EP0058592B1 - Optical fourier transform device and optical correlator using the same - Google Patents

Optical fourier transform device and optical correlator using the same Download PDF

Info

Publication number
EP0058592B1
EP0058592B1 EP82400164A EP82400164A EP0058592B1 EP 0058592 B1 EP0058592 B1 EP 0058592B1 EP 82400164 A EP82400164 A EP 82400164A EP 82400164 A EP82400164 A EP 82400164A EP 0058592 B1 EP0058592 B1 EP 0058592B1
Authority
EP
European Patent Office
Prior art keywords
optical
medium
plane
lens
fourier transformer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
EP82400164A
Other languages
German (de)
French (fr)
Other versions
EP0058592A1 (en
Inventor
Laurence Pichon
Jean-Pierre Huignard
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Thales SA
Original Assignee
Thomson CSF SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Thomson CSF SA filed Critical Thomson CSF SA
Publication of EP0058592A1 publication Critical patent/EP0058592A1/en
Application granted granted Critical
Publication of EP0058592B1 publication Critical patent/EP0058592B1/en
Expired legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06EOPTICAL COMPUTING DEVICES; COMPUTING DEVICES USING OTHER RADIATIONS WITH SIMILAR PROPERTIES
    • G06E3/00Devices not provided for in group G06E1/00, e.g. for processing analogue or hybrid data
    • G06E3/001Analogue devices in which mathematical operations are carried out with the aid of optical or electro-optical elements
    • G06E3/003Analogue devices in which mathematical operations are carried out with the aid of optical or electro-optical elements forming integrals of products, e.g. Fourier integrals, Laplace integrals, correlation integrals; for analysis or synthesis of functions using orthogonal functions

Definitions

  • the invention relates to the field of optical correlation which makes it possible to obtain the function of correlation of one image by another.
  • Such systems make it possible, for example, to recognize a graphic in a given pattern.
  • a device described in the article published in "APPLIED OPTICS", volume 15, No. 6 of June 1976, pages 1418 to 1424 includes a source, a modulating object, a lens and optical means ensuring the illumination of a plane by a distribution of light amplitudes Fourier transform of the optical modulation created by this object.
  • These optical means comprise an interaction medium receiving the pumping beam emerging from a lens.
  • a reflector is formed on one side of the interaction medium, which is a Pockels Readout Optical Modulator (PROM), to reflect the pumping beam, which therefore crosses the PROM twice. This reflector is also used to deflect the beam emerging from the PROM towards the plane where the Fourier transform of the optical modulation created by this object is projected.
  • PROM Pockels Readout Optical Modulator
  • the system according to the invention implements the reproduction of a wave front of complex morphology emerging from a modulating object, generated by interference in an interaction medium of an optical wave. incident having this wavefront with a pumping wave.
  • This interference occurs in a photoexcitable interaction medium with three-dimensional index variation whose physical characteristics and in particular the refractive index are spatially modulated by a network of fringes resulting from the incident wavefront wave. ⁇ Oz and pumping wave.
  • the cited document considers a PROM (Pockels Readout Optical Modulator) interaction medium using a longitudinal electro-optical effect whose spatial resolution is limited by the thickness of the material.
  • This PROM interaction medium is, in fact, produced by a thin layer of electro-optical material covered with an insulating layer and comprising transparent electrodes deposited on its front and rear faces.
  • electrodes being deposited on the lateral faces of the electro-optical crystal.
  • a known optical correlator system is described in the French patent application published on May 8, 1981 under No. 2,468,947.
  • a system of interference fringes representing the diffraction pattern obtained is recorded on a photosensitive support. from two parallel coherent beams, on the path of which have been interposed two objects with non-uniform transparency, after focusing by a lens.
  • This photosensitive support is read by one of the beams and one obtains in the focal plane of a second lens a distribution of intensity characteristic of the correlation product between the two objects; when one wants to find a graphic in a given pattern, the image obtained is formed of peaks indicating the presence and the position of this graphic in the considered motif.
  • the photosensitive support is a continuously recyclable medium, that is to say writable without development and erasable at will.
  • parasitic phase distortions induced by the optical components and, for the input of the data, by photographic transparencies or by electro-optical transducers.
  • this filter remains valid whatever the translation of the transparency in the object plane, this filter is positioned in the Fourier plane.
  • the Fourier transformer system of the invention compensates for these distortions in a simpler way. It uses, in fact, a wavefront conjugate of the incident wavefront which, at each point, is isomorphic of it. This conjugate wavefront, by reverse return, is modulated a second time by the object. But because of the reverse path, there is compensation for the modulation deformations of the outward path. It is the same for the deformations due to the aberrations of the lens: they are compensated.
  • the optical correlator system which includes the Fourier transformer system, allows a significant gain on the signal / noise ratio of the correlation peak. This is made equivalent to that resulting from an inconsistent illumination.
  • the subject of the invention is an optical Fourier transformer device, comprising a point source of coherent radiation disposed at the focal point of a converging lens, means for positioning a modulating object in the collimated beam emerging from this lens and optical means. ensuring the illumination of a plane by a distribution of light amplitudes transformed by Fourier of the optical modulation created by this object, these optical means comprising a photo-excitable medium of interaction with index variation receiving collimated beam via this object and a pumping beam, characterized in that this interaction medium with three-dimensional index variation is an electro-optical crystal comprising electrodes arranged on its lateral faces at the terminals of which a voltage is applied so as to use an electro- transverse optics, this pumping beam coming from this source; a plane reflector being arranged to reflect in normal incidence and towards this medium the radiation which emerges therefrom in the direction of propagation of this pumping beam, this radiation having a conjugate wavefront and isomorphic to the wavefront of the collimated beam of so as to compensate for the
  • the invention further relates to a double diffraction optical correlator comprising a first Fourier transformer device, a photo-excitable interaction medium with index variation which comprises electrodes arranged on its lateral faces at the terminals of which is applied a voltage arranged to receive simultaneously the radiation emerging from this first transformer device and another radiation contained in a reference beam and a second Fourier transformer intended to project into an image plane an illumination representative of the correlation function of the two patterns of a modulating object introduced into this first Fourier transformer device, characterized in that this first optical Fourier transformer device is an optical Fourier transformer device as described above.
  • the system according to the invention implements the reproduction of a wave front of complex morphology emerging from a modulating object, generated by interference in an interaction medium of an incident optical wave before this front of wave with a pumping wave.
  • this interference occurs in a photoexcitable interaction medium 2 with variation of three-dimensional incide whose physical characteristics and in particular the refraction incide, are spatially modulated by a network of fringes resulting from the incident wavefront wave ⁇ 2 and pumping wave Fp.
  • ⁇ 2 * has characteristics isomorphic to those of ⁇ 2 and follows the same optical path but in the opposite direction; ⁇ 2 * returns to the object from which ⁇ 2 emanates.
  • the return of the wave ⁇ 2 is performed in real time at time rd'êt strata network near which can range from 10- 3 to 10- 12 seconds.
  • the interactive medium 2 consists, for example, of a photoconductive electro-optical material such as bismuth-silicon oxide (BSO). It could also be an oxide such as bismuth-germanium oxide (BGO). These two oxides are particularly suitable for the invention because they are very sensitive in the range of wavelengths commonly used which constitutes the field of visible light waves. In addition one can obtain single crystals of sufficient dimensions having good optical qualities.
  • This medium is polarized at the voltage Vo.
  • the incident wave ⁇ 2 comes from a beam focused at a source point S.
  • This source point is located at the focus of a spherical lens L1.
  • the wave front which is spherical ⁇ 0 becomes linear ⁇ 1 .
  • the light beam collimated by the lens L 1 is then modulated by the non-linearly transparent object 1. This is located in the focal plane Po of the lens, or object plane.
  • the forward path through the lens L 1 and the transparent object 1 creates parasitic phase distortions of the waves ⁇ 1 and ⁇ 2 . These distortions are due to the aberrations of the lens Li and to the deformations relating to the support of the transparent object.
  • the return path through the same transparent object and lens L i makes it possible to compensate for these defects due to a parasitic phase modulation of the wave fronts. It also makes it possible to double the contrast of the amplitude modulation due to the object.
  • Figure 3 a parallel ray after being modulated by a transparent object consisting of two patterns A and B is focused by a spherical lens L inside a interaction medium 10 located in the focal plane thereof.
  • this medium there is recording of the algebraic sum of the Fourier transforms, that is to say spectra of two two-dimensional functions which represent the transmittances of the two transparent object patterns A and B.
  • this medium is located in the focal plane of L or Fourier plane.
  • the spectra of the space signals are symmetrical with respect to the zero frequency. But this is a symmetry in the plane and no longer only on an axis. If we translate the transparent object of Ax in an object plane, the spectrum remains unchanged in the Fourier plane, indeed the Fourier transform is invariant in translation.
  • the medium 10 therefore records the superposition of fringes of different steps, the average step being equal to ⁇ 1 2sin ⁇ where ⁇ 1 war the optical wavelength of the incident beams which interfere, and the half-angle between these beams.
  • the interference fringes resulting from the superposition of these beams which illuminate A and B, after the focusing operated by the lens L, are therefore recorded in an interaction medium 10 consisting for example of an electro-optical material polarized by a electric field obtained by means of a voltage source Vo. Its orientation is such that the electric field produces a transverse electro-optical effect.
  • the spatial variations in light intensity existing in this plane P F are instantly reflected in the plate by spatial variations in the refractive index.
  • the thickness of the crystal must be equal to or greater than the width of the diffraction zone.
  • a thickness can be defined which is clearly greater than the wavelength of the beams so that the recording in the slide can be considered as three-dimensional. It is a superposition of arrays of surfaces. When the width of the blade is not too large, these surfaces can be assimilated to planes perpendicular to the plane of the figure.
  • Their pitch p and the inclination ⁇ with respect to an axis normal to the plane P F and in the plane of the figure depend on the angle of the interfering rays, their wavelength ⁇ 1 and the refractive angle n crystal 10.
  • the usable materials must be photosensitive and electro-optical such as bismuth-silicon oxide or bismuth-germanium oxide.
  • the beam F R is, for example, deflected by a conventional acousto deflector -optical or mechanical. It is here, returned by a semi-transparent plate in the direction of the medium 10.
  • a conventional acousto deflector -optical or mechanical It is here, returned by a semi-transparent plate in the direction of the medium 10.
  • the parallel reading beam F R may have a wavelength A 2 different from that of the source beam which is modulated by A and B.
  • a color filter 5 is then inserted between the medium 10 and the lens L 2 so that 'it only lets through the part of the emerging beam of wavelength ⁇ 2 . Indeed it is necessary to eliminate the part of the emerging beam of wavelength ⁇ 1 .
  • the beam emerging from the interaction medium 10 has undergone a reflection on the interference strata of this medium.
  • This wave beam is therefore assigned a horizontal polarization. Indeed, the interference strata are perpendicular to the direction of the applied field. If a polarizer 6 is inserted in this emerging beam, a better signal / noise ratio is obtained by promoting the transmission of the polarized waves.
  • the beam modulated by the object patterns A and B is the conjugate return beam emerging from the medium 2. This beam then passes through the lens L i .
  • the lens L in FIG. 3 therefore becomes the lens Li in FIG. 2.
  • This device in FIG. 2 makes it possible to perform an optical correlation. It incorporates the Fourier transformer of Figure 1.
  • the wavefront return beam ⁇ 0 * which is reflected on the semi-transparent plate is a beam modulated in amplitude by the object 1 which includes two patterns; A and B in FIG. 3.
  • There is both compensation for the aberrations of the lens Li effecting the transform of Fourier, and distortions induced by the data entry device which operates here by transmission.
  • the discriminating power in the source plane of the correlator is weak. There are speckles due to the use of coherent light. To improve the signal / noise ratio, averaging is carried out by supposing the intensities of a certain number of images; each image is obtained with an identical transparent object, but with a different speckle shape.
  • This averaging can be achieved by moving the source beam F s along a straight line Si S z , the reference beam F R being moved synchronously to strike the medium 10 at the same point as the input source beam S ' i and S ' z .
  • These displacements can be obtained by any acousto-optical, electro-optical deflection device or even by the mechanical displacement of a lens or end of optical fiber.
  • FIG. 4 illustrates this possibility of displacement of the ends of two single-mode optical fibers 20 and 21.
  • the light beam coming from a laser 22 is split by the interposition of a semi-transparent plate 23 into two components which after focusing by two lenses L 3 and L 4 propagate in these fibers 20 and 21.
  • the ends of these two fibers are moved synchronously by two motor 24 and 25 controlled by a generator 26, the component of the beam flowing in the fiber 20 is collimated by a lens L 5 to give the reference beam F R.
  • FIG. 5 A simpler electro-optical configuration is indicated in FIG. 5.
  • the source So remains fixed and the fictitious translation of So, from Si to S 2 obtained using an acousto-optical tank arranged to deflect the return beam which is modulated by the object, for example in the object plane.
  • the aberrations induced by the lens Li are compensated rigorously only for the point S ' o .
  • the fictitious points Si and S 2 are in the vicinity of S o and it can be considered that the residual distortions induced by the lens L i remain low.
  • the beam F R must move as in the previous case.
  • Another way to improve the signal-to-noise ratio is to attenuate the low spatial frequencies of the object transparency spectrum. This can be achieved by considering a pumping beam Fp of intensity lower than that of the object beam. Only the high spatial frequencies are retained in the conjugate wave front, which corresponds to a reinforcement of the contours of the transparent object.
  • the optical correlator system of FIG. 2 was produced with a first monocrystalline plate 2 of bismuth-silicon oxide.
  • This blade has a surface of 30 x 30 square millimeters and a thickness of 3 millimeters.
  • the second blade is also a monocrystalline bismuth-silicon oxide blade. It has a surface of 2 x 10 square millimeters and a thickness of 1 millimeter. These blades are polarized with a voltage Vo of gold dre of 2000 volts.
  • the transparent object has a surface of 25 ⁇ 25 square millimeters.
  • T is the time taken by the source point S to move from Si to Sz, here distant by 5 millimeters, if the time of registration of the space charge field in the crystal BSO 10 (bismuth-silicon oxide) remains ), T is, for example, equal to 1 second and ⁇ to 1 millisecond.
  • this optical correlator system provides a new solution to the problems posed by any coherent optical correlation device. It allows operation at the limits of diffraction with optical components of reduced quality, in particular the spherical lens Li.
  • the signal / noise ratio can be made equivalent to that resulting from incoherent lighting.
  • the main applications concern, for example, target tracking or robotics.

