DK153675B - A process for preparing by means of a foam core stiffened fiber-reinforced moldings such as wings or rotor blades with large length and width dimensions - Google Patents

A process for preparing by means of a foam core stiffened fiber-reinforced moldings such as wings or rotor blades with large length and width dimensions Download PDF

Info

Publication number
DK153675B
DK153675B DK168481AA DK168481A DK153675B DK 153675 B DK153675 B DK 153675B DK 168481A A DK168481A A DK 168481AA DK 168481 A DK168481 A DK 168481A DK 153675 B DK153675 B DK 153675B
Authority
DK
Denmark
Prior art keywords
foam core
characterized
process
foam
preparing
Prior art date
Application number
DK168481AA
Other languages
Danish (da)
Other versions
DK153675C (en
DK168481A (en
Inventor
Michael Hahn
Peter-Martin Wackerle
Original Assignee
Messerschmitt Boelkow Blohm
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to DE3014347 priority Critical
Priority to DE3014347A priority patent/DE3014347C2/de
Application filed by Messerschmitt Boelkow Blohm filed Critical Messerschmitt Boelkow Blohm
Publication of DK168481A publication Critical patent/DK168481A/en
Publication of DK153675B publication Critical patent/DK153675B/en
Application granted granted Critical
Publication of DK153675C publication Critical patent/DK153675C/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29DPRODUCING PARTICULAR ARTICLES FROM PLASTICS OR FROM SUBSTANCES IN A PLASTIC STATE
    • B29D99/00Subject matter not provided for in other groups of this subclass
    • B29D99/0025Producing blades or the like, e.g. blades for turbines, propellers, or wings
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C44/00Shaping by internal pressure generated in the material, e.g. swelling or foaming ; Producing porous or cellular expanded plastics articles
    • B29C44/02Shaping by internal pressure generated in the material, e.g. swelling or foaming ; Producing porous or cellular expanded plastics articles for articles of definite length, i.e. discrete articles
    • B29C44/12Incorporating or moulding on preformed parts, e.g. inserts or reinforcements
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C44/00Shaping by internal pressure generated in the material, e.g. swelling or foaming ; Producing porous or cellular expanded plastics articles
    • B29C44/02Shaping by internal pressure generated in the material, e.g. swelling or foaming ; Producing porous or cellular expanded plastics articles for articles of definite length, i.e. discrete articles
    • B29C44/12Incorporating or moulding on preformed parts, e.g. inserts or reinforcements
    • B29C44/1223Joining preformed parts which have previously been filled with foam
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C44/00Shaping by internal pressure generated in the material, e.g. swelling or foaming ; Producing porous or cellular expanded plastics articles
    • B29C44/34Auxiliary operations
    • B29C44/56After-treatment of articles, e.g. for altering the shape
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C70/00Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts
    • B29C70/04Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts comprising reinforcements only, e.g. self-reinforcing plastics
    • B29C70/28Shaping operations therefor
    • B29C70/30Shaping by lay-up, i.e. applying fibres, tape or broadsheet on a mould, former or core; Shaping by spray-up, i.e. spraying of fibres on a mould, former or core
    • B29C70/34Shaping by lay-up, i.e. applying fibres, tape or broadsheet on a mould, former or core; Shaping by spray-up, i.e. spraying of fibres on a mould, former or core and shaping or impregnating by compression, i.e. combined with compressing after the lay-up operation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29DPRODUCING PARTICULAR ARTICLES FROM PLASTICS OR FROM SUBSTANCES IN A PLASTIC STATE
    • B29D99/00Subject matter not provided for in other groups of this subclass
    • B29D99/0025Producing blades or the like, e.g. blades for turbines, propellers, or wings
    • B29D99/0028Producing blades or the like, e.g. blades for turbines, propellers, or wings hollow blades
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64CAEROPLANES; HELICOPTERS
    • B64C3/00Wings
    • B64C3/24Moulded or cast structures
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D1/00Wind motors with rotation axis substantially parallel to the air flow entering the rotor 
    • F03D1/06Rotors
    • F03D1/065Rotors characterised by their construction, i.e. structural design details
    • F03D1/0675Rotors characterised by their construction, i.e. structural design details of the blades
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2105/00Condition, form or state of moulded material or of the material to be shaped
    • B29K2105/06Condition, form or state of moulded material or of the material to be shaped containing reinforcements, fillers or inserts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29LINDEXING SCHEME ASSOCIATED WITH SUBCLASS B29C, RELATING TO PARTICULAR ARTICLES
    • B29L2031/00Other particular articles
    • B29L2031/08Blades for rotors, stators, fans, turbines or the like, e.g. screw propellers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29LINDEXING SCHEME ASSOCIATED WITH SUBCLASS B29C, RELATING TO PARTICULAR ARTICLES
    • B29L2031/00Other particular articles
    • B29L2031/08Blades for rotors, stators, fans, turbines or the like, e.g. screw propellers
    • B29L2031/082Blades, e.g. for helicopters
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO MACHINES OR ENGINES OTHER THAN NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, TO WIND MOTORS, TO NON-POSITIVE DISPLACEMENT PUMPS, AND TO GENERATING COMBUSTION PRODUCTS OF HIGH PRESSURE OR HIGH VELOCITY
    • F05B2240/00Components
    • F05B2240/20Rotors
    • F05B2240/30Characteristics of rotor blades, i.e. of any element transforming dynamic fluid energy to or from rotational energy and being attached to a rotor
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • Y02E10/72Wind turbines with rotation axis in wind direction
    • Y02E10/721Blades or rotors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product
    • Y02P70/52Manufacturing of products or systems for producing renewable energy
    • Y02P70/523Wind turbines
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T50/00Aeronautics or air transport
    • Y02T50/40Weight reduction
    • Y02T50/42Airframe
    • Y02T50/43Composites

