EP0031056A1 - Verfahren zum Ermitteln der Filterstromgrenze eines Elektrofilters - Google Patents

Verfahren zum Ermitteln der Filterstromgrenze eines Elektrofilters Download PDF

Info

Publication number
EP0031056A1
EP0031056A1 EP80107568A EP80107568A EP0031056A1 EP 0031056 A1 EP0031056 A1 EP 0031056A1 EP 80107568 A EP80107568 A EP 80107568A EP 80107568 A EP80107568 A EP 80107568A EP 0031056 A1 EP0031056 A1 EP 0031056A1
Authority
EP
European Patent Office
Prior art keywords
filter
voltage
current
change
control voltage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP80107568A
Other languages
English (en)
French (fr)
Other versions
EP0031056B1 (de
Inventor
Helmut Dipl.-Ing. Herklotz
Günter Mehler
Franz Dipl.-Ing. Neulinger
Helmut Dipl.-Ing. Schummer
Horst Dr. Dipl.-Ing. Daar
Walter Dipl.-Ing. Schmidt
Heinrich Winkler
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
GEA Group AG
Siemens AG
Original Assignee
Metallgesellschaft AG
Siemens AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Metallgesellschaft AG, Siemens AG filed Critical Metallgesellschaft AG
Priority to AT80107568T priority Critical patent/ATE4676T1/de
Publication of EP0031056A1 publication Critical patent/EP0031056A1/de
Application granted granted Critical
Publication of EP0031056B1 publication Critical patent/EP0031056B1/de
Expired legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B03SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03CMAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03C3/00Separating dispersed particles from gases or vapour, e.g. air, by electrostatic effect
    • B03C3/34Constructional details or accessories or operation thereof
    • B03C3/66Applications of electricity supply techniques
    • B03C3/68Control systems therefor
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S323/00Electricity: power supply or regulation systems
    • Y10S323/903Precipitators

