wird die Kohle mit Wasser gemischt, das über die Leitung 3 in die Mühle 2 gelangt. Die Kohle-Wasser-Suspension wird im Mischer 4 über die Leitung 5 mit Schweröl versetzt. Aus dem Vorratsbehälter 49 wird der Katalysator in den Mischer4 gefördert. Die dem Mischer 4 zugeführte Katalysatormenge beträgt 0,001 bis 0,5 Gew.-%, bezogen auf das über die Leitung 3 zugeführte Wasser. Das Kohle-Wasser-ÖI-Katalysator-Gemisch gelangt über die Leitung 6 und die Druckpumpe 7 in den beheizten Hochdruckreaktor 8. Diesem Gemisch wird vor dem Eintritt in den Hochdruckreaktor 8 aus der Leitung 50 aufgeheizter Wasserstoff zudosiert. Im Hochdruckreaktor 8 laufen bei einem Druck von 350 bis 380 bar und einer Temperatur von 450 bis 550 °C während einer Reaktionszeit von ca. 40 Minuten unter dem Einfluß des Katalysators Extraktionsvorgänge sowie Crackungs- und Hydrierungsreaktionen ab.The coal is conveyed from the storage bunker 1 into the mill 2, where it is ground to a grain size of approximately 0.2 to 1 mm. During the grinding process, the coal is mixed with water, which reaches the mill 2 via the line 3. The coal-water suspension is mixed in the mixer 4 via line 5 with heavy oil. The catalyst is conveyed from the reservoir 49 into the mixer 4. The amount of catalyst fed to the mixer 4 is 0.001 to 0.5% by weight, based on the water fed via the line 3. The coal-water-oil-catalyst mixture reaches the heated high-pressure reactor 8 via line 6 and the pressure pump 7. Hydrogen heated from line 50 is metered into this mixture before it enters the high-pressure reactor 8. In the high-pressure reactor 8, extraction processes and cracking and hydrogenation reactions take place at a pressure of 350 to 380 bar and a temperature of 450 to 550 ° C. for a reaction time of about 40 minutes under the influence of the catalyst.

Aus dem Hochdruckreaktor 8 wird der Kohlerückstand über die Leitung 51 abgeführt, während die mit organischen Verbindungen beladene überkritische Wasserdampfphase, die auch den Katalysator in gelöster Form enthält, über die Leitung 52 aus dem Hochdruckreaktor 8 austritt. Die überkritische Wasserdampfphase wird im Entspannungsventil 53 auf einen Druck von ca. 210 bar entspannt und im Wärmeaustauscher 54 auf eine Temperatur von 360 °C abgekühlt. Unter diesen Bedingungen fallen im Abscheider 55 die in der überkritischen Gasphase gelösten anorganischen Verbindungen sowie das Wasser aus. Beide Komponenten werden als Suspension bzw. Lösung über die Leitung 56 abgeführt. Aus dem Abscheider 55 gelangt die Gasphase über die Leitung 57 in das Entspannungsventil 58, wo der Druck auf ca. 40 bar gesenkt wird. Die Gasphase wird dann über die Leitung 59 in die beheizte Rektifizierkolonne 60 geführt, an deren Kopf eine Temperatur von 360 °C, in deren Mittelteil eine Temperatur von 280 °C und in deren Sumpf eine Temperatur von 210 °C herrscht. Der Rektifizierkolonne 60 wird am Kopf über die Leitung 61 eine Gasphase, im Mittelteil über die Leitung 62 die Mittelölfraktion und aus dem Sumpf über die Leitung 63 die Schwerölfraktion entnommen. In den Entspannungsgefäßen 64 und 66 wird die Schwerölfraktion bzw. die Mittelölfraktion entspannt, wobei die frei werdenden Gase der Leitung 76 zugeführt werden. Nach ihrer Abkühlung wird die Mittelölfraktion in den Tank 67 und die Schwerölfraktion in den Tank 65 geführt.The coal residue is discharged from the high-pressure reactor 8 via the line 51, while the supercritical water vapor phase loaded with organic compounds, which also contains the catalyst in dissolved form, emerges from the high-pressure reactor 8 via the line 52. The supercritical water vapor phase is expanded to a pressure of approx. 210 bar in the expansion valve 53 and cooled to a temperature of 360 ° C. in the heat exchanger 54. Under these conditions, the inorganic compounds dissolved in the supercritical gas phase and the water precipitate out in the separator 55. Both components are discharged as a suspension or solution via line 56. The gas phase passes from the separator 55 via the line 57 into the expansion valve 58, where the pressure is reduced to approximately 40 bar. The gas phase is then fed via line 59 into the heated rectification column 60, at the top of which a temperature of 360 ° C., in the middle part of which a temperature of 280 ° C. and in the bottom thereof a temperature of 210 ° C. A gas phase is removed from the top of the rectification column 60 via line 61, the middle oil fraction in the middle part via line 62 and the heavy oil fraction from the bottom via line 63. The heavy oil fraction or the middle oil fraction is expanded in the expansion vessels 64 and 66, the gases released being fed to the line 76. After cooling, the medium oil fraction is fed into tank 67 and the heavy oil fraction into tank 65.

