EP0050333A2 - Refrigeration system for a chilled product vending machine - Google Patents
Refrigeration system for a chilled product vending machine Download PDFInfo
- Publication number
- EP0050333A2 EP0050333A2 EP81108419A EP81108419A EP0050333A2 EP 0050333 A2 EP0050333 A2 EP 0050333A2 EP 81108419 A EP81108419 A EP 81108419A EP 81108419 A EP81108419 A EP 81108419A EP 0050333 A2 EP0050333 A2 EP 0050333A2
- Authority
- EP
- European Patent Office
- Prior art keywords
- compressor
- temperature
- timer
- vending machine
- evaporator
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000005057 refrigeration Methods 0.000 title claims abstract description 31
- 230000001351 cycling effect Effects 0.000 claims abstract description 19
- 238000007710 freezing Methods 0.000 claims abstract description 18
- 230000008014 freezing Effects 0.000 claims abstract description 13
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims abstract description 4
- 230000004044 response Effects 0.000 claims description 8
- 238000007664 blowing Methods 0.000 claims description 6
- 238000001514 detection method Methods 0.000 claims 4
- 238000010586 diagram Methods 0.000 description 7
- 238000001816 cooling Methods 0.000 description 4
- 230000007613 environmental effect Effects 0.000 description 3
- 230000000694 effects Effects 0.000 description 2
- 238000004134 energy conservation Methods 0.000 description 2
- 239000002699 waste material Substances 0.000 description 2
- XUKUURHRXDUEBC-KAYWLYCHSA-N Atorvastatin Chemical compound C=1C=CC=CC=1C1=C(C=2C=CC(F)=CC=2)N(CC[C@@H](O)C[C@@H](O)CC(O)=O)C(C(C)C)=C1C(=O)NC1=CC=CC=C1 XUKUURHRXDUEBC-KAYWLYCHSA-N 0.000 description 1
- 235000013361 beverage Nutrition 0.000 description 1
- 239000013256 coordination polymer Substances 0.000 description 1
- 230000008878 coupling Effects 0.000 description 1
- 238000010168 coupling process Methods 0.000 description 1
- 238000005859 coupling reaction Methods 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 238000005265 energy consumption Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 230000000063 preceeding effect Effects 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 235000014214 soft drink Nutrition 0.000 description 1
- 230000006641 stabilisation Effects 0.000 description 1
- 238000011105 stabilization Methods 0.000 description 1
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25D—REFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
- F25D17/00—Arrangements for circulating cooling fluids; Arrangements for circulating gas, e.g. air, within refrigerated spaces
- F25D17/04—Arrangements for circulating cooling fluids; Arrangements for circulating gas, e.g. air, within refrigerated spaces for circulating air, e.g. by convection
- F25D17/06—Arrangements for circulating cooling fluids; Arrangements for circulating gas, e.g. air, within refrigerated spaces for circulating air, e.g. by convection by forced circulation
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25D—REFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
- F25D29/00—Arrangement or mounting of control or safety devices
-
- G—PHYSICS
- G07—CHECKING-DEVICES
- G07F—COIN-FREED OR LIKE APPARATUS
- G07F9/00—Details other than those peculiar to special kinds or types of apparatus
- G07F9/10—Casings or parts thereof, e.g. with means for heating or cooling
- G07F9/105—Heating or cooling means, for temperature and humidity control, for the conditioning of articles and their storage
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B2600/00—Control issues
- F25B2600/23—Time delays
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25D—REFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
- F25D2400/00—General features of, or devices for refrigerators, cold rooms, ice-boxes, or for cooling or freezing apparatus not covered by any other subclass
- F25D2400/36—Visual displays
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25D—REFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
- F25D2700/00—Means for sensing or measuring; Sensors therefor
- F25D2700/12—Sensors measuring the inside temperature
Definitions
- the present invention relates to an energy conservation system for chilled-product vending machines. More specifically, the present invention relates to a control circuit for a convection type refrigeration system for a vending machine which dispenses chilled products such as beverage cans or bottles.
- a control circuit including at least three (3) timers for cycling the evaporator fans on and off independently of the operation of the compressor of the refrigeration system.
- the evaporator fan is cycled on with the compressor and continues to run during the entire compressor on cycle as is conventional, but by means of a first timer the evaporator fan is permitted to run for an additional delay period following the cycle OFF of the compressor. During this additional delay period of the evaporator fans, the fans continue to blow air over the evaporator coil until the temperature of the evaporator coil is sufficiently above the freezing point of water (32° ⁇ , 0°C), and are then cycled off.
- this cycle off of the evapor- ' ator fan may be anywhere from two (2) to five (5) minutes after the compressor has cut off, which enables the temperature of the evaporator coil to reach stabilization above 32°F.
- a second cycling timer is provided to intermittently cycle the evaporator fans on and off for predetermined short intervals following the above described delay period, and during the time when the compressor is off.
- This intermittent cycling of the evaporator fans on and off forces air through the product stacks of the vending machine to provide a relatively even distribution of temperature throughout the off period of the compressor to allow for proper and precise heat sensing of the product through the vendor thermostats.
- This intermittent actuation of the fans and flow of air also limits the fluctuation of drink temperature, maintaining them within acceptable tolerances.
- a third timer is provided to preclude freezing of the vended products and/or the evaporator coil when a vending machine is disposed in a below freezing environment.
- This timer is enabled when the thermostatic temperature switch which controls the compressor opens, and will time out to cycle on the evaporator fans for continuous operation for a predetermined period of time if the temperature switch remains open in excess of a predetermined period of time, for example four (4) hours. That is, by sensing the compressor off period, (the period that the temperature switch is open), the evaporator fans are cycled on for a continuous period of operation to preclude freeze up of the products when the off period of the compressor (the temperature switch open) exceeds a predetermined limit such as four (4) hours.
- An additional optional timer may be provided in combination with the other timers of the present invention for turning the refrigeration system on at a predetermined time in the morning and disabling the system at a predetermined time in the evening. -This optional timer obviously would further assist in the energy conservation objectives of the present invention by shutting down all power consumption during the period that the vending machine is not in use.