Landscapes

  • Physics & Mathematics (AREA)
  • Mathematical Physics (AREA)
  • Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Nonlinear Science (AREA)
  • Optics & Photonics (AREA)
  • General Physics & Mathematics (AREA)
  • Holo Graphy (AREA)

Description

L'invention se rapporte au domaine de la corrélation optique qui permet d'obtenir la fonction de corrélation d'une image par une autre. De tels systèmes permettent par exemple de reconnai- tre un graphisme dans un motif donné.The invention relates to the field of optical correlation which makes it possible to obtain the function of correlation of one image by another. Such systems make it possible, for example, to recognize a graphic in a given pattern.

Un dispositif décrit dans l'article paru dans »APPLIED OPTICS«, volume 15, N° 6 de juin 1976, pages 1418 a 1424 comporte une source, un objet modulateur, une lentille et des moyens optiques assurant l'éclairement d'un plan par une distribution d'amplitudes lumineuses transformée de Fourier de la modulation optique créée par cet objet. Ces moyens optiques comprennent un milieu d'interaction recevant le faisceau de pompage émergeant d'une lentille. Un réflecteur est formé sur un côté du milieu d'interaction, qui est un PROM (Pockels Readout Optical Modulator), pour réfléchir le faisceau de pompage, qui donc traverse le PROM deux fois. Ce réflecteur est en outre utilisé pour défléchir le faisceau émergeant du PROM vers le plan où la transformée de Fourier de la modulation optique créée par cet objet est projetée.A device described in the article published in "APPLIED OPTICS", volume 15, No. 6 of June 1976, pages 1418 to 1424 includes a source, a modulating object, a lens and optical means ensuring the illumination of a plane by a distribution of light amplitudes Fourier transform of the optical modulation created by this object. These optical means comprise an interaction medium receiving the pumping beam emerging from a lens. A reflector is formed on one side of the interaction medium, which is a Pockels Readout Optical Modulator (PROM), to reflect the pumping beam, which therefore crosses the PROM twice. This reflector is also used to deflect the beam emerging from the PROM towards the plane where the Fourier transform of the optical modulation created by this object is projected.

