DK3097973T3 - CONTROLLED Cavitation Device - Google Patents

CONTROLLED Cavitation Device Download PDF

Info

Publication number
DK3097973T3
DK3097973T3 DK15169737.2T DK15169737T DK3097973T3 DK 3097973 T3 DK3097973 T3 DK 3097973T3 DK 15169737 T DK15169737 T DK 15169737T DK 3097973 T3 DK3097973 T3 DK 3097973T3
Authority
DK
Denmark
Prior art keywords
rotor
fluid
axis
inlet
outlet
Prior art date
Application number
DK15169737.2T
Other languages
Danish (da)
Inventor
Marco Soldo
Original Assignee
Three Es S R L
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Three Es S R L filed Critical Three Es S R L
Application granted granted Critical
Publication of DK3097973T3 publication Critical patent/DK3097973T3/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F27/00Mixers with rotary stirring devices in fixed receptacles; Kneaders
    • B01F27/27Mixers with stator-rotor systems, e.g. with intermeshing teeth or cylinders or having orifices
    • B01F27/272Mixers with stator-rotor systems, e.g. with intermeshing teeth or cylinders or having orifices with means for moving the materials to be mixed axially between the surfaces of the rotor and the stator, e.g. the stator rotor system formed by conical or cylindrical surfaces
    • B01F27/2722Mixers with stator-rotor systems, e.g. with intermeshing teeth or cylinders or having orifices with means for moving the materials to be mixed axially between the surfaces of the rotor and the stator, e.g. the stator rotor system formed by conical or cylindrical surfaces provided with ribs, ridges or grooves on one surface

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Structures Of Non-Positive Displacement Pumps (AREA)