- the timers utilized in the control circuit of the present invention are electromechanical cam timers which are commercially available components and are hardwired in circuit with the power source and other components of the refrigeration system in a manner to be described hereinafter.
- the timing functions of the present invention could be performed by a general purpose digital computer or by microprocessor technology programmed to perform the desired functions.
- the vending machine thereof also includes a convection refrigeration system which includes the conventional components of a refrigeration compressor , having a fan CF and a pump CP, an evaporator coil EC, an evaporator fan motor EFM, and a thermostatic temperature switch TS (not shown), for controlling the operation of the refrigeration system in response to the temperatures sensed within the vending machine.
- the conventional convection refrigeration system illustrated in Figure 1 operates .
- the control circuit of Figure 2 was designed to energize the evaporator fan motor EFM only during optimum times when its operation is clearly needed.
- the evaporator fan EFM operates continuously during the.period that the compressor C is operating, operates for a predetermined delay period following the cycle OFF of the compressor in order to preclude freeze up of the evaporator coil EC, operates intermittently for predetermined periods when the compressor C is cycled OFF, and it is cycled ON to run continuously for a period following an interval when the compressor has not operated for an extended period of time, to preclude freezing of the products in the vending machine in sub-freezing environmental locations.
- FIG. 2 there is illustrated an electrical circuit diagram of the control circuitry of the present invention for operating the convection refrigeration system illustrated in Figure 1.
- a pair of main power lines PL1, PL2 are provided across which a conventional 120 volt, 60HZ power source is connected.
- Also connected in parallel between power lines PL1, PL2 are a plurality of timers E, fp, D, Cy. Because these respective timers are connected in parallel, they are effectively hardwired in OR logic with respect to evaporator fan motors EFM.
- each of the respective timers E, fp, D and Cy can effect a time control function over evaporator fan motors EFM to be described in more detail hereinafter.
- the first timer E may be a 24 hour clock controller for cycling the refrigeration system ON and OFF at predetermined times of day. That is, by means of timer E, the refrigeration system can be enabled or disabled for any specified period on a daily basis.
- Timer E is coupled to power line PL1 through a temperature switch TS at terminal C thereof. Included within timer E is time control switch S1 between terminals C and NC and a timer motor TM1 between terminals Ll and L2. Terminal NC is also coupled to the compressor and the condensor fan motors of the refrigeration system of Figure 1 and terminals Ll and L2 are coupled to power lines PL1 and PL2, respectively.
- Timer E in one embodiment is a multi-pulse cam timer manufactured by Eagle Signal Corporation, and identified as "multi-pulse timer catalog number MP-1-A6-32-MP5-48".
- Timer fp is provided in the control circuit of Figure 2 to energize evaporator fans EFM continuously when.the compressor C of the refrigeration system has not operated for an extended period of time, for example four (4) hours or more.
- the failure of the compressor C to operate for such an extended period of time would normally occur when the vending machine is placed in a sub-freezing environment which eliminates the need for internal cooling of the machine.
- this sub-freezing environment also may create a problem in that the chilled products may freeze up when the machine is placed in extremely cold external environment conditions.
- the timer fp is utilized to sense these extended periods in which the compressor C does not run and turn ON the evaporator fans EFM to run continuously and thereby blow air over the products to preclude freeze up thereof.
- Timer fp includes external terminals 1, 2, 3, 4, and 11. Terminal 1 of tiner fp is connected to terminal c of timer E. Terminal 2 of timer fp is externally connected to power line PL2. Terminal 3 of timer fp is connected to the terminal 5 of timer D and through junction FJ to fans EFM. Terminal 4 of timer fp is hardwired to terminal 11 thereof which in turn is coupled to power line PL1. Timer fp also includes a timer motor TM2 which is coupled at one end to a wire connecting terminals 1 and 2 thereof, and at an opposite end through a switch S2 to terminal 11. Also provided in the wire connection between terminals 1 and 2 of timer fp is a clutch coil Cl.
- Timer fp may, for example, be an electromechanical cam timer manufactured by Eagle Signal Corporation under the description "Cycle-Flex timer catalogue number HB58-A6-01".
- Timer D is provided to maintain evaporator fans EFM ON for a predetermined time or delay period after the compressor C is turned OFF. This delay period is necessary under some environmental conditions to preclude freeze up of the evaporator coil EC. That is, since evaporator fan motors EFM will continue to run at the end of a compressor cycle for a predetermined period of time, the temperature of the evaporator coil due to this moving air is elevated to a safe temprature above the freezing point of water before the evaporator fans EFM are turned OFF under the control of timer D.
- Timer D includes a plurality of external terminals numbered 1, 2, 3, 4, 5, and 11, in the same manner as the like terminals of timer fp.
- Timer D is in the preferred embodiment of the present invention, similar to timer fp with the exception of the specific function it performs, the addition of terminal 5, and the manner in which it is connected in the circuit of Figure 2.
- Terminal 1 of timer D is connected to terminal NC of timer E.
- Terminal 2 of timer D is connected to power line PL2.
- Terminal 3 of timer D is connected to terminal L2 of timer Cy to be described hereinafter.
- Terminal 4 of timer D is hardwired to terminal 11 of timer D which is in turn, coupled to power line PL1.
- Terminal 5 of timer D is. as stated hereinbefore, connected directly to terminal 3 of timer fp and through junction FJ to fans EFM.
- Timer D also includes a clutch coil C2 coupled between terminals 1 and 2 thereof, a timer motor TM3 connected between clutch coil C2 and terminal 2 at one end thereof, and an opposite end thereof coupled through a switch S4 to terminal 11.
- a switch S5 is also provided in timer D for completing a circuit between terminals 3 and 4 or terminals 4 and 5 as controlled by timer motor TM3 in a manner to be described hereinafter.
- a cycle timer Cy is provided to intermittently energize evaporator fans EFM during periods in which the compressor C is de-energized. This is desirable in order to provide a more even temperature distribution throughout the vending machine. during the off period of the compressor in order to enable more accurate temperature sensing within the vending machine during that period and a more limited fluctuation of the temperature of the chilled products in product stacks PS.