Contrairement a ce document cité, le système selon l'invention met en oeuvre la restitution d'un front d'onde de morphologie complexe émergeant d'un objet modulateur, généré par l'interférence dans un milieu d'interaction d'une onde optique incidente ayant ce front d'onde avec une onde de pompage. Cette interférence se produit dans un milieu d'interaction photoexcitable à variation d'indice a trois dimensions dont les caractéristiques physiques et en particulier l'indice de réfraction sont modulés spatialement par un réseau de franges issu de l'onde incidente de front d'onde ¿Oz et de l'onde de pompage.Unlike this cited document, the system according to the invention implements the reproduction of a wave front of complex morphology emerging from a modulating object, generated by interference in an interaction medium of an optical wave. incident having this wavefront with a pumping wave. This interference occurs in a photoexcitable interaction medium with three-dimensional index variation whose physical characteristics and in particular the refractive index are spatially modulated by a network of fringes resulting from the incident wavefront wave. ¿Oz and pumping wave.

De plus, le document cité considère un milieu d'interaction PROM (Pockels Readout Optical Modulateur) utilisant un effet électro-optique longitudinal dont la résolution spatiale est limitée par l'épaisseur du matériau. Ce milieu d'interaction PROM est, en effet, réalisé par une mince couche de matériau électro-optique couverte d'une couche isolante et comportant des électrodes transparentes déposées sur ses faces avant et arrière. Contrairement au dispositif de l'invention qui considère un milieu interactif utilisant un effet électro-optique transverse qui présente une haute résolution spatiale, des électrodes étant déposées sur les faces latérales du cristal électro-optique.In addition, the cited document considers a PROM (Pockels Readout Optical Modulator) interaction medium using a longitudinal electro-optical effect whose spatial resolution is limited by the thickness of the material. This PROM interaction medium is, in fact, produced by a thin layer of electro-optical material covered with an insulating layer and comprising transparent electrodes deposited on its front and rear faces. Unlike the device of the invention which considers an interactive medium using a transverse electro-optical effect which has a high spatial resolution, electrodes being deposited on the lateral faces of the electro-optical crystal.

Un système de corrélateur optique connu est décrit dans la demande de brevet français publiée le 8 Mai 1981 sous le N° 2 468 947. On réalise un enregistrement sur un support photosensible d'un système de franges d'interférence représentant la figure de diffraction obtenue à partir de deux faisceaux cohérents parallèles, sur le trajet desquels ont été interposés deux objets à transparence non uniforme, après focalisation par une lentille. Ce support photosensible est lu par un des faisceaux et on obtient dans le plan focal d'une deuxième lentille une répartition d'intensité caractéristique du produit de corrélation entre les deux objets; lorsque l'on veut retrouver un graphisme dans un motif donné, l'image obtenue est formée de pics indiquant la présence et la position de ce graphisme dans le motif considéré. Dans cette demande de brevet le support photosensible est un milieu continûment recyclable, c'est-à-dire inscriptible sans développement et effaçable à volonté. Mais dans un tel système existent des distorsions de phase parasites induites par les composants optiques et, pour l'introduction des données, par des transparents photographiques ou par des transducteurs électro-optiques. Il est connu, par ailleurs, d'intercaler sur la propagation des ondes un transparent dont la caractéristique de phase permette une compensation rigoureuse des distorsions de la surface d'onde incidente: Pour que ce filtre reste valable quelque soit la translation de la transparence dans le plan objet, ce filtre est positionné dans le plan de Fourier.A known optical correlator system is described in the French patent application published on May 8, 1981 under No. 2,468,947. A system of interference fringes representing the diffraction pattern obtained is recorded on a photosensitive support. from two parallel coherent beams, on the path of which have been interposed two objects with non-uniform transparency, after focusing by a lens. This photosensitive support is read by one of the beams and one obtains in the focal plane of a second lens a distribution of intensity characteristic of the correlation product between the two objects; when one wants to find a graphic in a given pattern, the image obtained is formed of peaks indicating the presence and the position of this graphic in the considered motif. In this patent application, the photosensitive support is a continuously recyclable medium, that is to say writable without development and erasable at will. However, in such a system there are parasitic phase distortions induced by the optical components and, for the input of the data, by photographic transparencies or by electro-optical transducers. It is known, moreover, to interpose on the wave propagation a transparency whose phase characteristic allows a rigorous compensation for the distortions of the incident wave surface: So that this filter remains valid whatever the translation of the transparency in the object plane, this filter is positioned in the Fourier plane.

Le système transformateur de Fourier de l'invention compense ces distorsions d'une manière plus simple. Il utilise, en effet, un front d'onde conjugué du front d'onde incident qui, en chaque point, est isomorphe de celui-ci. Ce front d'onde conjugué, par retour inverse est modulé une deuxième fois par l'objet. Mais du fait du trajet inverse, il y a compensation des déformations de modulation du trajet aller. Il en est de même pour les déformations dûes aux aberrations de la lentille: elles sont compensées.The Fourier transformer system of the invention compensates for these distortions in a simpler way. It uses, in fact, a wavefront conjugate of the incident wavefront which, at each point, is isomorphic of it. This conjugate wavefront, by reverse return, is modulated a second time by the object. But because of the reverse path, there is compensation for the modulation deformations of the outward path. It is the same for the deformations due to the aberrations of the lens: they are compensated.

Le système corrélateur optique qui inclut le système transformateur de Fourier, permet un gain important sur le rapport signal/bruit du pic de corrélation. Celui-ci est rendu équivalent de celui résultant d'une illumination incohérente.The optical correlator system which includes the Fourier transformer system, allows a significant gain on the signal / noise ratio of the correlation peak. This is made equivalent to that resulting from an inconsistent illumination.

En effet en déplaçant le point source selon un segment de droite, on effectue dans le plan image une intégration incohérente des images cohérentes dont les bruits sont décorrélés. On peut aussi interposer sur le passage du faisceau une cuve électro-optique qui permette une translation de celui-ci. Par simple dosage du rapport des différents faisceaux on atténue les basses fréquences du spectre de la transparence objet. Ce système permet donc de traiter en parallèle et en temps réel une grande quantité d'informations avec des composants optiques de qualités réduites.Indeed, by moving the source point along a line segment, an incoherent integration of the coherent images is carried out in the image plane, the noises of which are uncorrelated. One can also interpose on the passage of the beam an electro-optical tank which allows a translation of the latter. By simply dosing the ratio of the different beams, the low frequencies of the spectrum of object transparency are attenuated. This system therefore makes it possible to process a large quantity of information in parallel and in real time with optical components of reduced quality.

L'invention a pour objet un dispositif optique transformateur de Fourier, comportant une source ponctuelle de rayonnement cohérent disposée au foyer d'une lentille convergente, des moyens de positionnement d'un objet modulateur dans le faisceau collimaté émergeant de cette lentille et des moyens optiques assurant l'éclairement d'un plan par une distribution d'amplitudes lumineuses transformée de Fourier de la modulation optique créée par cet objet, ces moyens optiques comprenant un milieu d'inter action photo-excitable à variation d'indice recevant de faisceau collimaté via cet objet et un faisceau de pompage, caractérisé en ce que ce milieu d'interaction à variation d'indice a trois dimensions est un cristal électro-optique comprenant des électrodes disposées sur ses faces latérales aux bornes desquelles est apliquée une tension de manière a utiliser un effet électro-optique transverse, ce faisceau de pompage étant issu de cette source; un réflecteur plan étant agencé pour réfléchir en incidence normale et vers ce milieu le rayonnement qui en émerge selon la direction de propagation de ce faisceau de pompage, ce rayonnement ayant un front d'onde conjugué et isomorphe du front d'onde du faisceau collimaté de manière à compenser les défauts dus à une modulation parasite du front d'onde de ce faisceau collimaté et une lame semi-transparente étant située entre cette source et cette lentille pour déflechir vers ce plan le rayonnement contenu dans l'onde conjuguée rerayonnée par ce milieu en direction de cette lentille.The subject of the invention is an optical Fourier transformer device, comprising a point source of coherent radiation disposed at the focal point of a converging lens, means for positioning a modulating object in the collimated beam emerging from this lens and optical means. ensuring the illumination of a plane by a distribution of light amplitudes transformed by Fourier of the optical modulation created by this object, these optical means comprising a photo-excitable medium of interaction with index variation receiving collimated beam via this object and a pumping beam, characterized in that this interaction medium with three-dimensional index variation is an electro-optical crystal comprising electrodes arranged on its lateral faces at the terminals of which a voltage is applied so as to use an electro- transverse optics, this pumping beam coming from this source; a plane reflector being arranged to reflect in normal incidence and towards this medium the radiation which emerges therefrom in the direction of propagation of this pumping beam, this radiation having a conjugate wavefront and isomorphic to the wavefront of the collimated beam of so as to compensate for the defects due to a parasitic modulation of the wavefront of this collimated beam and a semi-transparent plate being located between this source and this lens to deflect towards this plane the radiation contained in the conjugate wave re-radiated by this medium towards this lens.