Description

DESCRIPTION
TECHNICAL FIELD
[0001] The present invention relates to a controlled cavitation device.
BACKGROUND OF THE INVENTION
[0002] A cavitation device is disclosed in EP 610914. This device comprises a housing defining a chamber formed by a cylindrical side wall and a pair of end plates, a shaft passing through an axis of the chamber and a rotor mounted on the shaft within the chamber so as to rotate with the shaft.
[0003] The rotor has a surface toward the side wall provided with uniformly-spaced inwardly-directed recesses or bores at a selected angle. These recesses produce turbulence of fluid within a cavitation zone defined between the rotor and the inner surface of the chamber.
[0004] This device comprises also an inlet port for the introduction of fluid into the space between the rotor and the inner surface of the chamber and an outlet port for the removal of treated fluid. A first and a second fluid connections are connected to the inlet and outlet ports which are oriented axially or radially in the two proposed embodiments.
[0005] A different cavitation device is disclosed in EP 1289638. In this device an inlet port is axially provided on either side of the housing in order to equalize the hydraulic pressure on the rotor and an outlet port is radially provided in the housing in the cylindrical wall of the housing to communicate with the cavitation zone in a region of the rotor intermediate or between the arrays of bores.
[0006] The position of the outlet port ensures that the entire volume of the gas/liquid mixture traverses at least one of the arrays of bores and thus moves through the cavitation zone prior to exiting the housing.
[0007] The mixing device from publication US 2011 081 384 is also known and discloses the preamble of claim 1. This device has the input and output ports arranged tangentially to the cavitation chamber.
[0008] The cavitation devices mentioned above suffer of problem when treating abrasive fluids, such as biological fluid, manure, sewage, waste, mud any other fluid which incorporates solid particles that may create friction.
[0009] In fact, with the cavitation devices of the prior art, the fluid must vary suddenly its direction and speed when enters and/or exits the chamber of the housing. This change of the direction and speed of the fluid causes wear of the inlet and outlet ports.
[0010] In view of the above prior art, the object of the present invention is to provide a cavitation device where the direction and speed of the fluid entering and exiting the chamber of the housing is controlled thereby preventing damage of the inlet and outlet ports.
SUMMARY OF THE INVENTION
[0011] According to the present invention, this purpose is fulfilled by a cavitation device according to claim 1.
BRIEF DESCRIPTION OF THE DRAWINGS
[0012] The characteristics and advantages of the present invention will appear from the following detailed description of one practical embodiment, which is given as a non limiting example with reference to the annexed drawings, in which: • figure 1 shows a top view of a cavitation device according to the present invention, • figure 2 shows a section view of the cavitation device of figure 1 along the section line A-A, • figure 3 shows a front view of the cavitation device of figure 1, • figure 4 shows a further section view of the cavitation device of figure 1 along the section line A-A, • figure 5 shows a perspective view of the cavitation device of figure 1.
DETAILED DESCRIPTION
[0013] Referring to the appended figures, figure 1 shows a cavitation device 10 coupled with an electric motor 1 to define a cavitation apparatus 100.
[0014] The cavitation device 10 comprises a shaft 11, a housing 20 and a rotor 30.
[0015] The shaft 11 extends along an axial direction X-X and is configured to be coupled with the electric motor 1. In particular, the electric motor 1 comprises a driving shaft 2 coupled with the shaft 11 of the cavitation device 10 through transmission means 3 to put in rotation the shaft 11.
[0016] The housing 20 defines a cylindrical chamber 21 having a inner cylindrical surface 21a and has a fluid inlet port and 22 and a fluid outlet port 23.
[0017] Preferably, the housing 20 has one single fluid inlet 22 and one single fluid outlet 23.
