DE4325513A1 - Process for producing a highly pure carbon monoxide product stream and a hydrogen product stream - Google Patents

Process for producing a highly pure carbon monoxide product stream and a hydrogen product stream

Info

Publication number
DE4325513A1
DE4325513A1 DE4325513A DE4325513A DE4325513A1 DE 4325513 A1 DE4325513 A1 DE 4325513A1 DE 4325513 A DE4325513 A DE 4325513A DE 4325513 A DE4325513 A DE 4325513A DE 4325513 A1 DE4325513 A1 DE 4325513A1
Authority
DE
Germany
Prior art keywords
stream
fraction
carbon monoxide
partial condensation
hydrogen
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Ceased
Application number
DE4325513A
Other languages
German (de)
Inventor
Rainer Fabian
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Linde GmbH
Original Assignee
Linde GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to DE4320020 priority Critical
Application filed by Linde GmbH filed Critical Linde GmbH
Priority to DE4325513A priority patent/DE4325513A1/en
Publication of DE4325513A1 publication Critical patent/DE4325513A1/en
Ceased legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/50Separation of hydrogen or hydrogen containing gases from gaseous mixtures, e.g. purification
    • C01B3/501Separation of hydrogen or hydrogen containing gases from gaseous mixtures, e.g. purification by diffusion
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/002Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by condensation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/22Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by diffusion
    • B01D53/229Integrated processes (Diffusion and at least one other process, e.g. adsorption, absorption)
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/50Separation of hydrogen or hydrogen containing gases from gaseous mixtures, e.g. purification
    • C01B3/506Separation of hydrogen or hydrogen containing gases from gaseous mixtures, e.g. purification at low temperatures
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/40Carbon monoxide
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/0204Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream characterised by the feed stream
    • F25J3/0223H2/CO mixtures, i.e. synthesis gas; Water gas or shifted synthesis gas
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/0228Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream characterised by the separated product stream
    • F25J3/0252Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream characterised by the separated product stream separation of hydrogen
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/0228Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream characterised by the separated product stream
    • F25J3/0261Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream characterised by the separated product stream separation of carbon monoxide
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/04Integrated processes for the production of hydrogen or synthesis gas containing a purification step for the hydrogen or the synthesis gas
    • C01B2203/046Purification by cryogenic separation
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/04Integrated processes for the production of hydrogen or synthesis gas containing a purification step for the hydrogen or the synthesis gas
    • C01B2203/0465Composition of the impurity
    • C01B2203/047Composition of the impurity the impurity being carbon monoxide
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2200/00Processes or apparatus using separation by rectification
    • F25J2200/40Features relating to the provision of boil-up in the bottom of a column
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2200/00Processes or apparatus using separation by rectification
    • F25J2200/70Refluxing the column with a condensed part of the feed stream, i.e. fractionator top is stripped or self-rectified
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2200/00Processes or apparatus using separation by rectification
    • F25J2200/76Refluxing the column with condensed overhead gas being cycled in a quasi-closed loop refrigeration cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2200/00Processes or apparatus using separation by rectification
    • F25J2200/78Refluxing the column with a liquid stream originating from an upstream or downstream fractionator column
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2205/00Processes or apparatus using other separation and/or other processing means
    • F25J2205/02Processes or apparatus using other separation and/or other processing means using simple phase separation in a vessel or drum
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2205/00Processes or apparatus using other separation and/or other processing means
    • F25J2205/02Processes or apparatus using other separation and/or other processing means using simple phase separation in a vessel or drum
    • F25J2205/04Processes or apparatus using other separation and/or other processing means using simple phase separation in a vessel or drum in the feed line, i.e. upstream of the fractionation step
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2205/00Processes or apparatus using other separation and/or other processing means
    • F25J2205/40Processes or apparatus using other separation and/or other processing means using hybrid system, i.e. combining cryogenic and non-cryogenic separation techniques
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2205/00Processes or apparatus using other separation and/or other processing means
    • F25J2205/60Processes or apparatus using other separation and/or other processing means using adsorption on solid adsorbents, e.g. by temperature-swing adsorption [TSA] at the hot or cold end
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2205/00Processes or apparatus using other separation and/or other processing means
    • F25J2205/80Processes or apparatus using other separation and/or other processing means using membrane, i.e. including a permeation step
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2210/00Processes characterised by the type or other details of the feed stream
    • F25J2210/42Nitrogen
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2245/00Processes or apparatus involving steps for recycling of process streams
    • F25J2245/02Recycle of a stream in general, e.g. a by-pass stream
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2270/00Refrigeration techniques used
    • F25J2270/02Internal refrigeration with liquid vaporising loop
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2270/00Refrigeration techniques used
    • F25J2270/04Internal refrigeration with work-producing gas expansion loop
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2270/00Refrigeration techniques used
    • F25J2270/08Internal refrigeration by flash gas recovery loop
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2270/00Refrigeration techniques used
    • F25J2270/24Quasi-closed internal or closed external carbon monoxide refrigeration cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2270/00Refrigeration techniques used
    • F25J2270/90External refrigeration, e.g. conventional closed-loop mechanical refrigeration unit using Freon or NH3, unspecified external refrigeration
    • F25J2270/904External refrigeration, e.g. conventional closed-loop mechanical refrigeration unit using Freon or NH3, unspecified external refrigeration by liquid or gaseous cryogen in an open loop

Abstract

Process for producing a highly pure carbon monoxide product stream and a hydrogen product stream by fractionating a substantially dry and CO2-free H2/CO crude gas mixture by means of single-stage partial condensation and subsequent low-temperature fractionation of the CO-rich condensate formed in the partial condensation, the gaseous H2-enriched, CO-containing fraction formed in the partial condensation being separated in a membrane separation unit into a hydrogen product stream and a low-H2, CO-containing fraction and the low-H2, CO-containing fraction being fed to the low-temperature fractionation for the recovery of the carbon monoxide still contained therein.