Definitions

  • the invention relates to a method for determining the filter current limit of an electrostatic filter, which e.g. is fed from an AC network via a thyristor actuator and in which the control voltage of the actuator depends on filter operating values up to. can be changed to a predetermined filter current limit.
  • This generic term refers to a control method, as described in more detail, for example, in Siemens magazine 1971, pp. 567-572.
  • filter current limitation In addition to this nominal current limitation, another type of filter current limitation is of interest. Under certain operating conditions of the electrostatic filter, e.g. In sintering plants or in bypass operation in the cement plant, either a filter voltage maximum or a filter voltage saturation can occur.
  • the goal of the "current limitation" function is to determine the maximum or saturation in order to prevent unnecessarily high filter currents.
  • the object of the present invention is the filter depending on the operating state of the filter. Determine current limit so that there is an optimal ratio of separator performance to energy consumption.
  • This object is achieved in that during the filter operation in predetermined time intervals which the control voltage is automatically changed in predetermined steps to a minimum value and from here back to the original value, that the ratios of changing the filter voltage to changing the control voltage and changing the filter voltage to change the filter current are continuously calculated and that the value falls below predefined limit values of these ratios or in the event of a change in the sign of two successive ratio values, the associated filter current determines the filter current limit.
  • the filter current limit from which a further increase in the filter performance is prevented is advantageously selected such that it is 3 to 15% above the filter current at which the criteria mentioned above are present.
  • the values of filter current and filter voltage associated with each step are also advantageously stored and the filter characteristic that can be determined from them is displayed. On the one hand, this gives the operating personnel information about the operating behavior of the filter and, on the other hand, it can be of interest for higher-level optimization strategies of several filters.
  • the filter characteristic is recorded the ratio of the change in the filter voltage and the change in the filter current to the change in the control voltage is also advantageously calculated. If it is found that the relative change in the filter voltage when the control voltage changes is greater than the change in the filter current, a defined voltage drop is carried out when the filter breaks down. If the reverse occurs, a defined current reduction is carried out in the event of breakdowns. In this way it can be decided whether the current or the voltage should be lowered by a predetermined amount in response to a breakthrough so that, for example, one stays within the predetermined breakdown frequency.
  • the times for the recording of the filter characteristic are selected such that in each case only. the control voltage is varied for a filter. E.g. Assuming that the filter characteristic is recorded every 15 minutes and the recording takes one second each, it should be understood that the separating operation is practically unaffected by this.
  • the elec trofilter 1 via high-voltage rectifier 2, high-voltage transformer 3 and a thyristor actuator 4 consisting of antiparallel-connected thyristors, fed from an AC voltage network 6.
  • the control voltage U St for the thyristor actuator 4 is determined by a controller 5 so that optimum filter operating values result.
  • a control of this type is described, for example, in the article mentioned at the beginning.
  • this controller 5 is designed today as a digital controller, ie essentially consists of a microcomputer system.
  • filters 7 and 8 are indicated.
  • the digital controllers 5 of the individual filters run via a data bus 92 with a superordinate control computer 9, to which a display 91 is assigned.
  • the individual operating parameters and setting values can be specified from the host computer 9 and optimization strategies for the filters can be calculated if necessary.
  • the filter current function as a function of the peak voltage or the arithmetic mean or the RMS value of the filter voltage is referred to below as the filter characteristic. It is among others dependent on the current operating conditions of the electrostatic filter and must therefore be cyclical, e.g. at intervals of 15 minutes, at a time when the breakthrough limit is not being scanned.
  • the current control voltage U St is stored and this value is output again to the thyristor controller 4 after completion of the filter characteristic recording.
  • the assigned values of filter voltage and filter current are saved.
  • the control voltage is reduced by a constant increment ⁇ U St until a minimum value of, for example, 1 volt is reached, which is given by the lower possible control voltage.
  • the control voltage U St is then raised from this minimum value with the same increment back to the current value at the start of the recording.
  • the values of the filter voltage U Fi , F i + 1 etc. and the filter current I F assigned to each control voltage U St are stored during the lowering phase and arithmetically averaged with the corresponding values of the start-up phase. The characteristic calculated from this can then be displayed on the display 91.
  • a filter voltage maximum exists when the sign of a filter voltage increment is not the same as the sign of the next filter voltage increment when the control voltage changes (cf. curve a), ie, therefore, a sign or where i denotes the sampling points of the filter characteristic.
  • the maximum filter current and the filter and control voltage values assigned to it are stored. You limit e.g. the setting range of a flue gas density control or the scanning of the breakdown limit.
  • the stop point can be determined from the recording of the filter characteristic, i.e. the point from which a defined voltage or current drop should advantageously be made in the event of a breakdown.
  • the changeover point assumed as a criterion for this choice is determined by calculating the ratio of the change in filter voltage to changing the control voltage and the ratio of changing the filter current to changing the control voltage, and by comparing these two ratio values. If there is a relatively greater reaction of the filter current than the filter voltage when the control voltage changes, then breakdowns with a defined current reduction are used, since this is then more favorable in terms of process technology. The reverse applies if the relative voltage change is greater than the relative current change when the control voltage changes.

Landscapes

  • Engineering & Computer Science (AREA)
  • Automation & Control Theory (AREA)
  • Electrostatic Separation (AREA)
  • Measurement Of Resistance Or Impedance (AREA)
  • Networks Using Active Elements (AREA)

Abstract

Es wird die selbsttätige Aufnahme der Stromspannungskennlinie eines Elektrofilters (1) im Rahmen einer Mikroprozessorsteuerung (5) beschrieben. Die sich beim schrittweisen Ändern der Steuerung (USt) des Thysistorstellers ergebende Kennlinie wird dem Bedienungspersonal angzeigt. Gleichzeitig werden Sättigungserscheinungen (b) und Spannungsmaxima (a) erfaßt, d.h. Betriebsfälle, bei denen bei einer Erhöhung der Energiezufuhr die Abscheideleistung nicht mehr nennenswert ansteigt. Bei mehreren zusammenarbeitenden Filtern (1, 7, 8) wird die Aufnahme der Kennlinie von einem Leitrechner (9) veranlaßt, der den Mikrocomputern (5) der einzelnen Filter überlagert ist.