[0018] The rotor 30 is arranged within the cylindrical chamber 21 of the housing 20 and is mounted on the shaft 11 to rotate about a rotor axis X extending along the axial direction X-X.
[0019] A fluid inlet conduit 24 is coupled to the fluid inlet port 22 for supplying fluid into the cylindrical chamber 21 of the housing 20. This fluid inlet conduit 24 has an inlet axis B extending along an inlet direction B-B.
[0020] A fluid outlet conduit 25 is coupled to the fluid outlet port 23 for receiving fluid from the cylindrical chamber 21 of the housing 20. This fluid outlet conduit 25 has an outlet axis C extending along an outlet direction C-C.
[0021] The housing 20 comprises a first side wall 26a and a second side wall 26b axially spaced from the first side wall 26a along the axial direction X-X.
[0022] The housing 20 comprises also a cylindrical body 27 extending axially between the first side wall 26a and the second side wall 26b and joining the first and second side walls 26a, 26b. The cylindrical body 27 and the first and second side walls 26a, 26b define the cylindrical chamber 21 of the housing 20.
[0023] The rotor 30 comprises a first side surface 31 and a second side surface 32 axially spaced from the first side surface 31 along the axial direction X-X.
[0024] The rotor 30 comprises also a cylindrical peripheral surface 33 extending axially between the first side surface 31 and the second side surface 32 and joining the first and second side surfaces 31,32.
[0025] The radial distance between rotor axis X and the cylindrical peripheral surface 33 defines the rotor radius R of the rotor 30.
[0026] The axial distance between the first side surface 31 and the second side surface 32 defines the axial extension of the rotor 30.
[0027] At least two arrays of bores 34 are formed in the cylindrical peripheral surface 33. In the example shown in the figures, the rotor 30 comprises three arrays of bores. The bores 34 of each array of bores are arranged in a row extending around the cylindrical peripheral surface 33.
[0028] Each bore 34 extends radially into the rotor 30 from the cylindrical peripheral surface 33.
[0029] A cavitation zone 35 is defined between the cylindrical peripheral surface 33 of the rotor 30 and the inner cylindrical surface 21 a of the cylindrical chamber 21 of the housing 20.
[0030] The cylindrical chamber 21 comprises an inlet cylindrical chamber 28a formed between the first side surface 31 and the first side wall 26a and an outlet cylindrical chamber 28b formed between the second side surface 32 and the second side wall 26b.
[0031] The fluid inlet port 22 is positioned in the housing 20 to introduce fluid into the inlet cylindrical chamber 28a at an axial position spaced apart from the first side surface 31 of the rotor 30.
[0032] The fluid outlet port 23 is positioned in the housing 20 to receive fluid from the outlet cylindrical chamber 28b at an axial position spaced apart from the second side surface 32 of the rotor 30.
[0033] According to the invention, the axial distance between the fluid inlet port 22 and the first side surface 31 of the rotor 30 is equal to or greater than the axial extension of the rotor 30.
[0034] According to the invention, the axial distance between the fluid outlet port 23 and the second side surface 32 of the rotor 30 is equal to or greater than the axial extension of the rotor 30.
[0035] The inlet direction B-B of the inlet axis B is perpendicular to the axial direction X-X of the rotor axis X and the outlet direction C-C of the outlet axis C is perpendicular to the axial direction X-X of the rotor axis X.
[0036] Preferably, the fluid inlet conduit 24 and the fluid outlet conduit 25 are arranged on the stator 20 such that the fluid supplied through the fluid inlet port 22 and delivered through the fluid outlet port 23 follows within the cylindrical chamber 21 a helical path. The inlet axis B and the outlet axis C are substantially tangential to this helical path.
[0037] With this arrangement of the inlet an outlet axes B and C relative to the rotor axis X and thanks to the axial position of the fluid inlet and outlet ports 22, 23, it is possible to control the tangential speed of the fluid supplied into the housing 20 and received from the housing 20 reducing any effect of suction and delivery.
