DE4309056A1 - Method for determining the distance and intensity of scattering of the scattering points - Google Patents

Method for determining the distance and intensity of scattering of the scattering points

Info

Publication number
DE4309056A1
DE4309056A1 DE19934309056 DE4309056A DE4309056A1 DE 4309056 A1 DE4309056 A1 DE 4309056A1 DE 19934309056 DE19934309056 DE 19934309056 DE 4309056 A DE4309056 A DE 4309056A DE 4309056 A1 DE4309056 A1 DE 4309056A1
Authority
DE
Germany
Prior art keywords
scattering
distance
spectrum
method
interferometer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
DE19934309056
Other languages
German (de)
Other versions
DE4309056B4 (en
Inventor
Gerd Prof Dr Haeusler
Juergen Herrmann
Jochen Neumann
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Carl Zeiss Meditec AG
Original Assignee
Haeusler Gerd
Juergen Herrmann
Jochen Neumann
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Haeusler Gerd, Juergen Herrmann, Jochen Neumann filed Critical Haeusler Gerd
Priority to DE19934309056 priority Critical patent/DE4309056B4/en
Publication of DE4309056A1 publication Critical patent/DE4309056A1/en
Application granted granted Critical
Publication of DE4309056B4 publication Critical patent/DE4309056B4/en
Anticipated expiration legal-status Critical
Application status is Expired - Lifetime legal-status Critical

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical means
    • G01B11/02Measuring arrangements characterised by the use of optical means for measuring length, width or thickness
    • G01B11/026Measuring arrangements characterised by the use of optical means for measuring length, width or thickness by measuring distance between sensor and object
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B9/00Instruments as specified in the subgroups and characterised by the use of optical measuring means
    • G01B9/02Interferometers for determining dimensional properties of, or relations between, measurement objects
    • G01B9/02001Interferometers for determining dimensional properties of, or relations between, measurement objects characterised by manipulating or generating specific radiation properties
    • G01B9/02007Two or more frequencies or sources used for interferometric measurement
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B9/00Instruments as specified in the subgroups and characterised by the use of optical measuring means
    • G01B9/02Interferometers for determining dimensional properties of, or relations between, measurement objects
    • G01B9/02041Interferometers for determining dimensional properties of, or relations between, measurement objects characterised by particular imaging or detection techniques
    • G01B9/02044Imaging in the frequency domain, e.g. by using a spectrometer
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B9/00Instruments as specified in the subgroups and characterised by the use of optical measuring means
    • G01B9/02Interferometers for determining dimensional properties of, or relations between, measurement objects
    • G01B9/0209Non-tomographic low coherence interferometers, e.g. low coherence interferometry, scanning white light interferometry, optical frequency domain interferometry or reflectometry
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Detecting, measuring or recording for diagnostic purposes; Identification of persons
    • A61B5/0059Detecting, measuring or recording for diagnostic purposes; Identification of persons using light, e.g. diagnosis by transillumination, diascopy, fluorescence
    • A61B5/0062Arrangements for scanning
    • A61B5/0066Optical coherence imaging

Abstract

Published without abstract.

Description

Gegenstand der Patentanmeldung ist ein optisches Verfahren, mit dem die Entfernung zu einem oder mehreren beleuchteten streuenden Objektpunkten mit hoher Genauigkeit bestimmt werden kann. The subject of the patent application is an optical method with which the distance can be determined at one or more illuminated scattering object points with high accuracy. Solche Verfahren sind wichtig für die automatisierte Vermessung von Objektoberflächen (Form-Messung). Such methods are important for the automated measurement of object surfaces (shape measurement). Das Verfahren kann aber auch eingesetzt werden, um Volumenstreuer zu vermessen, wenn Licht in das zu vermessende Objekt eindringen kann. The method can also be used to measure volume scattering when light can penetrate into the object to be measured. Dies ist z. This is for. B. in der medizinischen Gewebediagnostik wichtig. As important in medical tissue diagnostics.