Description

Die Erfindung betrifft ein Verfahren zur Gewinnung eines hoch­ reinen Kohlenmonoxid-Produktstromes und eines Wasserstoff-Pro­ duktstromes durch Zerlegung eines weitgehend trockenen und CO₂-freien H₂/CO-Rohgasgemisches mittels einstufiger par­ tieller Kondensation und anschließender Tieftemperaturfraktio­ nierung des bei der partiellen Kondensation gebildeten CO-reichen Kondensats.The invention relates to a method for obtaining a high pure carbon monoxide product stream and a hydrogen pro duct flow by dismantling a largely dry and CO₂-free H₂ / CO raw gas mixture using a single-stage par tial condensation and subsequent low temperature fraction nation of the formed during the partial condensation CO-rich condensate.
Aufgrund erhöhter Reinheitsanforderungen an die Zerlegungs­ produkte, der immer größer werdenden Bedeutung der Betriebs­ kosten einer Anlage, sowie der ständigen Verbesserung der zur Verfügung stehenden thermodynamischen Daten, vollzog sich bei der H₂/CO-Zerlegung in den letzten Jahren ein stetiger tech­ nischer Wandel.Due to increased purity requirements for the dismantling products, the growing importance of operating cost of a plant, as well as the constant improvement of the Available thermodynamic data, took place at H₂ / CO decomposition has been a constant tech in recent years African change.
Als Hauptlieferant für das H₂/CO-Rohgasgemisch ist nach wie vor der Steam-Reformer zu nennen. Aber auch die Schwerölver­ gasung mit Sauerstoff - also eine partielle Oxidation - hat, eine billige Sauerstoff-Quelle vorausgesetzt, in den letzten Jahren an Bedeutung als H₂/CO-Lieferant gewonnen.As the main supplier of the H₂ / CO raw gas mixture is still before calling the steam reformer. But also the heavy oilers gassing with oxygen - i.e. partial oxidation -  a cheap oxygen source provided in the past Years of importance as an H₂ / CO supplier.
Der größte Teil des so erzeugten Kohlenmonoxids wird bei der Ameisen- und Essigsaureproduktion verwendet. Ein weiterer Abnehmer findet sich in der Polykarbonatchemie, die als Rohstoff Phosgen hoher Reinheit und dieser wiederum Kohlen­ monoxid höchster Reinheit erfordert. Der Methangehalt des Kohlenmonoxids muß hierbei kleiner als 10 Mol-ppm, der Wasserstoffgehalt kleiner als 1000 Mol-ppm sein. Der erzeugte Wasserstoff dient zu den verschiedensten Hydrierzwecken.Most of the carbon monoxide so produced is used in the Formic and acetic acid production used. Another Customers can be found in polycarbonate chemistry, which as Raw material phosgene of high purity and this in turn coal highest purity monoxide required. The methane content of the Carbon monoxide must be less than 10 mol ppm, the Hydrogen content must be less than 1000 mol ppm. The generated one Hydrogen is used for a wide variety of hydrogenation purposes.
Einen Überblick über die im Einsatz befindlichen Verfahren zur Herstellung von Kohlenmonoxid und als Nebenprodukt Wasserstoff geben die Artikel von R. Fabian in LINDE-Berichte aus Technik und Wissenschaft Nr. 55, 1984, Seite 38 bis 42 und Dr. R. Ber­ ninger in LINDE-Berichte aus Technik und Wissenschaft Nr. 62, 1988, Seite 18 bis 23.An overview of the processes in use Manufacture of carbon monoxide and hydrogen as a by-product give the articles by R. Fabian in LINDE reports from technology and Science No. 55, 1984, pages 38 to 42 and Dr. R. Ber ninger in LINDE reports from technology and science No. 62, 1988, pages 18 to 23.
Bei der Zerlegung von H₂/CO-Gasgemischen, die aus einer par­ tiellen Oxidation stammen, ist zum Erreichen einer CO-Ausbeute von über 90% allerdings eine Abkühlung des H₂/CO-Gasgemi­ sches bis auf ca. 70 K notwendig. Die dafür benötigte Kälte wird durch die kälteleistende Entspannung des bei dem Trennver­ fahren anfallenden H₂-reichen Stromes erzielt. Bei einer derartigen kälteleistenden Entspannung kommen in der Regel wenigstens zwei Entspannungsturbinen zum Einsatz. Diese Ent­ spannungsturbinen sind verhältnismäßig teuer und störanfällig, weswegen sie ständig überwacht und häufig gewartet werden müssen. Da sie zudem bei Temperaturen unterhalb des Verflüssi­ gungspunktes von drucklosem Stickstoff (-196°C) betrieben werden, müssen einige Bauteile der Trennanlage aufwendig sonderisoliert werden.When decomposing H₂ / CO gas mixtures, which consist of a par tial oxidation is to achieve a CO yield of over 90%, however, a cooling of the H₂ / CO gas mixture up to approx. 70 K necessary. The cold required for this is due to the low-temperature relaxation of the separator drive generated H₂-rich electricity. At a Such cold relaxation usually comes at least two expansion turbines are used. This ent voltage turbines are relatively expensive and prone to failure, which is why they are constantly monitored and serviced frequently have to. Since they also at temperatures below the liquefy pressure point operated by pressureless nitrogen (-196 ° C) some components of the separation system have to be complex be specially insulated.
Aufgabe der vorliegenden Erfindung ist es, die Nachteile des Standes der Technik zu vermeiden, insbesondere sollen jedoch die Investitions- und Betriebskosten einer H₂/CO-Trennanlage verringert werden.The object of the present invention is to overcome the disadvantages of Avoid prior art, but in particular should  the investment and operating costs of an H₂ / CO separation plant be reduced.