Description

i in

DK 153675 B DK 153 675 B

Opfindelsen angår en fremgangsmåde af den i krav l's indledning angivne art. The invention relates to a method of in claim l'preamble. Der kendes metoder til fremstilling af vinger til svævefly mmdvs til relativt små konstruktionselementer. Methods are known for the production of blades for gliders mmdvs for relatively small construction elements. Ved disse kendte me-5 toder skal de anvendte forme være lukkelige, så at der til tilvejebringelse af bjælkekonstruktioner kræves et bekosteligt fremstillingsmateriale. In these known methods Me-5 molds used must be closable so as to to provide the beam structures requires a costly manufacturing materials. Ved ribbekonstruktioner opstår afpasningsproblemer, og desuden er der ingen mulighed for kontrol under fremstillingen. By rib structures afpasningsproblemer occur, and also there is no possibility of control during manufacture.

10 De kendte metoder er alene på grund af det dårlige for hold mellem masse og stivhed uegnet til fremstilling af store formlegemer, f.eks. 10 The known methods is simply because of the bad for the team between mass and stiffness unsuitable for production of large moldings, for example. rotorblade til store vind-energianlæg med mere. rotor blades for large wind energy plants and more.

De omtalte kendte konstruktioner og metoder er således 15 uanvendelige ved fremstilling af vinger eller rotorbla de med store flader, idet de hverken kan anvendes til tilvejebringelse af bjælkekonstruktioner eller til fremstilling af skalkonstruktioner med præfabrikeret skum-stofkerne. The mentioned prior art structures and methods are therefore unsuitable 15 in the manufacture of wings or the rotorbla with large surfaces, since they can not be used to provide beam structures or for the production of shell structures with prefabricated foam-fabric core.

20 Ved bjælkekonstruktioner er massen ved en given stivhed større end ved skalkonstruktioner, og formene skal på grund af den tyndvæggede skals konturnøjagtighed kunne lukkes, hvorved forbindelsen mellem bjælkerne og den ydre skal tilvejebringes via små, vanskeligt kontrol-25 lerbare klæbeflader. By 20 beam structures is the mass of a given stiffness greater than that of shell structures, and the molds must be due to the thin-walled shell contour capable of being closed, whereby the connection between the beams and the outer shell is provided by small, difficult control 25 lerbare adhesive surfaces.

Skalkonstruktioner med præfabrikeret skumstofkerne har i det foreliggende tilfælde følgende mangler: Shell structures with prefabricated foam core has in the present case the following shortcomings:

Skumstofkernen kan på grund af sin størrelse og sin bekostelige geometriske udformning ikke fremstilles 50 økonomisk, og en forbindelse af god kvalitet mellem kernen og skallen kan kun opnås ved hjælp af "våd-i-våd-metod-en" med lukkelige forme. The foam core may be due to its size and expensive geometry is not produced 50 economic, and a good-quality connection between the core and the shell can only be achieved by "wet-on-wet metod-one" with closable molds.

2 2

DK 153675B DK 153675B

Også denne kendte metode er på grund af den store mængde laminat og de bekostelige formværktøjer uanvendelig til det foreslåede formål, især fordi den samlede mængde laminat samtidigt skal være våd. Also this known method is due to the large amount of the laminate and costly molds unsuitable for the proposed purpose, particularly since the total amount of the laminate at the same time must be wet. Sammenklæbningen 5 af en kerne med hærdede skaller kan ikke kontrolleres. The adhesion 5 of a core of hardened shells can not be controlled.

