DK145682B - PROCEDURE FOR PREPARING PREPARING SOLUTIONS USED FOR IRON PREPARATION - Google Patents

PROCEDURE FOR PREPARING PREPARING SOLUTIONS USED FOR IRON PREPARATION Download PDF

Info

Publication number
DK145682B
DK145682B DK612074AA DK612074A DK145682B DK 145682 B DK145682 B DK 145682B DK 612074A A DK612074A A DK 612074AA DK 612074 A DK612074 A DK 612074A DK 145682 B DK145682 B DK 145682B
Authority
DK
Denmark
Prior art keywords
iron
solution
pickling
acid
cathode
Prior art date
Application number
DK612074AA
Other languages
Danish (da)
Other versions
DK145682C (en
DK612074A (en
Inventor
J Kerti
A Mandoki
M Szeky
Original Assignee
Licencia Talalmanyokat
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Licencia Talalmanyokat filed Critical Licencia Talalmanyokat
Publication of DK612074A publication Critical patent/DK612074A/da
Publication of DK145682B publication Critical patent/DK145682B/en
Application granted granted Critical
Publication of DK145682C publication Critical patent/DK145682C/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D61/00Processes of separation using semi-permeable membranes, e.g. dialysis, osmosis or ultrafiltration; Apparatus, accessories or auxiliary operations specially adapted therefor
    • B01D61/42Electrodialysis; Electro-osmosis ; Electro-ultrafiltration; Membrane capacitive deionization
    • B01D61/44Ion-selective electrodialysis
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23GCLEANING OR DE-GREASING OF METALLIC MATERIAL BY CHEMICAL METHODS OTHER THAN ELECTROLYSIS
    • C23G1/00Cleaning or pickling metallic material with solutions or molten salts
    • C23G1/36Regeneration of waste pickling liquors
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25CPROCESSES FOR THE ELECTROLYTIC PRODUCTION, RECOVERY OR REFINING OF METALS; APPARATUS THEREFOR
    • C25C1/00Electrolytic production, recovery or refining of metals by electrolysis of solutions
    • C25C1/06Electrolytic production, recovery or refining of metals by electrolysis of solutions or iron group metals, refractory metals or manganese
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Water Supply & Treatment (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Urology & Nephrology (AREA)
  • Electrochemistry (AREA)
  • Health & Medical Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Electrolytic Production Of Metals (AREA)
  • Electrolytic Production Of Non-Metals, Compounds, Apparatuses Therefor (AREA)
  • Cleaning And De-Greasing Of Metallic Materials By Chemical Methods (AREA)

Description

145682145682

Opfindelsen angår en fremgangsmåde til oparbejdning af bejdseopløsninger anvendt i forbindelse med bejdsning af jern og indeholdende højst 100 g svovlsyre pr. liter og mindst 25 g jernioner pr. liter ved en kombination af elektrolytisk spaltning af jernsulfatet og elektrodialy-5 tisk isolering af syre- og sulfatsaltkomponenter i den brugte bejdseopløsning.The invention relates to a process for processing pickling solutions used in connection with pickling of iron and containing not more than 100 g of sulfuric acid per liter. liter and at least 25 g of iron ions per liter. per liter by a combination of electrolytic cleavage of the ferrous sulfate and electrodialytic isolation of acid and sulfate salt components in the used pickling solution.

Ved fjernelse ved hjælp af svovlsyre af jernoxider fra halvfabrikata indenfor jernindustrien, som f.eks. fra jernplader, jernbånd, jerntråd eller profiljern dannes jernsulfat, der ved afkøling af opløsningen 10 eller ved hjælp af vakuumkrystallisation kan fjernes fra den brugte bejdseopløsning i form af jernsulfat-heptahydrat (FeSO^.THgO). Da bejdseprocessens hastighed aftager med det dalende indhold af svovlsyre i den brugte bejdseopløsning, indeholder den brugte bejdseopløsning altid (også i dens sikalte "helt udbejdsede11 tilstand) endnu uudnyttet syre 15 i en mængde på mindst 20-30 g svovlsyre pr. liter. Koncentrationen af syre efter bejdsningen afhænger dog af arbejdsmåden, hvormed bejdsningen gnnemføres og kan ni op på eller endog overstige en mængde på 100 g pr. liter. For at forøge bejdsehastigheden, bestræber man sig i praksis sædvanligvis på at forøge syrekoncentrationen, hvorfor en fuld-20 stændig udnyttelse af svovlsyren, d.v.s. en såkaldt udtømning af badet undgås. Et bejdseanlægs produktivitet vokser proportionalt med bejdsehastigheden.By removal by sulfuric acid of iron oxides from semi-finished products in the iron industry, such as iron sulphate is formed from iron plates, iron bands, iron wire or profile iron which can be removed by cooling the solution 10 or by vacuum crystallisation from the used pickling solution in the form of iron sulphate heptahydrate (FeSO4 .THgO). As the speed of the pickling process decreases with the declining sulfuric acid content of the used pickling solution, the used pickling solution always (even in its securely "fully worked" state) still contains unused acid 15 in an amount of at least 20-30 g of sulfuric acid per liter. However, acidity after pickling depends on the process by which pickling is carried out and can be up to or even exceeding 100 g per liter. In order to increase pickling speed, in practice, an effort is usually made to increase the acid concentration, which is why a full 20 utilization of the sulfuric acid, ie a so-called depletion of the bath, is avoided.The productivity of a pickling plant increases proportionally with the pickling speed.

Der er dog en grænse for, hvor langt man kan gå med disse bestræbelser, idet syretabet og dermed omkostningerne ved bejdsningen 25 vokser proportionalt med den brugte bejdseopløsnings øgede syreindhold, d.v.s. den til bejdsen tilsatte syremængde, der ubrugt skal fjernes fra bejdsen. Af samme årsag opstår der i stigende grad problemer med hensyn til miljøforurening, idet udslip af de sure brugte bejdseopløsninger er strengt forbudt ifølge de for vandløb m.v. gældende 30 regler. Dersom den brugte bejdseopløsning, således som det ofte sker i praksis, neutraliseres med kalk, stiger omkostningerne og vanskelighederne ved denne foranstaltning ligeledes proportionalt med den brugte bejdseopløsnings syreindhold. En yderligere ulempe ved behandlingen med kalk består i, at neutralisationsreaktionen er heterogen, således 35 at der selv ved et overskud af kalk ikke er skabt sikkerhed for en fuldstændig neutralisering af syren. Desuden er håndtering, transport og oplagring af kalkslammet omstændelig og kostbar. Disse arbejdstrin medfører ingen nyttige resultater, f.eks. i form af genvinding af kemikalier.However, there is a limit to how far these efforts can go, as the acid loss and, consequently, the cost of pickling 25 grows proportionally with the increased acid content of the pickling solution, i.e. the amount of acid added to the pickle to be removed from the pickle unused. For the same reason, environmental pollution problems are becoming increasingly prevalent, as discharges of the acidic used pickling solutions are strictly prohibited according to those for watercourses, etc. 30 applicable rules. If, as is often the case in practice, the used pickle solution is neutralized with lime, the cost and difficulty of this measure also increase proportionally to the acidity of the used pickle solution. A further disadvantage of the treatment with lime is that the neutralization reaction is heterogeneous, so that even with an excess of lime there is no guarantee of complete neutralization of the acid. In addition, handling, transport and storage of the lime sludge is cumbersome and expensive. These work steps do not produce any useful results, e.g. in the form of recycling of chemicals.