Es sind in der Literatur viele Abstandssensoren beschrieben (z. B. zusammenfassend bei T. Strand, "Optics for Machine Vision", Proc, SPIE 456 (1984). Die meisten beruhen auf Triangulation mit strukturierter Beleuchtung entweder inkohärent oder kohärent. Diese Methoden haben den Nachteil, daß abgeschattete Bereiche auftreten, durch den Triangulationswinkel. Von kohärenten Verfahren ist bekannt, daß die Tiefengenauigkeit durch die Beobachtungsapertur begrenzt ist (G. Häusler, "Physical Limits of 3D-Sensing" Proc. SPIE 1822 (1992)). Es sind auch einige Verfahren bekannt, die diese Beschränkung nicht haben (A. Fercher, et al "Rough surface interferometry with a tow-wavelength heterodyne speckle interferometer" Appl. Opt. 24 (1985) p. 2181. T. Dresel, G. Häusler, "Three dimensional sensing of rough surfaces by coherence radar", Appl. Opt. 31 (1992) p. 919). There are in the literature many distance sensors described (eg. As summarized in T. beach, "Optics for Machine Vision", Proc, SPIE 456 (1984). Most are based on triangulation with structured illumination either incoherent or coherent. These methods the disadvantage that shaded areas occur through the triangulation of coherent method. It is known that the depth accuracy is limited by the observation aperture (G. Haeusler, "Physical limits of 3D Sensing" Proc. SPIE 1822 (1992)). There are some methods are known which do not have this restriction (A. Fercher, et al "Rough surface interferometry with a tow-wavelength speckle heterodyne interferometer," Appl. opt. 24 (1985) p. 2181. T. Dresel, G. Haeusler, "Three dimensional sensing of rough surfaces by coherence radar", opt. Appl. 31 (1992) p. 919).

Eine medizinische Anwendung zur Gewebediagnostik im Volumen wurde beschrieben von D. Huang et al. A medical application for tissue diagnosis in the volume described by D. Huang et al. "Micron resolution ranging of cornea Anterieor chamber by optical reflectometry" Lasers in Surgery and medicine Vol 11. (1991) p. "Micron resolution ranging of cornea Anterieor chamber by optical reflectometry" Lasers in Surgery and medicine Vol 11 (1991) p. 419. Diese Methoden arbeiten nicht mit kohärentem Licht, erfordern aber komplizierte Heterodyn-Technologie oder mechanische Bewegung, um das Objekt in der Tiefe abzutasten. 419. These methods do not work with coherent light, but require complex heterodyne technology or mechanical motion to scan the object in depth.

Gegenstand der Anmeldung ist ein Verfahren, das ohne mechanische Abtastung und ohne Heterodyn-Technologie auskommt. Subject of the application is a method that does not require mechanical scanning and without heterodyne technology. Es beruht auf der Weißlichtinterferometrie, wie in der Deutschen Patentschrift von G. Häusler "Verfahren und Einrichtung zur berührungslosen Erfassung der Oberflächengestalt von diffus streuenden Objekten" 4108994 (1991) beschrieben. It is based on the described white light interferometry, as disclosed in German Patent G. Haeusler "Method and device for contactless detection of the surface configuration of diffusely scattering objects" 4108994 (1991). Die Anordnung ist ein Interferometer. The arrangement is an interferometer. Zur Erklärung wird ein Michelson-Interferometer benutzt, aber auch andere Interferometer sind geeignet. To explain a Michelson interferometer is used, but other interferometers are suitable. Die Anordnung ist in Fig. 1 skizziert. The arrangement is sketched in FIG. 1.

Das Objekt 1 steht in einem Interferometerarm. The object 1 is in an interferometer. Es wird über den Teilerspiegel 2 und Linsen 7 , 8 mit einer breitbandigen Lichtquelle 3 , z. It is via the divider mirror 2 and lenses 7, 8 with a broadband light source 3, for example. B. einer Glühlampe oder einer Superlumineszenzdiode beleuchtet. As an incandescent lamp or a super luminescent diode illuminates. Gleichzeitig wird der Referenzarm 4 über den Teilerspiegel 2 beleuchtet. Simultaneously, the reference arm 4 is illuminated via the splitter mirror. 2 Über den Referenzspiegel 5 und den Teilerspiegel 2 kommt das Referenzlicht zurück und vereinigt sich mit dem vom Objekt 1 rückgestreuten Licht am Ausgang 6 des Interferometers. About the reference mirror 5 and the beam splitter 2, the reference light comes back and combined with the back scattered light from the object 1 at the output 6 of the interferometer. Dort wird das Licht mit Hilfe eines Spektralapparates 9 , 10 in Farben zerlegt. There, the light is separated with the aid of a spectral 9, 10 colors. Das Spektrum wird mit Hilfe eines ortsempfindlichen Photoempfängers 11 , z. The spectrum is measured using a position-sensitive photodetector 11, for. B. einer Photodiodenzeile aufgefangen und in einer Auswerteeinheit 12 , z. B. a row of photodiodes and collected in an evaluation unit 12, for example. B. einem Computer, ausgewertet. As a computer evaluated.