L'invention a, en outre, pour objet un corrélateur optique à double diffraction comportant un premier dispositif transformateur de Fourier, un milieu d'interaction photo-excitable à variation d'indice qui comprend des électrodes disposées sur ses faces latérales aux bornes desquelles est appliquée une tension agencé pour recevoir simultanément le rayonnement émergeant de ce premier dispositif transformateur et un autre rayonnement contenu dans un faisceau de référence et un second transformateur de Fourier destiné à projeter dans un plan image un éclairement représentatif de la fonction de corrélation des deux motifs d'un objet modulateur introduit dans ce premier dispositif transformateur de Fourier, caractérisé en ce que ce premier dispositif optique transformateur de Fourier est un dispositif optique transformateur de Fourier tel que décrit précédemment.The invention further relates to a double diffraction optical correlator comprising a first Fourier transformer device, a photo-excitable interaction medium with index variation which comprises electrodes arranged on its lateral faces at the terminals of which is applied a voltage arranged to receive simultaneously the radiation emerging from this first transformer device and another radiation contained in a reference beam and a second Fourier transformer intended to project into an image plane an illumination representative of the correlation function of the two patterns of a modulating object introduced into this first Fourier transformer device, characterized in that this first optical Fourier transformer device is an optical Fourier transformer device as described above.

L'invention sera mieux comprise à l'aide de la description qui suit, illustrée par les figures annexées dont le contenu est le suivant:

  • - la figure 1 est un schéma de principe du fonctionnement du transformateur de Fourier mis en oeuvre dans le dispositif selon l'invention;
  • - la figure 2 est le schema d'un exemple de réalisation du système selon l'invention;
  • - la figure 3 est un schéma explicatif du cor- rélateùr optique mis en oeuvre dans le dispositif selon l'invention;
  • - la figure 4 illustre un aspect particulier du dispositif selon l'invention;
  • - la figure 5 est un autre exemple de réalisation dv système selon l'invention.
The invention will be better understood with the aid of the description which follows, illustrated by the appended figures, the content of which is as follows:
  • - Figure 1 is a block diagram of the operation of the Fourier transformer used in the device according to the invention;
  • - Figure 2 is a diagram of an exemplary embodiment of the system according to the invention;
  • FIG. 3 is an explanatory diagram of the optical corrector used in the device according to the invention;
  • - Figure 4 illustrates a particular aspect of the device according to the invention;
  • - Figure 5 is another embodiment of the system according to the invention.

Le système selon l'invention met en oeuvre la restitution d'un front d'onde de morphologie complexe émergeant d'un objet modulateur, généré par l'interférence dans un milieu d'interaction d'une onde optique incidente avant ce front d'onde avec une onde de pompage.The system according to the invention implements the reproduction of a wave front of complex morphology emerging from a modulating object, generated by interference in an interaction medium of an incident optical wave before this front of wave with a pumping wave.

Sur la figure 1, cette interférence se produit dans un milieu d'interaction 2 photoexcitable a variation d'incide a trois dimensions dont les caractéristiques physiques et en particulier l'incide de réfraction, sont modulés spatialement par un réseau de franges issu de l'onde incidente de front d'onde Σ2 et de l'onde de pompage Fp.In FIG. 1, this interference occurs in a photoexcitable interaction medium 2 with variation of three-dimensional incide whose physical characteristics and in particular the refraction incide, are spatially modulated by a network of fringes resulting from the incident wavefront wave Σ 2 and pumping wave Fp.

Du fait de l'existence de cette modulation spatiale, une fraction de l'énergie de l'onde de pompage est diffractée sous la forme d'une onde émergente. Une autre fraction de l'énergie traverse le milieu 2, et est renvoyé dans le milieu par un réflecteur plan 4 disposé normalement à son trajet. Une partie de son énergie est alors diffractée par le réseau de strates inscrit dans le milieu sous la forme d'une onde émergente de front d'onde complexe Σ2 *, conjugué à l'onde Σ2. Σ2* a des caractéristiques isomorphes de celles de Σ2 et suit le même chemin optique mais en sens inverse; Σ2* retourne vers l'objet dont émane Σ2. La restitution de cette onde Σ2 s'effectue en temps réel au temps rd'établissement du réseau de strates près qui peut varier de 10-3 à 10-12 secondes. Des variations de ce réseau peuvent être lentes par rapport à la constante de temps r. Le milieu interactif 2 est constitué, par exemple, par un matériau électro-optique photoconducteur tel que l'oxyde de bismuth-silicium (BSO). Ce pourrait aussi être un oxyde tel que l'oxyde de bismuth-germanium (BGO). Ces deux oxydes conviennent particulièrement à l'invention car ils sont très sensibles dans la gamme des longueurs d'onde couramment utilisées qui constitue le domaine des ondes lumineuses visibles. De plus on peut obtenir des monocristaux de dimensions suffisantes ayant de bonnes qualités optiques. Ce milieu est polarisé à la tension Vo.Due to the existence of this spatial modulation, a fraction of the energy of the pumping wave is diffracted in the form of an emerging wave. Another fraction of the energy passes through the medium 2, and is returned to the medium by a plane reflector 4 normally arranged in its path. Part of its energy is then diffracted by the network of strata inscribed in the medium in the form of an emerging wave with a complex wavefront Σ 2 * , conjugated to the wave Σ 2 . Σ2 * has characteristics isomorphic to those of Σ 2 and follows the same optical path but in the opposite direction; Σ 2 * returns to the object from which Σ 2 emanates. The return of the wave Σ 2 is performed in real time at time rd'établissement strata network near which can range from 10- 3 to 10- 12 seconds. Variations in this network may be slow with respect to the time constant r. The interactive medium 2 consists, for example, of a photoconductive electro-optical material such as bismuth-silicon oxide (BSO). It could also be an oxide such as bismuth-germanium oxide (BGO). These two oxides are particularly suitable for the invention because they are very sensitive in the range of wavelengths commonly used which constitutes the field of visible light waves. In addition one can obtain single crystals of sufficient dimensions having good optical qualities. This medium is polarized at the voltage Vo.

L'onde incidente Σ2 provient d'un faisceau focalisé en un point source S. Ce point source est situé au foyer d'une lentille sphérique L1. Ainsi le front d'onde qui est sphérique Σ0 devient linéaire Σ1. Le faisceau lumineux collimaté par la lentille L1 est alors modulé par l'objet non linéai- rement transparent 1. Celui-ci est situé dans le plan focal Po de la lentille, ou plan objet. Ainsi lors du trajet retour du front d'onde Σ2* il y aura focalisation du faisceau en un point d'image de S après réflexion sur une lame semitransparente 9.The incident wave Σ 2 comes from a beam focused at a source point S. This source point is located at the focus of a spherical lens L1. Thus the wave front which is spherical Σ 0 becomes linear Σ 1 . The light beam collimated by the lens L 1 is then modulated by the non-linearly transparent object 1. This is located in the focal plane Po of the lens, or object plane. Thus during the return path of the wave front Σ2 * there will be focusing of the beam at an image point of S after reflection on a semitransparent plate 9.