- Timer Cy includes a plurality of external terminals L1, L2, 2 and 3. Terminal L1 of timer Cy is coupled to power line PL2. Terminal L2 of timer Cy as stated hereinbefore, is coupled directly to terminal 3 of timer D. Terminal 2 of timer Cy is hardwired to terminal L2 of timer Cy. Terminal 3 of timer Cy is coupled through junction FJ to the evaporator fan motors of the refrigeration system of the present invention.
- a timer motor TM4 is provided within timer Cy between terminals Ll and L2 for the timed operation of a switch S6,
- Timer Cy in one embodiment of the present invention, is electromechanical cam timer manufactured by Eagle Signal Corporation under the description "flexopulse timer number HG-94-A6".
- control circuit of Figure 2 can best be understood in conjunction with the timing diagrams of Figures 3 and 4 as described hereinafter.
- waveform E represents the output at terminal NC of timer E.
- Waveform TS represents the ON-OFF state of thermostatic temperature switch TS.
- Waveform D represents the output at terminal 5 of timer D over the control period illustrated in Figure 3.
- Waveform Cy represents the intermittent timing pulse output generated by timer Cy at output terminal 3 over the control period.
- the remaining waveform of Figure 3 labeled FAN(S) illustrates the cycle of operation of the evaporator fan motors EFM in response to the timing controls provided by the waveforms E, TS, D, and CY.
- Waveform TS represents the ON-OFF periods of temperature switch TS.
- Waveform fp represents the output with respect to time at terminal 3 of timer fp and the waveform labeled FAN(S) illustrates the ON-OFF periods of the evaporator fans EFM in response to the combined control of temperature switch TS and timer fp.
- Timer E is an optional 24 hour clock/controller which may be utilized'to turn the refrigeration system of the present invention ON and OFF for any specified period daily.
- the refrigeration system may be turned ON at 9:00 AM and OFF at 5:00 PM, by means of timer E.
- This ON-OFF period is controlled by timer E by the opening and closing of switch Sl which is controlled by timer motor TM1 in conjunction with appropriate timing cams.
- switch Sl may be locked in a closed position to effectively short terminals C and NC and open terminals L1 and L2, thus eliminating the function of timer E. In this position, with switch Sl continuously closed, the enablement of the refrigeration system and compressor C are under the control of temperature switch TS.
- the delay timer D is provided with a clutch coil C2 which is energized when temperature switch TS is closed.
- clutch C2 When clutch C2 is energized, timer motor TM3 docs not run.
- clutch C2 becomes de-energized timer motor TM3 begins to run, and runs until it times out.
- Switch S5 remains in the position shown between terminals 4 and 5 until timer motor TM3 is timed out, thus completing a circuit from power line PL1 through junction FJ, to evaporator fan motors EFM.
- switch S5 is normally in the position shown connecting terminals 4 and 5 of timer D, and therefore, power is supplied to evaporator fan motors EFM from power line PL1 via terminals 4, 5 of timer D, and junction FJ.
- Timer D determines how long power is to be applied to the evaporator fan motors following the cut-off time of the compressor determined by temperature switch TS. That is, as temperature switch TS opens, clutch coil C2 becomes de-encrgized permitting timer TM3 to time out, at which time switch S5 switches from terminal 5 to terminal 3, thus interrupting the supply of power to evaporator fan motors EFM. With switch S5 coupling terminals 4 and 3 of timer D together, the cycle timer Cy is enabled.
- the cycle timer Cy timer motor TM4 runs continuously following each delay period generated by timer D, until reset by the ending of another delay period.
- the cycle timer alternately opens and closes the contacts between terminal 2 and 3 of timer Cy at a selectable rate to create the small pulse waveform illustrated as Cy in Figure 3.
- the evaporator fans EFM intermittently cycle ON and OFF following each delay period controlled by timer D.
- the evaporator fan motors EFM as illustrated in ' Figure 3 are turned ON for the entire period that the compressor is turned ON, remain ON for a delay period determined by timer D, and are intermittently turned ON following each delay period and during the period preceeding the next compressor ON time.
- the compressor.ON and compressor OFF times are labeled C ON and C OFF , respectively in Figure 3.
- timer fp which prevents freeze up of vended products in sub-freezing environments may now be understood with reference to Figure 4 and in conjunction with Figure 2.
- the temperature switch TS is closed and opens to turn the compressor OFF at the time indicated C OFF in Figure 4, at which time power is removed from clutch coil Cl of timer fp
- timer motor TM2 is permitted to rotate to begin its timing function. If the temperature switch TS remains open for a predetermined period, for example, four (4) continuous hours, timer fp will time out closing the contacts between terminals 3 and 4 thereof by switch S3.
- the closure of switch S3 completes the circuit to the evaporaror fan motors EFM between power lines PL1 and PL2.
- timer fp is automatically reset to its initial condition in readiness for subsequent actuation in response to a compressor OFF period in excess of said predetermined period of four (4) hours. It should be understood that the period of four (4) hours is exemplary only, and that the predetermined time period selected will vary depending on the type of vending machine being controlled. Thus, by the continuous operation of the evaporator fan motors following a long compressor OFF period indicative of sub-freezing conditions in the environment, freeze up of
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Mechanical Engineering (AREA)
- Thermal Sciences (AREA)
- General Engineering & Computer Science (AREA)
- General Physics & Mathematics (AREA)
- Control Of Vending Devices And Auxiliary Devices For Vending Devices (AREA)
- Devices That Are Associated With Refrigeration Equipment (AREA)
- Cold Air Circulating Systems And Constructional Details In Refrigerators (AREA)
Abstract
Description
- The present invention relates to an energy conservation system for chilled-product vending machines. More specifically, the present invention relates to a control circuit for a convection type refrigeration system for a vending machine which dispenses chilled products such as beverage cans or bottles.