Die Gasphase gelangt aus der Leitung 61 in das Entspannungsventil 68 und den Wärmeaustauscher 69, wo eine Senkung des Drucks und der Temperatur auf die in der Umgebung herrschenden Werte erfolgt. Im Abscheider 70 fällt die Rohbenzinfraktion aus, die über die Leitung 72 in den Tank 71 abfließt, an dessen Boden sich das restliche Wasser sammelt, das über die Leitung 73 diskontinuierlich entnommen wird. Das aus dem Abscheider 70 austretende Gas besteht aus H2, CO, C02 sowie einer Kohlenwasserstofffraktion (e1 bis C4) und ist mit NH3 und/oder H2S verunreinigt. Dieses Gas wird in eine Gasreinigungsvorrichtung 34 gefördert, wo HzS und/oder NH3 abgeschieden werden. Anschließend erfolgt die Verbrennung des gereinigten Gases in der Kesselanlage 35, wobei Energie gewonnen wird. Aus dem Tank 65 wird die Schwerölfraktion dem Mischer 4 über die Leitung 5 ganz oder teilweise zugeführt. Die Mittel- und Rohbenzin-Fraktion werden nach bekannten Destillationsmethoden weiterverarbeitet. Der Kohlerückstand gelangt über die Leitung 51 in den Reaktor 41, wo er mit Luft und Wasser vergast wird. Das im Reaktor 41 hergestellte Gas wird der Konvertierungsanlage 42 über die Leitung 47 ganz oder teilweise zugeführt und dort zu Wasserstoff verarbeitet, der nach Abtrennung des C02 im Druckwäscher 46 dem Tank 43 über die Leitung 44 zugeführt wird. Aus dem Teil des Gases, der nicht zu Wasserstoff verarbeitet wird, kann durch Verbrennung in der Kesselanlage 35 Energie gewonnen werden, wobei das Gas der Kesselanlage 35 über die Leitung 48 zugeführt wird. Aus der wässrigen Suspension, die aus der Leitung 56 austritt, werden die Feststoffe im Filter 74 abfiltriert und zusammen mit der im Reaktor 41 anfallenden Asche auf einer Deponie abgelagert. Das aus dem Filter 74 austretende Filtrat wird über die Leitung 75 in eine Abwasserreinigungsanlage eingeleitet.The gas phase passes from the line 61 into the expansion valve 68 and the heat exchanger 69, where the pressure and the temperature are reduced to the values prevailing in the environment. In the separator 70, the crude gasoline fraction precipitates, which flows through the line 72 into the tank 71, at the bottom of which the remaining water collects, which is taken off discontinuously via the line 73. The gas emerging from the separator 70 consists of H 2 , CO, C0 2 and a hydrocarbon fraction (e 1 to C 4 ) and is contaminated with NH 3 and / or H 2 S. This gas is conveyed into a gas cleaning device 34, where H z S and / or NH 3 are deposited. The cleaned gas is then burned in the boiler system 35, energy being obtained. The heavy oil fraction from the tank 65 is fed to the mixer 4 via the line 5 in whole or in part. The middle and raw gasoline fractions are processed according to known distillation methods. The coal residue passes through line 51 into the reactor 41, where it is gasified with air and water. All or part of the gas produced in the reactor 41 is fed to the conversion system 42 via the line 47 and processed there to form hydrogen, which, after the CO 2 has been separated off in the pressure washer 46, is fed to the tank 43 via the line 44. Energy can be obtained from the part of the gas that is not processed to hydrogen by combustion in the boiler system 35, the gas being supplied to the boiler system 35 via line 48. The solids are filtered off in the filter 74 from the aqueous suspension which emerges from the line 56 and are deposited together with the ash obtained in the reactor 41 in a landfill. The filtrate emerging from the filter 74 is introduced via line 75 into a wastewater treatment plant.