Dies wird erfindungsgemäß dadurch erreicht, daß die bei der partiellen Kondensation gebildete gasförmige H₂-angereicher­ te, CO-enthaltende Fraktion in einer Membrantrenneinheit in einen Wasserstoff-Produktstrom und in eine H₂-arme, CO-ent­ haltende Fraktion aufgetrennt und die H₂-arme, CO-enthalten­ de Fraktion der Tieftemperaturfraktionierung zur Gewinnung des noch in ihr enthaltenen Kohlenmonoxids zugeführt wird.This is achieved in that the at partial condensation formed gaseous H₂-enriched te, CO-containing fraction in a membrane separation unit in a hydrogen product stream and in a H₂-poor, CO-ent holding fraction separated and the H₂-poor, contain CO de Fraction of low temperature fractionation to obtain the carbon monoxide contained in it is supplied.
Das erfindungsgemäße Verfahren kann nunmehr auf die Verwendung von Entspannungsturbinen verzichten. Statt dessen wird eine Membrantrenneinheit verwendet, die ohne bewegliche Teile arbei­ tet und daher weder störanfällig ist noch aufwendiger Wartung benötigt. Membranen zur Abtrennung von Wasserstoff aus Wasser­ stoff-haltigen Gasgemischen sind dem Fachmann hinreichend be­ kannt. Bei dem erfindungsgemäßen Verfahren wird also bereits in der Membrantrenneinheit ein Großteil des im H₂/CO-Rohgasge­ misches enthaltenen Wasserstoffs ausgeschleust, während dies bei herkömmlichen CO/H₂-Trennverfahren erst in der Tieftem­ peraturfraktionierung geschieht.The method according to the invention can now be used do without expansion turbines. Instead, one Membrane separation unit used, which works without moving parts tet and is therefore neither prone to failure nor expensive maintenance needed. Membranes for the separation of hydrogen from water Substance-containing gas mixtures are sufficient for the person skilled in the art knows. In the method according to the invention is therefore already in the membrane separation unit a large part of the H₂ / CO raw gas Mix contained hydrogen discharged while this with conventional CO / H₂ separation processes only in the deep temperature fractionation happens.
Das erfindungsgemäße Verfahren sowie weitere, in den Unteran­ sprüchen formulierten Ausgestaltungen seien anhand der Fig. 1 und 2 näher erläutert. Hierbei besitzen gleiche Verfahrens­ schritte bzw. Anlagenteile identische Bezugszeichen.The method according to the invention and further embodiments formulated in the claims are explained in more detail with reference to FIGS . 1 and 2. The same process steps or system parts have identical reference numerals.
Alle nachfolgenden Mengenangaben zu Verfahrensströmen beziehen sich auf Mol-%.Obtain all of the following quantities for process streams to mol%.
Fig. 1 zeigt schematisch ein Verfahren zur Gewinnung eines hochreinen Kohlenmonoxid-Produktstromes und eines Wasserstoff- Produktstromes durch Zerlegung eines CO₂-freien H₂/CO-Roh­ gasgemisches aus einer Steamreforming-Prozeß. Eine derartige Verfahrensführung macht für "Kleinanlagen", d. h. bei einer Produktion von weniger als 3000 Nm³/h CO Sinn. Solch ein Ver­ fahren liefert einen Kohlenmonoxid-Produktstrom mit einer sogenannten Polykarbonatreinheit, also weniger als 1 ppm CH₄ und weniger als 10 ppmH₂. Fig. 1 shows schematically a method for obtaining a high-purity carbon monoxide product stream and a hydrogen product stream by decomposing a CO₂-free H₂ / CO raw gas mixture from a steam reforming process. Such a procedure makes sense for "small plants", ie with a production of less than 3000 Nm³ / h CO. Such a process delivers a carbon monoxide product stream with a so-called polycarbonate purity, that is less than 1 ppm CH₄ and less than 10 ppmH₂.
Das CO₂-freie H₂/CO-Rohgasgemisch wird über Leitung 1 einer Adsorptionsstufe A zugeführt und in ihr getrocknet. An­ schließend wird das getrocknete Rohgas über Leitung 1′ durch die Wärmetauscher E1 und E2 und über Leitung 1′′ dem Abscheider D1 zugeführt. Es wird dabei im Wärmetauscher E1 abgekühlt, wäh­ rend im Wärmetauscher E2, den das Rohgas mit einer Temperatur von 88.4 K verläßt, CH₄ und CO auskondensiert und im Ab­ scheider D1 abgeschieden werden. Die bei der partiellen Konden­ sation gebildete gasförmige H₂-angereicherte, CO-enthaltende Fraktion wird in den Wärmetauschern E1 und E2 angewärmt und der Membrantrenneinheit M zugeführt. In dieser erfolgt eine Auftrennung in einen Wasserstoff-Produktstrom (Permeat), der über Leitung 3 abgeführt wird, und in eine H₂-arme, CO-ent­ haltende Fraktion (Retentat). Letztere wird mittels Leitung 4 durch die Wärmetauscher E1 und E3 und über Leitung 4′ dem Abscheider D2 zugeführt. Sie wird dabei im Wärmetauscher E1 abgekühlt und im Wärmetauscher E3 partiell kondensiert.The CO₂-free H₂ / CO raw gas mixture is fed via line 1 to an adsorption stage A and dried in it. At closing the dried raw gas is fed via line 1 'through the heat exchangers E1 and E2 and via line 1 ''to the separator D1. It is cooled in the heat exchanger E1, while in the heat exchanger E2, which the raw gas leaves at a temperature of 88.4 K, CH₄ and CO are condensed out and separated in the separator D1. The gaseous H₂-enriched, CO-containing fraction formed in the partial condensation is heated in the heat exchangers E1 and E2 and fed to the membrane separation unit M. This is separated into a hydrogen product stream (permeate), which is discharged via line 3 , and into a low-H₂, CO-containing fraction (retentate). The latter is fed via line 4 through the heat exchangers E1 and E3 and via line 4 'to the separator D2. It is cooled in the heat exchanger E1 and partially condensed in the heat exchanger E3.