Description

  • Die Erfindung bezieht sich auf ein Verfahren zum Ermitteln der Filterstromgrenze eines Elektrofilters, das z.B. über ein Thyristorstellglied aus einem Wechselstromnetz gespeist ist und bei dem die Steuerspannung des Stellgliedes abhängig von Filterbetriebswerten bis. zu einer vorgegebenen Filterstromgrenze änderbar ist.
  • Mit diesem Oberbegriff wird auf ein Steuerverfahren Bezug genommen, wie es beispielsweise in der Siemens-Zeitschrift 1971, S. 567 - 572 näher beschrieben ist.
  • Da die Wirksamkeit eines Elektrofilters etwa mit dem Quadrat der anliegenden Spannung steigt, muß man bestrebt sein, die Filterspannung so hoch wie möglich einzustellen. Die Durchbruchsfestigkeit des Gases begrenzt allerdings diese Spannung nach oben. Da es außer dem Durchbruch selbst kein Kriterium für die maximal mögliche Spannung gibt, müssen in bestimmten Zeitabständen Durchbrüche herbeigeführt werden, um diese Grenze abzutasten. Da sich die Durchbruchsgrenze sehr schnell ändern kann, muß relativ häufig abgetastet werden.
  • Bei einer derartigen durchschlagabhängigen Regelung muß dafür gesorgt werden, daß die Strombelastbärkeit der Anlage nicht überschritten wird. Bei der bekannten Anordnung wird durch eine einstellbare Strombegrenzung bei Erreichen des eingestellten Wertes ein weiteres Ansteigen der Steuerspannung verhindert. Steigt der Strom wegen einer Verkleinerung des Staubwiderstandes an, dann bewirkt die Strombegrenzung ein langsames Absenken der Steuerspannung, bis der Strom auf seinen eingestellten Wert abgesunken ist.
  • Neben dieser Nennstrombegrenzung ist noch eine andere Art der Filterstrombegrenzung von Interesse. Unter bestimmten Betriebsbedingungen des Elektrofilters, z.B. in Sinteranlagen oder im Bypassbetrieb im Zementwerk kann entweder ein Filterspannungsmaximum oder auch eine Filterspannungssättigung eintreten. Hier 'ist das Ziel der Funktion "Strombegrenzung" das Maximum bzw. die Sättigung festzustellen, um unnötig hohe Filterströme zu verhindern.
  • Die Aufgabe der vorliegenden Erfindung besteht darin, die vom Betriebszustand des Filters abhängige Filter- . stromgrenze so zu bestimmen, daß sich ein optimales Verhältnis von Abscheiderleistung zum Energieaufwand ergibt.
  • Diese Aufgabe wird erfindungsgemäß dadurch gelöst, daß während des Filterbetriebes in vorgegebenen Zeitabständen die Steuerspannung selbsttätig in vorgegebenen Schritten bis zu einem Minimalwert und von hier aus wieder bis zum ursprünglichen Wert geändert wird, daß dabei fortlaufend die Verhältnisse von Änderung der Filterspannung zu Änderung der Steuerspannung und Änderung der Filterspannung zur Änderung des Filterstromes berechnet werden und daß beim Unterschreiten vorgegebener Grenzwerte dieser Verhältnisse oder bei einer Vorzeichenänderung zweier aufeinanderfolgender Verhältniswerte der jeweils zugehörige Filterstrom die Filterstromgrenze bestimmt.
  • Auf diese Weise lassen sich Sättigungserscheinungen bzw. Maximalwerte der Filterspannung erkennen, ab denen eine weitere Steigerung der Energiezufuhr zum Filter, d.h. Stromerhöhung, keine wesentliche Erhöhung der Abscheiderleistung mehr ergibt.
  • Das Erkennen derartiger Grenzwerte ist im Hinblick auf einen wirtschaftlichen Betrieb des Elektrofilters von großem Interesse.
  • Vorteilhafterweise wird die Filterstromgrenze, ab der eine weitere Steigerung der Filterleistung verhindert wird, etwa so gewählt, daß sie 3 bis 15% über dem Filterstrom liegt, an dem die vorstehend erwähnten Kriterien vorliegen.