Le trajet aller à travers la lentille L1 et le transparent objet 1 crée des distorsions de phase parasites des ondes Σ1et Σ2. Ces distorsions sont dûes aux aberrations de la lentille Li et aux déformations relatives au support du transparent objet. Le trajet retour à travers les mêmes transparent objet et lentille Li permet de compenser ces défauts dûs à une modulation de phase parasite des fronts d'ondes. Il permet en outre de doubler le contraste de la modulation d'amplitude dûe à l'objet.The forward path through the lens L 1 and the transparent object 1 creates parasitic phase distortions of the waves Σ 1 and Σ 2 . These distortions are due to the aberrations of the lens Li and to the deformations relating to the support of the transparent object. The return path through the same transparent object and lens L i makes it possible to compensate for these defects due to a parasitic phase modulation of the wave fronts. It also makes it possible to double the contrast of the amplitude modulation due to the object.

Dans le plan focal de la lentille Li, dans lequel se situe l'image de S après réflexion sur la lame semi-transparente 9, on obtient une distribution d'amplitude proportionnelle à la transformée de Fourier de la répartition d'amplitude dans le plan objet Po; on a donc réalisé un transformateur de Fourier de la modulation optique créée par l'objet 1.In the focal plane of the lens L i , in which the image of S is located after reflection on the semi-transparent plate 9, an amplitude distribution is obtained proportional to the Fourier transform of the amplitude distribution in the object plane Po; we therefore produced a Fourier transformer of the optical modulation created by object 1.

Dans la figure 2, le système décrit dans la figure 1 est conservé. On retrouve les différents éléments constitutifs du système de la figure 1. On y ajoute un milieu photosensible 10 dans le plan du point image S', perpendiculaire à la direction des rayons passant par les centres optiques. Ce plan est le plan focal d'une lentille Lz l'autre plan focal est constitué du milieu détec- teur7.In Figure 2, the system described in Figure 1 is retained. We find the different constitutive elements of the system of FIG. 1. A photosensitive medium 10 is added to it in the plane of the image point S ', perpendicular to the direction of the rays passing through the optical centers. This plane is the focal plane of a lens L z the other focal plane is composed of the detec medium - teur7.

Pour comprendre le principe de la corrélation optique, on considère la figure 3. Dans celle-ci un rayon parallèle après être modulé par un transparent objet constitué de deux motifs A et B est focalisé par une lentille sphérique L à l'intérieur d'un milieu d'interaction 10 situé dans le plan focal de celle-ci. En ce milieu, il y a enregistrement de la somme algébrique des transformées de Fourier, c'est-à-dire des spectres de deux fonctions bidimensionnelles qui représentent les transmittances des deux motifs objets transparents A et B. En effet ce milieu est situé dans le plan focal de L ou plan de Fourier. On obtient donc une distribution d'amplitude proportionnelle à la transformée de Fourier de la répartition d'amplitude du plan objet. Comme dans le spectre de signaux temporels, les spectres des signaux spatiaux sont symétriques par rapport à la fréquence zéro. Mais il s'agit ici d'une symétrie dans le plan et non plus seulement sur un axe. Si on translate le transparent objet de Ax dans un plan objet, le spectre reste inchangé dans le plan de Fourier, en effet la transformée de Fourier est invariante en translation.To understand the principle of optical correlation, we consider Figure 3. In it a parallel ray after being modulated by a transparent object consisting of two patterns A and B is focused by a spherical lens L inside a interaction medium 10 located in the focal plane thereof. In this medium, there is recording of the algebraic sum of the Fourier transforms, that is to say spectra of two two-dimensional functions which represent the transmittances of the two transparent object patterns A and B. Indeed this medium is located in the focal plane of L or Fourier plane. We therefore obtain an amplitude distribution proportional to the Fourier transform of the amplitude distribution of the object plane. As in the time signal spectrum, the spectra of the space signals are symmetrical with respect to the zero frequency. But this is a symmetry in the plane and no longer only on an axis. If we translate the transparent object of Ax in an object plane, the spectrum remains unchanged in the Fourier plane, indeed the Fourier transform is invariant in translation.

Il n'y a pas de différence d'amplitude mais il y a apparition d'un déphasage de la forme eiax qui entraine un déplacement dans le plan image ou plan de sortie Ps. Ainsi dans notre cas, peu importe la position des motifs objets transparents A et B dans le plan objet, leur spectre résultant qui correspond à la superposition de chacun de leurs spectres va se trouver au même endroit. Le milieu 10 enregistre donc la superposition de franges de pas différents, le pas moyen étant égal à λ12sinα où λ1 war la longueur d'onde opti- que des faisceaux incidents qui interférent, et le demi-angle entre ces faisceaux. Les franges d'interférences résultant de la superposition de ces faisceaux qui éclairent A et B, après la focalisation opérée par la lentille L, sont donc enregistrés dans un milieu d'interaction 10 constitué par exemple d'un matériau électro-optique polarisé par un champ électrique obtenu au moyen d'une source de tension Vo. Son orientation est telle que le champ électrique produit un effet électro- optique transverse. Les variations spatiales d'intensité lumineuse existant dans ce plan PF se traduisent instantanément dans la lame par des variations spatiales d'indice de réfraction. Ces plans d'interférences sont quasi-perpendiculaires à la direction du champ électrique appliqué. La modulation d'indice disparait avec sa cause, c'est-à-dire avec la présence de motifs objets A et B sur le trajet des faisceaux.There is no difference in amplitude but there is an appearance of a phase shift of the form e i ax which causes a displacement in the image plane or exit plane Ps. Thus in our case, it does not matter the position of the transparent object patterns A and B in the object plane, their resulting spectrum which corresponds to the superposition of each of their spectra will be in the same place. The medium 10 therefore records the superposition of fringes of different steps, the average step being equal to λ1 2sinα where λ 1 war the optical wavelength of the incident beams which interfere, and the half-angle between these beams. The interference fringes resulting from the superposition of these beams which illuminate A and B, after the focusing operated by the lens L, are therefore recorded in an interaction medium 10 consisting for example of an electro-optical material polarized by a electric field obtained by means of a voltage source Vo. Its orientation is such that the electric field produces a transverse electro-optical effect. The spatial variations in light intensity existing in this plane P F are instantly reflected in the plate by spatial variations in the refractive index. These plans are virtually interference - perpendicular to the direction of the applied electric field. The index modulation disappears with its cause, that is to say with the presence of object patterns A and B in the path of the beams.

On obtient donc une inscription en temps réel, effaçable à volonté. Pour obtenir toute l'information avec un maximum de résolution il est nécessaire que l'épaisseur du cristal soit égale ou supérieure à la largeur de la zone de diffraction. On peut définir une épaisseur qui est nettement supérieure à la longueur d'onde des faisceaux si bien que l'enregistrement dans la lame peut être considéré comme tridimensionnel. Il s'agit d'une superposition de réseaux de surfaces. Lorsque la largeur de la lame n'est par trop grande ces surfaces peuvent être assimilées à des plans perpendiculaires au plan de la figure. Leur pas p et l'inclinaison Φ par rapport à un axe normal au plan PF et dans le plan de figure dépendent de l'angle des rayons qui interférent, de leur longueur d'onde λ1 et de l'incide de réfraction n du cristal 10. Les matériaux utilisables doivent être photosensibles et électro-optiques tels que l'oxyde de bismuth-silicium ou l'oxyde de bismuth-germanium. Une fois l'enregistrement sur ce support photosensible réalisé, la lecture s'effectue à l'aide d'un faisceau FR parallèle cohé- rant éclairant le support sous incidence normale. Pour obtenir un rendement optimum dans l'un des ordres de diffraction, il existe un angle entre le faisceau FR de lecture et ces plans de diffraction défini par la condition de Bragg. Dans ce cas les différents réseaux enregistrés diffractent le faisceau FR selon des angles Otels que