Das Wasser hat folgende kritische Daten :

Figure imgb0001
Figure imgb0002
The water has the following critical data:
Figure imgb0001
Figure imgb0002

Claims (8)

1. Process for the production of liquid hydrocarbons from coal, in which the comminuted coal is simultaneously treated with water and hydrated with hydrogen in the presence of a catalyst, characterised in that the coal, which has a particle size of 1 tkm to 5 mm, is brought to reaction for 10 to 120 minutes at 380 to 600 °C and 260 to 450 bars with 100 to 1,000 % wt. of water and 2 to 10 % wt. of hydrogen, both related to coal, while NaOH, KOH, Na4SiO4, KB02 or NaB02 is used as catalyst which is dissolved in the water in a quantity of 0.001 to 0.5 % wt. related to water, in that the gas phase is then dissociated by reduction of the pressure and the temperature into its constituents, which occur in several fractions, and in that energy and/or gas is obtained from the coal residue.
2. Process according to Claim 1, characterised in that the gas phase is separated off from the coal, in that its pressure is reduced to 230 to 250 bars, and in that the inorganic compounds then obtained in solid form are separated off in a cyclone or a filter.
3. Process according to Claims 1 and 2, characterised in that from the gas phase freed of the solid inorganic compounds firstly by reduction of its pressure and its temperature to 140 to 160 bars and 350 °C a heavy oil fraction is precipitated, then by reduction of its pressure and its temperature to 2 to 10 bars and 150 to 200 °C a middle oil fraction is precipitated, and finally by reduction of its pressure and its temperature to 1 bar and 25 °C a water-crude gasoline fraction is precipitated.
4. Process according to Claims 1 to 3, characterised in that the water-crude gasoline fraction is separated by decanting and in that the water is used afresh for the treatment of the coal.
5. Process according to Claim 1, characterised in that the gas phase is separated from the coal, in that its pressure is reduced to 200 to 220 bars and its temperature to 360 to 370 °C and in that then the solid inorganic compounds and the water precipitate out of the gas phase and are separated off as solution and/or suspension.
6. Process according to Claims 1 and 5, characterised in that the gas phase, freed from the solid inorganic compounds and the water, is expanded to a pressure of 20 to 55 bars and then dissociated in a rectification column with a head temperature of 360 to 370 °C and a sump temperature of 210 to 335 °C into a heavy oil fraction, a middle oil fraction and a crude gasoline fraction.
7. Process according to Claims 1 to 6, characterised in that the heavy oil fraction is wholly or partially mixed with the comminuted coal.
8. Process according to Claims 1 to 7, characterised in that the gases remaining behind after the removal of the solid inorganic compounds, the liquid hydrocarbons and the water are firstly freed of H2S and/or NH3 and then burned for the obtaining of energy.
EP82107035A 1981-08-25 1982-08-04 Production of liquid hydrocarbons Expired EP0073355B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE3133562 1981-08-25
DE19813133562 DE3133562A1 (en) 1981-08-25 1981-08-25 "METHOD FOR PRODUCING LIQUID HYDROCARBONS"

Publications (2)

Publication Number Publication Date
EP0073355A1 EP0073355A1 (en) 1983-03-09
EP0073355B1 true EP0073355B1 (en) 1985-03-13

Family

ID=6140054

Family Applications (1)

Application Number Title Priority Date Filing Date
EP82107035A Expired EP0073355B1 (en) 1981-08-25 1982-08-04 Production of liquid hydrocarbons

Country Status (7)

Country Link
US (1) US4485003A (en)
EP (1) EP0073355B1 (en)
JP (1) JPS5842689A (en)
AU (1) AU546829B2 (en)
CA (1) CA1191468A (en)
DE (1) DE3133562A1 (en)
ZA (1) ZA826132B (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5551472A (en) 1994-08-01 1996-09-03 Rpc Waste Management Services, Inc. Pressure reduction system and method