  • Vorteilhafterweise werden ferner die zu jedem Schritt gehörigen Werte von Filterstrom und Filterspannung gespeichert und die daraus bestimmbare Filtercharakteristik angezeigt. Dies gibt zum einen dem Bedienungspersonal einen Aufschluß über das Betriebsverhalten des Filters und kann andererseits von Interesse für übergeordnete Optimierungsstrategien mehrerer Filter sein. Bei der Aufnahme der Filtercharakteristik wird ferner vorteilhafterweise das Verhältnis von Änderung der Filterspannung und Änderung des Filterstromes zur Änderung der Steuerspannung berechnet. Ergibt sich, daß die relative Änderung der Filterspannung bei einer Änderung der Steuerspannung größer ist als die Änderung des Filterstromes, so wird bei Durchschlägen des Filters eine definierte Spannungsabsenkung vorgenommen. Ergibt sich der umgekehrte Fall, so wird bei Durchschlägen eine definierte Stromabsenkung vorgenommen. Auf diese Weise kann entschieden werden, ob als Reaktion auf einen Durchbruch zweckmäßigerweise der Strom oder die Spannung um einen vorgegebenen Betrag abzusenken ist, damit man z.B. im Rahmen der vorgegebenen Durchschlagshäufigkeit bleibt.
  • Vorteilhafterweise werden ferner bei Vorhandensein mehrerer hintereinander oder parallelgeschalteter Filter die Zeitpunkte für die Aufnahme der Filtercharakteristik so gewählt, daß jeweils nur. bei einem Filter die Steuerspannung variiert wird. Sei z.B. angenommen, daß die Filtercharakteristik alle 15 Minuten aufgenommen wird und die Aufnahme jeweils eine Sekunde dauert, ist einzus hen, daß hierdurch der Abscheidebetrieb praktisch nicht berührt wird.
  • Anhand eines in der Zeichnung dargestellten Ausführungsbeispieles sei die Erfindung näher erläutert; es zeigen:
    • Figur 1 das elektrische Schaltungsschema einer Filteranlage mit Steuerung,
    • Figur 2 zwei Filtercharakteristiken, d.h. Abhängigkeit von Filterspannung und Filterstrom und
    • Figur 3 den Verlauf der Filterspannung in Abhängigkeit von der Steuerspannung am Stellglied.
  • Bei der in Figur 1 gezeigten Anordnung wird das Elektrofilter 1 über Hochspannungsgleichrichter 2, Hochspannungstransformator 3 und ein aus antiparallelgeschalteten Thyristoren bestehendes Thyristorstellglied 4 aus einem Wechselspannungsnetz 6 gespeist. In Abhängigkeit von Filterbetriebswerten, wie z.B. Primärstrom und Primärspannung, Sekundärspannung, Sekundärstrom und Zahl der Durchschläge im Filter, wird durch einen Regler 5 die Steuerspannung USt für das Thyristorstellglied 4 so bestimmt, daß sich optimale Filterbetriebswerte ergeben. Eine Steuerung dieser Art ist beispielsweise in dem eingangs genannten Aufsatz beschrieben. Im Zuge der heutigen Digitalisierung der Technik ist es von Vorteil, wenn dieser Regler 5 heute als digitaler Regler ausgebildet wird, d.h. im wesentlichen aus einem Mikrocomputersystem besteht.
  • Zusätzlich zu dem gerade beschriebenen Filter sind noch weitere Filter 7 und 8 angedeutet. Die Digitalregler 5 der einzelnen Filter verkehren über einen Datenbus 92 mit einem übergeordneten Leitrechner 9, dem eine Anzeige 91 zugeordnet ist. Vom Leitrechner 9 her können die einzelnen Betriebsparameter und Einstellwerte vorgegeben werden und gegebenenfalls Optimierungsstrategien für die Filter berechnet werden.
  • Die Funktion Filterstrom 'als Funktion der Scheitelspannung bzw. des arithmetischen Mittelwertes oder des Effektivwertes der Filterspannung sei nachfolgend als Filtercharakteristik bezeichnet. Sie ist u.a. von dem momentanen Betriebsverhältnissen des Elektrofilters abhängig und muß daher zyklisch, z.B. im Abstand von 15 Minuten ermittelt werden, und zwar zu einem Zeitpunkt, an dem nicht gerade die Durchschlagsgrenze abgetastet wird.
  • Bei der Aufnahme der Filtercharakteristik wird zunächst die aktuelle Steuerspannung USt gespeichert und dieser Wert nach Abschluß der Filtercharakteristikaufnahme erneut an den Thyristorsteller 4 ausgegeben. Gleichzeitig werden die zugeordneten Werte von Filterspannung und Filterstrom gespeichert. Anschließend wird zu Beginn jeder Halbwelle der Primärspannung die Steuerspannung um ein konstantes Inkrement ΔUSt vermindert bis zum Erreichen eines Minimalwertes von z.B. 1 Volt, der durch die untere mögliche Steuerspannung gegeben ist. Anschließend wird die Steuerspannung USt von diesem Minimalwert mit dem gleichen Inkrement wieder bis zum aktuellen Wert am Beginn der Aufnahme hochgefahren. Sei z. B. angenommen, daß die gesamte Filtercharakteristik in 32 Stützpunkte unterteilt sei, was für die normalen Betriebsverhältnisse völlig ausreicht, so ist dabei mit einer Maximaldauer von etwa 0,5 bis 1 Sekunde für die Aufnahme der Filtercharakteristik zu rechnen.