2 1456822 145682

Den indenfor industrien kendte metode til oparbejdning af svovlsure brugte bejdseopløsninger består i udskillelse af heptahydratet ved vakuum krystal I isation. Den brugte bejdseopløsnings syrekoncentration øges pi grund af afgivelsen af vand under dannelse af krystalvand og 5 vakuumdamp. Opløsningen kan således påny anvendes til bejdsning. En mere udbredt anvendelse af denne fremgangsmåde er imidlertid udelukket, idet heptahydratet, som følge af manglende efterspørgsel, ikke kan udnyttes økonomisk, hvorfor størstedelen af dette salt bringes på lossepladsen, således at heller ikke denne fremgangsmåde løser miljøforure-10 ningsproblemet.The method known in the industry for working up sulfuric acid used pickling solutions consists in the separation of the heptahydrate by vacuum crystal I isation. The acid concentration of the used pickling solution is increased because of the release of water to form crystal water and 5 vacuum vapor. Thus, the solution can be used again for pickling. However, a more widespread use of this process is ruled out as the heptahydrate, due to lack of demand, cannot be economically exploited, so most of this salt is brought to the landfill so that this method does not solve the environmental pollution problem either.

Erkendelsen af disse forhold har medført, at forskningen i de sidste par årtier har beskæftiget sig mere med at udarbejde tekniske løsninger, der ikke blot muliggør en genvinding af den brugte bejdse-opløsnings syreindhold, men også en omdannelse af jernsulfatet til svovl-15 syre, som kan genbruges. Den elektrokemiske sønderdeling af jernsulfat i vandig opløsning, som forløber i henhold til reaktionsligningen:Recognition of these conditions has led research in the last few decades to work more on developing technical solutions that not only enable the recovery of the used stain solution's acid content, but also the conversion of the ferrous sulfate to sulfur-15 acid, which can be recycled. The electrochemical decomposition of ferrous sulfate in aqueous solution proceeding according to the reaction equation:

FeS04 + H20 = H2S04 + 0,5 02 + Fe, kan tjene som grundlag for sådanne løsninger. Ved denne reaktion udskilles fra opløsningen en til den dannede svovlsyre ækvivalent mængde 20 jern på katoden.FeSO4 + H2O = H2SO4 + 0.5 O2 + Fe can serve as a basis for such solutions. In this reaction, an amount of 20 iron on the cathode is separated from the solution from the solution.

Realiseringen af den i ligningen angivne elektrokemiske reaktion forhindres imidlertid af den omstændighed, at jernet kun med dårlig virkningsgrad kan udskilles katodisk fra en sur opløsning. Efterhånden som syrekoncentrationen stiger, mindskes jernudskillelsen og standser 25 til sidst helt, fordi der ved katoden i stedet for en udfældning af jern dannes hydrogen.However, the realization of the electrochemical reaction stated in the equation is prevented by the fact that the iron can only be cathodically excreted from an acidic solution with poor efficiency. As the acid concentration increases, the iron secretion decreases and eventually stops completely, because hydrogen is formed at the cathode instead of a precipitate of iron.

På denne måde foregår der i stedet for en spaltning af jernsulfat ved elektrolyse til sidst en sønderdeling af vand. De hidtil foreslåede løsninger har derfor alle til formål at begrænse vandsønderdelingen.In this way, instead of a breakdown of iron sulfate by electrolysis, eventually a decomposition of water takes place. Therefore, the solutions proposed so far are all aimed at limiting the decomposition of water.

30 Den katodiske hydrogenproduktion kan f.eks. begrænses ved anvendelse af en flydende kviksølvelektrode. På denne katode kan jernet fra en sur opløsning udfældes i form af et amalgam. Derpå udskilles jernet i et særligt rum anodisk fra amalgamet. Anvendes et syrefrit medium, kan jernet udskilles selv på en fast elektrode. Denne løsning 35 foreslås af F. Aigner og G. Jangg under titlen "Elektrolytische Auf-arbeitung von verbrauchten schwefelsauren Beizlosungen" i Berg- und Hiittenmånnischen Monatsheften" (1969, side 12-18). Da ifølge den der givne beskrivelse jernet skal udskilles to gange, og kviksølvelektroden kun kan anvendes i vandret anbringelse og kun med sin ene side, bli- 3 145682 ver apparatet uforholdsmæssigt pladskrævende og dyrt. Kviksølvets høje pris forøger de i forvejen betydelige investeringsomkostninger, og det er desuden almindeligt kendt, at slutproduktets fremstillingsomkostninger ved alle med kviksølvkatoder arbejdende fremgangsmåder forøges 5 som følge af betydelige tab af kviksølv. I den nævnte publikation erkender forfatterne selv, at den økonomiske værdi af fremgangsmåden er tvivlsom, og det specifikke energibehov angiver de med grænseværdierne 12,5-13,5 kWh/kg Fe. Lignende indvendinger kan rejses mod andre fremgangsmåder, der bygger på anvendelsen af kvivsølvkatoder. Dette 10 kommer bl.a. til udtryk i A.T. Kuhn's publikation 11A Review of the Role of Electrolysis in the Treatment of Iron Pickle Liquor" (Iron and Steel, juni 1971, sie 173-176). Den nævnte publikation giver også på anden måde værdifulde henvisninger til orientering om teknikkens standpunkt, idet der i artiklen findes en opstilling af det anvendte kildemateriale 15 ordnet efter de virkninger, der ligger til grund for de pågældende løsninger, og de forskellige metoder sammenlignes og vurderes sagligt med hinanden.The cathodic hydrogen production can e.g. is limited by the use of a liquid mercury electrode. At this cathode, the iron from an acidic solution can be precipitated in the form of an amalgam. Then, in a special room, the iron is anodically excreted from the amalgam. If an acid-free medium is used, the iron can be excreted even on a fixed electrode. This solution 35 is proposed by F. Aigner and G. Jangg under the title "Elektrolytische Auf-werkitung von verbrauchten schwefelsauren Beizlosungen" in Berg- und Hiittenmånnischen Monatsheften "(1969, pages 12-18). times, and the mercury electrode can only be used in horizontal placement and only with one side, the apparatus becomes disproportionately space-consuming and expensive. The high price of mercury increases the already considerable investment costs, and it is well known that the final product's manufacturing costs at all Methods operating with mercury cathodes are increased 5 as a result of significant losses of mercury.In the said publication, the authors themselves acknowledge that the economic value of the process is questionable and the specific energy requirements indicate those with the limit values of 12.5-13.5 kWh / kg Fe Similar objections may be raised to other methods based on the use of mercury cathodes. mmer i.a. expressed in A.T. Kuhn's publication 11A Review of the Role of Electrolysis in the Treatment of Iron Pickle Liquor "(Iron and Steel, June 1971, see 173-176). The said publication also otherwise provides valuable references for information on the state of the art, in which the article contains a list of the source material used 15 arranged according to the effects underlying the solutions in question, and the different methods are compared and evaluated in relation to each other.

Mange forskere har også beskæftiget sig med metoder, der er baserede på anvendelse af permselektive membraner. Disse metoder er 20 ejendommelige ved, at vandringen af hydroxonium-kationer (HgO+) hen til katoden forhindres ved hjælp af en mellem anode- og katoderummet anbragt såkalt ionbyttermembran. Membranernes store elektriske modstand, deres ømfindtlighed overfor varme, syre og mekaniske påvirkninger samt deres korte levetid og deres høje pris har imidlertid, på 25 trods af lovende resultater ved laboratorieundersøgelser, forhindret anvendelse i større udstrækning af fremgangsmåder, der er baseret på sådanne membraner. På denne baggrund fortjener foruden det nævnte arbejde af A.T. Kuhn også publikationen "Treatment of Iron Containing iMany researchers have also employed methods based on the use of permselective membranes. These methods are characterized in that the migration of hydroxonium cations (HgO +) to the cathode is prevented by a so-called ion exchange membrane placed between the anode and cathode compartment. However, the high electrical resistance of the membranes, their sensitivity to heat, acid and mechanical influences as well as their short service life and their high cost, despite promising results in laboratory studies, have prevented the use of methods based on such membranes to a greater extent. Against this background, besides the mentioned work by A.T. Kuhn also published "Treatment of Iron Containing i

Spent Sulfuric Acid by Electrolytic Dialysis" af de japanske forfattere 30 Famurs og Ishio (Kogyo Kagaku Zseashi 69, 1435/1966) samt arbejdet "Separation of Iron Spent Sulfuric Acid by the Ion Exchange Resins" af de samme forfattere (samme sted) opmærksomhed.Spent Sulfuric Acid by Electrolytic Dialysis "by the Japanese authors 30 Famurs and Ishio (Kogyo Kagaku Zseashi 69, 1435/1966) as well as the work" Separation of Iron Spent Sulfuric Acid by the Ion Exchange Resins "by the same authors (same place).