Aus dem Spektrum läßt sich nun die Entfernung eines oder mehrerer streuender Punkte ermitteln. Now the removal of one or more stray points can be determined from the spectrum. Es läßt sich sogar die Intensitätsverteilung der Rückstreuung in einem Volumenstreuer ermitteln. It is possible to determine even the intensity distribution of backscatter in a volume spreader. Hierzu werden die sog. Müller'schen Streifen ausgewertet. For this, the so-called. Müller'schen strips are evaluated.

Zunächst wird die Auswertung für einen Objektpunkt, der in der Entfernung z gegenüber der Referenzebene 13 mit einerr Intensität i(z) streut, erklärt. First, the evaluation for an object point, of the scatters at the distance z from the reference plane 13 with einerr intensity i (z) will be explained.

Das Spektrum für diesen Punkt hat eine Intensitätsverteilung The range for this point has an intensity distribution

I(k,z) = 1+i(z)cos(2kz+ϕ). I (k, z) = 1 + i (z) cos (φ + 2kz).

Dabei ist k die Wellenzahl im Spektrum, ϕ ist eine Zufallsphase, die darauf beruht, daß man Speckle beobachtet, ϕ hängt aber nur schwach von k ab und kann deshalb hier vernachlässigt werden. Here k is the wave number in the spectrum, φ is a random phase, which is based on the fact that observed speckle, but φ depends only weakly on k, and therefore can be neglected.

Das Spektrum ist also mit der Ortsfrequenz "z" moduliert. The spectrum is thus modulated with the spatial frequency "z". Die entstehenden hellen und dunklen Streifen bezeichnet man als Müller'sche Streifen. The resulting light and dark fringes is known as Müller'sche strips. Man braucht also nur die Ortsfrequenz zu bestimmen, um die Entfernung des streuenden Punktes zu bestimmen. So you need to determine only the spatial frequency to determine the distance of the scattering point. Dies ist aber bei rauhen Objekten nur möglich, wenn bestimmte Bedingungen eingehalten werden, die in der Deutschen Patentschrift 4108944 von G. Häusler beschrieben werden: es handelt sich hier nicht um ein konventionelles Interferometer mit spiegelnden Oberflächen, sondern in einem Arm befindet sich ein diffus streuendes Objekt. But this is only possible with rough objects, if certain conditions are met, which are described in German Patent No. 4108944 by G. Häusler: it is not about a conventional interferometer with reflective surfaces, but in one arm is a diffusely scattering Object. Daraus folgt: die Lichtquelle muß räumlich so kohärent sein, daß im rückgestreuten Licht Speckle entstehen. It follows that: the light source must be spatially coherent so that arise in the back-scattered light speckle. Denn nur dann ist Interferenz möglich. Because only then interference is possible. Denn nur innerhalb eines Speckles ist die Phase annähernd konstant. Because only within a speckles the phase is approximately constant. Weiterhin darf jede Photodiode des Empfängerarrays nicht größer als der Speckledurchmesser sein, da sonst kein oder nur geringer Interferenzkontrast sichtbar ist. Further, each photodiode of the receiver array should not be larger than the Speckledurchmesser, otherwise no or little interference contrast is visible.

Die Ermittlung der Frequenz "z" der Müller-Streifen erfolgt zweckmäßig durch Fourier-Transformation des Farbspektrums nach der Variablen k. The determination of the rate "z" of the Mueller strips suitably by Fourier transformation of the color spectrum for the variable k. Aber es ist auch eine direkte Bestimmung der Periodenlänge im Photodiodensignal möglich. But it is also a direct determination of the period length in the photodiode signal possible. Dies ist einfacher und schneller, wenn nur wenige Objektpunkte streuen. This is easier and faster if sprinkle a few object points.

Ein enormer Vorteil des Verfahrens ist, daß die Genauigkeit der Abstandsbestimmung unabhängig von der Beobachtungsapertur ist. is a tremendous advantage of the method is that the accuracy of the distance measurement is independent of the observation aperture. Dies ist nicht der Fall bei rein kohärenten Methoden und bei fast allen kommerziellen Sensoren. This is not the case with purely coherent methods and in almost all commercial sensors.