Figure imgb0001
où p est le pas de réseau de plans de franges et Â3 la longueur d'onde du faisceau FR. Cette condition ne peut être réalisée pour tous les systèmes qui se superposent, aussi l'invention prévoit un balayage du faisceau de lecture FR. Celui-ci est par exemple un laser de faible puissance et de longuer d'onde choisie en dehors des longueurs d'onde auxquelles est sensible le matériau constituant le milieu 10. Le faisceau FR est, par exemple, défléchi par un déflecteur classique acousto-optique ou mécanique. Il est ici, renvoyé par une lame semi-transparente en direction du milieu 10. Ainsi à chaque instant, pour une orientation donnée du faisceau FR, seuls sont obtenus avec un rendement maximum les points situés sur une droite perpendiculaire au plan de la figure et auxquels on peut associer une inclinaison P et un pas p des réseaux de plans dans le cristal 10 pour lesquels l'incidence 0 du faisceau par rapport au plan est l'incidence de Bragg. Sont également obtenus avec un rendement réduit les points voisins pour lesquels l'incidence est comprise dans une gamme
Figure imgb0002
où n est l'indice de réfraction du milieu et l'épaisseur de la zone utile de diffraction dans le milieu. Tous les pics de corrélation apparaissent donc séquentiellement.We therefore obtain a real-time registration, erasable at will. To obtain all the information with maximum resolution, the thickness of the crystal must be equal to or greater than the width of the diffraction zone. A thickness can be defined which is clearly greater than the wavelength of the beams so that the recording in the slide can be considered as three-dimensional. It is a superposition of arrays of surfaces. When the width of the blade is not too large, these surfaces can be assimilated to planes perpendicular to the plane of the figure. Their pitch p and the inclination Φ with respect to an axis normal to the plane P F and in the plane of the figure depend on the angle of the interfering rays, their wavelength λ 1 and the refractive angle n crystal 10. The usable materials must be photosensitive and electro-optical such as bismuth-silicon oxide or bismuth-germanium oxide. Once the recording on this photosensitive support has been carried out, the reading is carried out using a coherent parallel beam F R illuminating the support under normal incidence. To obtain an optimum efficiency in one of the diffraction orders, there is an angle between the reading beam F R and these diffraction planes defined by the Bragg condition. In this case the different recorded networks diffract the beam F R according to angles such as
Figure imgb0001
where p is the network pitch of fringe planes and et 3 the wavelength of the beam F R. This condition cannot be fulfilled for all the superimposed systems, so the invention provides for scanning of the reading beam F R. This is for example a low power laser with a wavelength chosen outside the wavelengths to which the material constituting the medium is sensitive 10. The beam F R is, for example, deflected by a conventional acousto deflector -optical or mechanical. It is here, returned by a semi-transparent plate in the direction of the medium 10. Thus at each instant, for a given orientation of the beam F R , only the points located on a line perpendicular to the plane of the figure are obtained with maximum efficiency. and to which one can associate an inclination P and a pitch p of the plane arrays in the crystal 10 for which the incidence 0 of the beam with respect to the plane is the Bragg incidence. Neighboring points for which the incidence is within a range are also obtained with reduced efficiency.
Figure imgb0002
where n is the refractive index of the medium and the thickness of the useful diffraction zone in the medium. All the correlation peaks therefore appear sequentially.

Il y a émergence d'un faisceau parallèle qui est focalisé par une deuxième lentille sphérique L2 en un point du plan image ou plan de sortie Ps. Ce plan est le plan focal de la lentille Lz. Cela permet de générer une nouvelle transformation de Fourier. Cette seconde transformée de Fourier permet d'obtenir une image filtrée par la corrélation optique. En effet c'est la transformée de Fourier de la somme algébrique des deux transformées de Fourier des fonctions représentant la transmittance de A et B. Elle permet de repasser dans l'espace initial. La corrélation d'un signal par un autre peut se décomposer en deux corrélations. Une fonction d'autocorrélation du signal à observer et une fonction de corrélation du signal par le bruit. La fonction d'autocorrélation est une fonction symétrique qui présente l'allure d'un pic. On a ici un rayonnement non diffracté au centre et deux pics de corrélations symétriques par rapport à ce centre. Dans notre cas un pic de corrélation est un point de focalisation de la lumière dans le plan de sortie. La fonction de corrélation du signal par le bruit représente au contraire un fond étalé d'où émergent quelques pics secondaires mais dont l'amplitude est inférieure à celle des pics d'autocorrélation.There is an emergence of a parallel beam which is focused by a second spherical lens L 2 at a point of the image plane or output plane Ps. This plane is the focal plane of the lens Lz. This generates a new Fourier transformation. This second Fourier transform makes it possible to obtain an image filtered by optical correlation. Indeed it is the Fourier transform of the algebraic sum of the two Fourier transforms of the functions representing the transmittance of A and B. It allows to go back to the initial space. The correlation of one signal by another can be broken down into two correlations. An autocorrelation function of the signal to be observed and a signal correlation function by noise. The autocorrelation function is a symmetrical function which has the appearance of a peak. We have here a non-diffracted radiation in the center and two peaks of symmetrical correlations with respect to this center. In our case a correlation peak is a focal point of the light in the exit plane. The noise correlation function of the signal represents on the contrary a spread background from which some secondary peaks emerge but whose amplitude is lower than that of the autocorrelation peaks.

Le faisceau parallèle de lecture FR peut avoir une longueur d'onde A2 différente de celle 4, du faisceau source qui est modulé par A et B. On intercale alors un filtre coloré 5 entre le milieu 10 et la lentille L2 pour qu'il ne laisse passer que la partie du faisceau émergent de longueur d'onde λ2. En effet il faut éliminer la partie du faisceau émergent de longueur d'onde λ1.The parallel reading beam F R may have a wavelength A 2 different from that of the source beam which is modulated by A and B. A color filter 5 is then inserted between the medium 10 and the lens L 2 so that 'it only lets through the part of the emerging beam of wavelength λ 2 . Indeed it is necessary to eliminate the part of the emerging beam of wavelength λ 1 .

Le faisceau émergent du milieu d'interaction 10 a subi une réflexion sur les strates d'interférence de ce milieu. Ce faisceau d'onde est donc affecté d'une polarisation horizontale. En effet les strates d'interférence sont perpendiculaire à la direction du champ appliqué. Si on intercale un polariseur 6 dans ce faisceau émergent, on obtient un meilleur rapport signal/bruit en favorisant la transmission des ondes polarisées.The beam emerging from the interaction medium 10 has undergone a reflection on the interference strata of this medium. This wave beam is therefore assigned a horizontal polarization. Indeed, the interference strata are perpendicular to the direction of the applied field. If a polarizer 6 is inserted in this emerging beam, a better signal / noise ratio is obtained by promoting the transmission of the polarized waves.

Dans la figure 2 se trouvent tous les élément considérés dans la figure 3. Le faisceau modulé par les motifs objets A et B est le faisceau conjugué retour émergeant du milieu 2. Ce faisceau traverse alors la lentille Li. La lentille L de la figure 3 devient donc la lentille Li de la figure 2. Ce dispositif de la figure 2 permet d'effectuer une corrélation optique. Il incorpore le transformateur de Fourier de la figure 1. Le faisceau retour de front d'onde Σ0* qui se réfléchit sur la lame semi-transparente est un faisceau modulé en amplitude par l'objet 1 qui comprend deux motifs; A et B sur la figure 3. Il y a compensation des distorsions de phase obtenue par génération en temps réel du front d'onde conjugué dans le milieu 2. Il y a à la fois compensation des aberrations de la lentille Li effectuant la transformée de Fourier, et des distorsions induites par le dispositif d'introduction des données qui fonctionne ici par transmission.In Figure 2 are all the elements considered in Figure 3. The beam modulated by the object patterns A and B is the conjugate return beam emerging from the medium 2. This beam then passes through the lens L i . The lens L in FIG. 3 therefore becomes the lens Li in FIG. 2. This device in FIG. 2 makes it possible to perform an optical correlation. It incorporates the Fourier transformer of Figure 1. The wavefront return beam Σ 0 * which is reflected on the semi-transparent plate is a beam modulated in amplitude by the object 1 which includes two patterns; A and B in FIG. 3. There is compensation for the phase distortions obtained by real-time generation of the conjugate wavefront in the medium 2. There is both compensation for the aberrations of the lens Li effecting the transform of Fourier, and distortions induced by the data entry device which operates here by transmission.

Le pouvoir de discrimination dans le plan de source du corrélateur est faible. Il y a des mouchetures (ou speckle) dûes à l'emploi de la lumière cohérente. Pour améliorer le rapport signal/bruit on effectue un moyennage en supper- posant les intensités d'un certain nombre d'images; chaque image est obtenue avec un transparent objet identique, mais avec une forme de speckle différente.The discriminating power in the source plane of the correlator is weak. There are speckles due to the use of coherent light. To improve the signal / noise ratio, averaging is carried out by supposing the intensities of a certain number of images; each image is obtained with an identical transparent object, but with a different speckle shape.