[0038] The inlet cylindrical chamber 28a and the outlet cylindrical chamber 28b make available two chamber so that, in use, the mass of fluid axially arranged before the rotor 30, in the inlet cylindrical chamber 28a, and after the rotor 30, in the outlet cylindrical chamber 28b, guarantee a rotational inertia which opposes the axial speed of the fluid, with respect to the radial and tangential speed set by the speed of the rotor 30.
[0039] As a consequence, the axial speed of the fluid is independent from the speed of the rotor 30 and the cavitation is thereby controlled.
[0040] This arrangement is extremely advantageous with abrasive fluids, however it can be used with benefit also with non-abrasive fluids and for mixing liquid-liquid, liquid-gas and liquid solid supplied through the fluid inlet conduit 24.
[0041] According to one embodiment, the inlet port 22 is positioned in the housing 20 to introduce fluid into the inlet cylindrical chamber 28a at an axial position adjacent to the first side wall 26a of the housing 20 and the outlet port 23 is positioned in the housing 20 to receive fluid from the outlet cylindrical chamber 28b at an axial position adjacent the second side wall 26b of the housing 20.
[0042] According to a preferred embodiment, the fluid inlet conduit 24 and the fluid outlet conduit 25 are positioned such that the inlet axis B and the outlet axis C are parallel to and proximate to respective tangential directions to the cylindrical peripheral surface 33 of the rotor 30 or to respective tangential directions to the inner cylindrical surface 21a of the cylindrical chamber 21 of the stator 20.
[0043] More preferably, the fluid inlet conduit 24 and the fluid outlet conduit 25 have respective first portions 24a, 25a facing a respective plane, in the example a same plane P', passing through the rotor axis X and parallel to the corresponding inlet axis B and outlet axis C and opposite second portions 24b, 25b. The second portions 24b, 25b of the fluid inlet conduit 24 and the fluid outlet conduit 25 join the stator 20 substantially tangentially to the inner cylindrical surface 21 a of the cylindrical chamber 21 of the stator 20.
[0044] In the example shown in the figures, the inlet axis B and the outlet axis C are parallel.
[0045] According to one embodiment, the distance between the outlet axis C and the rotor axis X along a direction Y-Y perpendicular to the outlet axis C and the rotor axis X ranges between 70% and 100% the rotor radius R.
[0046] The same applies to the distance between the inlet axis B and the rotor axis X along a direction Y-Y perpendicular to the inlet axis C and the rotor axis X which ranges between 70% and 100% the rotor radius R.
[0047] In particular, the inlet axis B and the outlet axis C intersect a plane P passing through the rotor axis X and perpendicular to the inlet and outlet axes B, C at a distance D from the rotor axis X between 70% and 100% the rotor radius R.
[0048] Preferably, the housing 20 comprises two lateral portions 20a, 20b defined at opposite sides relative to the plane P passing through the rotor axis X and perpendicular to the inlet and outlet axes B, C.
[0049] In the example shown in the figures, the fluid inlet port 22 and the fluid outlet port 23 are positioned on one of the two lateral portions 20a, 20b, namely in the lateral portion 20a.
[0050] Those skilled in the art will obviously appreciate that a number of changes and variants may be made to the arrangements as described hereinbefore to meet incidental and specific needs.
[0051] For example, unless otherwise imposed by evident technical limitations, any feature described in a preferred embodiment may be clearly used in another embodiment, with appropriate adaptations.
[0052] All the changes will fall within the scope of the invention, as defined in the following claims.
REFERENCES CITED IN THE DESCRIPTION
This list of references cited by the applicant is for the reader's convenience only. It does not form part of the European patent document. Even though great care has been taken in compiling the references, errors or omissions cannot be excluded and the EPO disclaims all liability in this regard.
Patent documents cited in the description • EP610914A [0602] • EP1289638A [0005] • US2011081384A [00071