Også den kendte metode til fremstilling af skalkonstruktioner med ribber har alvorlige mangler, idet den færdige konstruktionsdels samlede masse øges for meget ved ribbemassen og massen af forbindelseselementerne mellem 10 ribberne og skallen. Also the known method for the production of shell structures with ribs has serious shortcomings in that the finished construction to the total mass increased too much by the rib mass and the mass of the connecting elements 10 between the ribs and the shell. Desuden er ribbernes indpasning mellem skallerne meget bekostelig. In addition, ribs integration between the shells very costly. Desuden er en fuldstændig kontrol med sammenklæbningen ikke mulig. In addition, a complete control of the bonding is not possible.

Den foreliggende opfindelse har til formål at tilvejebringe en fremgangsmåde af den angivne art, der ikke 15 er behæftet med de omtalte mangler ved de kendte meto der, og ved hjælp af hvilken der i særskilte, åbne forme kan fremstilles store vinger eller store rotorblade på en sådan måde, at man under fremstillingen fortløbende kan kontrollere den indre struktur og korrigere 20 fejl. The present invention aims to provide a method of the kind specified, there 15 is vitiated by the mentioned drawbacks of the known od, and by means of which in separate, open molds can be made large blades or large rotor blades on a such a way that during the production can continuously check the internal structure 20 and correct the errors. Dette opnås på overraskende enkel og tilforlade lig måde ved de i kravene angivne foranstaltninger. This is achieved in a surprisingly simple and tilforlade equal way by the claimed specified measures.

I det følgende forklares opfindelsen nærmere ved hjælp af tegningen, hvor fig. In the following the invention is explained in more detail with the aid of the accompanying drawings. 1 viser et partielt tværsnit i et efter fremgangs-25 måden ifølge opfindelsen fremstillet stort rotorblad, fig. 1 shows a partial cross-sectional view in a accordance with the procedure-25 method of the invention produced large rotor blade, Fig. 2 perspektivisk og set fra oven en suge-tryk-side-skal til fremstilling af det i fig. 2 is a perspective top view of a suction-pressure-side shell for the manufacture of the Fig. 1 viste rotorblad, fig. 1, the rotor blade, Fig. 3 det i sideskallen anbragte rotorblads indre opbygning, 3 in side shell mounted rotor blade inner structure,

DK 153675 B DK 153 675 B

3 fig. 3 Fig. 4 et partielt tværsnit i en skumstofkerne og bag-kantskumstof med overmål, fig. 4 is a partial cross section of a foam core and the back-edge of the foam with oversize, Fig. 5 et partielt tværsnit ifølge fig. 5 is a partial cross-section of Fig. 4 efter bearbejdning til færdiggørelse, og 5 fig. 4 after machining to completion, and 5 Fig. 6 partielle tværsnit i to rotorbladdele under dis ses sammenføjning. 6 partial cross-section into two rotorbladdele the haze is seen joining.

I fig. In Fig. 1 ses et i sin helhed med 10 betegnet formstofle-geme i form af et stort rotorblad, der er fremstillet efter fremgangsmåden ifølge opfindelsen på følgende måde: 10 først lamineres en ydre rotorbladsskal 11 som formlege me bestående af to særskilte halvparter 10a og 10b af et fiberarmeret sammensat materiale, hvorefter skallen II varm- eller koldhærdes, idet formlegemer med store flader fortrinsvis varmhærdes på grund af den lange 15 forarbejdningstid ved koldhærdningen. 1 shows an in its entirety designated 10 formstofle-Geme in the form of a large rotor blade that is made by the method according to the invention in the following manner: 10 is first laminated an outer rotorbladsskal 11 as moldings Me consisting of two separate halves 10a and 10b, a fiber reinforced composite material, after which the shell koldhærdes hot or II, as shaped bodies with large surfaces preferably cured by heating due to the long processing time by 15 work hardening. Skallens nedre torsionshalvpart 10b har som vist i fig. Torsionshalvpart lower shell 10b has, as shown in FIG. 2 et ydre dia-gonallaminatlag og et tilsvarende indre lag 14 samt et mellem disse beliggende unidirektionallaminatlag 12 til optagelse af bøjningskræfterne hidrørende fra 20 bøjning og fra centrifugalkraften. 2 an outer dia-gonallaminatlag and a corresponding inner layer 14, and a located between these unidirektionallaminatlag 12 for receiving the bending forces 20 resulting from bending and from the centrifugal force. Unidirektionallami- natlaget 12, der strækker sig i bladets samlede længde, kan være fordelt over det samlede profiltværsnit eller kan kun være indlamineret i bestemte områder. Unidirektionallami- natlaget 12, which extends blade total length, can be distributed over the entire profile cross-sections can only be laminated cast in certain areas. Disse områder er afhængige af den forventelige belastning 25 henholdsvis de kræfter, der skal optages. These ranges are dependent on the expected load 25, respectively, the forces to be absorbed. Tykkelsen og beliggenheden er afhængige af de nødvendige masser, stivheden, styrken og tyngdepunkterne. The thickness and the location is dependent on the required loads, stiffness, strength and centers of gravity. Som oftest ønskes f.eks. More often than is desired, for example. i profilets bageste område, den såkaldte fane, en let struktur. the profile of the rear region, a so-called tab, a light structure. Hertil foreslår opfindelsen en selvbæ-30 rende sandwich-struktur. In the invention proposes a selvbæ-30 backhoe sandwich structure. De foreslåede laminater kan som regel fremstilles efter håndlamineringsmetoden eller som. The proposed laminates can usually be produced by hand lamination method or the like. såkaldte prepregs eller endog efter vakuumin- so-called prepregs or even after vakuumin-