- Heretofore, in refrigeration systems of vending machines including a compressor, a condenser, evaporator coil and an evaporator fan, the compressor has been cycled ON and OFF under the control of a thermostat, and the evaporator fan, which blows air over the evaporator coil to circulate chilled air throughout the vending machine, has been run continuously even during the periods when the compressor was OFF. The unnecessary high energy usage and waste caused by the continuous running of the evaporator fan or fans, has become a problem with the current high cost of energy. One logical solution to reducing the consumption of energy is to cycle the evaporator fan motor ON and OFF with the compessor thus decreasing the running time of the evaporator fan. However, this approach causes several problems, the discovery of which are part of the present invention.
- Firstly, if the evaporator fan is cycled off in synchronism with the turning OFF of the compressor, freeze up of the evaporator coil can occur in humid, high temperature conditions. Secondly, by keeping the evaporator fan shut off during the compressor off cycles, large variations in temperature in the vending machine occur, creating large variations in temper- ature of the-next to be vended products. Also, during this off period of the evaporator fan, large variations of temperature occur throughout the vending machine due to lack of air flow, and temperatures sensed by the thermostat which controls the compressor cycling are less accurate than desirable. Thirdly, when vending machines are located in below freezing environments, ,; (32°F) an idyl condition of the evaporator fan may permit the chilled products to freeze. That is, when the evaporator fan is running and blowing air over the evaporator coil and throughout the vending machine, this flow of air dissipates heat generated by the evaporator fan motors thus acting as a heater to prevent the stored products from freezing. Thus, the aforementioned problems exist when the evaporator fan is permitted to cycle on and off with the compressor, even though a substantial reduction in energy consumption results.
- Accordingly, a need in the art exists for a system which will reduce the consumption of energy in the refrigeration system of a vending machine, but will at the same time solve the aforementioned problems of evaporator coil freeze up in high, humid temperature conditions; product freeze up in below freezing environmental conditions; and large variations in next to be vended products and temperature distribution throughout the vending machine.
- Accordingly, it is a primary object of the present invention to provide an energy management system for a vending machine which conserves energy but still maintains efficient and
- accurate cooling of the vended products within acceptable limits.
- It is a further object of the present invention to provide an energy management system for a vending machine which conserves energy but precludes freeze up of the evaporator coil in high, humid temperature conditions.
- It is another object of the present invention to provide an energy management system for a vending machine whereby the vended products dispensed are within acceptable and predictable temperature ranges.
- It is still another object of the present invention to provide an energy management system for a vending machine wherein temperature fluctuations throughout the volume of the vending machine are kept to a minimum.
- It is yet another object of the present invention to provide an energy management system for a vending machine whereby product freeze up is precluded when the vending machine is located in below freezing environments.
- These and other objects of the present invention are achieved by providing a control circuit including at least three (3) timers for cycling the evaporator fans on and off independently of the operation of the compressor of the refrigeration system. In the system of the present invention, the evaporator fan is cycled on with the compressor and continues to run during the entire compressor on cycle as is conventional, but by means of a first timer the evaporator fan is permitted to run for an additional delay period following the cycle OFF of the compressor. During this additional delay period of the evaporator fans, the fans continue to blow air over the evaporator coil until the temperature of the evaporator coil is sufficiently above the freezing point of water (32°Γ, 0°C), and are then cycled off. In a typical example, this cycle off of the evapor- ' ator fan may be anywhere from two (2) to five (5) minutes after the compressor has cut off, which enables the temperature of the evaporator coil to reach stabilization above 32°F.
- A second cycling timer is provided to intermittently cycle the evaporator fans on and off for predetermined short intervals following the above described delay period, and during the time when the compressor is off. This intermittent cycling of the evaporator fans on and off forces air through the product stacks of the vending machine to provide a relatively even distribution of temperature throughout the off period of the compressor to allow for proper and precise heat sensing of the product through the vendor thermostats. This intermittent actuation of the fans and flow of air also limits the fluctuation of drink temperature, maintaining them within acceptable tolerances.
- A third timer is provided to preclude freezing of the vended products and/or the evaporator coil when a vending machine is disposed in a below freezing environment. This timer is enabled when the thermostatic temperature switch which controls the compressor opens, and will time out to cycle on the evaporator fans for continuous operation for a predetermined period of time if the temperature switch remains open in excess of a predetermined period of time, for example four (4) hours. That is, by sensing the compressor off period, (the period that the temperature switch is open), the evaporator fans are cycled on for a continuous period of operation to preclude freeze up of the products when the off period of the compressor (the temperature switch open) exceeds a predetermined limit such as four (4) hours.
- An additional optional timer may be provided in combination with the other timers of the present invention for turning the refrigeration system on at a predetermined time in the morning and disabling the system at a predetermined time in the evening. -This optional timer obviously would further assist in the energy conservation objectives of the present invention by shutting down all power consumption during the period that the vending machine is not in use.
- The timers utilized in the control circuit of the present invention are electromechanical cam timers which are commercially available components and are hardwired in circuit with the power source and other components of the refrigeration system in a manner to be described hereinafter. However, it should be understood that the timing functions of the present invention could be performed by a general purpose digital computer or by microprocessor technology programmed to perform the desired functions.
- The objects and the attendant advantages of the present invention will become readily appreciated as the same become better understood by reference to the following detailed description when considered in conjunction with the accompanying drawings in which like reference numerals designate like parts throughout the Figures thereof, and wherein:
- Figure 1 is a cross sectional view of the inside of a typical chilled-product vending machine having a convection cooling system;
- Figure 2 is an electrical schematic diagram of the control circuitry of the present invention for operating the convection cooling system within the vending machine of Figure 1;
- Figure 3 is a timing diagram of the electrical signals present at selected terminals of the circuit diagram of Figure 2 to be referenced hereinafter; and
- Figure. 4 is another timing diagram of electrical signals present at other terminals in the circuit of Figure 2 to be referenced hereinafter.