  • Die jeder Steuerspannung USt zugeordneten Werte der Filterspannung UFi , Fi+1 usw. und des Filterstromes IF werden während der Absenkphase gespeichert und mit den entsprechenden Werten der Hochlaufphase arithmetisch gemittelt. Die hieraus berechnete Charakteristik kann dann in der Anzeige 91 angezeigt werden.
  • Nach Erreichen des Anfangswertes der Steuerspannung wird geprüft, ob die Filterstrombegrenzung verändert werden muß und der aktuelle Umschaltpunkt zwischen Strom- und Spannungsabsenkung bei Durchschlägen berechnet. In diesem Zusammenhang sei noch bemerkt, daß beim Auftreten eines Durchschlages während der Aufnahme der Filtercharakteristik die normale Spannungs- bzw. Stromabsenkungsroutine eingreift und die Aufnahme der Charakteristik abgebrochen wird, da während des eigentlichen Durchschlages keine brauchbaren Verhältniswerte berechenbar sind.
  • In Figur 2 sind zwei Filtercharakteristiken, d.h. Filterstrom IF in Abhängigkeit von der Filterspannung UF aufgetragen, und zwar zeigt die Kurve a eine Filtercharakteristik mit einem Spannungsmaximum und die Kurve b eine Filtercharakteristik mit Sättigungserscheinungen. Eine Filterspannungssättigung liegt vor, wenn,
    Figure imgb0001
    oder - vgl. Figur 3 -
    Figure imgb0002
    ist Wobei Δ UFi, Δ IFi und Δ USti normierte Inkremente von Filterspannung, Filterstrom und Steuerspannung im Meßpunkt i sind, mit Δ ≤ i ≤ 32
  • Als Schwellwert sei z.B.ε= 0,005 vereinbart. Wird also während der Aufnahme der Filtercharakteristik dieser Wert ε unterschritten, so wird in diesem Fall der maximale Filtergrenzstrom auf den Wert TFmax = X . I'F begrenzt, wobei I'F derjenige Wert ist, an dem; das betreffende Kriterium festgestellt wurde und x zwischen 103% und 115% gewählt ist.
  • Ein Filterspannungsmaximum liegt vor, wenn das Vorzeichen eines Filterspannungsinkrementes ungleich dem Vorzeichen des nächsten Filterspannungsinkrementes bei veränderter Steuerspannung ist (vgl. Kurve a), d.h. also Vorzeichen
    Figure imgb0003
    Figure imgb0004
    oder
    Figure imgb0005
    wobei mit i die Abtastpunkte der Filtercharakteristik bezeichnet sind. Auch in diesem Fall wird dermaximale Filterstrom auf den Wert begrenzt: IFmax = X . I'F
  • Der maximale Filterstrom sowie die ihm zugeordneten Werte der Filter-und der Steuerspannung werden gespeichert. Sie begrenzen z.B. den Stellbereich einer Rauchgasdichteregelung oder das Abtasten der Durchschlagsgrenze.
  • Zusätzlich kann noch aus der Aufnahme der Filtercharakteristik der Ums-haltpunkt festgelegt werden, d.h. der Punkt, ab dem bei einem Durchschlag vorteilhafterweise eine definierte Spannungs- oder Stromabsenkung vorgenommen werden soll. Der als Kriterium für diese Wahl angenommene Umschaltpunkt wird dadurch ermittelt, daß das Verhältnis von Änderung der Filterspannung zur Änderung der Steuerspannung und das Verhältnis von Änderung des Filterstromes zur Änderung der Steuerspannung berechnet wird und daß diese beiden Verhältniswerte miteinander verglichen werden. Ergibt sich eine relativ größere Reaktion des Filterstromes als der Filterspannung bei Änderung der Steuerspannung, so wird bei Durchschlägen mit definierter Stromabsenkung gearbeitet, da dies dann verfahrenstechnisch günstiger ist. Das umgekehrte gilt, falls die relative Spannungsänderung höher als die relative Stromänderung bei Änderung der Steuerspannung ist.