Am Kopf des Abscheiders D2 wird eine H₂-reiche, CO-enthal­ tende, gasförmige Fraktion über Leitung 10 abgezogen, in Ventil c entspannt und der noch zu beschreibenden Leitung 6 beige­ mischt. Das im Abscheider D1 gewonnene CO-reiche Kondensat wird nach Entspannung im Ventil a über Leitung 5 auf den Kopf der Trennsäule T1 gegeben. Die Trennsäule T1 arbeitet bei einem Druck von 6.5 bar, wobei die Kopftemperatur -185°C und die Sumpftemperatur -168°C beträgt. Zusätzlich wird in der Mitte der Trennsäule T1 das CO-reiche Kondensat aus dem Abscheider D2, das nach Entspannung im Ventil b über Leitung 11 zugeführt wird, eingespeist. Das CO-reiche Kondensat aus dem Abscheider D2 ist CH₄-ärmer als das CO-reiche Kondensat aus dem Ab­ scheider D1. Mittels der Einspeisung des CO-reichen Kondensats aus dem Abscheider D2 über Leitung 11 in die Trennsäule T1 läßt sich in dieser noch mehr CO rückwaschen und gewinnen. Am Kopf der Trennsäule T1 wird eine H₂-reiche gasförmige Fraktion über Leitung 6 abgezogen, dabei im Ventil d entspannt und dem Wasserstoff-Produktstrom in Leitung 3 nach vorheriger Erwärmung im indirekten Wärmetausch mit abzukühlenden Verfahrensströmen in den Wärmetauschern E2 und E1 beigemischt. Der sumpfseitige Abzug der Trennsäule T1 wird aufgeteilt. Ein erster Teil wird über Leitung 7′ im Wärmetauscher E2 teilweise verdampft und als Heizung in die Trennkolonne T1 gegeben. Ein zweiter Teil wird im Ventil e entspannt und über Leitung 7 der CO/CH₄-Trennko­ lonne T2 als Zwischenrücklauf aufgegeben. Ein dritter Teil wird im Ventil f entspannt, im Wärmetauscher E2 vollständig ver­ dampft und über Leitung 7′′ als Zwischenheizung auf die CO/CH₄-Trennkolonne T2 gegeben. Die Trennsäule T2 arbeitet bei einem Druck von 3.1 bar, wobei die Kopftemperatur -180°C und die Sumpftemperatur -157°C beträgt. Von der Trennkolonne T2 wird kopfseitig über Leitung 9 CO mit Produktreinheit abgezo­ gen, in den Wärmetauschern E3 und E1 angewärmt und dem Verdich­ ter C2 zugespeist. Das Sumpfprodukt der Trennkolonne T2, eine CH₄-reiche Fraktion, wird über Leitung 8 und Entspannungs­ ventil g der Leitung 6 beigemischt. Ein Teil des Sumpfproduktes der Trennsäule T2 wird nach partieller Verdampfung im Wärmetau­ scher E3 über Leitung 8′ der Trennsäule T2 als Heizung aufge­ geben.At the head of the separator D2, an H₂-rich, CO-containing, gaseous fraction is drawn off via line 10 , expanded in valve c and beige 6 to be described line mixes. The CO-rich condensate obtained in the separator D1 is released after relaxation in the valve a via line 5 to the top of the separation column T1. The separation column T1 works at a pressure of 6.5 bar, the top temperature being -185 ° C and the bottom temperature -168 ° C. In addition, the CO-rich condensate from the separator D2, which is supplied via line 11 after expansion in the valve b, is fed into the center of the separating column T1. The CO-rich condensate from separator D2 is lower in CH₄ than the CO-rich condensate from separator D1. By feeding the CO-rich condensate from the separator D2 via line 11 into the separation column T1, even more CO can be backwashed and recovered in this. At the top of the separation column T1, an H₂-rich gaseous fraction is drawn off via line 6 , the pressure in valve d is relaxed and the hydrogen product stream in line 3 is mixed with process streams to be cooled in the heat exchangers E2 and E1 after prior heating in indirect heat exchange. The bottom of the separation column T1 is divided. A first part is partially evaporated via line 7 'in the heat exchanger E2 and given as a heater in the separation column T1. A second part is relaxed in the valve e and fed via line 7 of the CO / CH₄ separation column T2 as an intermediate reflux. A third part is expanded in the valve f, completely evaporated in the heat exchanger E2 and passed via line 7 '' as an intermediate heater to the CO / CH₄ separation column T2. The separation column T2 works at a pressure of 3.1 bar, the head temperature being -180 ° C and the bottom temperature -157 ° C. From the separation column T2, CO with product purity is drawn off at the top via line 9 , heated in the heat exchangers E3 and E1 and fed to the compressor C2. The bottom product of the separation column T2, a CH₄-rich fraction, is added to line 6 via line 8 and expansion valve g. Part of the bottom product of the separation column T2 will give up after partial evaporation in the heat exchanger E3 via line 8 'of the separation column T2 as a heater.
Bei dieser Verfahrensweise wird zur Kälteerzeugung ein zusätz­ licher CO-Kreislauf benötigt. Dazu wird auf der Druckseite des Verdichters C2 vom Kohlenmonoxid-Produkt in Leitung 12 ein Teilstrom über Leitung 13 abgezogen und im Wärmetauscher E1 abgekühlt. Dieser Teilstrom wird nun abermals in einen ersten Strom (Leitung 14) geteilt, der in der Turbine X kälteleistend entspannt und anschließend über die Leitungen 14′ und 16 wieder der ersten Stufe der Verdichter C1 zugeführt wird. Ein zweiter Strom wird über Leitung 15 in den Wärmetauscher E2 geführt, in ihm abgekühlt und abermals in zwei Teilströme aufgeteilt. Der eine Teilstrom wird im Ventil i entspannt und über Leitung 17 der CO/CH₄-Trennkolonne T2 als Rücklauf aufgegeben. Der andere Teilstrom des über Leitung 15 herangeführten CO-reichen Produktteilstromes wird im Ventil h auf ca. 1.8 bar entspannt und bildet