Som yderligere en mulighed må også nævnes en fremgangsmåde, der er baseret på anvendelsen af bipolære aktive blyelektroder. Ved 35 denne fremgangsmåde dannes i den vandige jernsulfatopløsning under samtidig katodisk jernudfældning anodisk blysulfat, der i et separat rum katodisk reduceres til bly, hvorved der opstår svovlsyre. En forudsætning for anvendelsen af denne fremgangsmåde er imidlertid, at den jernsulfatopløsning, der føres ind i elektrolysecellen er neutral.As a further possibility, there is also a method based on the use of bipolar active lead electrodes. In this process, in the aqueous iron sulphate solution during simultaneous cathodic iron precipitation, anodic lead sulphate is formed, which in a separate room is cathodically reduced to lead, thereby producing sulfuric acid. However, a prerequisite for the application of this method is that the iron sulfate solution introduced into the electrolysis cell is neutral.

145682 4145682 4

Derfor kan denne fremgangsmåde ikke anvendes direkte til oparbejdning af sure brugte bejdseopløsninger, men først efter en forudgående udkrystallisation og påfølgende fornyet opløsning af heptahydratet (J. Ker-ti: Az aktiv olomelek trod felhasznålåsi lehetosége as elektrokémiai 5 iparban (muligheder til anvendelse af den aktive blyelektrode i den elektrokemiske industri) MTA Kémiai CKzt. Kozl. 25, 251-281/1966/, US patent nr. 3.111.468 samt engelsk patent nr. 992.584).Therefore, this process cannot be used directly for reprocessing of acidic used pickling solutions, but only after a prior crystallization and subsequent resuspending of the heptahydrate (J. Ker-ti: Az active olomelek despite felhasznålåsi lehetosége as elektrokémiai 5 iparban (possibilities for using the active lead electrode in the electrochemical industry (MTA Kémiai CKzt. Kozl. 25, 251-281 / 1966 /, U.S. Patent No. 3,111,468 and English Patent No. 992,584).

Den samme betingelse (syrefrihed) stilles til den brugte bejdseopløsnings sammensætning ved den fra beskrivelsen til ungarsk patent 10 nr. 156.806 (1967) kendte fremgangsmåde. Ved denne fremgangsmåde findes der i det ved hjælp af et diafragma fra katoderummet adskilte anoderum en i forhold til svovlsyrens molaritet overskydende mængde sulfationer, der fortrinsvis tilføres i form af ammonium- eller alkali-metalsulfat. De overskydende sulfationer trænger den opstående svovl-15 syres andet dissociationstrin tilbage, således at størstedelen af svovlsyrens protoner foreligger bundet til SO^-anioner, der som følge af deres ved aniondannelsen opståede negative ladning hindres i at trænge gennem diafragmet og ind i katoderummet. I dette indføres den brugte bejdseopløsning, hvilket imidlertid kun er muligt, dersom opløsningen 20 er fuldstændig udtømt for syre. Dersom denne betingelse ikke er opfyldt, skal, således som det også fremhæves i beskrivelsen til det nævnte patent, saltet fjernes fra bejdseopløsningen ved hjælp af kendte metoder (krystallisation eller termisk sønderdeling) og tilsættes katolytten.The same condition (acid freedom) is applied to the composition of the used pickling solution by the method known from the specification of Hungarian Patent 10,156,806 (1967). In this process, the anode compartment separated by a diaphragm from the cathode compartment provides an excess amount of sulfate in excess of the sulfuric acid, which is preferably supplied in the form of ammonium or alkali metal sulfate. The excess sulfate ions retard the second dissociation step of the sulfuric acid so that the majority of the sulfuric acid protons are bound to SO₂ anions which, as a result of their negative charge anion formation, are prevented from penetrating the diaphragm and into the cathode compartment. In this, the used pickling solution is introduced, which, however, is only possible if the solution 20 is completely depleted of acid. If this condition is not met, as is also emphasized in the specification of said patent, the salt must be removed from the pickling solution by known methods (crystallization or thermal decomposition) and added to the catholyte.

En undersøgelse af de nævnte problemer har ført til den erkendel-25 se, at en elektrokemisk spaltning af jernsulfat på fordelagtig mide kan udføres i forbindelse med en isolering af den brugte bejdseopløsnings indhold af sulfatsalt og syre.An examination of the aforementioned problems has led to the recognition that an electrochemical cleavage of ferrous sulfate can be advantageously carried out in connection with an isolation of the content of the used pickling solution of sulphate salt and acid.

Opfindelsen angår således en fremgangsmåde til oparbejdning af bejdseopløsninger anvendt i forbindelse med bejdsning af jern og inde-30 holdende højst 100 g svovlsyre pr. liter og mindst 25 g jernioner pr. liter ved en kombination af elektrolytisk spaltning af jernsulfatet og elektrodialytisk isolering af syre- og sulfatsaltkomponenter i den brugte bejdseopløsning, hvilken fremgangsmåde er ejendommelig ved, at der ved tilsætning af salte tilvejebringes en ammonium-, magnesium- eller 35 alkalimetalsulfatkoncentration på 0,5-1,0 mol/l i den brugte bejdseopløsning, hvorefter den brugte bejdseopløsning indføres i katoderummet i et elektrolyseapparat sammensat af celler med anode- og katoderum, som er skilt fra hinanden ved hjælp af diafragmer, og bringes til at strømme gennem katoderummet, indtil opløsningens jernindhold er reduceret til 5 145682 en værdi på 7-15 g Fe++/I, hvorpå opløsningen ledes ind i apparatets anoderum og bevæges gennem dette i samme retning, som den i katoderummet opretholdte strømningsretning, og at strømtætheden holdes på en værdi af 15-22 A/dm beregnet i forhold til diafragmaets areal, og 5 at elektrolysen udføres ved en arbejdstemperatur på 7Q-90°C.The invention thus relates to a process for working up pickling solutions used in connection with pickling of iron and containing not more than 100 g of sulfuric acid per liter. liter and at least 25 g of iron ions per liter. liters by a combination of electrolytic cleavage of the ferrous sulfate and electrodialytic isolation of acid and sulfate salt components in the spent pickle solution, which is characterized in that by adding salts an ammonium, magnesium or alkali metal sulfate concentration of 0.5-1 is obtained. 0 mol / l of the used pickling solution, whereupon the used pickling solution is introduced into the cathode compartment of an electrolysis apparatus composed of cells with anode and cathode compartments separated by diaphragms and flowed through the cathode compartment until the iron content of the solution is reduced to 5-15682 a value of 7-15 g Fe ++ / I, whereupon the solution is passed into the anode compartment of the apparatus and moved through it in the same direction as the flow direction maintained in the cathode space and the current density is maintained at a value of 15-22 A / dm calculated in relation to the area of the diaphragm, and 5 that the electrolysis is performed at a working temperature of 7Q-90 ° C.