Claims (5)

1. Verfahren zum Ermitteln der Filterstromgrenze eines Elektrofilters, das über ein Stellglied aus einem Wechselstromnetz gespeist ist und bei dem die Steuerspannung des Stellgliedes abhängig von Filterbetriebswerten bis zu einer vorgegebenen Filterstromgrenze änderbar ist, dadurch gekennzeichnet, daß während des Filterbetriebes in vorgegebenen Zeitabständen die Steuerspannung (ÜSt) in vorgegebenen Schritten ( Δ USt) bis zu einem Minimalwert und von hier aus wieder bis zum ursprünglichen Wert geändert wird, daß da-bei fortlaufend die Verhältnisse von Änderung der Filterspannung (UF) zur Änderung der Steuerspannung und Änderung der Filterspannung zur Änderung des Filterstromes (IF) berechnet werden und daß bei Unterschreiten vorgegebener Grenzwerte (ε) dieser Verhältnisse oder bei einer Vorzeichenänderung zweier aufeinanderfolgender Verhältniswerte der jeweils zugehörige Filterstrom (I'F) die Filterstromgrenze (IFmax) bestimmt.
2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß die Filterstromgrenze (IFmax) zu etwa 3 bis 15% über demjenigen Filterstrom (I'F) liegt, bei dem eines der Kriterien erfüllt ist.
3. Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß die zu jedem Schritt gehörigen Werte von Filterstrom (IF) und Filterspannung (UF) gespeichert werden und die resultierende Filtercharakteristik angezeigt wird.
4. Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß bei Vorhandensein mehrerer hintereinander oder parallelgeschalteter Filter (1, 7, 8) die Zeitpunkte für die Aufnahme der Filtercharakteristik so gewählt sind, daß jeweils nur bei einem Filter die Steuerspannung (USt) variiert wird.
5. Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß das Verhältnis von Änderung der Filterspannung (UF) und Änderung des Filterstromes (IF) zur Änderung der Steuerspannung (USt) berechnet wird und durch den jeweils größeren relativen Wert festgelegt ist,. ob als Reaktion auf die Durchschläge des Filters eine definierte Spannungs- oder Stromänderung durchgeführt wird.
EP80107568A 1979-12-11 1980-12-03 Verfahren zum Ermitteln der Filterstromgrenze eines Elektrofilters Expired EP0031056B1 (de)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AT80107568T ATE4676T1 (de) 1979-12-11 1980-12-03 Verfahren zum ermitteln der filterstromgrenze eines elektrofilters.

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE2949786 1979-12-11
DE19792949786 DE2949786A1 (de) 1979-12-11 1979-12-11 Verfahren zum ermitteln der filterstromgrenze eines elektrofilters

Publications (2)

Publication Number Publication Date
EP0031056A1 true EP0031056A1 (de) 1981-07-01
EP0031056B1 EP0031056B1 (de) 1983-09-21

Family

ID=6088141

Family Applications (1)

Application Number Title Priority Date Filing Date
EP80107568A Expired EP0031056B1 (de) 1979-12-11 1980-12-03 Verfahren zum Ermitteln der Filterstromgrenze eines Elektrofilters

Country Status (7)