so die Spitzenkälte für das Verfahren. Er wird nach seiner Entspannung über Leitung 16 den Wärmetauschern E2 und E1 zugeführt, dabei im Wärmetauscher E2 verdampft und im Wärme­ tauscher E1 angewärmt, und anschließend der untersten Verdich­ terstufe C1 zugeführt.With this procedure, an additional CO cycle is required for cooling. For this purpose, a partial stream is drawn off from the carbon monoxide product in line 12 on the pressure side of the compressor C2 via line 13 and cooled in the heat exchanger E1. This partial flow is now again divided into a first flow (line 14 ), which relaxes in the turbine X in a cold-performing manner and is then fed again via lines 14 'and 16 to the first stage of the compressor C1. A second stream is fed via line 15 into the heat exchanger E2, cooled in it and again divided into two partial streams. One of the partial streams is expanded in valve i and fed as a return via line 17 of the CO / CH₄ separation column T2. The other partial flow of the CO-rich product partial flow introduced via line 15 is expanded to approximately 1.8 bar in valve h and thus forms the peak cold for the process. It is fed to the heat exchangers E2 and E1 after its relaxation via line 16 , thereby evaporating in the heat exchanger E2 and heated in the heat exchanger E1, and then fed to the lowest compression stage C1.
Fig. 2 zeigt schematisch ein Verfahren zur Gewinnung eines hochreinen Kohlenmonoxid-Produktstromes und eines Wasserstoff- Produktstromes durch Zerlegung eines CO₂-freien H₂/CO-Roh­ gasgemisches aus einem Partiellen-Oxidations-Prozeß. Eine der­ artige Verfahrensführung macht für Anlagen mit einer Tagespro­ duktion von mehr als 5000 Nm³/h CO Sinn. Solch ein Verfahren liefert einen Kohlenmonoxid-Produktstrom mit einer sogenannten Essigsäurereinheit, also mit mindestens 98.5% CO. Fig. 2 shows schematically a method for obtaining a high-purity carbon monoxide product stream and a hydrogen product stream by decomposing a CO₂-free H₂ / CO raw gas mixture from a partial oxidation process. Such a procedure makes sense for systems with a daily production of more than 5000 Nm³ / h CO. Such a process provides a carbon monoxide product stream with a so-called acetic acid unit, i.e. with at least 98.5% CO.
Im Gegensatz zu dem in Fig. 1 beschriebenen Verfahren weist diese Ausgestaltung des erfindungsgemäßen Verfahrens eine zusätzliche Trennkolonne T3 auf. Die Trennsäule T3 arbeitet bei einem Druck von 10.0 bar, wobei die Kopftemperatur -184°C und die Sumpftemperatur -164°C beträgt. Die Trennsäulen T1 und T2 arbeiten hierbei bei Drücken von 8.0 bzw. 3.0 bar, wobei die Kopftemperaturen -185°C bzw. -180°C und die Sumpftemperaturen -167°C bzw. -163°C betragen. Der Trennsäule T3 wird das CO-reiche Kondensat des Abscheiders D2 über Leitung 11 und Ent­ spannungsventil b als Rücklauf zugeführt. Die am Kopf der Trennsäule T3 anfallende H₂-reiche Fraktion wird im Ventil k entspannt und über Leitung 18 der H₂-reichen Fraktion in Leitung 6 beigemischt. Am Sumpf der Trennkolonne T3 wird über Leitung 19 ein CO-Produkt(neben)strom abgezogen, im Ventil l entspannt und nach Verdampfung und Anwärmung in den Wärmetau­ schern E2 und E1 der untersten Stufe des Verdichters C1 Zuge­ führt. Ein Teil der Sumpffraktion der Trennkolonne T3 wird im Wärmetauscher E3 teilweise verdampft und über Leitung 19′ als Heizung in die Trennsäule T3 gegeben. Der für diese Verfahrens­ führung benötigte Kältebedarf wird durch über Leitung 21 be­ reitgestellten flüssigen Stickstoff, der in den Wärmetauschern E2 und E1 im indirekten Wärmetausch mit abzukühlenden Verfah­ rensströmen erwärmt und verdampft wird, gedeckt.In contrast to the process described in FIG. 1, this embodiment of the process according to the invention has an additional separation column T3. The T3 separation column works at a pressure of 10.0 bar, the top temperature being -184 ° C and the bottom temperature being -164 ° C. The separating columns T1 and T2 work at pressures of 8.0 and 3.0 bar, the head temperatures being -185 ° C and -180 ° C and the bottom temperatures being -167 ° C and -163 ° C. The separation column T3 is the CO-rich condensate of the separator D2 via line 11 and Ent voltage valve b fed as a return. The H₂-rich fraction obtained at the top of the separation column T3 is relaxed in the valve k and added via line 18 to the H₂-rich fraction in line 6 . At the bottom of the separation column T3, a CO product is drawn off (line) via line 19 , expanded in valve 1 and, after evaporation and heating in the heat exchangers E2 and E1, leads to the lowest stage of the compressor C1 train. Part of the bottom fraction of the separation column T3 is partially evaporated in the heat exchanger E3 and given via line 19 'as a heater in the separation column T3. The cooling required for this process management is covered by line 21 be provided liquid nitrogen, which is heated and evaporated in the heat exchangers E2 and E1 in indirect heat exchange with processes to be cooled and evaporated.
Die beiden nachfolgenden Tabellen 1 bzw. 2 geben beispielhaft Temperaturen, Drücke und Zusammensetzungen der Gasgemische in den mit Bezugszeichen versehenen Leitungen der Fig. 1 bzw. 2 an. The two tables 1 and 2 below give examples of temperatures, pressures and compositions of the gas mixtures in the lines with the reference numerals in FIGS. 1 and 2.
Tabelle 1 (Fig. 1) Table 1 ( Fig. 1)
Tabelle 2 (Fig. 2) Table 2 ( Fig. 2)