Claims (11)

1. Kavitationsindretning (10) omfattende: - en aksel (11) konfigureret til at blive koblet sammen med motororgan (1), idet akslen (11) strækker sig langs en aksial retning (X-X), - et hus (20) der definerer et cylinderformet kammer (21) med en indvendig cylinderformet overflade (21a), idet huset har en fluidumindløbsåbning (22) og en fluidumudløbsåbning (23), - en rotor (30) indrettet ind i det cylinderformede kammer (21) af huset (20) og monteret på akslen (11) for at rotere rundt om en rotorakse (X) der strækker sig langs den aksiale retning (X-X), - et fluidumindløbsrør (24) koblet sammen med fluidumindløbsåbningen (22) for at levere fluidum ind i det cylinderformede kammer (21), idet fluidumindløbsrøret (24) har en indløbsakse (B) der strækker sig langs en indløbsretning (B-B), - et fluidumudløbsrør (25) koblet sammen med fluidumudløbsåbningen (23) til at modtage fluidum fra det cylinderformede kammer (21), idet fluidumudløbsrøret (23) har en udløbsakse (C) der strækker sig langs en udløbsretning (C-C), hvor: - huset (20) omfatter: - en første sidevæg (26a) og en anden sidevæg (26b) aksialt anbragt med afstand fra den første sidevæg (26a), - en cylinderformet hoveddel (27) der strækker sig aksialt mellem den første og den anden sidevæg (26a, 26b) og forbinder den første og den anden sidevæg (26a, 26b), - rotoren (30) omfatter: - en første sideoverflade (31) og en anden sideoverflade (32) aksialt anbragt med afstand fra den første sideoverflade (31), - en cylinderformet periferisk overflade (33) der strækker sig aksialt mellem den første og den anden sideoverflade (31, 32) og forbinder den første og den anden sideoverflade (31, 32), - mindst to rækker borehuller (34) dannet i den cylinderformede periferiske overflade (33), idet borehullerne (34) i hver række borehuller er indrettet i en række der strækker sig rundt om den cylinderformede periferiske overflade (33), idet hvert borehul (33) strækker sig radialt ind i rotoren (30) fra den cylinderformede periferiske overflade (33), - det cylinderformede kammer (21) omfatter et cylinderformet indløbskammer (28a) dannet mellem den første sideoverflade (31) og den første sidevæg (26a) og et cylinderformet udløbskammer (28b) dannet mellem den anden sideoverflade (32) og den anden sidevæg (26b), - en kavitationszone (35) er defineret mellem den cylinderformede periferiske overflade (33) af rotoren (30) og den indvendige cylinderformede overflade (21a) af det cylinderformede kammer (21) af huset (20), og hvor: - indløbsretningen (B-B) af indløbsaksen (B) er vinkelret på den aksiale retning (X-X) af rotoraksen (X), - udløbsretningen (C-C) af udløbsaksen (C) er vinkelret på den aksiale retning (X-X) af rotoraksen (X), - indløbsåbningen (22) er placeret i huset (20) for at indøre fluidum i det cylinderformede indløbskammer (28a) ved en aksial position med afstand til den første sideoverflade (31) af rotoren (30), - udløbsåbningen (23) er placeret i huset (20) til at modtage fluidum fra det cylinderformede udløbskammer (28b) ved en aksial position med afstand til den anden sideoverflade (32) af rotoren (30); kendetegnet ved at: - den aksiale afstand mellem fluidumindløbsåbningen (22) og den første sideoverflade (31) af rotoren (30) er lig med eller større end den aksiale afstand mellem den første sideoverflade (31) og den anden sideoverflade (32) af rotoren (30); og - den aksiale afstand mellem fluidumudløbsåbningen (23) og den anden sideoverflade (32) af rotoren (30) er lig med eller større end den aksiale afstand mellem den første sideoverflade (31) og den anden sideoverflade (32) af rotoren (30).Cavitation device (10) comprising: - a shaft (11) configured to be coupled to motor means (1), said shaft (11) extending along an axial direction (XX), - a housing (20) defining a cylindrical chamber (21) having an inner cylindrical surface (21a), the housing having a fluid inlet opening (22) and a fluid outlet opening (23), a rotor (30) arranged into the cylindrical chamber (21) of the housing (20), and mounted on the shaft (11) to rotate about a rotor axis (X) extending along the axial direction (XX), - a fluid inlet tube (24) coupled to the fluid inlet opening (22) to deliver fluid into the cylindrical chamber ( 21), the fluid inlet tube (24) having an inlet axis (B) extending along an inlet direction (BB), a fluid outlet tube (25) coupled to the fluid outlet opening (23) to receive fluid from the cylindrical chamber (21), the fluid outlet tube (23) has an outlet axis (C) d is extending along an outlet direction (CC), wherein: - the housing (20) comprises: - a first sidewall (26a) and a second sidewall (26b) axially spaced from the first sidewall (26a), - a cylindrical body ( 27) extending axially between the first and second sidewalls (26a, 26b) and connecting the first and second sidewalls (26a, 26b), the rotor (30) comprising: - a first side surface (31) and a second side surface; (32) axially spaced from the first side surface (31), - a cylindrical peripheral surface (33) extending axially between the first and second side surfaces (31, 32) and connecting the first and second side surfaces (31, 32) - at least two rows of boreholes (34) formed in the cylindrical peripheral surface (33), the boreholes (34) of each row of boreholes being arranged in a row extending around the cylindrical peripheral surface (33), each of which borehole (33) extends radially into root the groove (30) from the cylindrical peripheral surface (33); between a second side surface (32) and the second side wall (26b), a cavitation zone (35) is defined between the cylindrical peripheral surface (33) of the rotor (30) and the inner cylindrical surface (21a) of the cylindrical chamber (21). ) of the housing (20) and wherein: - the inlet direction (BB) of the inlet shaft (B) is perpendicular to the axial direction (XX) of the rotor shaft (X), - the outlet direction (CC) of the outlet shaft (C) is perpendicular to the axial direction (XX) of the rotor axis (X); - the inlet opening (22) is located in the housing (20) to introduce fluid into the cylindrical inlet chamber (28a) at an axial position spaced from the first side surface (31) of the rotor (30) ), - the outlet opening (23) is in place the housing (20) for receiving fluid from the cylindrical outlet chamber (28b) at an axial position spaced from the second side surface (32) of the rotor (30); characterized in that: - the axial distance between the fluid inlet opening (22) and the first side surface (31) of the rotor (30) is equal to or greater than the axial distance between the first side surface (31) and the second side surface (32) of the rotor (30); and - the axial distance between the fluid outlet opening (23) and the second side surface (32) of the rotor (30) is equal to or greater than the axial distance between the first side surface (31) and the second side surface (32) of the rotor (30). . 2. Kavitationsindretning (10) ifølge krav 1, hvor: - indløbsåbningen (22) er placeret i huset (20) for at indføre fluidum i det cylinderformede indløbskammer (28a) ved en aksialposition som støder op til den første sidevæg (26a) af huset (20), - udløbsåbningen (23) er placeret i huset (23) til at modtage fluidum fra det cylinderformede udløbskammer (28b) ved en aksialposition som støder op til den anden sidevæg (26b) af huset (20).Cavitation device (10) according to claim 1, wherein: - the inlet opening (22) is located in the housing (20) for introducing fluid into the cylindrical inlet chamber (28a) at an axial position adjacent to the first side wall (26a) of the housing (20), the outlet opening (23) is located in the housing (23) to receive fluid from the cylindrical outlet chamber (28b) at an axial position adjacent to the second side wall (26b) of the housing (20). 3. Kavitationsindretning (10) ifølge krav 1 eller 2, hvor: - fluidumindløbsrøret (24) og fluidumudløbsrøret (25) er indrettet på statoren (20) således at fluidummet leveret genne fluidumindløbsåbninge (22) og leveret gennem fluidumudløbsåbningen (23) inden i det cylinderformede kammer (21) følger en spiralformet bane.Cavitation device (10) according to claim 1 or 2, wherein: - the fluid inlet tube (24) and the fluid outlet tube (25) are arranged on the stator (20) such that the fluid is provided through fluid inlet openings (22) and delivered through the fluid outlet opening (23) within it. cylindrical chamber (21) follows a helical path. 4. Kavitationsindretning (10) ifølge krav 3, hvor: - indløbsaksen (B) og udløbsaksen (C) i det væsentlige er tangentiale på den spiralformede bane.Cavitation device (10) according to claim 3, wherein: - the inlet axis (B) and the outlet axis (C) are substantially tangential to the helical path. 5. Kavitationsindretning (10) ifølge et hvilket som helst af kravene 1 til 4, hvor: - fluidumindløbsrøret (24) og fluidumudløbsrøret (25) er placeret således at indløbsaksen (B) og udløbsaksen (C) er parallelle med og nær ved respektive tangentiale retninger i forhold til den cylinderformede periferiske overflade (33) rotoren (30).Cavitation device (10) according to any one of claims 1 to 4, wherein: - the fluid inlet tube (24) and the fluid outlet tube (25) are positioned such that the inlet axis (B) and outlet axis (C) are parallel to and adjacent to the respective tangential directions relative to the cylindrical peripheral surface (33) of the rotor (30). 