Ved overholdelse af de nævnte betingelser kan der ved kontinuerlig drift· under stationær ligevægt i regenereringssystemet opnås en for syren, jernsulfatet og de bisulfatdannende tilsætningssalte lige gunstig, trindelt koncentrationsfordeling med en deraf følgende, sig i kredsløbet 10 gentagende, gunstigt virkende transportproces og elektrokemisk ion-bytningskædeproces gennem diafragmaet. Som følge af den realiserede elektrokemiske ionbytning er det ikke nødvendigt at stille krav til diafragmaet med hensyn til permselektivitet.By adhering to the above conditions, under continuous operation · under stationary equilibrium in the regeneration system, an equally favorable, stepwise concentration distribution for the acid, iron sulphate and bisulphate forming salts with a consequent repetitive, favorable acting transport process and electrochemical ionic swap chain process through the diaphragm. Due to the realized electrochemical ion exchange, it is not necessary to impose requirements on the diaphragm with respect to permselectivity.

Udtrykket ''portionsvis gennemført oparbejdning" skal forstås 15 således, at bejdseopløsningen kan udtages portionsvis fra bejdseanlægget og over en mellembeholder regenereres kontinuerligt.The term "work-up" is understood to mean that the pickling solution can be taken out portion-wise from the pickling plant and continuously regenerated over an intermediate container.

Det er nemlig alt efter bejdseanlæggets konstruktion ikke altid muligt at udtage den opbrugte bejdseopløsning kontinuerligt fra bejdseanlægget, og ej heller at føre regeneratet kontinuerligt tilbage til bejd-20 seanlægget og derved oprette et lukket kredsløb. I dette tilfælde gennemføres fremgangsmåden ifølge opfindelsen hensigtsmæssigt ved, at der indskydes en større mellemoplagringsbeholder.Because, depending on the design of the pickling plant, it is not always possible to withdraw the used pickling solution continuously from the pickling plant, nor to return the regenerated continuously to the pickling plant and thereby create a closed circuit. In this case, the method according to the invention is conveniently carried out by inserting a larger intermediate storage container.

Den afgørende fordel ved fremgangsmåden ifølge opfindelsen består således i, at en fuldstændig fjernelse af den brugte bejdseopløs-25 nings syreindhold henholdsvis udkrystallisering af heptahydratet ikke er nødvendig til dens gennemførelse. Dette muliggør endog i tilfælde, hvor opløsningen indeholder indtil 100 g F^SO^/iiter (tilnærmelsesvis 1 mol/liter) en direkte og i kredsløb gennemført regenerering af bejdseopløsningen.Thus, the crucial advantage of the process according to the invention is that a complete removal of the acid content of the used pickling solution or crystallization of the heptahydrate is not necessary for its implementation. This allows even in cases where the solution contains up to 100 g of F 2 SO 2 / liter (approximately 1 mol / liter) a direct and circulating regeneration of the pickling solution.

30 Følgen af de elektrokemiske ionbytningsprocesser og den trindelte koncentrationsfordelings mekanisme forklares nærmere i det efterfølgende under henvisning til tegningen, som viser et anlæg til udøvelse af fremgangsmåden ifølge opfindelsen. Syrekoncentrationen i bejdseopløsningen, der strømmer gennem bejdsebeholderne P^, ?2 ,pn et efter 35 et, synker fra beholder til beholder som følge af bejdsereaktionen, medens jern koncentrationen, ligeledes som følge af bejdsereaktionen, stiger fra beholder til beholder. Koncentrationen af de bisulfatdannende tilsætningssalte (ammonium-, magnesium- eller alkalimetalsulfat) holder sig konstant i beholderrækken. Den brugte bejdseopløsning indføres med 6 145682 konstant hastighed i katoderummet i elektrolysecellen E^, hvorfra den gennemstrømmer katoderummene af cellerne Eg ··· En et efter et. Jernet udfældes på katoden. Denne katodeproces ledsages i afhængighed af katolyttens syre koncentration af hydrogendannelse. Den øvrige del af 5 den brugte bejdseopløsnings syreindhold vandrer i form af HSO^-ioner gennem diafragmaet ind i anoderummet. Samtidig vandrer de tilsatte sulfaters kationer fra anoderummet gennem diafragmaet ind i katoderummet.The effect of the electrochemical ion exchange processes and the step-wise concentration distribution mechanism is explained in greater detail below with reference to the drawing, which shows a plant for carrying out the method according to the invention. The acid concentration in the pickle solution flowing through the pickle containers P 2, 2, one at a time decreases from container to container as a result of the pickle reaction, while the iron concentration, also as a result of the pickle reaction, increases from container to container. The concentration of the bisulfate-forming addition salts (ammonium, magnesium or alkali metal sulfate) remains constant in the container row. The used stain solution is introduced at a constant rate into the cathode compartment of the electrolytic cell E ^, from which it flows through the cathode compartments of the cells Eg ··· One by one. The iron precipitates on the cathode. This cathode process is accompanied by dependence of the catholyte acid concentration of hydrogen formation. The remaining portion of the used pickling solution's acid content migrates in the form of HSO4 ions through the diaphragm into the anode compartment. At the same time, the cations of the added sulfates migrate from the anode compartment through the diaphragm into the cathode compartment.

Følgelig aftager opløsningens jern- og syrekoncentration fra celle til celle under dens gennemstrømning gennem cellernes katoderum, medens 10 koncentrationen af bisulfatdannende tilsætningssalte stiger fra celle til celle. Processen kan i det væsentlige sammenfattes som følger: Som følge af iontransporten vandrer syren i bejdseopiøsningen gennem diafragmaet ind i anoderummet (elektrodialyse), og samtidig udskiftes som følge af den forenede virkning af iontransporten og den katodiske jern-15 udfældning, jernsulfatet med ammonium-, magnesium- eller alkalimetal-sulfat. Den fra katoderummet af den sidste celle (En) kommende opløsning, den såkaldte (slutkatalyt), er praktisk taget syrefri (pH=1,6-2,0), dens koncentration af jern andrager 10 g Fe++/liter, og dens koncentration af sulfater ligger i en størrelsesorden på 1½ mol/liter.Accordingly, the iron-and-acid concentration of the solution decreases from cell to cell during its flow through the cathode compartment, while the concentration of bisulfate-forming addition salts increases from cell to cell. The process can be summarized as follows: As a result of the ion transport, the acid in the pickle solution migrates through the diaphragm into the anode compartment (electrodialysis), and at the same time is replaced by the combined effect of the ion transport and the cathodic iron precipitate, the iron sulfate with ammonium, magnesium or alkali metal sulfate. The solution coming from the cathode compartment of the last cell (One), the so-called (final catalytic acid), is practically acid-free (pH = 1.6-2.0), its concentration of iron is 10 g Fe ++ / liter, and its concentration of sulfates are in the order of 1½ mol / liter.

20 Slutkatolytten transporteres ved hjælp af en pumpe tilbage til be gyndelsen af rækken af celler, medens opløsningens transport og strømningsretning iøvrigt opnås ved trinvis lavere anbringelse af cellerne, og hver celle som udstrømningsåbning har et overløb. Pumpen transporterer opløsningen (slutkatolytten) ind i anoderummet af cellen E^f 25 hvorfra den strømmer videre gennem anoderummene i cellerne Eg ... En-Herunder stiger syreindholdet fra celle til celle, medens koncentrationen af de bisulfatdannende salte aftager fra celle til celle. Den trinvise forøgelse af syrekoncentrationen skyldes dels den anodiske udskillelse af syreionerne og dels den allerede nævnte iontransport (indvandringen 30 af HSO^-ioner). Den aftagende saltkoncentration kan forklares ved, at saltenes kationer vandrer gennem diafragmaet ind i katoderummet.The final catholyte is transported by means of a pump back to the beginning of the row of cells, while the transport and flow direction of the solution are otherwise obtained by incrementally lower placement of the cells and each cell as an outflow opening has an overflow. The pump transports the solution (final catholyte) into the anode compartment of cell E ^ f 25 from which it flows on through the anode compartments of cells Eg ... En-Below the acid content increases from cell to cell, while the concentration of the bisulfate-forming salts decreases from cell to cell. The incremental increase in the acid concentration is due partly to the anodic separation of the acid ions and partly to the ion transport already mentioned (the migration 30 of HSO4 ions). The decreasing salt concentration can be explained by the cations of the salts migrating through the diaphragm into the cathode compartment.