Families Citing this family (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4541913A (en) * 1981-10-16 1985-09-17 Coal Industry (Patents) Limited Process for hydrocracking supercritical gas extracts of carbonaceous material
DE3228927C2 (en) * 1982-08-03 1991-08-14 Extraktionstechnik Gesellschaft für Anlagenbau mbH, 2000 Hamburg Process for the continuous extraction of loose solids
EP0177676B1 (en) * 1984-09-13 1992-03-04 Ruhrkohle Aktiengesellschaft Process carried out by heat recuperation for suspension hydrogenation with integrated gas phase hydrogenation
DE3438606A1 (en) * 1984-10-20 1986-04-24 Ruhrkohle Ag, 4300 Essen PROCESS FOR MULTI-PHASE REACTORS WITH EXOTHERMAL HEAT TONING, SPECIALLY FOR HYDRATING REACTORS IN THE SUMMING PHASE
US5055181A (en) * 1987-09-30 1991-10-08 Exxon Research And Engineering Company Hydropyrolysis-gasification of carbonaceous material
US5620606A (en) * 1994-08-01 1997-04-15 Rpc Waste Management Services, Inc. Method and apparatus for reacting oxidizable matter with particles
US5755974A (en) * 1994-08-01 1998-05-26 Rpc Waste Management Services, Inc. Method and apparatus for reacting oxidizable matter with a salt
US6017460A (en) * 1996-06-07 2000-01-25 Chematur Engineering Ab Heating and reaction system and method using recycle reactor
WO2003025098A2 (en) * 2001-09-17 2003-03-27 Southwest Research Institute Pretreatment processes for heavy oil and carbonaceous materials
US7034084B2 (en) * 2002-07-08 2006-04-25 Bridgestone Corporation Process and apparatus for the hydrogenation of polymers under supercritical conditions
WO2004103894A1 (en) 2003-04-16 2004-12-02 Energy & Environmental Research Center Foundation, Inc. Process for producing high-pressure hydrogen
US7947165B2 (en) * 2005-09-14 2011-05-24 Yeda Research And Development Co.Ltd Method for extracting and upgrading of heavy and semi-heavy oils and bitumens
EP1945797B1 (en) * 2005-10-28 2012-05-30 Boehringer Ingelheim International GmbH Hepatitis c virus ns2/3 activity assay
WO2009059369A1 (en) * 2007-11-06 2009-05-14 Advanced Biofuels Ltd Liquefaction process
US20090206007A1 (en) * 2008-02-20 2009-08-20 Air Products And Chemicals, Inc. Process and apparatus for upgrading coal using supercritical water
US7754067B2 (en) * 2008-02-20 2010-07-13 Air Products And Chemicals, Inc. Process and apparatus for upgrading heavy hydrocarbons using supercritical water
US20110211997A1 (en) * 2008-07-28 2011-09-01 Forbes Oil And Gas Pty. Ltd. Apparatus for liquefaction of carbonaceous material
RU2408649C2 (en) * 2008-12-29 2011-01-10 Сергей Васильевич Пашкин Processing method of organic wastes and device for its implementation
WO2011069510A1 (en) * 2009-12-11 2011-06-16 Scf Technologies A/S Conversion of organic matter into oil
MX366306B (en) * 2011-06-10 2019-07-04 Steeper Energy Aps Process for producing liquid hydrocarbon.
WO2012167791A2 (en) 2011-06-10 2012-12-13 Steeper Energy Aps Process and apparatus for producing liquid hydrocarbon
CN109762587A (en) 2012-08-30 2019-05-17 斯蒂珀能源有限公司 The improved method that preparation for producing the method and apparatus of liquid hydrocarbon stops
EP3321345A1 (en) 2012-08-30 2018-05-16 Steeper Energy ApS Improved method for controlling cleaning of an apparatus for producing liquid hydrocarbons
US9982199B2 (en) 2012-08-30 2018-05-29 Steeper Energy Aps Method for preparing start up of process and equipment for producing liquid hydrocarbons

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3505204A (en) * 1967-04-10 1970-04-07 Univ Of Wyoming The Direct conversion of carbonaceous material to hydrocarbons
US3488280A (en) * 1967-05-29 1970-01-06 Exxon Research Engineering Co Catalytic hydrogenation of coal with water recycle
US3660269A (en) * 1970-10-14 1972-05-02 Atlantic Richfield Co Coal processing
US3745108A (en) * 1971-05-25 1973-07-10 Atlantic Richfield Co Coal processing
DE2305738A1 (en) * 1973-02-06 1974-08-08 Texaco Development Corp Oil produced from coal - by non-catalytic process integrated with synthesis gas prodn
GB1481689A (en) * 1973-11-08 1977-08-03 Coal Ind Hydrogenation of coal
US3850738A (en) * 1973-12-06 1974-11-26 Bechtel Int Corp Bituminous coal liquefaction process
ZA763382B (en) * 1975-06-18 1977-05-25 Battelle Memorial Institute Converting fuels
US4056460A (en) * 1975-12-01 1977-11-01 Malek John M Process for liquefying carbonaceous materials of high molecular weight and for separating liquefaction products
US4298450A (en) * 1977-12-05 1981-11-03 The United States Of America As Represented By The United States Department Of Energy Alcohols as hydrogen-donor solvents for treatment of coal
US4237101A (en) * 1978-04-14 1980-12-02 Caw Industries, Inc. Process for treating solid carbonaceous fossil fuels and the products thus prepared
US4222849A (en) * 1979-07-05 1980-09-16 Kunitoshi Shimizu Process of liquefaction of coal
US4338184A (en) * 1979-10-26 1982-07-06 Exxon Research & Engineering Co. Coal conversion in the presence of added alkali metal compounds