Claims (6)

1. Verfahren zur Gewinnung eines hochreinen Kohlenmonoxid- Produktstromes und eines Wasserstoff-Produktstromes durch Zerlegung eines weitgehend trockenen und CO₂-freien H₂/CO-Rohgasgemisches mittels einstufiger partieller Kondensation und anschließender Tieftemperaturfraktionier­ ung des bei der partiellen Kondensation gebildeten CO-rei­ chen Kondensats, dadurch gekennzeichnet, daß die bei der partiellen Kondensation gebildete gasförmige H₂-angerei­ cherte, CO-enthaltende Fraktion in einer Membrantrennein­ heit in einen Wasserstoff-Produktstrom und in eine H₂-arme, CO-enthaltende Fraktion aufgetrennt und die H₂-arme, CO-enthaltende Fraktion der Tieftemperaturfrak­ tionierung zur Gewinnung des noch in ihr enthaltenen Kohlenmonoxids zugeführt wird.1. A process for the production of a high-purity carbon monoxide product stream and a hydrogen product stream by decomposing a largely dry and CO₂-free H₂ / CO raw gas mixture by means of one-stage partial condensation and subsequent low-temperature fractionation of the CO-rich condensate formed in the partial condensation, thereby characterized in that the gaseous H₂-enriched, CO-containing fraction formed in the partial condensation is separated in a membrane separation unit into a hydrogen product stream and into a H₂-poor, CO-containing fraction and the H₂-poor, CO-containing fraction the cryogenic fractionation is fed to recover the carbon monoxide still contained in it.
2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß die bei der partiellen Kondensation gebildete gasförmige H₂-angereicherte, CO-enthaltende Fraktion vor ihrer Zuleitung in die Membrantrenneinheit im indirekten Wärmetausch mit abzukühlenden Verfahrensströmen angewärmt wird. 2. The method according to claim 1, characterized in that the gaseous gases formed in the partial condensation H₂-enriched, CO-containing fraction before being fed into the membrane separation unit in indirect heat exchange with process streams to be cooled is heated.  
3. Verfahren nach den Ansprüchen 1 oder 2, dadurch gekenn­ zeichnet, daß die Membrantrenneinheit kaskadenartig ausge­ legt ist.3. The method according to claims 1 or 2, characterized records that the membrane separation unit cascaded out sets is.
4. Verfahren nach einem der Ansprüche 1 bis 3, dadurch gekenn­ zeichnet, daß die von der Membrantrenneinheit in die Tief­ temperaturfraktionierung geführte, H₂-arme, CO-enthal­ tende Fraktion partiell kondensiert, die bei der partiellen Kondensation gebildete gasförmige H₂-angereicherte Frak­ tion aus dem Verfahren abgeführt, das CO-reiche Kondensat dieser partiellen Kondensation zusammen mit dem CO-reichen Kondensat der der Membrantrenneinheit vorgeschalteten partiellen Kondensation in einer ersten Trennsäule von Wasserstoff und in einer zweiten Trennsäule von Methan befreit und vom Kopf der zweiten Trennsäule ein hochreiner Kohlenmonoxid-Produktstrom abgezogen wird.4. The method according to any one of claims 1 to 3, characterized records that from the membrane separation unit in the deep temperature fractionation, low-H₂, CO-containing Partial condensing fraction, which in the partial Condensation formed gaseous H₂-enriched Frak tion removed from the process, the CO-rich condensate this partial condensation together with the CO-rich Condensate upstream of the membrane separation unit partial condensation in a first separation column from Hydrogen and in a second column of methane freed and a highly pure from the head of the second column Carbon monoxide product stream is withdrawn.
5. Verfahren nach einem der Ansprüche 1 bis 3, dadurch gekenn­ zeichnet, daß die von der Membrantrenneinheit in die Tief­ temperaturfraktionierung geführte, H₂-arme, CO-enthal­ tende Fraktion partiell kondensiert, die bei der partiellen Kondensation gebildete gasförmige H₂-angereicherte Frak­ tion aus dem Verfahren abgeführt, das CO-reiche Kondensat dieser partiellen Kondensation in einer Trennsäule von Wasserstoff befreit und die vom Kopf dieser Trennsäule abgezogene hochreine Kohlenmonoxid-Fraktion dem bei der Tieftemperaturfraktionierung gewonnenen hochreinen Kohlenmonoxid-Produktstrom zugemischt wird.5. The method according to any one of claims 1 to 3, characterized records that from the membrane separation unit in the deep temperature fractionation, low-H₂, CO-containing Partial condensing fraction, which in the partial Condensation formed gaseous H₂-enriched Frak tion removed from the process, the CO-rich condensate this partial condensation in a separation column from It frees hydrogen and that from the top of this column deducted high-purity carbon monoxide fraction in the Cryogenic fractionation obtained high purity Carbon monoxide product stream is added.
6. Verfahren nach einem der Ansprüche 4 oder 5, dadurch ge­ kennzeichnet, daß der bzw. die in der Tieftemperaturfrak­ tionierung gewonnenen Kohlenmonoxid-Produktströme vor ihrer Abgabe im indirekten Wärmetausch mit abzukühlenden Verfah­ rensströmen angewärmt und/oder ein- oder mehrstufig ver­ dichtet werden.6. The method according to any one of claims 4 or 5, characterized ge indicates that the or in the low-temperature fracture tionation obtained carbon monoxide product streams before their Delivery in indirect heat exchange with process to be cooled flow heated and / or one or more stages be sealed.
DE4325513A 1993-06-17 1993-07-29 Process for producing a highly pure carbon monoxide product stream and a hydrogen product stream Ceased DE4325513A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
DE4320020 1993-06-17
DE4325513A DE4325513A1 (en) 1993-06-17 1993-07-29 Process for producing a highly pure carbon monoxide product stream and a hydrogen product stream