Slutanolyttens syreindhold følger af sammenhængen: C = C. ·. + 1,75(Fe ++ - Fe+! ), reg bejdse ' K max min" 35 hvor Creg er slutanolyttens syrekoncentration i gram/liter,The acid content of the endanolite follows from the context: C = C. ·. + 1.75 (Fe ++ - Fe +!), Reg stain 'K max min' 35 where Creg is the final concentration of acid in the final oil listener in grams / liter,

Cfaejdse er den bru9te bejdseopløsnings syrekoncentration i gram/ liter, [ [Caffeine is the acid concentration of the used pickling solution in grams / liter, [[

Femax er koncentrationen af jern i den brugte bejdseopløsning i gram/liter, og ++Femax is the concentration of iron in the used pickling solution in grams / liter, and ++

Femin er koncentrationen af jern i slutkatolytten i gram/liter.Femin is the concentration of iron in the final catholyte in grams / liter.

7 1456827 145682

Faktoren 1,75 er forholdet mellem jernets og syrens ækvivalentvægte.The factor of 1.75 is the ratio of the equivalent weights of the iron to the acid.

Slutanolyttens bisulfatsaltindhold er nødvendigvis nøjagtig så stort som den brugte bejdseopløsnings bisulfatindhold, idet den mængde tilsætningssalt, der i den stationære tilstand i tidsenheden indtræder i 5 elektrolyseenheden, er nøjagtig lige så stor, som den mængde, der forlader denne. Ifølge den beskrevne mekanisme formidles den elektrokemiske ionbytning ved hjælp af det bisulfatdannende salt, idet dog saltet ikke deltager i elektrodeprocessen..The bisulfate salt content of the final ethanol salt is necessarily exactly as high as the spent sulfur solution's bisulfate content, since the amount of addition salt that enters the electrolysis unit in the stationary state is exactly as large as the amount leaving it. According to the described mechanism, the electrochemical ion exchange is mediated by the bisulfate-forming salt, although the salt does not participate in the electrode process.

Overholdelse af de ovennævnte procesbetingelser er nødvendig, 10 fordi den beskrevne trinvise nedsættelse af koncentrationerne i den i kredsløb foregående proces ellers ikke kan tilvejebringes eller opretholdes, og den med separationen af jernsulfat og slutsyre forbundne elektrokemiske spaltning af jernsulfatet ifølge den beskrevne mekanisme ikke er gennemførlig. Dersom koncentrationen af bisulfatdannende salt 15 i bejdseopløsningen er mindre end 0,5 mol/liter, er saltmængden utilstrækkelig til katalysering af den elektrokemiske ionbytningskæde. Dersom koncentrationen imidlertid er højere end 1,0 mol/liter, mindskes bejdsehastigheden og jernsulfatets vandopløselighed synligt. Dersom bejdseopløsningens slutsyreindhold er væsentligt højere end 100 gram/ 20 liter, aftager strømmens virkningsgrad betydeligt, og det specifikke energibehov ved regenereringen stiger betragteligt. Dersom der ikke anvendtes diafragma, ville anolytten og katolytten hurtigt blande sig med hinanden som følge af gasdannelsen og forhindre den beskrevne elektrokemiske ionbytning. Dersom man ville fjerne alt jernet fra opløs-25 ningen, ville elektrolysens virkningsgrad aftage, og der ville være risiko for, at katolytten blev alkalisk. Dersom slutkatolytten pr. liter indeholdt mere end 15 g jernioner, ville de di-valente jernioner anodisk oxideres til tri-valente jernioner, hvilket ligeledes ville medføre en nedsættelse af virkningsgraden og desuden et forøget bejdsetab. Dersom strøm-30 ningsretningerne i katode- og anoderummet ikke er identiske, bryder den beskrevne ionbytningsmekanisme helt sammen, og hverken den elek-trodialytiske isolation af slutsyren eller den elektrokemiske spaltning af jernsulfatet kan gennemføres med tilfredsstillende virkningsgrad. Ved en strømtæthed på mindre end 15 A/dm er apparatet ikke tilstrækkeligt 35 produktivt, og desuden vil den diffusion, der finder sted gennem dia-fragmaet som følge af iontransporten, ikke overkompensere tilstrækkeligt, hvilket ligeledes ville medføre en aftagende virkningsgrad. Ved 2 en belastning med en strømtæthed på mere end 22 A/dm er strukturen af overtrækket på katoden ikke tilfredsstillende, og der optræder drifts- 8 145682 forstyrrelser. Overføringstallet af de ioner, der deltager i strømtransporten afhænger af temperaturen, og i det givne system opnås de for den beskrevne ionbytningsmekanisme gunstige overføringstal ved temperaturer pi over 70°C. Ved temperaturer på over 90°C øges skumdan-5 nelsen på uønsket måde, hvilket ligeledes medfører driftsvanskelighe der. Den kontinuerlige drift er nødvendig, fordi indstillingen af den stationære koncentrationsfordeling tager flere timer, og kredsløbet i dette tidsrum ikke kan opretholdes med tilstrækkelig virkningsgrad.Compliance with the aforementioned process conditions is necessary because otherwise the described stepwise reduction of the concentrations in the cycle preceding the process cannot be provided or maintained and the electrochemical cleavage of the iron sulfate associated with the iron sulfate separation according to the mechanism described is not feasible. If the concentration of bisulfate-forming salt 15 in the pickling solution is less than 0.5 mole / liter, the amount of salt is insufficient to catalyze the electrochemical ion exchange chain. However, if the concentration is higher than 1.0 mol / liter, the pickling rate and the water solubility of the iron sulfate are visibly reduced. If the final acid content of the pickling solution is substantially higher than 100 grams / 20 liters, the efficiency of the stream decreases significantly and the specific energy demand for regeneration increases considerably. If no diaphragm was used, the anolyte and the catholyte would quickly mix with each other as a result of the gas formation and prevent the electrochemical ion exchange described. If all the iron were removed from the solution, the efficiency of the electrolysis would decrease and there would be a risk of the catholyte becoming alkaline. If the final catholyte per liter containing more than 15 g of iron ions, the di-valent iron ions would anodically oxidize to tri-valent ions, which would also result in a decrease in efficiency and also an increase in stain loss. If the flow directions in the cathode and anode compartments are not identical, the described ion exchange mechanism breaks down completely, and neither the electrodialytic isolation of the final acid nor the electrochemical cleavage of the iron sulfate can be carried out with satisfactory efficiency. At a current density of less than 15 A / dm, the apparatus is not sufficiently productive, and furthermore, the diffusion that occurs through the dia-fragment due to the ion transport will not sufficiently overcompensate, which would also result in a decreasing efficiency. At 2 a load with a current density of more than 22 A / dm, the structure of the coating on the cathode is not satisfactory and interferences occur. The transfer rate of the ions participating in the current transport depends on the temperature, and in the given system, the favorable transfer rates for the described ion exchange mechanism are obtained at temperatures above 70 ° C. At temperatures above 90 ° C, foam formation is increased undesirably, which also causes operating difficulties. Continuous operation is necessary because the setting of the stationary concentration distribution takes several hours and the circuit during this time cannot be maintained with sufficient efficiency.