Das Verfahren kann auch die Entfernung vieler im Volumen liegender Punkte, in verschiedenen Abständen z, bestimmen, die jeweils mit der Intensität i(z) streuen. The method may also include the removal of many lying in the volume of points at different distances z, determine the scatter in each case to the intensity i (z). Auf der Photodiodenzeile in der Spektralebene überlagern sich die Signale aus der gesamten Tiefe. On the photodiode array in the spectral plane, the signals from the entire depth of overlap. Deshalb sieht die Zeile das Signal Therefore, the line looks like the signal

I(k) = ∫ (1+i(z) cos(2kz)) dz I (k) = ∫ (1 + i (z) cos (2kz)) dz

Die "1" im Integranden belastet die Dynamik des Empfängers, ist jedoch für die Messung unwesentlich. The "1" in the integrand charged the dynamics of the receiver, however, is immaterial to the measurement. Im wesentlichen ist das Spektrum I(k) die Fouriertransformierte von i(z). Is substantially the spectrum I (k) is the Fourier transform of i (z). Durch Fourier-Rück-Transformation des Signals nach k läßt sich i(z) rückgewinnen. By inverse Fourier transform of the signal by k can be i (z) recover. Damit ist diese Methode eine echte tomographische Methode. Thus, this method is a true tomographic method.

Das Signal-Rausch-Verhältnis ist günstig, weil das gesamte Signal der Photodiodenzeile nur nach einzelnen Frequenzen durchsucht wird, mit der Fourier-Transformation. The signal-to-noise ratio is favorable because the entire signal from the photodiode array is searched by individual frequencies of the Fourier transform. Es sind keine mechanisch bewegten Teile nötig. There are no moving parts needed. Die Belichtungszeit kann kurz sein und damit biologische Aktivität oder Bewegung ausblenden. The exposure time may be short and thereby hide biological activity or movement.

Sie ist anwendbar auf industrielle Objekte, z. It is applicable to industrial objects such. B. Blick in durchscheinende Keramik, ebenso wie für biologische Objekte, z. B. View of translucent ceramic, as well as for biological objects such. B. Untersuchung auf subkutane Hautveränderungen, Brusttumore, etc. B. Investigation of subcutaneous lesions, breast tumors, etc.

Das Verfahren ist auch erweiterbar, durch "Lichtquellen" in anderen Spektralbereichen, die das zu untersuchende Material durchdringen können. The process is also extended by "light sources" in other spectral regions, which can penetrate the material to be examined. Zum Beispiel Röntgenquellen, UV-Quellen, Infrarotquellen, Ultraschallquellen. For example, X-ray sources, UV sources, infrared sources, ultrasound sources.

Das Verfahren läßt sich nicht nur entlang einer Achse 14 anwenden, sondern man kann auch einen Schnitt senkrecht zur Zeichenebene und der Achse 14 der Fig. 1 parallel vermessen. The process can be not only along an axis 14 to apply, but one can also measure a section perpendicular to the drawing plane and the axis 14 of FIG. 1 in parallel. Dazu ist nur notwendig, nicht nur einen Punkt des Objektes zu beleuchten, sondern gleichzeitig eine Linie senkrecht zur Zeichenebene. For this is only necessary not only to illuminate a point of the object, but also a line perpendicular to the plane. Dann muß als Empfänger statt eines linienhaften Photodiodenarrays ein flächenhaftes Array verwendet werden. Then a planar array must be used as a receiver instead of a line-type photodiode arrays.

Eine weitere Modifikation ist in Fig. 2 beschrieben. Another modification is described in Fig. 2. Die Fig. 2 ist ähnlich wie Fig. 1. Aber es ist zusätzlich in einem Interferometerarm (hier als Beispiel der Referenzarm) ein Dispersion einführendes Element, hier beispielsweise eine Planplatte 15 , eingefügt. FIG. 2 is similar to Fig. 1. However, it is also in a dispersion interferometer an introductory element, here for example a plane plate 15 is inserted (here as an example of the reference arm). Diese Platte 15 bewirkt, daß das Spektrum am Ausgang des Interferometers eine charakteristische Intensitätsverteilung erhält, die vom Abstand z des Streupunktes abhängt. This plate 15 causes the spectrum obtained a characteristic intensity distribution at the output of the interferometer, which depends on the distance z of the scattering point. Die Auswertung der Intensitätsverteilung ergibt mit hoher Genauigkeit den Abstand. The evaluation of the intensity distribution provides the distance with high accuracy.