DK 153675B DK 153675B

4 j ektionsmetoden. 4 j ektionsmetoden.

Fig. FIG. 2 illustrerer fremstillingsprocessen og sugetryk-sideskallens opbygning, idet bladets ydre skallag lægges på et formebord 100 og lamineres. 2 illustrates the manufacturing process and the suction-side pressure of the shell construction, the outer shell layer of the blade assembly on a mold table 100 and laminated.

5 Fig. 5 Fig. 3 viser opbygningen af et blads eller en vinges indre dele henholdsvis fremstillingen af den såkaldte skumstofkerne. 3 shows the structure of a blade or a blade inner parts, respectively, the preparation of the so-called foam core. Også kernen fremstilles af to halvparter i hver sin halvpart af lamineringsformen 100. Also, the core is made from two halves in opposite half portion of lamination mold 100th

Skumstofkernens halvparter kan være sammensat af stang-10 formede skumstofelementer 15a, dvs af plademateriale med en tykkelse på ca. Skumstofkernens halves can be composed of rod-shaped foam 10 elements 15a, that is to say of sheet material having a thickness of about 80 cm, der danner skiver og sammenklæbes. 80 cm, which form the discs and bonded. Skiverne svarer til de indlaminerede skal-halvparters indre kontur. The discs are similar to those filed aminated must-half parties inner contour. Den nøjagtige kontur kan opnås ved indpasning, idet hver forudgående skumstofski-15 ve eller hvert forudgående stangformede skumstofelement 15a tjener som skabelon for en næste spalte, der fremkommer ved grov indpasning, og som lukkes ved hjælp af et opskummeligt klæbemiddel. The exact contour can be achieved by fitting, with each prior skumstofski-15 wo or each prior bar-shaped foam member 15a serves as the template for a next column, resulting from the coarse trimming, and which are closed by means of an expandable adhesive. På denne måde fås en lukket skumstofkerne, der kun skal bearbejdes i skille-20 planet 21, fig. In this manner, a closed foam core that is to be processed in the separating plane 21 and 20, Fig. 4. Dette gælder for begge formlegeme- halvparter 10a og 10b. 4. This applies to both formlegeme- halves 10a and 10b. De udragende skumstofdele ved 15 og 17, fig. The protruding foam parts at 15 and 17, Fig. 4, skilles fra ved hjælp af et styret skæreorgan. 4, is separated by means of a cutting member controlled. De således bearbejdede vinge- eller blad-halvparter, dvs overskallen 10a og underskallen 10b 25 som formlegemehalvparter sammenklæbes ved deres fælles skilleplan 21. The thus prepared wing or blade halves, that is, the upper shell 10a and lower shell 10b shaped body 25 which halves bonded at their common parting plane 21st

Fremstillingsprocessen forløber således: I lamineringsformen for den nedre formlegemehalvpart 10b, også kaldet underskallen, og i lamineringsformen 30 for den øvre formlegemehalvpart 10a, også kaldet over skallen, fremstilles bladets ydre lamineringslag af The manufacturing process is as follows: In the laminating mold for the lower mold body half 10b, also known under the shell, and in the laminating mold 30 of the upper mold body half 10a, also called the upper shell, is made of the blade outer lamination layer of

DK 153675B DK 153675B

5 et sammensat fibermateriale i diagonallaminat, hvorefter laminatlaget 12 påføres i formlegemets samlede længde og enten over det samlede profiltværsnit eller kun i delområder af dette. 5 a composite fiber material in diagonal laminate, whereupon the laminate layer 12 is applied in formlegemets total length and either over the entire profile cross-section or only in partial areas of this. Dernæst indlægges i profilfanens område skumplader 13, der tilpasses, hvorefter det indre 3 laminatlag 14 lamineres. Next, profilfanens area enclosed in foam sheet 13 that is adapted, after which the inner laminate layer 3 14 is laminated. Også dette lag 14 er et diago nallaminat og består af et sammensat fibermateriale. Also this layer 14 is a diagonal nallaminat and consists of a composite fiber material.

Vingens eller rotorbladets indre kernedel fremstilles for begge forhalvparters vedkommende efter samme metode: skumstofbjælken fremstilles af enkelte skumstofbjælke-10 elementer 15a, hvis øvre kantflade rager op over det såkaldte skilleplan 21. Dernæst fastklæbes disse elementer som vist i fig. The vane or rotor blade inner core portion is prepared for both forhalvparters case by the same method: foam bar is produced from individual foam bar elements 15a-10, the upper edge surface projects above the so-called parting plane 21. Next adhered these elements as shown in Fig. 3 på torsionsskallen 11, 12, 13, 14 eller indlægges, hvorefter endekantlaminatet 16 til-fræses i faneområdet. 3 on torsionsskallen 11, 12, 13, 14 or introduced, after which 16 to endekantlaminatet-milled in the tab area.

15 På tilfræsningsarealet 16 påklæbes skumstofplader 17, der ligeledes rager uden for skilleplanet 21. Ved hjælp af et styret skære-,eller fræseorgan overskæres eller affræses skumstofdele 15 og de ved bagkanten anbragte skumstofplader 17 nøjagtigt i skilleplanet 21. Dernæst 20 indføres henholdsvis lamineres et indskydningslaminat 18 og et bagkantvæv 19 umiddelbart inden sammenføjningen af de to formlegemehalvparter 10a, 10b. 15 In tilfræsningsarealet 16 affixed to the foam plates 17 which likewise projects beyond the separation plane 21. By means of a controlled cutting, or milling body is cut or affræses foam parts 15 and at the rear edge spaced foam sheets 17 accurately in the separation plane 21. Next 20 is inserted, respectively, are laminated a indskydningslaminat 18, and a bagkantvæv 19 immediately prior to the joining of the two mold body halves 10a, 10b. Til slut indklæbes afstivningsvinkler 20, der sikrer en effektiv fiksering og fastholdelse af de stangformede skumstof-25 elementer 15a i deres korrekte stilling. Finally glued bracing angles 20, which ensures an efficient fixation and retention of the rod-shaped foam elements 15a-25 in their correct position.

Fig. FIG. 6 viser arbejdsstadiet umiddelbart inden sammenføjningen af de to formlegemehalvparter 10a, 10b. 6 shows the working stage immediately before the joining of the two mold body halves 10a, 10b. På alle i skilleplanet beliggende flader på delene 10a, 10b og 19 påføres et skumstofklæbemiddel, hvorefter 30 de to formlegemehalvparter sammenføjes. At all in the separation plane situated faces of the parts 10a, 10b and 19 is applied to a foam adhesive, after which 30 the two mold body halves are joined together. Hærdningen un der lamineringsprocesserne er omtalt i det foregående. Curing the un laminating operations are mentioned hereinbefore.

Udhærde- og tørretiden ved klæbning er afhængig af det anvendte skumstofklæbemiddels beskaffenhed. Udhærde- and the drying time by adhesion depends on the used skumstofklæbemiddels nature.

Claims (6)