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE4325513A DE4325513A1 (en) 1993-06-17 1993-07-29 Process for producing a highly pure carbon monoxide product stream and a hydrogen product stream

Publications (1)

Publication Number Publication Date
DE4325513A1 true DE4325513A1 (en) 1994-12-22

Family

ID=6490516

Family Applications (1)

Application Number Title Priority Date Filing Date
DE4325513A Ceased DE4325513A1 (en) 1993-06-17 1993-07-29 Process for producing a highly pure carbon monoxide product stream and a hydrogen product stream

Country Status (1)

Country Link
DE (1) DE4325513A1 (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5632162A (en) * 1995-06-15 1997-05-27 L'air Liquide, Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude Carbon monoxide production plant incorporating a cryogenic separation unit
FR2780391A1 (en) * 1998-06-26 1999-12-31 Air Liquide Process for producing carbon monoxide
EP0979982A1 (en) * 1998-08-12 2000-02-16 Air Products And Chemicals, Inc. Combined cryogenic and non-cryogenic gas mixture separation
EP1724542A1 (en) * 2005-05-10 2006-11-22 Linde Aktiengesellschaft Process and device for the recovery of products from synthesis gas
EP1729077A1 (en) 2005-06-03 2006-12-06 Linde Aktiengesellschaft Process and device for the recovery of products from synthesis gas
EP1762294A2 (en) 2005-09-07 2007-03-14 The Boc Group, Inc. Gas purification
DE102007056625B3 (en) * 2007-11-23 2008-09-04 Lurgi Gmbh Method for treating a process gas stream containing carbon dioxide during the production of pure synthesis gas from crude comprises compressing contaminated carbon dioxide and removing the impurities by stripping
WO2012048078A1 (en) * 2010-10-06 2012-04-12 L'air Liquide Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude Carbon dioxide removal process
EP2192365A3 (en) * 2008-11-29 2012-09-26 Linde AG Process for minimising recycle gases in a condensation process
FR3011320A1 (en) * 2013-10-02 2015-04-03 Air Liquide Method and apparatus for separation by cryogenic distillation of a mixture comprising hydrogen, carbon monoxide and methane
WO2018039313A1 (en) * 2016-08-25 2018-03-01 Praxair Technology, Inc. Process and apparatus for producing carbon monoxide
WO2018072888A1 (en) * 2016-10-20 2018-04-26 Linde Aktiengesellschaft Method and device for the cryogenic decomposition of syngas