- Referring in detail to Figure 1, there is generally illustrated in cut away view a typical product vending machine wherein a plurality of products such as soft drink cans or bottles are stored in product stacks PS, from which they are sequentially dispensed on demand through appropriate vend slots in the bottom of the vending machine. As illustrated in Figure 1, the vending machine thereof also includes a convection refrigeration system which includes the conventional components of a refrigeration compressor , having a fan CF and a pump CP, an evaporator coil EC, an evaporator fan motor EFM, and a thermostatic temperature switch TS (not shown), for controlling the operation of the refrigeration system in response to the temperatures sensed within the vending machine. The conventional convection refrigeration system illustrated in Figure 1 operates . to chill the products in product stacks PS, by blowing air by means of evaporator fan motor EFM over evaporator coil EC to thereby circulate chilled air between and throughout the product stacks PS.Air returns from the stacks as indicated by arrows AR. In conventional prior art convection refrigeration systems of vending machines known heretofore, the compressor C is cycled on and off under control of thermostatic temperature switch TS, while the evaporator fan motor EFM runs continuously, even during the periods that compressor C is de-energized. This continuous running of the evaporator fan motor EFM obviously expends alot of unnecessary electrical energy and generates heat leading to unnecessary energy waste. Accordingly, in accordance with the objects of the present invention, the control circuit of Figure 2 was designed to energize the evaporator fan motor EFM only during optimum times when its operation is clearly needed. For example, in accordance with the present invention, the evaporator fan EFM operates continuously during the.period that the compressor C is operating, operates for a predetermined delay period following the cycle OFF of the compressor in order to preclude freeze up of the evaporator coil EC, operates intermittently for predetermined periods when the compressor C is cycled OFF, and it is cycled ON to run continuously for a period following an interval when the compressor has not operated for an extended period of time, to preclude freezing of the products in the vending machine in sub-freezing environmental locations.
- Referring in detail to Figure 2, there is illustrated an electrical circuit diagram of the control circuitry of the present invention for operating the convection refrigeration system illustrated in Figure 1. A pair of main power lines PL1, PL2 are provided across which a conventional 120 volt, 60HZ power source is connected. Also connected in parallel between power lines PL1, PL2 are a plurality of timers E, fp, D, Cy. Because these respective timers are connected in parallel, they are effectively hardwired in OR logic with respect to evaporator fan motors EFM. Thus, each of the respective timers E, fp, D and Cy can effect a time control function over evaporator fan motors EFM to be described in more detail hereinafter.
- Beginning at the top of Figure 2, the first timer E, may be a 24 hour clock controller for cycling the refrigeration system ON and OFF at predetermined times of day. That is, by means of timer E, the refrigeration system can be enabled or disabled for any specified period on a daily basis. Timer E is coupled to power line PL1 through a temperature switch TS at terminal C thereof. Included within timer E is time control switch S1 between terminals C and NC and a timer motor TM1 between terminals Ll and L2. Terminal NC is also coupled to the compressor and the condensor fan motors of the refrigeration system of Figure 1 and terminals Ll and L2 are coupled to power lines PL1 and PL2, respectively. Timer E in one embodiment, is a multi-pulse cam timer manufactured by Eagle Signal Corporation, and identified as "multi-pulse timer catalog number MP-1-A6-32-MP5-48".
- Timer fp is provided in the control circuit of Figure 2 to energize evaporator fans EFM continuously when.the compressor C of the refrigeration system has not operated for an extended period of time, for example four (4) hours or more. The failure of the compressor C to operate for such an extended period of time would normally occur when the vending machine is placed in a sub-freezing environment which eliminates the need for internal cooling of the machine. However, this sub-freezing environment also may create a problem in that the chilled products may freeze up when the machine is placed in extremely cold external environment conditions. Accordingly, the timer fp is utilized to sense these extended periods in which the compressor C does not run and turn ON the evaporator fans EFM to run continuously and thereby blow air over the products to preclude freeze up thereof. Timer fp includes
external terminals timer E. Terminal 2 of timer fp is externally connected to power line PL2. Terminal 3 of timer fp is connected to the terminal 5 of timer D and through junction FJ to fans EFM. Terminal 4 of timer fp is hardwired toterminal 11 thereof which in turn is coupled to power line PL1. Timer fp also includes a timer motor TM2 which is coupled at one end to awire connecting terminals 1 and 2 thereof, and at an opposite end through a switch S2 toterminal 11. Also provided in the wire connection betweenterminals 1 and 2 of timer fp is a clutch coil Cl. In addition, a switch S3 is coupled between terminals 3 and 4.of timer fp. Timer fp may, for example, be an electromechanical cam timer manufactured by Eagle Signal Corporation under the description "Cycle-Flex timer catalogue number HB58-A6-01". - Timer D is provided to maintain evaporator fans EFM ON for a predetermined time or delay period after the compressor C is turned OFF. This delay period is necessary under some environmental conditions to preclude freeze up of the evaporator coil EC. That is, since evaporator fan motors EFM will continue to run at the end of a compressor cycle for a predetermined period of time, the temperature of the evaporator coil due to this moving air is elevated to a safe temprature above the freezing point of water before the evaporator fans EFM are turned OFF under the control of timer D. Timer D includes a plurality of external terminals numbered 1, 2, 3, 4, 5, and 11, in the same manner as the like terminals of timer fp. Timer D is in the preferred embodiment of the present invention, similar to timer fp with the exception of the specific function it performs, the addition of terminal 5, and the manner in which it is connected in the circuit of Figure 2. Terminal 1 of timer D is connected to terminal NC of
timer E. Terminal 2 of timer D is connected to power line PL2. Terminal 3 of timer D is connected to terminal L2 of timer Cy to be described hereinafter. Terminal 4 of timer D is hardwired toterminal 11 of timer D which is in turn, coupled to power line PL1. Terminal 5 of timer D is. as stated hereinbefore, connected directly to terminal 3 of timer fp and through junction FJ to fans EFM. Timer D also includes a clutch coil C2 coupled betweenterminals 1 and 2 thereof, a timer motor TM3 connected between clutch coil C2 and terminal 2 at one end thereof, and an opposite end thereof coupled through a switch S4 toterminal 11. A switch S5 is also provided in timer D for completing a circuit between terminals 3 and 4 or terminals 4 and 5 as controlled by timer motor TM3 in a manner to be described hereinafter. - A cycle timer Cy is provided to intermittently energize evaporator fans EFM during periods in which the compressor C is de-energized. This is desirable in order to provide a more even temperature distribution throughout the vending machine. during the off period of the compressor in order to enable more accurate temperature sensing within the vending machine during that period and a more limited fluctuation of the temperature of the chilled products in product stacks PS. Timer Cy includes a plurality of external terminals L1, L2, 2 and 3. Terminal L1 of timer Cy is coupled to power line PL2. Terminal L2 of timer Cy as stated hereinbefore, is coupled directly to terminal 3 of
timer D. Terminal 2 of timer Cy is hardwired to terminal L2 of timer Cy. Terminal 3 of timer Cy is coupled through junction FJ to the evaporator fan motors of the refrigeration system of the present invention. A timer motor TM4 is provided within timer Cy between terminals Ll and L2 for the timed operation of a switch S6, - coupled between
terminals 2 and 3, in a manner to be more fully described hereinafter. Timer Cy in one embodiment of the present invention, is electromechanical cam timer manufactured by Eagle Signal Corporation under the description "flexopulse timer number HG-94-A6". - The operation of the control circuit of Figure 2 can best be understood in conjunction with the timing diagrams of Figures 3 and 4 as described hereinafter.
- Referring in detail to Figure 3, waveform E represents the output at terminal NC of timer E. Waveform TS represents the ON-OFF state of thermostatic temperature switch TS. Waveform D represents the output at terminal 5 of timer D over the control period illustrated in Figure 3. Waveform Cy represents the intermittent timing pulse output generated by timer Cy at output terminal 3 over the control period. The remaining waveform of Figure 3 labeled FAN(S) illustrates the cycle of operation of the evaporator fan motors EFM in response to the timing controls provided by the waveforms E, TS, D, and CY.
- Referring in detail to Figure 4, there is illustrated a plurality of timing waveforms illustrating the function of timer fp. Waveform TS represents the ON-OFF periods of temperature switch TS. Waveform fp represents the output with respect to time at terminal 3 of timer fp and the waveform labeled FAN(S) illustrates the ON-OFF periods of the evaporator fans EFM in response to the combined control of temperature switch TS and timer fp.
- Having now generally described the content of the timing diagrams of Figures 3 and 4, the detailed operation of the control circuitry of Figure 2 may now be explained by reference to Figures 2 in conjunction with Figures 3 and 4.
- In normal operation the compressor C of the refrigeration system illustrated in Figure 1 is turned on in resp'onse to the closing of temperature switch TS when the temperature within the vending machine rises above a predetermined level. However, temperature switch TS will not turn the compressor C on, unless switch Sl of timer E is closed providing a closed circuit path between power line PL1, the compressor and power line PL2. The function of switch Sl will be explained further hereinafter. The closing of temperature switch TS also provides a circuit path through clutch coil Cl'of timer fp and power lines PL1 and PL2. That is, the closing of temperature switch TS energizes the clutch coil Cl. With clutch coil Cl energized, timer motor TM2 of timer fp can not rotate. Timer E is an optional 24 hour clock/controller which may be utilized'to turn the refrigeration system of the present invention ON and OFF for any specified period daily. For example, as illustrated in Figure 3 by waveform E, the refrigeration system may be turned ON at 9:00 AM and OFF at 5:00 PM, by means of timer E. This ON-OFF period is controlled by timer E by the opening and closing of switch Sl which is controlled by timer motor TM1 in conjunction with appropriate timing cams. If this option is not required, switch Sl may be locked in a closed position to effectively short terminals C and NC and open terminals L1 and L2, thus eliminating the function of timer E. In this position, with switch Sl continuously closed, the enablement of the refrigeration system and compressor C are under the control of temperature switch TS.
- The delay timer D is provided with a clutch coil C2 which is energized when temperature switch TS is closed. When clutch C2 is energized, timer motor TM3 docs not run. However, at the end of a compressor cycle, when temperature switch TS opens, clutch C2 becomes de-energized timer motor TM3 begins to run, and runs until it times out. Switch S5 remains in the position shown between terminals 4 and 5 until timer motor TM3 is timed out, thus completing a circuit from power line PL1 through junction FJ, to evaporator fan motors EFM. At the beginning of any cycle of operation of the compressor C, switch S5 is normally in the position shown connecting terminals 4 and 5 of timer D, and therefore, power is supplied to evaporator fan motors EFM from power line PL1 via terminals 4, 5 of timer D, and junction FJ. Timer D determines how long power is to be applied to the evaporator fan motors following the cut-off time of the compressor determined by temperature switch TS. That is, as temperature switch TS opens, clutch coil C2 becomes de-encrgized permitting timer TM3 to time out, at which time switch S5 switches from terminal 5 to terminal 3, thus interrupting the supply of power to evaporator fan motors EFM. With switch S5 coupling terminals 4 and 3 of timer D together, the cycle timer Cy is enabled.
- Thus, the cycle timer Cy, timer motor TM4, runs continuously following each delay period generated by timer D, until reset by the ending of another delay period. The cycle timer alternately opens and closes the contacts between
terminal 2 and 3 of timer Cy at a selectable rate to create the small pulse waveform illustrated as Cy in Figure 3. Thus, as shown in the bottom waveform "FAN(S)" of Figure 3, the evaporator fans EFM intermittently cycle ON and OFF following each delay period controlled by timer D. Thus, the evaporator fan motors EFM, as illustrated in 'Figure 3 are turned ON for the entire period that the compressor is turned ON, remain ON for a delay period determined by timer D, and are intermittently turned ON following each delay period and during the period preceeding the next compressor ON time. 'The compressor.ON and compressor OFF times are labeled CON and COFF, respectively in Figure 3. Thus, the operation of timers E, D, and Cy have now been described with reference to Figure 3. - The operation of the timer fp which prevents freeze up of vended products in sub-freezing environments may now be understood with reference to Figure 4 and in conjunction with Figure 2. As illustrated by the top waveform TS in Figure 4, the temperature switch TS is closed and opens to turn the compressor OFF at the time indicated COFF in Figure 4, at which time power is removed from clutch coil Cl of timer fp When this occurs, timer motor TM2 is permitted to rotate to begin its timing function. If the temperature switch TS remains open for a predetermined period, for example, four (4) continuous hours, timer fp will time out closing the contacts between terminals 3 and 4 thereof by switch S3. The closure of switch S3 completes the circuit to the evaporaror fan motors EFM between power lines PL1 and PL2. The evaporator fans will then run continuously until such time that the temperature switch again closes which energizes clutch coil Cl to stop the operation of the timer motor. When this occurs, timer fp is automatically reset to its initial condition in readiness for subsequent actuation in response to a compressor OFF period in excess of said predetermined period of four (4) hours. It should be understood that the period of four (4) hours is exemplary only, and that the predetermined time period selected will vary depending on the type of vending machine being controlled. Thus, by the continuous operation of the evaporator fan motors following a long compressor OFF period indicative of sub-freezing conditions in the environment, freeze up of
- products in the vending machine are precluded by the heating effect of the moving air circulating throughout the vending machine.