1. Fremgangsmåde til fremstilling af ved hjælp af en 15 skumstofkerne (15) afstivede, fiberarmerede formstof- formlegemer (10) såsom vinger eller rotorblade med store længde- og breddedimensioner i åbne forme, hvor form-legemets (10) skal (11) lamineres og hærdes i to adskilte skalhalvparter (11a, 11b) af et lamineret fibermate-20 riale, kendetegnet ved, at a) skumstofkernen (15) fremstilles direkte i hver af de to skalhalvparter (11a, 11b) ved, at den sammensættes af på tværs af formlegemets længderetning forløbende og sammenklæbede ribbeformede skumstof- 25 elementer (15a), og b) formlegemehalvparterne (10a, 10b), der er fyldt med skumstofkernen, planfræses i deres skilleplaner (21) og sammenlimes ved disse. 1. A process for preparing by means of a 15 foam core (15) stiffened, fiber-reinforced formstof- shaped bodies (10) such as blades or rotor blades with large length and width dimensions in open molds in which the mold-body (10), (11) are laminated and cured in two separate half-shells (11a, 11b) of a laminated fiber mate-20 material, characterized in that a) the foam core (15) is prepared directly in each of the two half-shells (11a, 11b) in that it is composed of transversely of formlegemets longitudinally extending and bonded rib-shaped foam- 25 elements (15a), and b) the mold body halves (10a, 10b), which is filled with foam core, milled flat in their parting planes (21) and glued together with these.
2. Fremgangsmåde ifølge krav 1,.kendetegnet 30 ved, at skumstofkernens (15) materiale forbindes med DK 153675B skalhalvparterne (11a, 11b). 2. The method of claim 1, .kendetegnet 30 in that skumstofkernens (15) connected to the material DK 153675B the half-shells (11a, 11b).
3. Fremgangsmåde ifølge krav 1 og 2, kendetegnet ved, at formlegemet (10) i sin samlede længde forsynes med et over det samlede profiltværsnit fordelt 5 unidirektionallaminat (12). 3. The method of claim 1 and 2, characterized in that the shaped body (10) in its entire length provided with a profile over the entire cross-section distributed unidirektionallaminat 5 (12).
4. Fremgangsmåde ifølge krav 1 og 2, kendetegne t ved, at formlegemet (10) i sin samlede længde, men kun i dele af profiltværsnittet forsynes med et unidirektionallaminat (12). 4. A process as claimed in claims 1 and 2, characterized in that the shaped body (10) in its entire length but only in parts of the profile cross section is provided with a unidirektionallaminat (12).
5. Fremgangsmåde ifølge krav 1 til 4, kendeteg net ved, at formlegemets (10) bageste profilområde udformes som selvbærende sandu/ichstruktur. 5. The method of claim 1 to 4, characterized by the that formlegemets (10) rear profile area the form of self-supporting Sandu / ichstruktur.
6. Fremgangsmåde ifølge krav 1-5, kendetegnet ved, at det fra formen fjernede formlegeme (10) forsy-15 nes med en næse forstærkning (25) og en endekantforstærk- ning {26). 6. A process according to claims 1-5, characterized in that it is removed from the mold body (10) the supply Nes-15 with a nose reinforcement (25) and a endekantforstærk- equipment {26).
DK168481A 1980-04-15 1981-04-14 A process for preparing by means of a foam core stiffened fiber-reinforced moldings such as wings or rotor blades with large length and width dimensions DK153675C (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
DE3014347 1980-04-15
DE3014347A DE3014347C2 (en) 1980-04-15 1980-04-15

Publications (3)

Publication Number Publication Date
DK168481A DK168481A (en) 1981-10-16
DK153675B true DK153675B (en) 1988-08-15
DK153675C DK153675C (en) 1988-12-27

Family

ID=6100012

Family Applications (1)

Application Number Title Priority Date Filing Date
DK168481A DK153675C (en) 1980-04-15 1981-04-14 A process for preparing by means of a foam core stiffened fiber-reinforced moldings such as wings or rotor blades with large length and width dimensions

Country Status (3)

Country Link
EP (1) EP0037987B1 (en)
DE (1) DE3014347C2 (en)
DK (1) DK153675C (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101844387A (en) * 2010-05-28 2010-09-29 无锡韦伯风能技术有限公司 Foam sandwich composite material blade and manufacturing process thereof
CN102251935A (en) * 2010-05-21 2011-11-23 西门子公司 Blade of a wind turbine