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5551472A (en) 1994-08-01 1996-09-03 Rpc Waste Management Services, Inc. Pressure reduction system and method

Also Published As

Publication number Publication date
DE3133562C2 (en) 1987-01-15
AU546829B2 (en) 1985-09-19
AU8721182A (en) 1983-03-03
DE3133562A1 (en) 1983-03-10
EP0073355A1 (en) 1983-03-09
US4485003A (en) 1984-11-27
ZA826132B (en) 1983-07-27
CA1191468A (en) 1985-08-06
JPS5842689A (en) 1983-03-12

Similar Documents

Publication Publication Date Title
EP0073355B1 (en) Production of liquid hydrocarbons
DE2654635A1 (en) PROCESS FOR THE PRODUCTION OF HYDROCARBON OILS BY CRACKING CARBON HYDRATION
DE2729508A1 (en) METHOD FOR HYDROCONVERTING COAL
DE1768566A1 (en) Carbohydrate Process
EP0157339A2 (en) Process for the preparation of hydrocarbons from active sludge
DE2215665B2 (en) Process for producing gasoline and refined liquid hydrocarbons
DE10215679B4 (en) Direct thermochemical conversion of high molecular weight organic substances into low viscosity liquid fuels
WO2006131293A1 (en) Method for producing fuel from biogenous raw materials, and installation and catalyst composition for carrying out said method
DE3233344A1 (en) METHOD FOR LIQUIDIZING COAL
DE3033259A1 (en) METHOD FOR SOLVENT REFINING OF COAL
DE102005040490A1 (en) Apparatus and Process for a Biofuel Refinery: Direct thermochemical conversion of organic substances to liquid fuels
DE3151614A1 (en) METHOD FOR IMPROVING THE QUALITY OF A HYDROCARBONIC OIL
DE3038951C2 (en)
DE3529795A1 (en) METHOD FOR LIQUIDIZING COAL
DE2925548A1 (en) METHOD FOR TREATING OIL SAND
DE2834712C2 (en) Process for recycling the soot produced in aqueous suspension during the production of synthesis gas into the gas generator
DE3039905A1 (en) THREE-STEP METHOD FOR LIQUIDIZING COAL
DD147676A5 (en) COAL LIQUIDATION PROCESS WITH ADDITIONAL FOREIGN MINERALS
DE3243143A1 (en) METHOD FOR CONVERTING COAL TO ETHYL ACETATE SOLUBLE PRODUCTS IN A COAL LIQUID PROCESS
DD147679A5 (en) COAL LIQUIDATION METHOD WITH IMPROVED SLUDGE RECYCLING SYSTEM
EP0209665B1 (en) Coal hydrogenation process by liquid phase and fixed-bed catalyst hydrogenation
DE2346742C3 (en) Process for removing carbon particles from an aqueous dispersion
DE3325128A1 (en) METHOD FOR SOLVENT REFINING OF COAL
DE3408095A1 (en) Hydrogenation of undissolved coal and subsequent liquefaction of the hydrogenated coal
EP2268767B1 (en) Treatment of recycling gas for direct thermochemical conversion of high molecular weight organic substances into low viscosity liquid raw materials, combustibles and fuels

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Designated state(s): BE FR GB IT

17P Request for examination filed

Effective date: 19830606

ITF It: translation for a ep patent filed

Owner name: STUDIO JAUMANN

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Designated state(s): BE FR GB IT

ET Fr: translation filed
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Effective date: 19890804

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Effective date: 19890831

BERE Be: lapsed

Owner name: FRIED. KRUPP G.M.B.H.

Effective date: 19890831

GBPC Gb: european patent ceased through non-payment of renewal fee
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Effective date: 19900427

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST