EP0050333A2 - Refrigeration system for a chilled product vending machine - Google Patents

Refrigeration system for a chilled product vending machine Download PDF

Info

Publication number
EP0050333A2
EP0050333A2 EP81108419A EP81108419A EP0050333A2 EP 0050333 A2 EP0050333 A2 EP 0050333A2 EP 81108419 A EP81108419 A EP 81108419A EP 81108419 A EP81108419 A EP 81108419A EP 0050333 A2 EP0050333 A2 EP 0050333A2
Authority
EP
European Patent Office
Prior art keywords
compressor
temperature
timer
vending machine
evaporator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP81108419A
Other languages
German (de)
French (fr)
Other versions
EP0050333B1 (en
EP0050333A3 (en
Inventor
Annis Ray Morgan, Jr.
Eddie Wayne King
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Coca Cola Co
Original Assignee
Coca Cola Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Coca Cola Co filed Critical Coca Cola Co
Priority to DE8585101434T priority Critical patent/DE3176594D1/en
Publication of EP0050333A2 publication Critical patent/EP0050333A2/en
Publication of EP0050333A3 publication Critical patent/EP0050333A3/en
Application granted granted Critical
Publication of EP0050333B1 publication Critical patent/EP0050333B1/en
Expired legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D17/00Arrangements for circulating cooling fluids; Arrangements for circulating gas, e.g. air, within refrigerated spaces
    • F25D17/04Arrangements for circulating cooling fluids; Arrangements for circulating gas, e.g. air, within refrigerated spaces for circulating air, e.g. by convection
    • F25D17/06Arrangements for circulating cooling fluids; Arrangements for circulating gas, e.g. air, within refrigerated spaces for circulating air, e.g. by convection by forced circulation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D29/00Arrangement or mounting of control or safety devices
    • GPHYSICS
    • G07CHECKING-DEVICES
    • G07FCOIN-FREED OR LIKE APPARATUS
    • G07F9/00Details other than those peculiar to special kinds or types of apparatus
    • G07F9/10Casings or parts thereof, e.g. with means for heating or cooling
    • G07F9/105Heating or cooling means, for temperature and humidity control, for the conditioning of articles and their storage
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/23Time delays
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D2400/00General features of, or devices for refrigerators, cold rooms, ice-boxes, or for cooling or freezing apparatus not covered by any other subclass
    • F25D2400/36Visual displays
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D2700/00Means for sensing or measuring; Sensors therefor
    • F25D2700/12Sensors measuring the inside temperature

Definitions

  • the present invention relates to an energy conservation system for chilled-product vending machines. More specifically, the present invention relates to a control circuit for a convection type refrigeration system for a vending machine which dispenses chilled products such as beverage cans or bottles.
  • a control circuit including at least three (3) timers for cycling the evaporator fans on and off independently of the operation of the compressor of the refrigeration system.
  • the evaporator fan is cycled on with the compressor and continues to run during the entire compressor on cycle as is conventional, but by means of a first timer the evaporator fan is permitted to run for an additional delay period following the cycle OFF of the compressor. During this additional delay period of the evaporator fans, the fans continue to blow air over the evaporator coil until the temperature of the evaporator coil is sufficiently above the freezing point of water (32° ⁇ , 0°C), and are then cycled off.
  • this cycle off of the evapor- ' ator fan may be anywhere from two (2) to five (5) minutes after the compressor has cut off, which enables the temperature of the evaporator coil to reach stabilization above 32°F.
  • a second cycling timer is provided to intermittently cycle the evaporator fans on and off for predetermined short intervals following the above described delay period, and during the time when the compressor is off.
  • This intermittent cycling of the evaporator fans on and off forces air through the product stacks of the vending machine to provide a relatively even distribution of temperature throughout the off period of the compressor to allow for proper and precise heat sensing of the product through the vendor thermostats.
  • This intermittent actuation of the fans and flow of air also limits the fluctuation of drink temperature, maintaining them within acceptable tolerances.
  • a third timer is provided to preclude freezing of the vended products and/or the evaporator coil when a vending machine is disposed in a below freezing environment.
  • This timer is enabled when the thermostatic temperature switch which controls the compressor opens, and will time out to cycle on the evaporator fans for continuous operation for a predetermined period of time if the temperature switch remains open in excess of a predetermined period of time, for example four (4) hours. That is, by sensing the compressor off period, (the period that the temperature switch is open), the evaporator fans are cycled on for a continuous period of operation to preclude freeze up of the products when the off period of the compressor (the temperature switch open) exceeds a predetermined limit such as four (4) hours.
  • An additional optional timer may be provided in combination with the other timers of the present invention for turning the refrigeration system on at a predetermined time in the morning and disabling the system at a predetermined time in the evening. -This optional timer obviously would further assist in the energy conservation objectives of the present invention by shutting down all power consumption during the period that the vending machine is not in use.
  • the timers utilized in the control circuit of the present invention are electromechanical cam timers which are commercially available components and are hardwired in circuit with the power source and other components of the refrigeration system in a manner to be described hereinafter.
  • the timing functions of the present invention could be performed by a general purpose digital computer or by microprocessor technology programmed to perform the desired functions.
  • the vending machine thereof also includes a convection refrigeration system which includes the conventional components of a refrigeration compressor , having a fan CF and a pump CP, an evaporator coil EC, an evaporator fan motor EFM, and a thermostatic temperature switch TS (not shown), for controlling the operation of the refrigeration system in response to the temperatures sensed within the vending machine.
  • the conventional convection refrigeration system illustrated in Figure 1 operates .
  • the control circuit of Figure 2 was designed to energize the evaporator fan motor EFM only during optimum times when its operation is clearly needed.
  • the evaporator fan EFM operates continuously during the.period that the compressor C is operating, operates for a predetermined delay period following the cycle OFF of the compressor in order to preclude freeze up of the evaporator coil EC, operates intermittently for predetermined periods when the compressor C is cycled OFF, and it is cycled ON to run continuously for a period following an interval when the compressor has not operated for an extended period of time, to preclude freezing of the products in the vending machine in sub-freezing environmental locations.
  • FIG. 2 there is illustrated an electrical circuit diagram of the control circuitry of the present invention for operating the convection refrigeration system illustrated in Figure 1.
  • a pair of main power lines PL1, PL2 are provided across which a conventional 120 volt, 60HZ power source is connected.
  • Also connected in parallel between power lines PL1, PL2 are a plurality of timers E, fp, D, Cy. Because these respective timers are connected in parallel, they are effectively hardwired in OR logic with respect to evaporator fan motors EFM.
  • each of the respective timers E, fp, D and Cy can effect a time control function over evaporator fan motors EFM to be described in more detail hereinafter.
  • the first timer E may be a 24 hour clock controller for cycling the refrigeration system ON and OFF at predetermined times of day. That is, by means of timer E, the refrigeration system can be enabled or disabled for any specified period on a daily basis.
  • Timer E is coupled to power line PL1 through a temperature switch TS at terminal C thereof. Included within timer E is time control switch S1 between terminals C and NC and a timer motor TM1 between terminals Ll and L2. Terminal NC is also coupled to the compressor and the condensor fan motors of the refrigeration system of Figure 1 and terminals Ll and L2 are coupled to power lines PL1 and PL2, respectively.
  • Timer E in one embodiment is a multi-pulse cam timer manufactured by Eagle Signal Corporation, and identified as "multi-pulse timer catalog number MP-1-A6-32-MP5-48".
  • Timer fp is provided in the control circuit of Figure 2 to energize evaporator fans EFM continuously when.the compressor C of the refrigeration system has not operated for an extended period of time, for example four (4) hours or more.
  • the failure of the compressor C to operate for such an extended period of time would normally occur when the vending machine is placed in a sub-freezing environment which eliminates the need for internal cooling of the machine.
  • this sub-freezing environment also may create a problem in that the chilled products may freeze up when the machine is placed in extremely cold external environment conditions.
  • the timer fp is utilized to sense these extended periods in which the compressor C does not run and turn ON the evaporator fans EFM to run continuously and thereby blow air over the products to preclude freeze up thereof.
  • Timer fp includes external terminals 1, 2, 3, 4, and 11. Terminal 1 of tiner fp is connected to terminal c of timer E. Terminal 2 of timer fp is externally connected to power line PL2. Terminal 3 of timer fp is connected to the terminal 5 of timer D and through junction FJ to fans EFM. Terminal 4 of timer fp is hardwired to terminal 11 thereof which in turn is coupled to power line PL1. Timer fp also includes a timer motor TM2 which is coupled at one end to a wire connecting terminals 1 and 2 thereof, and at an opposite end through a switch S2 to terminal 11. Also provided in the wire connection between terminals 1 and 2 of timer fp is a clutch coil Cl.
  • Timer fp may, for example, be an electromechanical cam timer manufactured by Eagle Signal Corporation under the description "Cycle-Flex timer catalogue number HB58-A6-01".
  • Timer D is provided to maintain evaporator fans EFM ON for a predetermined time or delay period after the compressor C is turned OFF. This delay period is necessary under some environmental conditions to preclude freeze up of the evaporator coil EC. That is, since evaporator fan motors EFM will continue to run at the end of a compressor cycle for a predetermined period of time, the temperature of the evaporator coil due to this moving air is elevated to a safe temprature above the freezing point of water before the evaporator fans EFM are turned OFF under the control of timer D.
  • Timer D includes a plurality of external terminals numbered 1, 2, 3, 4, 5, and 11, in the same manner as the like terminals of timer fp.
  • Timer D is in the preferred embodiment of the present invention, similar to timer fp with the exception of the specific function it performs, the addition of terminal 5, and the manner in which it is connected in the circuit of Figure 2.
  • Terminal 1 of timer D is connected to terminal NC of timer E.
  • Terminal 2 of timer D is connected to power line PL2.
  • Terminal 3 of timer D is connected to terminal L2 of timer Cy to be described hereinafter.
  • Terminal 4 of timer D is hardwired to terminal 11 of timer D which is in turn, coupled to power line PL1.
  • Terminal 5 of timer D is. as stated hereinbefore, connected directly to terminal 3 of timer fp and through junction FJ to fans EFM.
  • Timer D also includes a clutch coil C2 coupled between terminals 1 and 2 thereof, a timer motor TM3 connected between clutch coil C2 and terminal 2 at one end thereof, and an opposite end thereof coupled through a switch S4 to terminal 11.
  • a switch S5 is also provided in timer D for completing a circuit between terminals 3 and 4 or terminals 4 and 5 as controlled by timer motor TM3 in a manner to be described hereinafter.
  • a cycle timer Cy is provided to intermittently energize evaporator fans EFM during periods in which the compressor C is de-energized. This is desirable in order to provide a more even temperature distribution throughout the vending machine. during the off period of the compressor in order to enable more accurate temperature sensing within the vending machine during that period and a more limited fluctuation of the temperature of the chilled products in product stacks PS.
  • Timer Cy includes a plurality of external terminals L1, L2, 2 and 3. Terminal L1 of timer Cy is coupled to power line PL2. Terminal L2 of timer Cy as stated hereinbefore, is coupled directly to terminal 3 of timer D. Terminal 2 of timer Cy is hardwired to terminal L2 of timer Cy. Terminal 3 of timer Cy is coupled through junction FJ to the evaporator fan motors of the refrigeration system of the present invention.
  • a timer motor TM4 is provided within timer Cy between terminals Ll and L2 for the timed operation of a switch S6,
  • Timer Cy in one embodiment of the present invention, is electromechanical cam timer manufactured by Eagle Signal Corporation under the description "flexopulse timer number HG-94-A6".
  • control circuit of Figure 2 can best be understood in conjunction with the timing diagrams of Figures 3 and 4 as described hereinafter.
  • waveform E represents the output at terminal NC of timer E.
  • Waveform TS represents the ON-OFF state of thermostatic temperature switch TS.
  • Waveform D represents the output at terminal 5 of timer D over the control period illustrated in Figure 3.
  • Waveform Cy represents the intermittent timing pulse output generated by timer Cy at output terminal 3 over the control period.
  • the remaining waveform of Figure 3 labeled FAN(S) illustrates the cycle of operation of the evaporator fan motors EFM in response to the timing controls provided by the waveforms E, TS, D, and CY.
  • Waveform TS represents the ON-OFF periods of temperature switch TS.
  • Waveform fp represents the output with respect to time at terminal 3 of timer fp and the waveform labeled FAN(S) illustrates the ON-OFF periods of the evaporator fans EFM in response to the combined control of temperature switch TS and timer fp.
  • Timer E is an optional 24 hour clock/controller which may be utilized'to turn the refrigeration system of the present invention ON and OFF for any specified period daily.
  • the refrigeration system may be turned ON at 9:00 AM and OFF at 5:00 PM, by means of timer E.
  • This ON-OFF period is controlled by timer E by the opening and closing of switch Sl which is controlled by timer motor TM1 in conjunction with appropriate timing cams.
  • switch Sl may be locked in a closed position to effectively short terminals C and NC and open terminals L1 and L2, thus eliminating the function of timer E. In this position, with switch Sl continuously closed, the enablement of the refrigeration system and compressor C are under the control of temperature switch TS.
  • the delay timer D is provided with a clutch coil C2 which is energized when temperature switch TS is closed.
  • clutch C2 When clutch C2 is energized, timer motor TM3 docs not run.
  • clutch C2 becomes de-energized timer motor TM3 begins to run, and runs until it times out.
  • Switch S5 remains in the position shown between terminals 4 and 5 until timer motor TM3 is timed out, thus completing a circuit from power line PL1 through junction FJ, to evaporator fan motors EFM.
  • switch S5 is normally in the position shown connecting terminals 4 and 5 of timer D, and therefore, power is supplied to evaporator fan motors EFM from power line PL1 via terminals 4, 5 of timer D, and junction FJ.
  • Timer D determines how long power is to be applied to the evaporator fan motors following the cut-off time of the compressor determined by temperature switch TS. That is, as temperature switch TS opens, clutch coil C2 becomes de-encrgized permitting timer TM3 to time out, at which time switch S5 switches from terminal 5 to terminal 3, thus interrupting the supply of power to evaporator fan motors EFM. With switch S5 coupling terminals 4 and 3 of timer D together, the cycle timer Cy is enabled.
  • the cycle timer Cy timer motor TM4 runs continuously following each delay period generated by timer D, until reset by the ending of another delay period.
  • the cycle timer alternately opens and closes the contacts between terminal 2 and 3 of timer Cy at a selectable rate to create the small pulse waveform illustrated as Cy in Figure 3.
  • the evaporator fans EFM intermittently cycle ON and OFF following each delay period controlled by timer D.
  • the evaporator fan motors EFM as illustrated in ' Figure 3 are turned ON for the entire period that the compressor is turned ON, remain ON for a delay period determined by timer D, and are intermittently turned ON following each delay period and during the period preceeding the next compressor ON time.
  • the compressor.ON and compressor OFF times are labeled C ON and C OFF , respectively in Figure 3.
  • timer fp which prevents freeze up of vended products in sub-freezing environments may now be understood with reference to Figure 4 and in conjunction with Figure 2.
  • the temperature switch TS is closed and opens to turn the compressor OFF at the time indicated C OFF in Figure 4, at which time power is removed from clutch coil Cl of timer fp
  • timer motor TM2 is permitted to rotate to begin its timing function. If the temperature switch TS remains open for a predetermined period, for example, four (4) continuous hours, timer fp will time out closing the contacts between terminals 3 and 4 thereof by switch S3.
  • the closure of switch S3 completes the circuit to the evaporaror fan motors EFM between power lines PL1 and PL2.
  • timer fp is automatically reset to its initial condition in readiness for subsequent actuation in response to a compressor OFF period in excess of said predetermined period of four (4) hours. It should be understood that the period of four (4) hours is exemplary only, and that the predetermined time period selected will vary depending on the type of vending machine being controlled. Thus, by the continuous operation of the evaporator fan motors following a long compressor OFF period indicative of sub-freezing conditions in the environment, freeze up of

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Control Of Vending Devices And Auxiliary Devices For Vending Devices (AREA)
  • Devices That Are Associated With Refrigeration Equipment (AREA)
  • Cold Air Circulating Systems And Constructional Details In Refrigerators (AREA)

Abstract

A control circuit for cycling the evaporator fans on and off independently of the operation of the compressor of the refrigeration system is described. The evaporator fan is cycled on with the compressor and continues to run during the entire compressor ON cycle. A first timer causes the evaporator fan to run for an additional delay period following the cycling OFF of the compressor and the fans continue to blow air over the evaporator coil until the temperature of the evaporator coil is sufficiently above the freezing point of water (32°F, 0°C). The fans are then cycled off. A second cycling timer is provided to intermittently cycle the evaporator fans on and off for predetermined short intervals following the above-described delay period, and during the time when the compressor is off. A third timer is provided to preclude freezing of the vended products and/or the evaporator coil when a vending machine is disposed in a below freezing environment. This timer is enabled when the thermostatic temperature switch which controls the compressor opens, and will time out to cycle on the evaporator fans for continuous operation for a predetermined period of time if the temperature switch remains open in excess of a predetermined period of time.

Description

    BACKGROUND OF THE INVENTION Field of the Invention
  • The present invention relates to an energy conservation system for chilled-product vending machines. More specifically, the present invention relates to a control circuit for a convection type refrigeration system for a vending machine which dispenses chilled products such as beverage cans or bottles.
  • Description of the Prior Art
  • Heretofore, in refrigeration systems of vending machines including a compressor, a condenser, evaporator coil and an evaporator fan, the compressor has been cycled ON and OFF under the control of a thermostat, and the evaporator fan, which blows air over the evaporator coil to circulate chilled air throughout the vending machine, has been run continuously even during the periods when the compressor was OFF. The unnecessary high energy usage and waste caused by the continuous running of the evaporator fan or fans, has become a problem with the current high cost of energy. One logical solution to reducing the consumption of energy is to cycle the evaporator fan motor ON and OFF with the compessor thus decreasing the running time of the evaporator fan. However, this approach causes several problems, the discovery of which are part of the present invention.
  • Firstly, if the evaporator fan is cycled off in synchronism with the turning OFF of the compressor, freeze up of the evaporator coil can occur in humid, high temperature conditions. Secondly, by keeping the evaporator fan shut off during the compressor off cycles, large variations in temperature in the vending machine occur, creating large variations in temper- ature of the-next to be vended products. Also, during this off period of the evaporator fan, large variations of temperature occur throughout the vending machine due to lack of air flow, and temperatures sensed by the thermostat which controls the compressor cycling are less accurate than desirable. Thirdly, when vending machines are located in below freezing environments, ,; (32°F) an idyl condition of the evaporator fan may permit the chilled products to freeze. That is, when the evaporator fan is running and blowing air over the evaporator coil and throughout the vending machine, this flow of air dissipates heat generated by the evaporator fan motors thus acting as a heater to prevent the stored products from freezing. Thus, the aforementioned problems exist when the evaporator fan is permitted to cycle on and off with the compressor, even though a substantial reduction in energy consumption results.
  • Accordingly, a need in the art exists for a system which will reduce the consumption of energy in the refrigeration system of a vending machine, but will at the same time solve the aforementioned problems of evaporator coil freeze up in high, humid temperature conditions; product freeze up in below freezing environmental conditions; and large variations in next to be vended products and temperature distribution throughout the vending machine.
  • SUMMARY OF THE INVENTION
  • Accordingly, it is a primary object of the present invention to provide an energy management system for a vending machine which conserves energy but still maintains efficient and
  • accurate cooling of the vended products within acceptable limits.
  • It is a further object of the present invention to provide an energy management system for a vending machine which conserves energy but precludes freeze up of the evaporator coil in high, humid temperature conditions.
  • It is another object of the present invention to provide an energy management system for a vending machine whereby the vended products dispensed are within acceptable and predictable temperature ranges.
  • It is still another object of the present invention to provide an energy management system for a vending machine wherein temperature fluctuations throughout the volume of the vending machine are kept to a minimum.
  • It is yet another object of the present invention to provide an energy management system for a vending machine whereby product freeze up is precluded when the vending machine is located in below freezing environments.
  • These and other objects of the present invention are achieved by providing a control circuit including at least three (3) timers for cycling the evaporator fans on and off independently of the operation of the compressor of the refrigeration system. In the system of the present invention, the evaporator fan is cycled on with the compressor and continues to run during the entire compressor on cycle as is conventional, but by means of a first timer the evaporator fan is permitted to run for an additional delay period following the cycle OFF of the compressor. During this additional delay period of the evaporator fans, the fans continue to blow air over the evaporator coil until the temperature of the evaporator coil is sufficiently above the freezing point of water (32°Γ, 0°C), and are then cycled off. In a typical example, this cycle off of the evapor- ' ator fan may be anywhere from two (2) to five (5) minutes after the compressor has cut off, which enables the temperature of the evaporator coil to reach stabilization above 32°F.
  • A second cycling timer is provided to intermittently cycle the evaporator fans on and off for predetermined short intervals following the above described delay period, and during the time when the compressor is off. This intermittent cycling of the evaporator fans on and off forces air through the product stacks of the vending machine to provide a relatively even distribution of temperature throughout the off period of the compressor to allow for proper and precise heat sensing of the product through the vendor thermostats. This intermittent actuation of the fans and flow of air also limits the fluctuation of drink temperature, maintaining them within acceptable tolerances.
  • A third timer is provided to preclude freezing of the vended products and/or the evaporator coil when a vending machine is disposed in a below freezing environment. This timer is enabled when the thermostatic temperature switch which controls the compressor opens, and will time out to cycle on the evaporator fans for continuous operation for a predetermined period of time if the temperature switch remains open in excess of a predetermined period of time, for example four (4) hours. That is, by sensing the compressor off period, (the period that the temperature switch is open), the evaporator fans are cycled on for a continuous period of operation to preclude freeze up of the products when the off period of the compressor (the temperature switch open) exceeds a predetermined limit such as four (4) hours.
  • An additional optional timer may be provided in combination with the other timers of the present invention for turning the refrigeration system on at a predetermined time in the morning and disabling the system at a predetermined time in the evening. -This optional timer obviously would further assist in the energy conservation objectives of the present invention by shutting down all power consumption during the period that the vending machine is not in use.