Die Dispersion bewirkt, daß das Interferometer nur für eine bestimmte Wellenzahl k₀ abgeglichen ist, nämlich für die Wellenzahl, bei der die optische Weglänge im Referenzarm und im Objektarm gleich ist. The dispersion causes the interferometer is balanced k₀ only for a specific wave number, namely the shaft speed at which the optical path length in the reference arm and the object arm in the same. Das Spektrum I(k) hat folgenden Verlauf: The spectrum I (k) has the following course:

I(k,k₀) = 1+cos(2da(k²-k × k₀)). I (k, k₀) = 1 + cos (2da (k² k-k₀ ×)).

Der Verlauf des Spektrums I(k,k₀) ist in Fig. 3 wiedergegeben. The course of the spectrum I (k, k₀) is shown in Fig. 3. Die Wellenzahl, zu der das Spektrum symmetrisch ist, hängt vom Abstand z des Streupunktes ab. The wave number at which the spectrum is symmetric, depends on the distance z of the scattering point. Die Symmetrie kann auf einfache Weise, z. Symmetry can easily such. B. durch Korrelation mit der gespiegelten Funktion, ermittelt werden. B. be determined by correlation with the mirrored function.

Claims (4)

1. Interferometrisches Verfahren zur Ermittlung der Entfernung und der Streuintensität von streuenden Punkten, die von einer breitbandigen, räumlich partiell kohärenten Lichtquelle beleuchtet werden, und die sich in einem Arm eines Interferometers befinden, dadurch gekennzeichnet , daß am Ausgang des Interferometers das Licht in ein Spektrum zerlegt wird und aus der Helligkeitsverteilung im Spektrum die Information über die Entfernung und die Streuintensität ermittelt wird. 1. An interferometric method for determining the distance and the scattering intensity of the scattering points which are illuminated by a broadband, spatially partially coherent light source, and which are located in one arm of an interferometer, characterized in that at the output of the interferometer, the light in a spectrum is broken and the information on the distance and the scattering intensity is determined from the brightness distribution in the spectrum.
2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß die Ermittlung der Entfernung und der lokalen Streuintensität durch Fouriertransformation des Spektrums nach der Wellenlänge erfolgt. 2. The method according to claim 1, characterized in that the determination of distance and local scattering intensity is performed by Fourier transformation of the spectrum according to the wavelength.
3. Verfahren nach Anspruch 1 und 2, dadurch gekennzeichnet, daß in einem der beiden Interferometerarme zusätzlich ein Dispersion erzeugendes Element eingefügt ist. 3. The method according to claim 1 and 2, characterized in that in one of the two interferometer in addition, a dispersion-generating element is inserted.
4. Verfahren nach Anspruch 1, 2 und 3, dadurch gekennzeichnet, daß die Ermittlung des Abstandes eines Streupunktes dadurch erfolgt, daß die Symmetrieachse des Spektrums bestimmt wird. 4. The method of claim 1, 2 and 3, characterized in that the determination of the distance of a scattering point is characterized in that the axis of symmetry of the spectrum is determined.
DE19934309056 1993-03-20 1993-03-20 Method and device for determining the distance and scattering intensity of scattering points Expired - Lifetime DE4309056B4 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
DE19934309056 DE4309056B4 (en) 1993-03-20 1993-03-20 Method and device for determining the distance and scattering intensity of scattering points

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE19934309056 DE4309056B4 (en) 1993-03-20 1993-03-20 Method and device for determining the distance and scattering intensity of scattering points

Publications (2)

Publication Number Publication Date
DE4309056A1 true DE4309056A1 (en) 1994-09-22
DE4309056B4 DE4309056B4 (en) 2006-05-24

Family

ID=6483393

Family Applications (1)

Application Number Title Priority Date Filing Date
DE19934309056 Expired - Lifetime DE4309056B4 (en) 1993-03-20 1993-03-20 Method and device for determining the distance and scattering intensity of scattering points

Country Status (1)

Country Link
DE (1) DE4309056B4 (en)