6. Kavitationsindretning (10) ifølge et hvilket som helst af kravene 1 til 5, hvor: - fluidumindløbsrøret (24) og fluidumudløbsrøret (25) er placeret således at indløbsaksen (B) og udløbsaksen (C) er parallelle med og nær ved respektive tangentiale retninger i forhold til den indvendinge cylinderformede overflade (21a) af det cylinderformede kammer (21) af huset (20).Cavitation device (10) according to any one of claims 1 to 5, wherein: - the fluid inlet tube (24) and the fluid outlet tube (25) are positioned such that the inlet axis (B) and outlet axis (C) are parallel to and adjacent to the respective tangential directions relative to the interior cylindrical surface (21a) of the cylindrical chamber (21) of the housing (20). 7. Kavitationsindretning (10) ifølge et hvilket som helst af kravene 1 til 6, hvor: - fluidumindløbsrøret (24) og fluidumudløbsrøret (25) har respektive første dele (24a, 25a) der vender mod en respektiv flade der passerer gennem rotoraksen (X) og som er parallel med den tilsvarende indløbsakse (B) og udløbsakse (C) og modsatte anden dele (24b, 25b), - hvilke anden dele (24b, 25b) af fluidumindløbsrøret (24) og fluidumudløbsrøret (25) forbinder med statoren (20) i det væsentlige tangentialt med den indvendige cylinderformede overflade (21a) af det cylinderformede kammer (21) af statoren (20).Cavitation device (10) according to any one of claims 1 to 6, wherein: - the fluid inlet tube (24) and the fluid outlet tube (25) have respective first portions (24a, 25a) facing a respective surface passing through the rotor axis (X ) and parallel to the corresponding inlet axis (B) and outlet axis (C) and opposite other portions (24b, 25b) - which other portions (24b, 25b) of the fluid inlet tube (24) and the fluid outlet tube (25) connect to the stator ( 20) substantially tangential to the inner cylindrical surface (21a) of the cylindrical chamber (21) of the stator (20). 8. Kavitationsindretning (10) ifølge et hvilket som helst af kravene 1 til 7, hvor: - afstanden (D) mellem udløbsaksen (C) og rotoraksen (X) langs en retning (Y-Y) som er vinkelret på udløbsaksen (C) og rotoraksen (X) varierer mellem 70% og 100% af den radiale afstand (R) mellem rotoraksen (X) og den cylinderformede periferiske overflade (33) af rotoren (30).Cavitation device (10) according to any one of claims 1 to 7, wherein: - the distance (D) between the outlet axis (C) and the rotor axis (X) along a direction (YY) perpendicular to the outlet axis (C) and the rotor axis (X) varies between 70% and 100% of the radial distance (R) between the rotor axis (X) and the cylindrical peripheral surface (33) of the rotor (30). 9. Kavitationsindretning (10) ifølge et hvilket som helst af kravene 1 til 8, hvor: - afstanden (D) mellem indløbsaksen (B) og rotoraksen (X) langs en retning (Y-Y) som er vinkelret på indløbsaksen (B) og rotoraksen (X) varierer mellem 70% og 100% af den radiale afstand (R) mellem rotoraksen (X) og den cylinderformede periferiske overflade (33) af rotoren (30).Cavitation device (10) according to any one of claims 1 to 8, wherein: - the distance (D) between the inlet axis (B) and the rotor axis (X) along a direction (YY) perpendicular to the inlet axis (B) and the rotor axis (X) varies between 70% and 100% of the radial distance (R) between the rotor axis (X) and the cylindrical peripheral surface (33) of the rotor (30). 10. Kavitationsindretning (10) ifølge et hvilket som helst af kravene 1 til 9, hvor: - indløbsaksen (B) krydser en flade (P) der passerer gennem rotoraksen (X) og som er vinkelret på indløbs- og udløbsakserne (B, C) med en afstand (D) fra rotoraksen (X) på mellem 70% og 100% af den radiale afstand (R) mellem rotoraksen (X) og den cylinderformerede periferiske overflade (33) af rotoren (30).Cavitation device (10) according to any one of claims 1 to 9, wherein: - the inlet axis (B) crosses a surface (P) passing through the rotor axis (X) and which is perpendicular to the inlet and outlet axes (B, C) ) with a distance (D) from the rotor axis (X) of between 70% and 100% of the radial distance (R) between the rotor axis (X) and the cylindrical peripheral surface (33) of the rotor (30). 11. Kavitationsindretning (10) ifølge et hvilket som helst af kravene 1 til 10, hvor: - udløbsaksen (C) krydser en flade (P) der passerer gennem rotoraksen (X) og som er vinkelret på indløbs- og udløbsakserne (B, C) med en afstand (D) fra rotoraksen (X) på mellem 70% og 100% af den radiale afstand (R) mellem rotoraksen (X) og den cylinderformede periferiske overflade (33) af rotoren (30).Cavitation device (10) according to any one of claims 1 to 10, wherein: - the outlet shaft (C) crosses a surface (P) passing through the rotor shaft (X) perpendicular to the inlet and outlet shafts (B, C) ) with a distance (D) from the rotor axis (X) of between 70% and 100% of the radial distance (R) between the rotor axis (X) and the cylindrical peripheral surface (33) of the rotor (30).
DK15169737.2T 2015-05-28 2015-05-28 CONTROLLED Cavitation Device DK3097973T3 (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
EP15169737.2A EP3097973B1 (en) 2015-05-28 2015-05-28 Controlled cavitation device