En afbrydelse af elektrolysen er således altid forbundet med et betyde-10 ligt tab af tid og ophold i produktionen.Thus, interruption of the electrolysis is always associated with a significant loss of time and delay in production.

Hvad regenereringen angår, kan den brugte bejdseopløsnings jernkoncentration vælges efter ønske. Da bejdsehastigheden imidlertid aftager ved et jernindhold på mere end 90 g Fe++/Mter i bejdseopløsningen, er det ikke hensigtsmæsstigt at overskride denne grænse, og navnlig 15 ikke fordi der ved højere jern koncentration også er større fare for udskillelse af heptahydrat, der forårsager driftsforstyrrelser.As for the regeneration, the iron concentration of the used pickling solution can be selected as desired. However, since the pickling rate decreases at an iron content of more than 90 g Fe ++ / Mter in the pickling solution, it is not appropriate to exceed this limit, and in particular not because at higher iron concentration there is also a greater risk of secretion of heptahydrate which causes operational disruption.

Opløsningens strømningshastighed beregnes henholdsvis reguleres i overensstemmelse med kravet om den trindelte koncentrationsfordeling, f.eks. som følger: 20The flow rate of the solution is calculated and adjusted respectively according to the requirement for the stepwise concentration distribution, e.g. as follows: 20

v 1,83 . Y . η . Iv 1.83. Y. η. IN

v 100 (C -C. . . ) reg bejdse I ligningen er V strømningshastigheden i hele systemet i liter/time, Y er strømvirkningsgraden i procent, n er antallet af de serieforbundne elek-25 trolyseceller, og I er styrken af den elektrolyserende strøm i ampere.v 100 (C-C...) Reg In the equation, V is the flow rate of the whole system in liters / hour, Y is the percentage efficiency, n is the number of series-connected electrolytic cells, and I is the strength of the electrolyzing current. in amps.

De øvrige symboler har samme betydning som foran angivet. Faktoren 1,83 udtrykker mængden af den ved en virkningsgrad på 100% ved en amperetime producerede svovlsyre.The other symbols have the same meaning as above. The factor 1.83 expresses the amount of the sulfuric acid produced at a degree of efficiency of 100%.

Spørgsmålet om hvorvidt man som bisulfatdannende tilsætning an-2q vender ammoniumsulfat eller et andet sulfat har ingen indflydelse på virkningsgraden, dersom blot tiisætningssaltets molaritet i bejdseopløsningen er ens i hvert tilfælde. Arten af tilsætningssaltets kation er imidlertid af stor betydning for strukturen af det katodisk udfældede jern.The question whether ammonium sulphate or other sulphate is used as bisulphate-forming additive or other sulphate has no effect on the efficiency, if only the molar salt of the additive salt in the pickling solution is the same in each case. However, the nature of the addition salt cation is of great importance for the structure of the cathodically precipitated iron.

2^ Anvender man ammonium- eller magnesiumsulfat henholdsvis kom binationer af disse to salte, får man et glat katodeovertræk af bladstruktur. Dersom der således skal udvindes et katodeprodukt, der skal kunne oparbejdes til blokke, anvender man de nævnte tilsætningssalte.2 If ammonium or magnesium sulfate or combinations of these two salts are used, respectively, a smooth cathode coating of leaf structure is obtained. Thus, if a cathode product which is to be worked up into blocks is to be recovered, the said addition salts are used.

I dette tilfælde udskiftes katodepladerne, hvis tykkelse er fremkommet 9 145682 ved udfældningen, fra tid til tid med nye plader (jerngrundplader). De fra opløsningen udtagne katodeplader oparbejdes ved smeltning, f.eks. til støbning.In this case, the cathode plates, the thickness of which has emerged upon precipitation, are replaced from time to time by new plates (iron bases). The cathode plates removed from the solution are worked up by melting, e.g. for casting.

Ved anvendelse af natrium- eller kaliumsulfat, eventuelt en kombi-5 nation af disse to salte, fir man pi katoderne i de celler, der befinder sig ved begyndelsen af cellerækken, et sammenhængende, ikke særligt blankt men snarere mat overtræk. Ved enden af cellerækken, hvor jernindholdet i katoderummet er sunket til under 25 g Fe /liter, og tilsætningssaltets molaritet er større end 1, udskilles jernet i form af 10 pulver på overfladen af katoderne. I betragtning af den store efterspørgsel efter jernpulver, er fremstillingen af dette i sig selv af stor praktisk betydning, og navnlig i de foreliggede tilfælde, hvor udvindingen af jernpulver er forbundet med bejdseprocessen, udnyttelse af den brugte bejdseopløsning og løsningen pi et miljøforureningsprobiem.By using sodium or potassium sulphate, optionally a combination of these two salts, the cathodes in the cells located at the beginning of the cell line are formed in a coherent, not very glossy but rather matte coating. At the end of the cell row, where the iron content of the cathode compartment is lowered to less than 25 g Fe / liter and the molar salt of the addition salt is greater than 1, the iron is excreted in the form of 10 powders on the surface of the cathodes. In view of the high demand for iron powder, the production of this in itself is of great practical importance, and especially in the present cases where the extraction of iron powder is associated with the pickling process, utilization of the used pickling solution and the solution to an environmental pollution problem.

15 Til fremstilling af jernpulver kan'fremgangsmåden ifølge opfindelsen altså udnyttes på den måde, at man som bisulfatdannende tilsæt ningssalt anvender natrium og/eller kaliumsulfat i bejdseopløsningen i en mængde på 0,5-1,0 mol/liter og i katoderummene, i hvilke den sta-tionære jern koncentration er mindre end 25 g Fe /liter, benytter alu-20 minium-, grafit- eller blykatoder, for at jernpulveret ved afgnidning eller afbørstning nemt skal kunne fjernes fra elektroderne, der af og til løftes ud af opløsningen. (Ved anvendelse af jernelektroder ville de udfældede partikler hefte kraftigere fast på pladen).Thus, for the manufacture of iron powder, the process of the invention can be utilized in that sodium and / or potassium sulphate is used in the pickling solution in an amount of 0.5-1.0 mol / liter and in the cathode compartments as the bisulfate forming addition salt. the stationary iron concentration is less than 25 g Fe / liter, using aluminum, graphite or lead cathodes so that the iron powder can be easily removed from the electrodes which are occasionally lifted out of the solution by trimming or brushing. (Using iron electrodes, the precipitated particles would adhere more strongly to the plate).

Dersom hele jernindholdet i den brugte bejdseopløsning skal udvin-25 des i form af jernpulver, skal der anvendes en bejdseteknologi, ved hvilken den brugte bejdseopløsnings jernindhold ikke overstiger en værdi på 25 g Fe++/liter, og syreindholdet er mindre end 20 g/liter. Disse betingelser kan overholdes ved systemer, der arbejder med åbne beholdere.If the entire iron content of the used pickling solution is to be recovered in the form of iron powder, a pickling technology must be used in which the iron content of the used pickling solution does not exceed a value of 25 g Fe ++ / liter and the acid content is less than 20 g / liter. These conditions can be met by open container systems.