Country Link
US (1) US4354860A (de)
EP (1) EP0031056B1 (de)
JP (1) JPS56124462A (de)
AT (1) ATE4676T1 (de)
AU (1) AU535224B2 (de)
DE (2) DE2949786A1 (de)
ZA (1) ZA807729B (de)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0039816A1 (de) * 1980-05-09 1981-11-18 Metallgesellschaft Ag Verfahren zur fortlaufenden Optimierung des elektrischen Arbeitspunktes eines elektrostatischen Nassfilters
EP0039817A1 (de) * 1980-05-08 1981-11-18 Metallgesellschaft Ag Verfahren zum Regeln der Spannung eines in einer Anlage eingesetzten Elektrofilters
US4486704A (en) * 1981-07-28 1984-12-04 Flakt Aktiebolag Control device for an electrostatic dust separator
DE3910123C1 (en) * 1989-03-29 1990-05-23 Walther & Cie Ag, 5000 Koeln, De Method for optimising the energy consumption when operating an electrostatic precipitator

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3169116D1 (en) * 1980-12-17 1985-03-28 Smidth & Co As F L Method of controlling operation of an electrostatic precipitator
JPS58501162A (ja) * 1981-07-24 1983-07-21 トル−ス ロドニイ ジヨン 静電集塵器の逆コロナを検出し適用する方法
SE430472B (sv) * 1982-03-25 1983-11-21 Flaekt Ab Anordning for att i en elektrofilteranleggning med ett flertal elektrodgrupper mojliggora en reglering av strom- och/eller spenningsverdena anslutna till resp elektrodgrupp sa att totala energibehovet kan minimeras mot.
DE3372077D1 (en) * 1982-10-19 1987-07-23 Flaekt Ab Method and device for varying a d.c. voltage connected to an electrostatic dust separator
DE3301772A1 (de) * 1983-01-20 1984-07-26 Walther & Cie AG, 5000 Köln Verfahren und vorrichtung zur automatischen spannungsregelung eines elektrostatischen filters
GB8431293D0 (en) * 1984-12-12 1985-01-23 Smidth & Co As F L Controlling pulse frequency of electrostatic precipitator
DE3526754A1 (de) * 1985-07-26 1987-01-29 Metallgesellschaft Ag Regelverfahren fuer ein elektrofilter
US5378978A (en) * 1993-04-02 1995-01-03 Belco Technologies Corp. System for controlling an electrostatic precipitator using digital signal processing
DE19511604C2 (de) * 1995-03-30 1999-08-12 Babcock Prozessautomation Gmbh Verfahren zum fortgesetzten Optimieren des Betriebszustandes eines Elektrofilters
US7081152B2 (en) * 2004-02-18 2006-07-25 Electric Power Research Institute Incorporated ESP performance optimization control
DE102004036210B4 (de) * 2004-07-26 2006-08-31 Siemens Ag Steuereinrichtung sowie Steuerverfahren für Elektrofilter mit einer konfigurierbaren Anzahl paralleler und serieller Filterzonen

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2540084A1 (de) * 1975-09-09 1977-03-17 Siemens Ag Einrichtung zum hochspannungsseitigen erfassen von ueberschlaegen bei einem elektroabscheider

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2907403A (en) * 1955-03-31 1959-10-06 Western Precipitation Corp Apparatus for controlling the operation of electrical precipitators
DE1557234A1 (de) * 1967-12-18 1970-05-21 Projektierungs Konstruktions U Verfahren und Einrichtung zur selbsttaetigen Regelung der Spannung von Elektrofilter-Hochspannungserzeugern
GB1424346A (en) * 1972-11-16 1976-02-11 Lodge Cottrell Ltd Automatic voltage controller
US3893828A (en) * 1973-06-11 1975-07-08 Wahlco Inc Electrostatic precipitator central monitor and control system

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2540084A1 (de) * 1975-09-09 1977-03-17 Siemens Ag Einrichtung zum hochspannungsseitigen erfassen von ueberschlaegen bei einem elektroabscheider

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0039817A1 (de) * 1980-05-08 1981-11-18 Metallgesellschaft Ag Verfahren zum Regeln der Spannung eines in einer Anlage eingesetzten Elektrofilters
EP0039816A1 (de) * 1980-05-09 1981-11-18 Metallgesellschaft Ag Verfahren zur fortlaufenden Optimierung des elektrischen Arbeitspunktes eines elektrostatischen Nassfilters
US4486704A (en) * 1981-07-28 1984-12-04 Flakt Aktiebolag Control device for an electrostatic dust separator
DE3910123C1 (en) * 1989-03-29 1990-05-23 Walther & Cie Ag, 5000 Koeln, De Method for optimising the energy consumption when operating an electrostatic precipitator