Families Citing this family (42)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3113079C2 (en) * 1981-04-01 1985-11-21 Messerschmitt-Boelkow-Blohm Gmbh, 8000 Muenchen, De
FR2602739B1 (en) * 1986-07-28 1988-11-18 Aerospatiale Blade made of composite materials, and a structure bilongeron bicaisson, and coating laminates sandwich honeycomb, and process for its manufacturing
DE3924990C3 (en) * 1989-06-13 1996-11-21 Man Ceramics Gmbh A process for the preparation of a hip joint prosthesis shaft
US5100255A (en) * 1989-12-13 1992-03-31 The Boeing Company Graphite fittings for graphite tubing
DE4335221C1 (en) * 1993-10-15 1995-03-16 Deutsche Forsch Luft Raumfahrt Rotor blade for wind power systems
DE19644264A1 (en) * 1996-10-24 1998-05-07 Manfred Grefe Rotor blade for wind power generator
DE19833869C5 (en) * 1998-07-22 2004-07-01 EUROS Entwicklungsgesellschaft für Windkraftanlagen Device for the production of rotor blades
AU6289101A (en) * 2000-04-28 2001-11-12 Arcelik As Method of producing a refrigerator cabinet and door
DK200201743A (en) 2002-11-12 2004-05-13 Lm Glasfiber As Shaping device with closing mechanism
US20070036659A1 (en) * 2003-02-28 2007-02-15 Vestas Wind Systems A/S Method of manufacturing a wind turbine blade, wind turbine blade, front cover and use of a front cover
DE10330733A1 (en) * 2003-07-07 2005-02-17 Eew Maschinenbau Gmbh Rotor blade for wind turbines
DE102004049098A1 (en) * 2004-10-08 2006-04-13 Eew Maschinenbau Gmbh Rotor blade for a wind energy plant
DE102004057979C5 (en) * 2004-11-30 2019-09-26 Senvion Gmbh rotor blade
DK176418B1 (en) * 2004-12-22 2008-01-21 Lm Glasfiber As Process for producing a fiber-reinforced part for a wind power plant
BRPI0519889B1 (en) * 2005-02-03 2019-09-10 Vestas Wind Sys As Method of Manufacturing a Wind Turbine Blade Casing Element, Method of Manufacturing a Wind Turbine Shovel Element, Wind Turbine Shovel, Wind Turbine Blade Casing Element, Use of a Method, and Subassembly
DE102005051931B4 (en) * 2005-10-29 2007-08-09 Nordex Energy Gmbh Rotor blade for wind turbines
US7895745B2 (en) * 2007-03-09 2011-03-01 General Electric Company Method for fabricating elongated airfoils for wind turbines
US8105045B2 (en) 2007-11-14 2012-01-31 Vestas Wind Systems A/S Wind turbine blade and method for manufacturing a wind turbine blade
DE102008022548A1 (en) 2008-05-07 2009-11-12 Nordex Energy Gmbh Rotor blade for a wind energy plant
FI20085570A0 (en) * 2008-06-10 2008-06-10 Deep Sea Engineering A process for making technical composite products comprising epoxy resins and carbon nanotubes
US8092187B2 (en) * 2008-12-30 2012-01-10 General Electric Company Flatback insert for turbine blades
WO2010100066A2 (en) * 2009-03-05 2010-09-10 Kress-Haase, Michaela Wind power plant and related production method
DE102009024324A1 (en) * 2009-05-29 2010-12-02 Nordex Energy Gmbh Method and device for mounting a rotor blade for a wind energy plant
ES2659720T3 (en) 2009-07-17 2018-03-19 Vestas Wind Systems A/S Manufacturing of wind turbine generator blade that has a stringer
US8043066B2 (en) * 2010-06-08 2011-10-25 General Electric Company Trailing edge bonding cap for wind turbine rotor blades
US7988422B2 (en) * 2010-06-25 2011-08-02 General Electric Company Wind turbine blades with improved bond line
EP2566673B1 (en) 2010-07-21 2016-08-03 Siemens Aktiengesellschaft Mould assembly and method of closing a mould assembly
ITBO20100462A1 (en) * 2010-07-22 2012-01-23 Benini Nabore Aircraft and method to achieve it
DE102010055874B3 (en) * 2010-12-24 2012-04-05 Aerodyn Engineering Gmbh Method for producing a rotor blade of a wind energy plant
EP2524794A1 (en) 2011-05-18 2012-11-21 EUROCOPTER DEUTSCHLAND GmbH Foam or honeycomb core, rotor blade with foam or honeycomb cores and method of manufacturing such a rotor blade
DE102011077609B4 (en) * 2011-06-16 2015-01-22 Senvion Se Production of a rotor blade shell
DE102011080497A1 (en) * 2011-08-05 2013-02-07 Wobben Properties Gmbh Forming process for hot forming a steel sheet of a rotor blade of a wind turbine to be produced
US9139287B2 (en) * 2012-06-26 2015-09-22 Hamilton Sundstrand Corporation Propeller blade with carbon foam spar core
EP2749764A1 (en) * 2012-12-27 2014-07-02 Siemens Aktiengesellschaft Turbine blade, manufacturing of the turbine blade and use of the turbine blade
DE102013212884A1 (en) * 2013-07-02 2015-01-08 Wobben Properties Gmbh Test specimen, test method, wind turbine
DE102014203936B4 (en) * 2014-03-04 2016-03-24 Senvion Gmbh Method for producing a rotor blade of a wind energy plant, rotor blade and wind energy plant
EP2915656A1 (en) * 2014-03-06 2015-09-09 Siemens Aktiengesellschaft A method for manufacturing a component for a wind turbine
BR112017009645A2 (en) 2014-11-10 2017-12-19 Polytech As polyurethane material, process for preparing such material and protective cover for wing turbine vane
DE102016011757A1 (en) 2016-09-22 2018-03-22 Senvion Gmbh Rotor blade with end bar
DE102017001404A1 (en) 2017-02-14 2018-08-16 Senvion Gmbh Rotor blade trailing edge Verklebewinkel
AT519620B1 (en) * 2017-02-14 2018-11-15 Hilitech Gmbh Foam plate
DE102017006036A1 (en) * 2017-06-27 2018-12-27 Senvion Gmbh Method for positioning fiber components