On peut réaliser ce moyennage en déplaçant le faisceau source Fs le long d'un segment de droite Si Sz, la faisceau référence FR étant déplacée de façon synchrone pour frapper le milieu 10 au même point que le faisceau source entré S'i et S'z. Ces déplacements peuvent être obtenus par tout dispositif de déflexion acousto-optique, électro-optique ou même par le déplacement mécanique d'une lentille ou extrémité de fibre optique.This averaging can be achieved by moving the source beam F s along a straight line Si S z , the reference beam F R being moved synchronously to strike the medium 10 at the same point as the input source beam S ' i and S ' z . These displacements can be obtained by any acousto-optical, electro-optical deflection device or even by the mechanical displacement of a lens or end of optical fiber.

La figure 4 illustre cette possibilité de déplacement des extrémités de deux fibes optiques monomodes 20 et 21. Le faisceau lumineux issu d'un laser 22 est scindé par interposition d'une lame semi-transparente 23 en deux composantes qui après focalisation par deux lentilles L3 et L4 se propagent dans ces fibres 20 et 21.FIG. 4 illustrates this possibility of displacement of the ends of two single-mode optical fibers 20 and 21. The light beam coming from a laser 22 is split by the interposition of a semi-transparent plate 23 into two components which after focusing by two lenses L 3 and L 4 propagate in these fibers 20 and 21.

Les extrémités de ces deux fibres sont déplacées de façon synchrone par deux moteure 24 et 25 pilotés par un générateur 26, la composante du faisceau circulant dans la fibre 20 est collima- tée par une lentille L5 pour donner le faisceau référence FR.The ends of these two fibers are moved synchronously by two motor 24 and 25 controlled by a generator 26, the component of the beam flowing in the fiber 20 is collimated by a lens L 5 to give the reference beam F R.

Une configuration électro-optique plus simple est indiqueée sur la figure 5. Sur ce schéma la source So reste fixe et la translation fictive de So, de Si à S2 obtenue à l'aide d'une cuve acousto-optique disposée pour défléchir le faisceau retour qui est modulé par l'objet, par exemple dans le plan objet. Mais alors les aberrations induites la lentille Li se sont compensées rigoureusement que pour le point S'o. Aussi les points fictifs Si et S2 sont au voisinage de So et on peut considérer que les distorsions résiduelles induites par la lentille Li restent faibles. Le faisceau FR doit se déplacer comme dans le cas précédent.A simpler electro-optical configuration is indicated in FIG. 5. In this diagram the source So remains fixed and the fictitious translation of So, from Si to S 2 obtained using an acousto-optical tank arranged to deflect the return beam which is modulated by the object, for example in the object plane. But then the aberrations induced by the lens Li are compensated rigorously only for the point S ' o . Also the fictitious points Si and S 2 are in the vicinity of S o and it can be considered that the residual distortions induced by the lens L i remain low. The beam F R must move as in the previous case.

En effectuant ce moyennage, on réalise une intégration dans le plan de sortie de N images dont les bruits sont décorrélés. On réalise donc une intégration incohérente de N images cohérentes. Le gain sur le support signal/bruit des pics de corrélation est proportionnel à √N.By carrying out this averaging, an integration is made in the output plane of N images whose noises are decorrelated. An incoherent integration of N coherent images is therefore carried out. The gain on the signal / noise support of the correlation peaks is proportional to √N.

Une autre façon d'améliorer le rapport signal/ bruit consiste à atténuer les basses fréquences spatiales du spectre de la transparence objet. Ceci peut être réalisé en considérant un faisceau de pompage Fp d'intensité inférieure à celle du faisceau objet. On ne retient alors dans le front d'onde conjuguée que les hautes fréquences spatiales, ce qui correspond à un renforcement des contours du transparent objet.Another way to improve the signal-to-noise ratio is to attenuate the low spatial frequencies of the object transparency spectrum. This can be achieved by considering a pumping beam Fp of intensity lower than that of the object beam. Only the high spatial frequencies are retained in the conjugate wave front, which corresponds to a reinforcement of the contours of the transparent object.

A titre d'exemple non limitatif le système corrélateur optique de la figure 2 a été réalisé avec une première lame 2 monocristalline d'oxyde de bismuth-silicium. Cette lame a une surface de 30 x 30 millimètres carrés et une épaisseur de 3 millimètres. La deuxième lame est elle aussi une lame monocristalline d'oxyde de bismuth-silicium. Elle a une surface de 2 x 10 millimètres carrés et une épaisseur de 1 millimètre. Ces lames sont polarisés avec une tension Vo de l'ordre de 2000 volts. Le transparent objet a une surface de 25 × 25 millimètres carrés. Si T est le temps mis par le point source S pour se déplacer de Si à Sz, ici distants de 5 millimètres, si rest le temps d'inscription du champ de charge d'espace dans le cristal BSO 10 (oxyde de bismuth-silicium), T est, par exemple, égal à 1 seconde et τ à 1 milliseconde.By way of nonlimiting example, the optical correlator system of FIG. 2 was produced with a first monocrystalline plate 2 of bismuth-silicon oxide. This blade has a surface of 30 x 30 square millimeters and a thickness of 3 millimeters. The second blade is also a monocrystalline bismuth-silicon oxide blade. It has a surface of 2 x 10 square millimeters and a thickness of 1 millimeter. These blades are polarized with a voltage Vo of gold dre of 2000 volts. The transparent object has a surface of 25 × 25 square millimeters. If T is the time taken by the source point S to move from Si to Sz, here distant by 5 millimeters, if the time of registration of the space charge field in the crystal BSO 10 (bismuth-silicon oxide) remains ), T is, for example, equal to 1 second and τ to 1 millisecond.

Dans ce cas, on peut considérer que sur une période de temps T on effectue sur le milieu détecteur 7 une intégration incohérente de N = T/τ »images« cohérentes. Ici N est égal à 1000. Le gain sur la rapport signal/bruit du pic de corrélation est proportionnel à √N soit environ 30.In this case, we can consider that over a period of time T, an inconsistent integration of N = T / τ "coherent" images is performed on the detector medium 7. Here N is equal to 1000. The gain on the signal-to-noise ratio of the correlation peak is proportional to √N, which is approximately 30.

Ainsi ce système corrélateur optique apporte une solution nouvelle aux problèmes posés à tout dispositif de corrélation en optique cohérente. Il permet un fonctionnement aux limites de la diffraction avec des composants optiques de qualités réduites, en particulier la lentille sphérique Li. Le rapport signal/bruit peut être rendu équivalent à celui résultant d'un éclairage incohérent.Thus this optical correlator system provides a new solution to the problems posed by any coherent optical correlation device. It allows operation at the limits of diffraction with optical components of reduced quality, in particular the spherical lens Li. The signal / noise ratio can be made equivalent to that resulting from incoherent lighting.

L'utilisation de matériaux dynamiques tel le BSO permet une amélioration des performances de ce systèmes de traitement optique basé sur les propriétés de transformées de Fourier des lentilles.The use of dynamic materials such as BSO allows an improvement in the performance of this optical processing system based on the properties of Fourier transforms of lenses.

Les principales applications concernent par exemple la poursuite des cibles ou la robotique.The main applications concern, for example, target tracking or robotics.