30 Et apparat til gennemførelse af fremgangsmåden ifølge opfindelsen består af trinvist anbragte serieforbundne celler, der har fra hinanden adskilte elektroderum. I de enkelte celler følger katode- og anoderum skiftevis efter hinanden, og mellem hver af disse er der anbragt et diafragma. I de enkelte celler er der i cellevæggen anbragt boringer, 35 der forbinder katoderummene med hinanden, samt anoderummene med hinanden. På denne måde kan anolyt og katolyt strømme uafhængigt af hinanden. Til at lede opløsningen videre fra hver celles anoderum henholdsvis katoderum til den næste celles anoderum henholdsvis katoderum, er hver celle forsynet med niveaureguierende overløb. I de enkelte cel- U5682 10 ler er anoderne og katoderne elektrisk parallelle med hinanden, men uafhængigt af hinanden forbundne til en samleskinne. På denne måde er det muligt uafhængigt at de øvrige katoder at løfte en hvilken som helst katode ud af væsken. Dersom der på den allerede beskrevne måde 5 skal fremstilles jernpulver, anvendes der ved begyndelsen af cellerækken jernplader som katoder og ved enden af cellerækken (nærmere betegnet begyndende ved den celle, hvor jern koncentrationen kun er højst 25 g/l) anvendes aluminium-, bly- eller grafitkatoder.An apparatus for carrying out the method according to the invention consists of incrementally arranged series connected cells having spaced apart electrode spaces. In the individual cells, the cathode and anode compartments alternate in succession, and between each of these a diaphragm is arranged. In the individual cells, bores are provided in the cell wall, connecting the cathode compartments with each other, as well as the anode compartments with each other. In this way, anolyte and catholyte can flow independently. In order to pass the solution from each cell's anode room or cathode room to the next cell's anode room or cathode room, each cell is provided with level guiding overflow. In the individual cells, the anodes and cathodes are electrically parallel to each other but independently connected to a busbar. In this way, it is possible independently for the other cathodes to lift any cathode out of the liquid. If iron powder is to be prepared in the manner already described, iron plates are used as cathodes at the beginning of the cell line and at the end of the cell line (more specifically starting at the cell where the iron concentration is only 25 g / l) aluminum, lead - or graphite cathodes.

Opfindelsen belyses nærmere ved følgende eksempler.The invention is further illustrated by the following examples.

10 EKSEMPEL 1EXAMPLE 1

Bejdsning i åbne beholdere af stålrør, der skal forzinkes, kombineret med elektrokemiske svovlsyreregenerering.Pickling in open containers of galvanized steel tubes, combined with electrochemical sulfuric acid regeneration.

Der bejdses i svovlsur opløsning ved 70°C i fire, i strømningsret-15 ningen efter hinanden anbragte åbne beholdere. Ved stationær ligevægt i den i kredsløb foregående proces får indholdet i de enkelte beholdere følgende koncentrationer:Sulfuric acid solution is stained at 70 ° C for four open containers arranged in a flow direction one after the other. In the case of stationary equilibrium in the circular process, the contents of the individual containers are given the following concentrations:

Beholder nr. HgSO^ Fe++ (g/l) 20 _ 1 262,5 30 2 195,0 50 3 127,5 70 4 60,0 90 25__Container No. HgSO 4 Fe ++ (g / l) 20 _ 1 262.5 30 2 195.0 50 3 127.5 70 4 60.0 90 25__

Koncentrationen af ammoniumsulfat er i alle fire beholdere 80 g/l.The concentration of ammonium sulfate in all four containers is 80 g / l.

Den bejdse, der forlader den fjerde beholder, føres kontinuerligt til elektrolysecellerækkens katoderum. Opløsningen strømmer igennem 30 katoderummet, hvorunder dens jernindhold udskilles på de jernplader, der er hængt ned i væsken. Medens opløsningen strømmer gennem katoderummet, stiger dens pH-værdi til 1,8, og dens jernindhold syn- a ker til 12 g/l. Ammoniumsulfatindholdet stiger til 165 g/l. Anoderummet er adskilt fra katoderummet ved hjælp af et af udspændt polypropylen-35 væv bestående diafragma. Cellerne er fremstillet af tekstilbakelitprofiler, og som tætning anvendes siliconegummi. Som anoder anvendes halvhårde blyplader indeholdende 1% sølv. Sfutkatolytten transporteres ved hjælp af en pumpe tilbage til begyndelsen af cellerækken og ind i anoderummet, hvorfra den strømmer gennem de efter hinanden følgende cellers 11 145682 anoderum. Herunder stiger opløsningens syreindhold til 294 g/l, og ammoniumsulfatindholdet reduceres til 80 g/l. Der elektrolyseres med en strømtæthed på 18 A/dm , og temperaturen i elektrolysebeholderne holdes ved ændring af kølevandets strømningshastighed pi omkring 85°C.The stain leaving the fourth vessel is continuously fed to the cathode space of the electrolytic cell line. The solution flows through the cathode compartment below which its iron content is excreted on the iron plates suspended in the liquid. As the solution flows through the cathode compartment, its pH increases to 1.8 and its iron content drops to 12 g / l. The ammonium sulfate content increases to 165 g / L. The anode compartment is separated from the cathode compartment by a stretched polypropylene tissue aperture. The cells are made of textile bakelite profiles, and as a seal, silicone rubber is used. As anodes, semi-hard lead plates containing 1% silver are used. The sputum catholyte is transported by means of a pump back to the beginning of the cell line and into the anode compartment, from which it flows through the anode compartment of the successive cells. Below this, the acid content of the solution rises to 294 g / L and the ammonium sulfate content is reduced to 80 g / L. Electrolysis is carried out at a current density of 18 A / dm and the temperature of the electrolysis vessels is maintained by changing the flow rate of the cooling water at about 85 ° C.

5 Slutanolytten tilsættes svovlsyre til erstatning for det ved elektrolysen fremkomne sulfattab (sulfat fjernet med de bejdsede emner), indtil dens syrekoncentration andrager 330 g/l. Derefter føres den regenererede syre tilbage til de første bejdsebeholder, og dermed er kredsløbet sluttet. I elektrolysen eller beholderne erstattes fordampningstabet af vand 10 og det ved elektrolysen fremkomne ammoniumsulfattab (ammoniumsulfat fjernet med de bejdsede emner). Ved den elektrokemiske regenerering opnås en strømvirkningsgrad på 64%, og det specifikke energibehov for hvert 1 kg udvundet katodejern andrager 6,1 kWh. Katodepladerne udskiftes dagligt. De fra opløsningen udtagne katodeplader, der som følge 15 af udfældningen har antaget form af blokke, omsmeltes.5 The final ethanol is added to sulfuric acid to replace the sulphate loss caused by electrolysis (sulphate removed with the stained blanks) until its acid concentration is 330 g / l. Thereafter, the regenerated acid is returned to the first pickling container and thus the circuit is closed. In the electrolysis or vessels, the evaporation loss is replaced by water 10 and the ammonium sulphate loss caused by electrolysis (ammonium sulphate removed with the stained blanks). The electrochemical regeneration achieves a power efficiency of 64% and the specific energy requirement for each 1 kg of extracted cathode iron is 6.1 kWh. The cathode plates are replaced daily. The cathode plates removed from the solution, which have taken the form of blocks as a result of 15 of the precipitation, are remelted.

EKSEMPEL 2EXAMPLE 2

Elektrokemisk oparbejdning af den ved fremstillingen af jernstænger resulterende brugte bejdseopløsning kombineret med fremstilling af jern-20 pulver.Electrochemical processing of the used pickling solution resulting from the manufacture of iron rods combined with the preparation of iron-20 powder.

Der bejdses i diskontinuerlig drift i uafhængigt af hinanden arbejdende åbne beholdere ved 80°C. Den brugte bejdseopløsning indeholder pr. liter 80 g syre, 80 g Fe++-ioner og 90 g natriumsulfat. Elektrolyse-apparatets konstruktion og driftsmåde er identisk med den i eksempel 25 1 beskrevne. Slutkatolytten indeholder pr. liter 12 g jern og 174 g natriumsulfat. Slutanolytten indeholder pr. liter 199 g svovlsyre og 90 g natriumsulfat.Discontinuous operation is carried out in independent open containers at 80 ° C. The used pickling solution contains per. 80 g of acid, 80 g of Fe ++ ions and 90 g of sodium sulfate. The design and operation of the electrolysis apparatus is identical to that described in Example 25 1. The final catholyte contains per 12 g of iron and 174 g of sodium sulfate. The final ethanol contains per 199 g of sulfuric acid and 90 g of sodium sulfate.