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5632162A (en) * 1995-06-15 1997-05-27 L'air Liquide, Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude Carbon monoxide production plant incorporating a cryogenic separation unit
FR2780391A1 (en) * 1998-06-26 1999-12-31 Air Liquide Process for producing carbon monoxide
EP0968959A1 (en) * 1998-06-26 2000-01-05 L'air Liquide, Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude Process for the production of carbon monoxide
US6173585B1 (en) 1998-06-26 2001-01-16 L'air Liquide, Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude Process for the production of carbon monoxide
US6161397A (en) * 1998-08-12 2000-12-19 Air Products And Chemicals, Inc. Integrated cryogenic and non-cryogenic gas mixture separation
EP0979982A1 (en) * 1998-08-12 2000-02-16 Air Products And Chemicals, Inc. Combined cryogenic and non-cryogenic gas mixture separation
CN1907849B (en) * 2005-05-10 2011-03-30 林德股份公司 Process and device for the recovery of products from synthesis gas
EP1724542A1 (en) * 2005-05-10 2006-11-22 Linde Aktiengesellschaft Process and device for the recovery of products from synthesis gas
EP1729077A1 (en) 2005-06-03 2006-12-06 Linde Aktiengesellschaft Process and device for the recovery of products from synthesis gas
EP1762294A2 (en) 2005-09-07 2007-03-14 The Boc Group, Inc. Gas purification
DE102007056625B3 (en) * 2007-11-23 2008-09-04 Lurgi Gmbh Method for treating a process gas stream containing carbon dioxide during the production of pure synthesis gas from crude comprises compressing contaminated carbon dioxide and removing the impurities by stripping
EP2192365A3 (en) * 2008-11-29 2012-09-26 Linde AG Process for minimising recycle gases in a condensation process
WO2012048078A1 (en) * 2010-10-06 2012-04-12 L'air Liquide Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude Carbon dioxide removal process
US8911535B2 (en) 2010-10-06 2014-12-16 L'air Liquide Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude Carbon dioxide removal process
FR3011320A1 (en) * 2013-10-02 2015-04-03 Air Liquide Method and apparatus for separation by cryogenic distillation of a mixture comprising hydrogen, carbon monoxide and methane
WO2018039313A1 (en) * 2016-08-25 2018-03-01 Praxair Technology, Inc. Process and apparatus for producing carbon monoxide
KR20190040272A (en) * 2016-08-25 2019-04-17 프랙스에어 테크놀로지, 인코포레이티드 Method and apparatus for generating carbon monoxide
KR102217256B1 (en) 2016-08-25 2021-02-17 프랙스에어 테크놀로지, 인코포레이티드 Method and apparatus for producing carbon monoxide
WO2018072888A1 (en) * 2016-10-20 2018-04-26 Linde Aktiengesellschaft Method and device for the cryogenic decomposition of syngas

Similar Documents

Publication Publication Date Title
EP0299364B1 (en) Process and apparatus for air separation by rectification
DE3217366C2 (en)
DE10226209B4 (en) Plant and process for the production and decomposition of synthesis gases from natural gas
EP1648817B1 (en) Method for extracting hydrogen from a gas containing methane, especially natural gas and system for carrying out said method
US5538536A (en) Process and apparatus for separation of a gaseous mixture by successive membranes of different selectivities
US5351491A (en) Process for obtaining high-purity hydrogen and high-purity carbon monoxide
US4311496A (en) Preliminary condensation of methane in the fractionation of a gaseous mixture
CA2015458C (en) Low temperature air fractionation accommodating variable oxygen demand
EP0093448B1 (en) Process and apparatus for obtaining gaseous oxygen at elevated pressure
EP2556024B1 (en) Hydrogen and nitrogen recovery from ammonia purge gas
US4133662A (en) Production of high pressure oxygen
US5098457A (en) Method and apparatus for producing elevated pressure nitrogen
US3143406A (en) System for conducting heat exchange operations in a gas separation apparatus incorporating periodically reversible regenerators
US4962646A (en) Air separation
EP0377117B1 (en) Air separation process and apparatus
CA1164334A (en) Method of producing gaseous oxygen and a cryogenic plant in which said method can be performed
DE102005051952B3 (en) Preparing methane and liquid carbon dioxide from biogas, comprises contacting prepurified biogas; absorbing carbon dioxide by wash solution; compressing obtained detergent; supplying to desorption column; and condensing carbon dioxide
DE19526785C1 (en) Method and device for the variable production of a gaseous printed product
US3426543A (en) Combining pure liquid and vapor nitrogen streams from air separation for crude hydrogen gas washing
DE69801462T3 (en) Cryogenic air separation with warm turbine return
EP0955509B1 (en) Process and apparatus to produce high purity nitrogen
US6048508A (en) Process for obtaining carbon monoxide and hydrogen
DE60113070T2 (en) PROCESS FOR PREPARING CARBON MONOXIDE WITH AN APPROPRIATE CATALYST BY INVERTED CONVERSION
EP1337466B1 (en) Method for producing ammonia on the basis of a nitrogen-hydrogen mixture from natural gas
DE69908531T2 (en) Method and device for improving the recovery of carbon dioxide

Legal Events

Date Code Title Description
8110 Request for examination paragraph 44
8131 Rejection