  • The timers utilized in the control circuit of the present invention are electromechanical cam timers which are commercially available components and are hardwired in circuit with the power source and other components of the refrigeration system in a manner to be described hereinafter. However, it should be understood that the timing functions of the present invention could be performed by a general purpose digital computer or by microprocessor technology programmed to perform the desired functions.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • The objects and the attendant advantages of the present invention will become readily appreciated as the same become better understood by reference to the following detailed description when considered in conjunction with the accompanying drawings in which like reference numerals designate like parts throughout the Figures thereof, and wherein:
    • Figure 1 is a cross sectional view of the inside of a typical chilled-product vending machine having a convection cooling system;
    • Figure 2 is an electrical schematic diagram of the control circuitry of the present invention for operating the convection cooling system within the vending machine of Figure 1;
    • Figure 3 is a timing diagram of the electrical signals present at selected terminals of the circuit diagram of Figure 2 to be referenced hereinafter; and
    • Figure. 4 is another timing diagram of electrical signals present at other terminals in the circuit of Figure 2 to be referenced hereinafter.
    DETAILED DESCRIPTION OF THE DRAWINGS
  • Referring in detail to Figure 1, there is generally illustrated in cut away view a typical product vending machine wherein a plurality of products such as soft drink cans or bottles are stored in product stacks PS, from which they are sequentially dispensed on demand through appropriate vend slots in the bottom of the vending machine. As illustrated in Figure 1, the vending machine thereof also includes a convection refrigeration system which includes the conventional components of a refrigeration compressor , having a fan CF and a pump CP, an evaporator coil EC, an evaporator fan motor EFM, and a thermostatic temperature switch TS (not shown), for controlling the operation of the refrigeration system in response to the temperatures sensed within the vending machine. The conventional convection refrigeration system illustrated in Figure 1 operates . to chill the products in product stacks PS, by blowing air by means of evaporator fan motor EFM over evaporator coil EC to thereby circulate chilled air between and throughout the product stacks PS.Air returns from the stacks as indicated by arrows AR. In conventional prior art convection refrigeration systems of vending machines known heretofore, the compressor C is cycled on and off under control of thermostatic temperature switch TS, while the evaporator fan motor EFM runs continuously, even during the periods that compressor C is de-energized. This continuous running of the evaporator fan motor EFM obviously expends alot of unnecessary electrical energy and generates heat leading to unnecessary energy waste. Accordingly, in accordance with the objects of the present invention, the control circuit of Figure 2 was designed to energize the evaporator fan motor EFM only during optimum times when its operation is clearly needed. For example, in accordance with the present invention, the evaporator fan EFM operates continuously during the.period that the compressor C is operating, operates for a predetermined delay period following the cycle OFF of the compressor in order to preclude freeze up of the evaporator coil EC, operates intermittently for predetermined periods when the compressor C is cycled OFF, and it is cycled ON to run continuously for a period following an interval when the compressor has not operated for an extended period of time, to preclude freezing of the products in the vending machine in sub-freezing environmental locations.
  • Referring in detail to Figure 2, there is illustrated an electrical circuit diagram of the control circuitry of the present invention for operating the convection refrigeration system illustrated in Figure 1. A pair of main power lines PL1, PL2 are provided across which a conventional 120 volt, 60HZ power source is connected. Also connected in parallel between power lines PL1, PL2 are a plurality of timers E, fp, D, Cy. Because these respective timers are connected in parallel, they are effectively hardwired in OR logic with respect to evaporator fan motors EFM. Thus, each of the respective timers E, fp, D and Cy can effect a time control function over evaporator fan motors EFM to be described in more detail hereinafter.
  • Beginning at the top of Figure 2, the first timer E, may be a 24 hour clock controller for cycling the refrigeration system ON and OFF at predetermined times of day. That is, by means of timer E, the refrigeration system can be enabled or disabled for any specified period on a daily basis. Timer E is coupled to power line PL1 through a temperature switch TS at terminal C thereof. Included within timer E is time control switch S1 between terminals C and NC and a timer motor TM1 between terminals Ll and L2. Terminal NC is also coupled to the compressor and the condensor fan motors of the refrigeration system of Figure 1 and terminals Ll and L2 are coupled to power lines PL1 and PL2, respectively. Timer E in one embodiment, is a multi-pulse cam timer manufactured by Eagle Signal Corporation, and identified as "multi-pulse timer catalog number MP-1-A6-32-MP5-48".
  • Timer fp is provided in the control circuit of Figure 2 to energize evaporator fans EFM continuously when.the compressor C of the refrigeration system has not operated for an extended period of time, for example four (4) hours or more. The failure of the compressor C to operate for such an extended period of time would normally occur when the vending machine is placed in a sub-freezing environment which eliminates the need for internal cooling of the machine. However, this sub-freezing environment also may create a problem in that the chilled products may freeze up when the machine is placed in extremely cold external environment conditions. Accordingly, the timer fp is utilized to sense these extended periods in which the compressor C does not run and turn ON the evaporator fans EFM to run continuously and thereby blow air over the products to preclude freeze up thereof. Timer fp includes external terminals 1, 2, 3, 4, and 11. Terminal 1 of tiner fp is connected to terminal c of timer E. Terminal 2 of timer fp is externally connected to power line PL2. Terminal 3 of timer fp is connected to the terminal 5 of timer D and through junction FJ to fans EFM. Terminal 4 of timer fp is hardwired to terminal 11 thereof which in turn is coupled to power line PL1. Timer fp also includes a timer motor TM2 which is coupled at one end to a wire connecting terminals 1 and 2 thereof, and at an opposite end through a switch S2 to terminal 11. Also provided in the wire connection between terminals 1 and 2 of timer fp is a clutch coil Cl. In addition, a switch S3 is coupled between terminals 3 and 4.of timer fp. Timer fp may, for example, be an electromechanical cam timer manufactured by Eagle Signal Corporation under the description "Cycle-Flex timer catalogue number HB58-A6-01".
  • Timer D is provided to maintain evaporator fans EFM ON for a predetermined time or delay period after the compressor C is turned OFF. This delay period is necessary under some environmental conditions to preclude freeze up of the evaporator coil EC. That is, since evaporator fan motors EFM will continue to run at the end of a compressor cycle for a predetermined period of time, the temperature of the evaporator coil due to this moving air is elevated to a safe temprature above the freezing point of water before the evaporator fans EFM are turned OFF under the control of timer D. Timer D includes a plurality of external terminals numbered 1, 2, 3, 4, 5, and 11, in the same manner as the like terminals of timer fp. Timer D is in the preferred embodiment of the present invention, similar to timer fp with the exception of the specific function it performs, the addition of terminal 5, and the manner in which it is connected in the circuit of Figure 2. Terminal 1 of timer D is connected to terminal NC of timer E. Terminal 2 of timer D is connected to power line PL2. Terminal 3 of timer D is connected to terminal L2 of timer Cy to be described hereinafter. Terminal 4 of timer D is hardwired to terminal 11 of timer D which is in turn, coupled to power line PL1. Terminal 5 of timer D is. as stated hereinbefore, connected directly to terminal 3 of timer fp and through junction FJ to fans EFM. Timer D also includes a clutch coil C2 coupled between terminals 1 and 2 thereof, a timer motor TM3 connected between clutch coil C2 and terminal 2 at one end thereof, and an opposite end thereof coupled through a switch S4 to terminal 11. A switch S5 is also provided in timer D for completing a circuit between terminals 3 and 4 or terminals 4 and 5 as controlled by timer motor TM3 in a manner to be described hereinafter.
  • A cycle timer Cy is provided to intermittently energize evaporator fans EFM during periods in which the compressor C is de-energized. This is desirable in order to provide a more even temperature distribution throughout the vending machine. during the off period of the compressor in order to enable more accurate temperature sensing within the vending machine during that period and a more limited fluctuation of the temperature of the chilled products in product stacks PS. Timer Cy includes a plurality of external terminals L1, L2, 2 and 3. Terminal L1 of timer Cy is coupled to power line PL2. Terminal L2 of timer Cy as stated hereinbefore, is coupled directly to terminal 3 of timer D. Terminal 2 of timer Cy is hardwired to terminal L2 of timer Cy. Terminal 3 of timer Cy is coupled through junction FJ to the evaporator fan motors of the refrigeration system of the present invention. A timer motor TM4 is provided within timer Cy between terminals Ll and L2 for the timed operation of a switch S6,
  • coupled between terminals 2 and 3, in a manner to be more fully described hereinafter. Timer Cy in one embodiment of the present invention, is electromechanical cam timer manufactured by Eagle Signal Corporation under the description "flexopulse timer number HG-94-A6".
  • DESCRIPTION OF OPERATION
  • The operation of the control circuit of Figure 2 can best be understood in conjunction with the timing diagrams of Figures 3 and 4 as described hereinafter.
  • Referring in detail to Figure 3, waveform E represents the output at terminal NC of timer E. Waveform TS represents the ON-OFF state of thermostatic temperature switch TS. Waveform D represents the output at terminal 5 of timer D over the control period illustrated in Figure 3. Waveform Cy represents the intermittent timing pulse output generated by timer Cy at output terminal 3 over the control period. The remaining waveform of Figure 3 labeled FAN(S) illustrates the cycle of operation of the evaporator fan motors EFM in response to the timing controls provided by the waveforms E, TS, D, and CY.
  • Referring in detail to Figure 4, there is illustrated a plurality of timing waveforms illustrating the function of timer fp. Waveform TS represents the ON-OFF periods of temperature switch TS. Waveform fp represents the output with respect to time at terminal 3 of timer fp and the waveform labeled FAN(S) illustrates the ON-OFF periods of the evaporator fans EFM in response to the combined control of temperature switch TS and timer fp.
  • Having now generally described the content of the timing diagrams of Figures 3 and 4, the detailed operation of the control circuitry of Figure 2 may now be explained by reference to Figures 2 in conjunction with Figures 3 and 4.
  • In normal operation the compressor C of the refrigeration system illustrated in Figure 1 is turned on in resp'onse to the closing of temperature switch TS when the temperature within the vending machine rises above a predetermined level. However, temperature switch TS will not turn the compressor C on, unless switch Sl of timer E is closed providing a closed circuit path between power line PL1, the compressor and power line PL2. The function of switch Sl will be explained further hereinafter. The closing of temperature switch TS also provides a circuit path through clutch coil Cl'of timer fp and power lines PL1 and PL2. That is, the closing of temperature switch TS energizes the clutch coil Cl. With clutch coil Cl energized, timer motor TM2 of timer fp can not rotate. Timer E is an optional 24 hour clock/controller which may be utilized'to turn the refrigeration system of the present invention ON and OFF for any specified period daily. For example, as illustrated in Figure 3 by waveform E, the refrigeration system may be turned ON at 9:00 AM and OFF at 5:00 PM, by means of timer E. This ON-OFF period is controlled by timer E by the opening and closing of switch Sl which is controlled by timer motor TM1 in conjunction with appropriate timing cams. If this option is not required, switch Sl may be locked in a closed position to effectively short terminals C and NC and open terminals L1 and L2, thus eliminating the function of timer E. In this position, with switch Sl continuously closed, the enablement of the refrigeration system and compressor C are under the control of temperature switch TS.
  • The delay timer D is provided with a clutch coil C2 which is energized when temperature switch TS is closed. When clutch C2 is energized, timer motor TM3 docs not run. However, at the end of a compressor cycle, when temperature switch TS opens, clutch C2 becomes de-energized timer motor TM3 begins to run, and runs until it times out. Switch S5 remains in the position shown between terminals 4 and 5 until timer motor TM3 is timed out, thus completing a circuit from power line PL1 through junction FJ, to evaporator fan motors EFM. At the beginning of any cycle of operation of the compressor C, switch S5 is normally in the position shown connecting terminals 4 and 5 of timer D, and therefore, power is supplied to evaporator fan motors EFM from power line PL1 via terminals 4, 5 of timer D, and junction FJ. Timer D determines how long power is to be applied to the evaporator fan motors following the cut-off time of the compressor determined by temperature switch TS. That is, as temperature switch TS opens, clutch coil C2 becomes de-encrgized permitting timer TM3 to time out, at which time switch S5 switches from terminal 5 to terminal 3, thus interrupting the supply of power to evaporator fan motors EFM. With switch S5 coupling terminals 4 and 3 of timer D together, the cycle timer Cy is enabled.
  • Thus, the cycle timer Cy, timer motor TM4, runs continuously following each delay period generated by timer D, until reset by the ending of another delay period. The cycle timer alternately opens and closes the contacts between terminal 2 and 3 of timer Cy at a selectable rate to create the small pulse waveform illustrated as Cy in Figure 3. Thus, as shown in the bottom waveform "FAN(S)" of Figure 3, the evaporator fans EFM intermittently cycle ON and OFF following each delay period controlled by timer D. Thus, the evaporator fan motors EFM, as illustrated in 'Figure 3 are turned ON for the entire period that the compressor is turned ON, remain ON for a delay period determined by timer D, and are intermittently turned ON following each delay period and during the period preceeding the next compressor ON time. 'The compressor.ON and compressor OFF times are labeled CON and COFF, respectively in Figure 3. Thus, the operation of timers E, D, and Cy have now been described with reference to Figure 3.
  • The operation of the timer fp which prevents freeze up of vended products in sub-freezing environments may now be understood with reference to Figure 4 and in conjunction with Figure 2. As illustrated by the top waveform TS in Figure 4, the temperature switch TS is closed and opens to turn the compressor OFF at the time indicated COFF in Figure 4, at which time power is removed from clutch coil Cl of timer fp When this occurs, timer motor TM2 is permitted to rotate to begin its timing function. If the temperature switch TS remains open for a predetermined period, for example, four (4) continuous hours, timer fp will time out closing the contacts between terminals 3 and 4 thereof by switch S3. The closure of switch S3 completes the circuit to the evaporaror fan motors EFM between power lines PL1 and PL2. The evaporator fans will then run continuously until such time that the temperature switch again closes which energizes clutch coil Cl to stop the operation of the timer motor. When this occurs, timer fp is automatically reset to its initial condition in readiness for subsequent actuation in response to a compressor OFF period in excess of said predetermined period of four (4) hours. It should be understood that the period of four (4) hours is exemplary only, and that the predetermined time period selected will vary depending on the type of vending machine being controlled. Thus, by the continuous operation of the evaporator fan motors following a long compressor OFF period indicative of sub-freezing conditions in the environment, freeze up of
  • products in the vending machine are precluded by the heating effect of the moving air circulating throughout the vending machine.
  • It should be understood that the system hereinbefore described may be modified as would occur to one of ordinary skill in the art, without departing from the spirit and scope of the present invention.

Claims (7)

1. In a refrigeration system for a chilled product vending machine including a refrigeration compressor, temperature sensor means for detecting the temperature within said vending machine and turning said compressor ON and OFF to define a compressor cycle in response to the detection of predetermined temperature limits, an evaporator coil and evaporator fan means for blowing air across said evaporator coil and circulating said air throughout said vending machine, the improvement comprising:
means for cycling said evaporator fan means ON simultaneously with said compressor for a time period at least as long as said compressor cycle; and
means for cycling said evaporator fan means OFF a predetermined period of time after said compressor is turned OFF, said period of time being long enough to permit the temperature of said evaporator coil to temperature stabilize above the freezing temperature of water.
2. The system of claim 1 further comprising:
cycle timer means for intermittently cycling said evaporator fan means ON and OFF for predetermined periods between said compressor cycles to thereby maintain an even distribution of chilled air within said machine and minimize temperature fluctuations of the chilled products.
3. The system of claims 1 or 2, further comprising:
sensor means for detecting when said compressor is cycled OFF;
timer means responsive to said sensor means for measuring the length of time that said compressor is cycled OFF and for generating an enabling signal when said length of time exceeds a predetermined duration; and
: circuit means responsive to said enabling signal for cycling said evaporator fan means ON continuously until said compressor cyc-les ON.
4. In a refrigeration system for a chilled product vending machine including a refrigeration compressor, temperature sensor means for detecting the temperature within said vending machine and cycling said compressor ON and OFF to define a compressor cycle in response to the detection of predetermined temperature limits, an evaporator coil and evaporator fan means for blowing air across said evaporator coil and circulating said air throughout said vending machine, the improvement comprising:
sensor means for detecting when said compressor is cycled OFF;
timer means responsive to said sensor means for measuring the length of time that said compressor is cycled OFF and for generating an enabling signal when said length of time exceeds a predetermined duration; and
circuit means responsive to said enabling signal for cycling said evaporator fan means ON continuously until said compressor turns ON.
5. In a refrigeration system for a chilled product vending machine including a refrigeration compr-essor, temperature sensor means for detecting the temperature within said vending machine and cycling said compressor ON and OFF to define a compressor cycle in response to the detection of predetermined temperature limits, an evaporator coil and evaporator fan means for blowing air across said evaporator coil and circulating said air throughout said vending machine, the improvement comprising;
cycle timer means for intermittently cycling said evaporator fan means ON and OFF for predetermined periods between said compressor cycles to thereby maintain an even distribution of chilled air within said machine and minimize temperature fluctuations of the chilled products.
6. The system of claims 1 or.2 further comprising:
detector means for sensing the temperature of the environment surrounding said vending machine and generating a signal when said temperature drops below a predetermined limit; and
circuit means responsive to said signal for cycling said evaporator fan means ON to run continuously for a predetermined period of time.
7. In a refrigeration system for a chilled product vending machine including a refrigeration compressor, temperature sensor means for detecting the temperature within said vending machine and cycling said compressor ON and OFF to define a compressor cycle in response to the detection of predetermined temperature limits, an evaporator coil and evaporator fan means for blowing air across said evaporator coil and circulating said air throughout said vending machine, the improvement comprising:
detector means for sensing the temperature of the environment surrounding said vending machine and generating a signal when said temperature drops below a predetermined limit; and
circuit means responsive to said signal for cycling said evaporator fan means ON to run continuously for a predetermined period of time.
EP81108419A 1980-10-17 1981-10-16 Refrigeration system for a chilled product vending machine Expired EP0050333B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
DE8585101434T DE3176594D1 (en) 1980-10-17 1981-10-16 Refrigeration system for a chilled product vending system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US19817280A 1980-10-17 1980-10-17
US198172 1980-10-17

Related Child Applications (1)

Application Number Title Priority Date Filing Date
EP85101434.0 Division-Into 1981-10-16

Publications (3)

Publication Number Publication Date
EP0050333A2 true EP0050333A2 (en) 1982-04-28
EP0050333A3 EP0050333A3 (en) 1982-07-21
EP0050333B1 EP0050333B1 (en) 1986-07-09

Family

ID=22732288

Family Applications (2)

Application Number Title Priority Date Filing Date
EP81108419A Expired EP0050333B1 (en) 1980-10-17 1981-10-16 Refrigeration system for a chilled product vending machine
EP85101434A Expired EP0151496B1 (en) 1980-10-17 1981-10-16 Refrigeration system for a chilled product vending system

Family Applications After (1)

Application Number Title Priority Date Filing Date
EP85101434A Expired EP0151496B1 (en) 1980-10-17 1981-10-16 Refrigeration system for a chilled product vending system

Country Status (10)

Country Link
EP (2) EP0050333B1 (en)
JP (1) JPS5770374A (en)
AU (1) AU528195B2 (en)
BR (1) BR8105359A (en)
CA (1) CA1169139A (en)
DE (1) DE3174915D1 (en)
ES (3) ES8302275A1 (en)
GR (1) GR75651B (en)
MX (1) MX150410A (en)
ZA (1) ZA815323B (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0090431A2 (en) * 1982-03-31 1983-10-05 The Coca-Cola Company Energy management system for vending machines
EP1299680A1 (en) * 2000-05-25 2003-04-09 David J. Schanin Temperature controller for a refrigerated vending machine
WO2020041737A1 (en) * 2018-08-24 2020-02-27 Bedford Systems Llc Alcohol concentrate filling systems and methods of use thereof

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6014479U (en) * 1983-07-08 1985-01-31 三洋電機株式会社 Low temperature storage operation control device
US7144431B2 (en) * 2001-10-18 2006-12-05 The Procter & Gamble Company Textile finishing composition and methods for using same
US7018422B2 (en) * 2001-10-18 2006-03-28 Robb Richard Gardner Shrink resistant and wrinkle free textiles
KR100850954B1 (en) * 2007-03-30 2008-08-08 엘지전자 주식회사 Refrigerator and control method of the same
US7891200B2 (en) * 2007-12-12 2011-02-22 Pepsico, Inc. Vending machine improvement
US9218703B2 (en) * 2008-06-09 2015-12-22 The Coca-Cola Company Virtual vending machine in communication with a remote data processing device
KR20170104877A (en) 2016-03-08 2017-09-18 엘지전자 주식회사 Refrigerator
US11796241B2 (en) 2020-10-14 2023-10-24 Viking Range, Llc Method and apparatus for controlling humidity within a compartment of refrigeration appliance

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2962872A (en) * 1958-01-13 1960-12-06 Revco Inc Refrigerator construction and controls
GB1449823A (en) * 1972-11-13 1976-09-15 Hotpoint Ltd Refrigeration units
US4021213A (en) * 1975-08-25 1977-05-03 Mcgraw-Edison Company Food storage refrigeration cabinet having optional fast chill cycle
US4094166A (en) * 1977-03-23 1978-06-13 Electro-Thermal Corporation Air conditioning control system
WO1979001051A1 (en) * 1978-05-11 1979-12-13 J Bond Improved refrigeration means and methods

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2529470A (en) * 1945-01-26 1950-11-07 Bastian Biessing Company Article refrigeration
US4136730A (en) * 1977-07-19 1979-01-30 Kinsey Bernard B Heating and cooling efficiency control

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2962872A (en) * 1958-01-13 1960-12-06 Revco Inc Refrigerator construction and controls
GB1449823A (en) * 1972-11-13 1976-09-15 Hotpoint Ltd Refrigeration units
US4021213A (en) * 1975-08-25 1977-05-03 Mcgraw-Edison Company Food storage refrigeration cabinet having optional fast chill cycle
US4094166A (en) * 1977-03-23 1978-06-13 Electro-Thermal Corporation Air conditioning control system
WO1979001051A1 (en) * 1978-05-11 1979-12-13 J Bond Improved refrigeration means and methods

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0090431A2 (en) * 1982-03-31 1983-10-05 The Coca-Cola Company Energy management system for vending machines
EP0090431A3 (en) * 1982-03-31 1984-05-09 The Coca-Cola Company Energy management system for vending machines
EP1299680A1 (en) * 2000-05-25 2003-04-09 David J. Schanin Temperature controller for a refrigerated vending machine
EP1299680A4 (en) * 2000-05-25 2005-01-19 Usa Tech Inc Temperature controller for a refrigerated vending machine
WO2020041737A1 (en) * 2018-08-24 2020-02-27 Bedford Systems Llc Alcohol concentrate filling systems and methods of use thereof
EP3841057A4 (en) * 2018-08-24 2022-06-15 Bedford Systems LLC Alcohol concentrate filling systems and methods of use thereof
US11708259B2 (en) 2018-08-24 2023-07-25 Bedford Systems Llc Alcohol concentrate filling systems and methods of use thereof

Also Published As

Publication number Publication date
EP0050333B1 (en) 1986-07-09
JPS648266B2 (en) 1989-02-13
ES515037A0 (en) 1983-08-01
DE3174915D1 (en) 1986-08-14
BR8105359A (en) 1982-08-31
EP0151496A2 (en) 1985-08-14
ES8308042A1 (en) 1983-08-01
ES505417A0 (en) 1983-01-01
CA1169139A (en) 1984-06-12
EP0050333A3 (en) 1982-07-21
GR75651B (en) 1984-08-02
AU528195B2 (en) 1983-04-21
EP0151496B1 (en) 1988-01-07
ZA815323B (en) 1982-07-28
ES8302275A1 (en) 1983-01-01
EP0151496A3 (en) 1986-01-08
JPS5770374A (en) 1982-04-30
MX150410A (en) 1984-04-30
AU7399181A (en) 1982-06-24
ES8308041A1 (en) 1983-08-01
ES515038A0 (en) 1983-08-01

Similar Documents

Publication Publication Date Title
US4467617A (en) Energy management system for chilled product vending machine
US4485633A (en) Temperature-based control for energy management system
US4417450A (en) Energy management system for vending machines
US4843833A (en) Appliance control system
CA1153447A (en) Adaptive temperature control system
US4297852A (en) Refrigerator defrost control with control of time interval between defrost cycles
CA1336010C (en) Apparatus for controlling a thermostatic expansion valve
US4156350A (en) Refrigeration apparatus demand defrost control system and method
EP0050333A2 (en) Refrigeration system for a chilled product vending machine
EP0082144B1 (en) Refrigerator defrost control
US10830523B2 (en) Refrigerator appliance and method of sabbath operation
EP0484860B1 (en) Refrigerating apparatus having a single thermostatic temperature control system
CA1180082A (en) Energy management system for chilled product vending machine
US5467245A (en) Anti-abuse circuit
JP3769778B2 (en) Vending machine temperature control device
JPS62141484A (en) Method and device for defrosting cooler of refrigeration andcold storage open showcase
JPS61213467A (en) Refrigerator
RU2191956C2 (en) Refrigerator temperature control system (versions)
JPH09288765A (en) Controller for automatic vending machine with temperature adjustment
JPH11175832A (en) Heating control device for vending machine
JPH04270491A (en) Inside temperature adjusting device for automatic vending machine
JPH0610575B2 (en) refrigerator
JP2003263675A (en) Cooler/heater for automatic vending machine
JPH11175834A (en) Cooling control device for vending machine

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Designated state(s): DE FR GB IT

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

ITCL It: translation for ep claims filed

Representative=s name: ING. C. GREGORJ S.P.A.

AK Designated contracting states

Designated state(s): DE FR GB IT

DET De: translation of patent claims
17P Request for examination filed

Effective date: 19820811

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: THE COCA-COLA COMAPNY

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE FR GB IT

ITF It: translation for a ep patent filed
REF Corresponds to:

Ref document number: 3174915

Country of ref document: DE

Date of ref document: 19860814

ET Fr: translation filed
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Effective date: 19881016

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19890630

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Effective date: 19890701

GBPC Gb: european patent ceased through non-payment of renewal fee
REG Reference to a national code

Ref country code: FR

Ref legal event code: ST