Publications (1)

Publication Number Publication Date
DK3097973T3 true DK3097973T3 (en) 2019-01-21

Family

ID=53276747

Family Applications (1)

Application Number Title Priority Date Filing Date
DK15169737.2T DK3097973T3 (en) 2015-05-28 2015-05-28 CONTROLLED Cavitation Device

Country Status (4)

Country Link
EP (1) EP3097973B1 (en)
DK (1) DK3097973T3 (en)
ES (1) ES2703131T3 (en)
PL (1) PL3097973T3 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113952882B (en) * 2021-11-15 2024-03-12 大连海事大学 Combined hydrodynamic cavitation device and cavitation generation method thereof

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5385298A (en) 1991-04-08 1995-01-31 Hydro Dynamics, Inc. Apparatus for heating fluids
EP0575328B1 (en) * 1991-12-23 1995-09-06 STACHE, Heino Homogenizer and its use
US6627784B2 (en) 2000-05-17 2003-09-30 Hydro Dynamics, Inc. Highly efficient method of mixing dissimilar fluids using mechanically induced cavitation
US8784898B2 (en) * 2006-10-25 2014-07-22 Revalesio Corporation Methods of wound care and treatment

Also Published As

Publication number Publication date
PL3097973T3 (en) 2019-03-29
EP3097973B1 (en) 2018-11-21
ES2703131T3 (en) 2019-03-07
EP3097973A1 (en) 2016-11-30

Similar Documents

Publication Publication Date Title
US8186382B2 (en) Rotation valve for sample injection
CN102884392B (en) Rotary energy recovery device
EP3278868B1 (en) Controlled cavitation device
EP2628952B1 (en) Georotor pump with capacity control valve provided rotatable within the shaft.
DK3097973T3 (en) CONTROLLED Cavitation Device
JP2011509180A (en) Method and apparatus for fluid mixing
CN102725538B (en) Pressure exchanger
CN100487244C (en) Low input torque rotor for vane pump
US10173191B2 (en) Abrasion resistant controlled cavitation reactor
JP7386879B2 (en) cavitation reactor
EP1074741A1 (en) Cartridge vane pump with dual side fluid feed and single side inlet
CN110559726A (en) Vacuum and/or pressure filtration device for filtering suspensions
EP0481347A1 (en) Vane pump
US4347048A (en) Hydraulic pump for power steering
US11325156B2 (en) Hydraulic motor
US10344595B2 (en) Vane pump and determining method for inner profile of cam ring composing thereof
KR20120035884A (en) Pump assembly, in particular for helicopter lubrication
US3614265A (en) Radial piston pump
CN104776021B (en) Piston pump and control ring for piston pump
US1459637A (en) Rotary machine
JP3691761B2 (en) Movable airfoil rotation device
KR20190064578A (en) Blade wheel contour
JPH11222144A (en) Power steering control valve
GB1139451A (en) Improvements in and relating to rotary positive displacement pump
US7029233B2 (en) Modulator water dynamometer