- It should be understood that the system hereinbefore described may be modified as would occur to one of ordinary skill in the art, without departing from the spirit and scope of the present invention.
Claims (7)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE8585101434T DE3176594D1 (en) | 1980-10-17 | 1981-10-16 | Refrigeration system for a chilled product vending system |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US19817280A | 1980-10-17 | 1980-10-17 | |
US198172 | 1980-10-17 |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP85101434.0 Division-Into | 1981-10-16 |
Publications (3)
Publication Number | Publication Date |
---|---|
EP0050333A2 true EP0050333A2 (en) | 1982-04-28 |
EP0050333A3 EP0050333A3 (en) | 1982-07-21 |
EP0050333B1 EP0050333B1 (en) | 1986-07-09 |
Family
ID=22732288
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP81108419A Expired EP0050333B1 (en) | 1980-10-17 | 1981-10-16 | Refrigeration system for a chilled product vending machine |
EP85101434A Expired EP0151496B1 (en) | 1980-10-17 | 1981-10-16 | Refrigeration system for a chilled product vending system |
Family Applications After (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP85101434A Expired EP0151496B1 (en) | 1980-10-17 | 1981-10-16 | Refrigeration system for a chilled product vending system |
Country Status (10)
Country | Link |
---|---|
EP (2) | EP0050333B1 (en) |
JP (1) | JPS5770374A (en) |
AU (1) | AU528195B2 (en) |
BR (1) | BR8105359A (en) |
CA (1) | CA1169139A (en) |
DE (1) | DE3174915D1 (en) |
ES (3) | ES8302275A1 (en) |
GR (1) | GR75651B (en) |
MX (1) | MX150410A (en) |
ZA (1) | ZA815323B (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0090431A2 (en) * | 1982-03-31 | 1983-10-05 | The Coca-Cola Company | Energy management system for vending machines |
EP1299680A1 (en) * | 2000-05-25 | 2003-04-09 | David J. Schanin | Temperature controller for a refrigerated vending machine |
WO2020041737A1 (en) * | 2018-08-24 | 2020-02-27 | Bedford Systems Llc | Alcohol concentrate filling systems and methods of use thereof |
Families Citing this family (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6014479U (en) * | 1983-07-08 | 1985-01-31 | 三洋電機株式会社 | Low temperature storage operation control device |
US7144431B2 (en) * | 2001-10-18 | 2006-12-05 | The Procter & Gamble Company | Textile finishing composition and methods for using same |
US7018422B2 (en) * | 2001-10-18 | 2006-03-28 | Robb Richard Gardner | Shrink resistant and wrinkle free textiles |
KR100850954B1 (en) * | 2007-03-30 | 2008-08-08 | 엘지전자 주식회사 | Refrigerator and control method of the same |
US7891200B2 (en) * | 2007-12-12 | 2011-02-22 | Pepsico, Inc. | Vending machine improvement |
US9218703B2 (en) * | 2008-06-09 | 2015-12-22 | The Coca-Cola Company | Virtual vending machine in communication with a remote data processing device |
KR20170104877A (en) | 2016-03-08 | 2017-09-18 | 엘지전자 주식회사 | Refrigerator |
US11796241B2 (en) | 2020-10-14 | 2023-10-24 | Viking Range, Llc | Method and apparatus for controlling humidity within a compartment of refrigeration appliance |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2962872A (en) * | 1958-01-13 | 1960-12-06 | Revco Inc | Refrigerator construction and controls |
GB1449823A (en) * | 1972-11-13 | 1976-09-15 | Hotpoint Ltd | Refrigeration units |
US4021213A (en) * | 1975-08-25 | 1977-05-03 | Mcgraw-Edison Company | Food storage refrigeration cabinet having optional fast chill cycle |
US4094166A (en) * | 1977-03-23 | 1978-06-13 | Electro-Thermal Corporation | Air conditioning control system |
WO1979001051A1 (en) * | 1978-05-11 | 1979-12-13 | J Bond | Improved refrigeration means and methods |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2529470A (en) * | 1945-01-26 | 1950-11-07 | Bastian Biessing Company | Article refrigeration |
US4136730A (en) * | 1977-07-19 | 1979-01-30 | Kinsey Bernard B | Heating and cooling efficiency control |
-
1981
- 1981-05-15 JP JP56072413A patent/JPS5770374A/en active Granted
- 1981-07-28 CA CA000382717A patent/CA1169139A/en not_active Expired
- 1981-08-03 ZA ZA815323A patent/ZA815323B/en unknown
- 1981-08-06 GR GR65731A patent/GR75651B/el unknown
- 1981-08-11 AU AU73991/81A patent/AU528195B2/en not_active Ceased
- 1981-08-21 BR BR8105359A patent/BR8105359A/en unknown
- 1981-09-11 ES ES505417A patent/ES8302275A1/en not_active Expired
- 1981-10-08 MX MX189567A patent/MX150410A/en unknown
- 1981-10-16 EP EP81108419A patent/EP0050333B1/en not_active Expired
- 1981-10-16 EP EP85101434A patent/EP0151496B1/en not_active Expired
- 1981-10-16 DE DE8181108419T patent/DE3174915D1/en not_active Expired
-
1982
- 1982-08-16 ES ES515037A patent/ES8308041A1/en not_active Expired
- 1982-08-16 ES ES515038A patent/ES515038A0/en active Granted
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2962872A (en) * | 1958-01-13 | 1960-12-06 | Revco Inc | Refrigerator construction and controls |
GB1449823A (en) * | 1972-11-13 | 1976-09-15 | Hotpoint Ltd | Refrigeration units |
US4021213A (en) * | 1975-08-25 | 1977-05-03 | Mcgraw-Edison Company | Food storage refrigeration cabinet having optional fast chill cycle |