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1045810B (en) * 1957-05-17 1958-12-04 Allgaier Werke Gmbh Faserverstaerkten from plastic shells or plates of existing body, in particular carrying or Antriebsfluegel, and method and tool for the production thereof
FR2186380A1 (en) * 1972-05-31 1974-01-11 United Aircraft Corp

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3055437A (en) * 1957-10-15 1962-09-25 Doman Helicopters Inc Moisture proof helicopter blade
GB963213A (en) * 1959-09-25 1964-07-08 Erecon Ltd Improvements in or relating to the manufacture of hollow poles in reinforced synthetic resin
FR1443155A (en) * 1965-03-24 1966-06-24 Sud Aviation Improvements to helicopter blades and their manufacturing processes and equipment
DE1531369B2 (en) * 1967-08-01 1975-08-21 Messerschmitt-Boelkow-Blohm Gmbh, 8000 Muenchen

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1045810B (en) * 1957-05-17 1958-12-04 Allgaier Werke Gmbh Faserverstaerkten from plastic shells or plates of existing body, in particular carrying or Antriebsfluegel, and method and tool for the production thereof
FR2186380A1 (en) * 1972-05-31 1974-01-11 United Aircraft Corp

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102251935A (en) * 2010-05-21 2011-11-23 西门子公司 Blade of a wind turbine
CN102251935B (en) * 2010-05-21 2015-04-22 西门子公司 Blade of a wind turbine
CN101844387A (en) * 2010-05-28 2010-09-29 无锡韦伯风能技术有限公司 Foam sandwich composite material blade and manufacturing process thereof
CN101844387B (en) * 2010-05-28 2013-04-10 无锡韦伯风能技术有限公司 Foam sandwich composite material blade and manufacturing process thereof

Also Published As

Publication number Publication date
EP0037987A3 (en) 1984-10-10
DE3014347C2 (en) 1983-05-26
DK168481A (en) 1981-10-16
EP0037987B1 (en) 1987-10-07
DK153675C (en) 1988-12-27
EP0037987A2 (en) 1981-10-21
DE3014347A1 (en) 1981-10-22

Similar Documents

Publication Publication Date Title
US8821666B2 (en) Production method for a workpiece composed of a fibre-composite material, and a fibre-composite component in the form of a profile with a profile cross section which varies over its length
EP2922690B1 (en) Wind turbine blades and method of manufacturing the same
EP2855130B1 (en) Manufacture of wind turbine blades
JP4964961B2 (en) Method for manufacturing a panel formed of a thermoplastic composite
JP4363741B2 (en) Method for producing intermediate molded article made of fiber reinforced composite material
US4917747A (en) Method of making crushed core molded panels
US9216556B2 (en) Sandwich structure having arrestment feature
ES2667820T3 (en) Manufacturing procedure of a piece of sandwich material and piece made following such a procedure
US4213739A (en) Helicopter rotor blade
US3942231A (en) Contour formed metal matrix blade plies
EP1224114B1 (en) Subassembly designed to produce an aquatic gliding board and its manufacturing process
US9863258B2 (en) Method of forming a structural connection between a spar cap and a fairing for a wind turbine blade
CN101370643B (en) Method for producing composite panel with U-shaped reinforced component
US7334989B2 (en) Method for producing a rotor blade, a corresponding rotor blade and a wind power plant
US4494910A (en) Large surface structural component, especially rotor blade
CN103832577B (en) More rib case spars and covering
DE2738895C2 (en)
JP3839476B2 (en) Wing structure manufacturing method and manufacturing apparatus
US4657615A (en) Composite leading edge/spar member for an aircraft control surface
US20110100533A1 (en) Method and production of a rotor blade for wind energy plant
DE60318169T2 (en) Web-shaped composite material
EP2288487B1 (en) Method for the production of a rotor blade for a wind turbine
RU2132288C1 (en) Device and method of manufacture of helicopter main rotor blade (versions)
ES2289653T3 (en) Method for manufacturing structural beams of composite material for aircraft.
EP1972429B1 (en) Repair of a composite sandwich structure having a perforated skin

Legal Events

Date Code Title Description
B1 Patent granted (law 1993)