Elektrolyseapparatet består af 16 serieforbundne celleenheder. De stationære koncentrationer, der fås i den 11. celle er følgende: 16 g 30 svovlsyre, 24 g Fe++-ioner og 148 g pr. liter. I de første 10 beholdere indhænges som katoder jernplader, der behandles på den i eksempel 1 beskrevne måde. I de øvrige beholdere indhænges katodeplader af blødt bly. Disse blyplader tages for hvert lag ud af væsken én ad gangen og føres gennem en valse, som bøjer blypladen svagt.The electrolyzer consists of 16 series connected cell units. The stationary concentrations obtained in the 11th cell are as follows: 16 g of 30 sulfuric acid, 24 g of Fe ++ ions and 148 g per ml. liter. In the first 10 containers, as cathodes, iron sheets are treated which are treated in the manner described in Example 1. In the other containers, soft lead cathode plates are enclosed. These lead plates are taken out of the liquid for each layer one at a time and passed through a roller which bends the lead plate slightly.

35 Derved smuldrer det vedhængende jernpulver af og kan samles sammen. Katoderne udtages altid fra opløsningen under strøm. Da der i hver celle arbejder flere katoder, sker der ingn afbrydelse af strømmen ved fjernelse af en katodeplade. Strømvirkningsgraden er ved blokjern 60% og ved jernpulver 66%. Energibehovet ligger ved blokjern på 7,0 kWh/ kg og for jernpulver på 6,4 kWh/kg.35 In doing so, the pendent iron powder crumbles off and can be collected together. The cathodes are always removed from the solution under current. As several cathodes operate in each cell, the current is not interrupted by removal of a cathode plate. The current efficiency is at block iron 60% and at iron powder 66%. The energy requirement is for block iron of 7.0 kWh / kg and for iron powder of 6.4 kWh / kg.

DK612074A 1973-11-27 1974-11-25 PROCEDURE FOR PREPARING POTTERY SOLUTIONS USED IN IRON PASTING DK145682C (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
HUKE000935 HU169344B (en) 1973-11-27 1973-11-27 Method for electrochemical cycle-processing pickle end-solutions containing sulfuric acid
HUKE000935 1973-11-27

Publications (3)

Publication Number Publication Date
DK612074A DK612074A (en) 1975-08-18
DK145682B true DK145682B (en) 1983-01-24
DK145682C DK145682C (en) 1983-08-08

Family

ID=10997755

Family Applications (1)

Application Number Title Priority Date Filing Date
DK612074A DK145682C (en) 1973-11-27 1974-11-25 PROCEDURE FOR PREPARING POTTERY SOLUTIONS USED IN IRON PASTING

Country Status (13)

Country Link
AT (1) AT332192B (en)
BE (1) BE822639A (en)
CH (1) CH610014A5 (en)
DE (2) DE7439469U (en)
DK (1) DK145682C (en)
FR (1) FR2252422B1 (en)
HU (1) HU169344B (en)
IT (1) IT1024914B (en)
LU (1) LU71306A1 (en)
NL (1) NL177424C (en)
NO (1) NO136303C (en)
SE (1) SE413196B (en)
YU (1) YU39931B (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3206538C2 (en) * 1982-02-24 1984-04-12 Keramchemie GmbH, 5433 Siershahn Process for the electrolytic regeneration of used sulfuric acid pickling liquid
US4740281A (en) * 1986-10-14 1988-04-26 Allied Corporation Recovery of acids from materials comprising acid and salt
DE19850524C2 (en) * 1998-11-03 2002-04-04 Eilenburger Elektrolyse & Umwelttechnik Gmbh Nitrate-free recycling pickling process for stainless steels
DE19850525A1 (en) * 1998-11-03 2000-05-04 Eilenburger Elektrolyse & Umwelttechnik Gmbh Regeneration of sulfuric acid-iron(III) sulfate pickling solution, used especially for special steels, involves perdisulfuric acid production in a spent solution electrolysis cell

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
BE481309A (en) * 1947-03-25

Also Published As

Publication number Publication date
SE7414719L (en) 1975-05-28
BE822639A (en) 1975-05-27
DK145682C (en) 1983-08-08
IT1024914B (en) 1978-07-20
LU71306A1 (en) 1975-05-28
NL177424C (en) 1985-09-16
ATA950174A (en) 1975-12-15
NL177424B (en) 1985-04-16
NL7415391A (en) 1975-05-29
DE2456058A1 (en) 1975-05-28
DE2456058C2 (en) 1984-09-27
CH610014A5 (en) 1979-03-30
NO744247L (en) 1975-06-23
DK612074A (en) 1975-08-18
FR2252422B1 (en) 1980-08-01
AT332192B (en) 1976-09-10
NO136303B (en) 1977-05-09
YU39931B (en) 1985-06-30
HU169344B (en) 1976-11-27
FR2252422A1 (en) 1975-06-20
SE413196B (en) 1980-04-28
NO136303C (en) 1977-08-17
YU314174A (en) 1982-10-31
DE7439469U (en) 1976-04-29

Similar Documents

Publication Publication Date Title
US11078583B2 (en) Processes for preparing lithium hydroxide
FI83790C (en) FOERFARANDE FOER AVLAEGSNING AV ENVAERDA IONER FRAON ZNSO4-ELEKTROLYT MEDELST ELEKTRODIALYS.
CN103864249A (en) Method for extracting lithium hydroxide by salt lake brine
US4209369A (en) Process for electrolysis of sodium chloride by use of cation exchange membrane
Nieto et al. Membrane electrolysis for the removal of Na+ from brines for the subsequent recovery of lithium salts
NO760053L (en)
EP3041598B1 (en) Apparatus and method for product recovery and electrical energy generation
CN106365183A (en) Recovery method of electrode discharge solution in high-magnesium solution electrodialysis lithium extraction process
WO2020162796A9 (en) Method for producing lithium hydroxide monohydrate
CN102839389B (en) Novel production method of electro-depositing and refining metal chloride by membrane process
US3661762A (en) Electrolytic cell for removal and recovery of so2 from waste gases
CN101935126A (en) Combined treatment method for electro-deposition and membrane separation of zinc-containing heavy metal waste water
CN108218101A (en) A kind of high saliferous gas water low-cost processes and method of resource
NO792977L (en) PROCEDURE FOR REDUCING IRONS
CN101817514B (en) Purification method of phosphoric acid
DK145682B (en) PROCEDURE FOR PREPARING PREPARING SOLUTIONS USED FOR IRON PREPARATION
US3969207A (en) Method for the cyclic electrochemical processing of sulfuric acid-containing pickle waste liquors
AU2019322251B2 (en) An improved method for lithium processing
CA1272982A (en) Method for the recovery of lithium from solutions by electrodialysis
CN102828205A (en) Novel metal electro-deposition refining technology
US3432410A (en) Method of producing pure nickel by electrolytic refining
US4557908A (en) Process for the treatment of a purge solution particularly intended for a process for the extraction of zinc by electrolysis
US3454478A (en) Electrolytically reducing halide impurity content of alkali metal dichromate solutions
WO2016063207A1 (en) Voltage-controlled method for electrowinning high-quality copper for low-temperature solutions with a low copper concentration, with application of alternating current
Haydarov et al. OBTAINING OF ALKALINE FROM ALUMINATE SOLUTION BY ELECTRODIALYSIS METHOD