Claims (8)

1. An optical Fourier transformer device comprising a coherent radiation point source (S) located in the focus of a convergent lens (Li), means for positioning a modulating object (1) in the collimated beam emerging from said lens (Li), and optical means illuminating a plane by a distribution of Fourier transformed light amplitudes of the optical modulation produced by said object, these optical means comprising a photo- excitable interaction medium (2) with index variation receiving the collimated beam via said object (1) and a pumping beam (Fp), characterized in that this interaction medium (2) with three-dimensional index variation is constituted by an electro-optical crystal comprising electrodes located on its lateral faces to which a voltage (Uo) is applied in such a way that a transverse optical effect is used, the pumping beam emerging from said source, a plane reflector (4) being arranged so as to reflect in normal incidence and towards the said medium (2) the radiation emerging therefrom in the propagation direction of the pumping beam (Fp), this radiation having a wavefront which is conjugate and isomorph with the wavefront of the collimated beam such that the errors due to a parasite modulation of the wavefront of this collimated beam are compensated, and a semitransparent plate being positioned between the said source (S) and said lens (Li) for deflecting towards the said plane the radiation contained in the conjugate wave re-radiated by said medium (2) in the direction of said lens (Li).
2. A device according to claim 1, characterized in that the interaction medium (2) is a monocrystalline bismuth-silicium plate.
3. An optical correlator with double diffraction comprising a first Fourier transformer device, a photoexcitable interaction medium (10) with index variation comprising on its lateral faces electrodes to which a voltage (Vo) is applied, this medium being arranged for simultaneously receiving the radiation emerging from the first transformator device and another radiation contained in a reference beam (FR), and a second Fourier transformer for projecting into an image plane an illumination representing the correlation function of the two motifs of a modulating object introduced into said first Fourier transformer device, characterized in that said first Fourier transformer device is defined in accordance with either of the preceding claims.
4. An optical correlator according to claim 3, characterized in that angular scanning means for the reference beam (FR) ensure an optimum diffraction efficiency for the different points of the observed medium (10).
5. An optical correlator according to claims 3 and 4, characterized in that the optical means synchronously ensure the displacement of the source contained in the first Fourier transformer device and of the reference beam (FR) in order to average the optical noise superimposed on this illumination in the image plane.
6. An optical correlator according to any one of claims 3 to 5, characterized in that the source (S) and the reference beam (FR) emerge from the ends of two monomode optical fibres (20,21).
7. An optical correlator according to any one of claims 3 to 6, characterized in that an acousto- optical deflector (11) is interposed in the objet plane to deflect the return beam, which is modulated by the object.
8. An optical correlator according to any one of claims 3 to 7, characterized in that the interaction medium (10) is a bismuth-silicium plate.
EP82400164A 1981-02-06 1982-01-28 Optical fourier transform device and optical correlator using the same Expired EP0058592B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR8102410A FR2499735A1 (en) 1981-02-06 1981-02-06 FOURIER TRANSFORMER OPTICAL DEVICE AND OPTICAL CORRELATOR USING THE FOURIER TRANSFORMER OPTICAL DEVICE
FR8102410 1981-02-06

Publications (2)

Publication Number Publication Date
EP0058592A1 EP0058592A1 (en) 1982-08-25
EP0058592B1 true EP0058592B1 (en) 1985-07-10

Family

ID=9254937

Family Applications (1)

Application Number Title Priority Date Filing Date
EP82400164A Expired EP0058592B1 (en) 1981-02-06 1982-01-28 Optical fourier transform device and optical correlator using the same

Country Status (5)

Country Link
US (1) US4514038A (en)
EP (1) EP0058592B1 (en)
JP (1) JPS57148720A (en)
DE (1) DE3264603D1 (en)
FR (1) FR2499735A1 (en)

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4556950A (en) * 1983-09-02 1985-12-03 Environmental Research Institute Of Michigan Incoherent optical processor
GB2154092A (en) * 1984-02-07 1985-08-29 Standard Telephones Cables Ltd Optical correlator
EP0182509B1 (en) * 1984-11-14 1992-04-08 Nortel Networks Corporation Two-dimensional optical information processing apparatus
US4695973A (en) * 1985-10-22 1987-09-22 The United States Of America As Represented By The Secretary Of The Air Force Real-time programmable optical correlator
US4723222A (en) * 1986-06-27 1988-02-02 The United States Of America As Represented By The Secretary Of The Air Force Optical correlator for analysis of random fields
US4932741A (en) * 1988-07-20 1990-06-12 Grumman Aerospace Corporation Optical correlator system
JPH0830830B2 (en) * 1988-09-07 1996-03-27 セイコー電子工業株式会社 Optical correlation processor
IT1232051B (en) * 1989-03-24 1992-01-23 Cselt Centro Studi Lab Telecom DEVICE FOR THE CORRELATION BETWEEN OPTICAL BEAMS
US5107351A (en) * 1990-02-16 1992-04-21 Grumman Aerospace Corporation Image enhanced optical correlator system
US5233554A (en) * 1990-09-10 1993-08-03 United Technologies Corporation Programmable optical correlator
FR2681988A1 (en) * 1991-09-27 1993-04-02 Thomson Csf DEFLECTION POWER LASER.
FR2696014B1 (en) * 1992-09-18 1994-11-04 Thomson Csf Phase conjugation mirror.
FR2755516B1 (en) 1996-11-05 1999-01-22 Thomson Csf COMPACT ILLUMINATION DEVICE
ES2147714B1 (en) * 1998-11-26 2001-04-01 Univ Madrid Politecnica FOURIER TRANSFORMER OF OPTICAL SIGNS IN THE TEMPORARY DOMAIN, BASED ON FIBER DIFFACTION NETWORKS.
FR2819061B1 (en) * 2000-12-28 2003-04-11 Thomson Csf POLARIZATION CONTROL DEVICE IN AN OPTICAL LINK

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2362466A1 (en) * 1976-08-19 1978-03-17 Thomson Csf HOLOGRAPHIC RECORDING CELL, MEMORY AND OPTICAL CALCULATION DEVICE USING SUCH A CELL
FR2468947A1 (en) * 1979-11-05 1981-05-08 Thomson Csf REAL-TIME OPTICAL CORRELATION SYSTEM

Also Published As

Publication number Publication date
EP0058592A1 (en) 1982-08-25
FR2499735A1 (en) 1982-08-13
FR2499735B1 (en) 1985-02-08
DE3264603D1 (en) 1985-08-14
JPS57148720A (en) 1982-09-14
US4514038A (en) 1985-04-30

Similar Documents

Publication Publication Date Title
EP0058592B1 (en) Optical fourier transform device and optical correlator using the same
EP0040114B1 (en) Optical real-time viewing system with scanning
EP0394137B1 (en) Apparatus for incoherent light holography
EP0028548A1 (en) Real-time optical correlation system
EP0083520A1 (en) Optical beam switching device and telephone exchange including the same
EP0138668B1 (en) Device for recording a coherent image in a multimodal optical cavity
EP0053052B1 (en) Interferometric device for the real-time visualization of deformations of vibrating structures
EP0053957B1 (en) Switching device for optical bundles and telephone exchange comprising such a device
FR2527799A1 (en) DEVICE FOR STORING A COHERENT IMAGE IN A MULTIMODE OPTICAL CAVITY
EP0069652B1 (en) Method of holographic recording-reading
EP3602201B1 (en) Devices and methods for optical imaging by means of off-axis digital holography
FR2688899A1 (en) METHOD FOR MEASURING TIME FOR FORMING A REFRACTIVE INDICATOR NETWORK OF A PHOTO-NON-LINEAR MEDIUM
EP0082050B1 (en) Device for the heterodyne detection of an optical image
FR2709827A1 (en) An optical imaging device for spectral analysis of a scene.
GB2203854A (en) Polarising optical device for forming a hologram
EP0040116B1 (en) Device for view-taking with extended field
EP0026128B1 (en) Device for holographic storage and optical information processing system using such a device
CN113703199A (en) Method and device for improving self-repairing capability of light field coherence
EP0098185B1 (en) Illumination device for an electro-optical medium for recording real time holograms
US5233554A (en) Programmable optical correlator
FR2544151A1 (en) DEVICE FOR SPATIAL SWITCHING OF OPTICAL BEAMS
US4118685A (en) Holographic signature processor
EP0751400B1 (en) Method and device for optic treatment of two-dimensional image to extract the velocity field
Howell Patent Reviews: 4,447,116; 4,451,124; 4,451,125; 4,451,146; 4,451,412; 4,452,512; 4,452,513; 4,453,805; 4,455,061; 4,455,064; 4,455,087; 4,456,327; 4,456,328
Singh et al. Real-time imaging through thin scattering layer and looking around the opaque surface

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Designated state(s): DE GB NL

17P Request for examination filed

Effective date: 19821011

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Designated state(s): DE GB NL

REF Corresponds to:

Ref document number: 3264603

Country of ref document: DE

Date of ref document: 19850814

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 19911214

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 19911219

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 19920131

Year of fee payment: 11

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Effective date: 19930128

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Effective date: 19930801

NLV4 Nl: lapsed or anulled due to non-payment of the annual fee
GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 19930128

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Effective date: 19931001