Also Published As

Publication number Publication date
DE2949786A1 (de) 1981-06-19
JPS56124462A (en) 1981-09-30
EP0031056B1 (de) 1983-09-21
US4354860A (en) 1982-10-19
AU535224B2 (en) 1984-03-08
AU6522680A (en) 1981-06-18
ATE4676T1 (de) 1983-10-15
DE3064980D1 (en) 1983-10-27
ZA807729B (en) 1981-12-30
JPS618746B2 (de) 1986-03-17

Similar Documents

Publication Publication Date Title
EP0031056B1 (de) Verfahren zum Ermitteln der Filterstromgrenze eines Elektrofilters
EP1371129B1 (de) Verfahren zum regeln eines wechselrichtersystems
EP1927186B1 (de) Regelungsverfahren für eine gleichstromübertragung mit mehreren stromrichtern
DE69208789T2 (de) Sortierverfahren
DE3525557C2 (de) Verfahren zum Überwachen und Regeln eines elektrostatischen Abscheiders
DE3017685A1 (de) Verfahren zum regeln der spannung eines in einer anlage eingesetzten elektrofilters
EP0030320B1 (de) Verfahren zum Erfassen von Durchschlägen bei einem Elektrofilter
DE3327443A1 (de) Energiesteuerung fuer elektrostatische staubabscheider
EP0030657B1 (de) Verfahren zum selbsttätigen Führen der Spannung eines Elektrofilters an der Durchschlagsgrenze und Vorrichtung zur Durchführung des Verfahrens
DE69511498T2 (de) Verfahren und Vorrichtung zur Steuerung einer Anlage zur Übertragung von Hochspannungsgleichstrom
EP0349604B1 (de) Transformator
EP0038505B1 (de) Verfahren zum selbsttätigen Führen der Spannung eines Elektro-Filters an der Durchschlagsgrenze
EP0292749B1 (de) Verfahren zum Bestimmen der Parameter eines Verzögerungsgliedes n-ter Ordnung mit gleichen Zeitkonstanten
DE3517628C2 (de)
EP1309063B1 (de) Anlage zur Einspeisung von Strom aus Gleichstromerzeugern in das Wechselstromnetz
DE3215806C2 (de) Gleichstromquelle für das Schweißen mit magnetisch bewegtem Lichtbogen
DE2949797A1 (de) Verfahren zum optimieren einer elektrofilteranlage
DE3007364A1 (de) Steuerung fuer ein elektrofilter
EP3741022B1 (de) Verfahren und vorrichtung zum regeln einer elektrischen spannung
DE4420957A1 (de) Verfahren zur Regelung der Stromstärke eines Ladestroms
EP0508509B1 (de) Verfahren zur Bestimmung der optimalen Anzahl von Durchschlägen pro Zeiteinheit Dsn in einem elektrostatischen Abscheider
EP0039816A1 (de) Verfahren zur fortlaufenden Optimierung des elektrischen Arbeitspunktes eines elektrostatischen Nassfilters
EP0549007B1 (de) Verfahren zur Einstellung der Zielspannung UZF nach einem Durchschlag in einem elektrostatischen Abscheider
DE3118542C2 (de)
EP0482324A1 (de) Datenübertragung für Schleifleiter

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Designated state(s): AT CH DE FR GB SE

17P Request for examination filed

Effective date: 19811005

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Designated state(s): AT CH DE FR GB LI SE

REF Corresponds to:

Ref document number: 4676

Country of ref document: AT

Date of ref document: 19831015

Kind code of ref document: T

REF Corresponds to:

Ref document number: 3064980

Country of ref document: DE

Date of ref document: 19831027

ET Fr: translation filed
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 19920225

Year of fee payment: 12

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 19920324

Year of fee payment: 12

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 19921119

Year of fee payment: 13

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 19921125

Year of fee payment: 13

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 19921218

Year of fee payment: 13

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 19921221

Year of fee payment: 13

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Effective date: 19921231

Ref country code: CH

Effective date: 19921231

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Effective date: 19930901

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Effective date: 19931203

Ref country code: AT

Effective date: 19931203

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Effective date: 19931204

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 19931203

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Effective date: 19940831

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

EUG Se: european patent has lapsed

Ref document number: 80107568.0

Effective date: 19940710