US4094166A (en) * | 1977-03-23 | 1978-06-13 | Electro-Thermal Corporation | Air conditioning control system |
WO1979001051A1 (en) * | 1978-05-11 | 1979-12-13 | J Bond | Improved refrigeration means and methods |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0090431A2 (en) * | 1982-03-31 | 1983-10-05 | The Coca-Cola Company | Energy management system for vending machines |
EP0090431A3 (en) * | 1982-03-31 | 1984-05-09 | The Coca-Cola Company | Energy management system for vending machines |
EP1299680A1 (en) * | 2000-05-25 | 2003-04-09 | David J. Schanin | Temperature controller for a refrigerated vending machine |
EP1299680A4 (en) * | 2000-05-25 | 2005-01-19 | Usa Tech Inc | Temperature controller for a refrigerated vending machine |
WO2020041737A1 (en) * | 2018-08-24 | 2020-02-27 | Bedford Systems Llc | Alcohol concentrate filling systems and methods of use thereof |
EP3841057A4 (en) * | 2018-08-24 | 2022-06-15 | Bedford Systems LLC | Alcohol concentrate filling systems and methods of use thereof |
US11708259B2 (en) | 2018-08-24 | 2023-07-25 | Bedford Systems Llc | Alcohol concentrate filling systems and methods of use thereof |
Also Published As
Publication number | Publication date |
---|---|
EP0050333B1 (en) | 1986-07-09 |
JPS648266B2 (en) | 1989-02-13 |
ES515037A0 (en) | 1983-08-01 |
DE3174915D1 (en) | 1986-08-14 |
BR8105359A (en) | 1982-08-31 |
EP0151496A2 (en) | 1985-08-14 |
ES8308042A1 (en) | 1983-08-01 |
ES505417A0 (en) | 1983-01-01 |
CA1169139A (en) | 1984-06-12 |
EP0050333A3 (en) | 1982-07-21 |
GR75651B (en) | 1984-08-02 |
AU528195B2 (en) | 1983-04-21 |
EP0151496B1 (en) | 1988-01-07 |
ZA815323B (en) | 1982-07-28 |
ES8302275A1 (en) | 1983-01-01 |
EP0151496A3 (en) | 1986-01-08 |
JPS5770374A (en) | 1982-04-30 |
MX150410A (en) | 1984-04-30 |
AU7399181A (en) | 1982-06-24 |
ES8308041A1 (en) | 1983-08-01 |
ES515038A0 (en) | 1983-08-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4467617A (en) | Energy management system for chilled product vending machine | |
US4485633A (en) | Temperature-based control for energy management system | |
US4417450A (en) | Energy management system for vending machines | |
US4843833A (en) | Appliance control system | |
CA1153447A (en) | Adaptive temperature control system | |
US4297852A (en) | Refrigerator defrost control with control of time interval between defrost cycles | |
CA1336010C (en) | Apparatus for controlling a thermostatic expansion valve | |
US4156350A (en) | Refrigeration apparatus demand defrost control system and method | |
EP0050333A2 (en) | Refrigeration system for a chilled product vending machine | |
EP0082144B1 (en) | Refrigerator defrost control | |
US10830523B2 (en) | Refrigerator appliance and method of sabbath operation | |
EP0484860B1 (en) | Refrigerating apparatus having a single thermostatic temperature control system | |
CA1180082A (en) | Energy management system for chilled product vending machine | |
US5467245A (en) | Anti-abuse circuit | |
JP3769778B2 (en) | Vending machine temperature control device | |
JPS62141484A (en) | Method and device for defrosting cooler of refrigeration andcold storage open showcase | |
JPS61213467A (en) | Refrigerator | |
RU2191956C2 (en) | Refrigerator temperature control system (versions) | |
JPH09288765A (en) | Controller for automatic vending machine with temperature adjustment | |
JPH11175832A (en) | Heating control device for vending machine | |
JPH04270491A (en) | Inside temperature adjusting device for automatic vending machine | |
JPH0610575B2 (en) | refrigerator | |
JP2003263675A (en) | Cooler/heater for automatic vending machine | |
JPH11175834A (en) | Cooling control device for vending machine |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
AK | Designated contracting states |
Designated state(s): DE FR GB IT |
|
PUAL | Search report despatched |
Free format text: ORIGINAL CODE: 0009013 |
|
ITCL | It: translation for ep claims filed |
Representative=s name: ING. C. GREGORJ S.P.A. |
|
AK | Designated contracting states |
Designated state(s): DE FR GB IT |
|
DET | De: translation of patent claims | ||
17P | Request for examination filed |
Effective date: 19820811 |
|
RAP1 | Party data changed (applicant data changed or rights of an application transferred) |
Owner name: THE COCA-COLA COMAPNY |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): DE FR GB IT |
|
ITF | It: translation for a ep patent filed | ||
REF | Corresponds to: |
Ref document number: 3174915 Country of ref document: DE Date of ref document: 19860814 |
|
ET | Fr: translation filed | ||
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
26N | No opposition filed | ||
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GB Effective date: 19881016 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: FR Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 19890630 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DE Effective date: 19890701 |
|
GBPC | Gb: european patent ceased through non-payment of renewal fee | ||
REG | Reference to a national code |
Ref country code: FR Ref legal event code: ST |