Cited By (55)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19814057A1 (en) * 1998-03-30 1999-10-07 Zeiss Carl Jena Gmbh Spectral interferometric optical tomography device
US6111645A (en) * 1991-04-29 2000-08-29 Massachusetts Institute Of Technology Grating based phase control optical delay line
DE10207186C1 (en) * 2002-02-21 2003-04-17 Alexander Knuettel Low coherence interferometry device for object scanning has variable wavelength selection device used for varying selected wavelengths of detection beam dependent on scanning position
EP1348980A2 (en) * 2002-03-26 2003-10-01 Fuji Photo Film Co. Ltd. Ultrasonic receiving apparatus and ultrasonic receiving method
WO2004043245A1 (en) * 2002-11-07 2004-05-27 Pawel Woszczyk A method of fast imaging of objects by means of spectral optical coherence tomography
WO2004088580A1 (en) * 2003-04-01 2004-10-14 Medizinisches Laserzentrum Luebeck Gmbh Method and device for reading deep barcodes by way of optical interference
WO2004113828A1 (en) * 2003-06-19 2004-12-29 Medizinisches Laserzentrum Luebeck Gmbh Interferometric method for the measurement of plane separations with sub-nanometre accuracy
DE10351319A1 (en) * 2003-10-31 2005-06-16 Medizinisches Laserzentrum Lübeck GmbH Interferometer for optical coherence tomography, e.g. for use with a medical scanning OCT-enabled endoscope, has a deflection mirror for beam deflection in the sample arm of the interferometer
WO2005098398A1 (en) * 2004-04-05 2005-10-20 Robert Bosch Gmbh Interferometric system for use of a special lenses
US6980299B1 (en) 2001-10-16 2005-12-27 General Hospital Corporation Systems and methods for imaging a sample
WO2006015717A1 (en) 2004-08-03 2006-02-16 Carl Zeiss Meditec Ag Fourier-domain oct ray-tracing on the eye
US7106454B2 (en) 2003-03-06 2006-09-12 Zygo Corporation Profiling complex surface structures using scanning interferometry
US7139081B2 (en) 2002-09-09 2006-11-21 Zygo Corporation Interferometry method for ellipsometry, reflectometry, and scatterometry measurements, including characterization of thin film structures
US7271918B2 (en) 2003-03-06 2007-09-18 Zygo Corporation Profiling complex surface structures using scanning interferometry
US7289225B2 (en) 2003-09-15 2007-10-30 Zygo Corporation Surface profiling using an interference pattern matching template
US7321431B2 (en) 2005-05-19 2008-01-22 Zygo Corporation Method and system for analyzing low-coherence interferometry signals for information about thin film structures
US7324214B2 (en) 2003-03-06 2008-01-29 Zygo Corporation Interferometer and method for measuring characteristics of optically unresolved surface features
US7324210B2 (en) 2003-10-27 2008-01-29 Zygo Corporation Scanning interferometry for thin film thickness and surface measurements
EP1950526A1 (en) 2007-01-26 2008-07-30 Kabushiki Kaisha TOPCON Optical image measurement device
EP1962083A1 (en) 2007-02-23 2008-08-27 Kabushiki Kaisha TOPCON Optical image measurement device
EP2112499A1 (en) 2008-02-28 2009-10-28 Optopol Technology S.A. Method and apparatus for optical coherence tornography
US7643154B2 (en) 2006-12-26 2010-01-05 Kabushiki Kaisha Topcon Optical image measurement device
WO2010072394A1 (en) 2008-12-23 2010-07-01 Carl Zeiss Meditec Ag Device for swept-source optical coherence domain reflectometry
US7756311B2 (en) 2005-10-12 2010-07-13 Kabushiki Kaisha Topcon Optical image measuring device, optical image measuring program, fundus observation device, and fundus observation program
US7777893B2 (en) 2006-12-26 2010-08-17 Kabushiki Kaisha Topcon Optical image measurement device
EP2251636A1 (en) 2009-05-15 2010-11-17 Medizinisches Laserzentrum Lübeck GmbH Forward-scanning OCT endoscope
DE102009022598A1 (en) 2009-05-20 2010-11-25 Carl Zeiss Meditec Ag Human eye's absolute measuring value determining method, involves reconstructing medium of eye by local scaling factors such that two-dimensional or three-dimensional representation of medium of eye comprises absolute measuring values
US7859680B2 (en) 2007-01-26 2010-12-28 Kabushiki Kaisha Topcon Optical image measurement device
DE102010018679A1 (en) 2010-04-28 2011-11-03 Medizinisches Laserzentrum Lübeck GmbH Device with OCT system for examination and treatment of living tissue under heating by absorption of electromagnetic radiation
DE102010044826A1 (en) * 2010-09-09 2012-03-15 Visiocraft Gmbh Detector i.e. two dimensional grid spectrometer, for determining human eye cornea thickness for e.g. operation planning, has lens, where detector is supplied with light for registration of distributions associated to discrete point
DE102010051281A1 (en) 2010-11-12 2012-05-16 Carl Zeiss Meditec Ag Method for the model-based determination of the biometry of eyes
DE102011011277A1 (en) 2011-02-11 2012-08-16 Carl Zeiss Meditec Ag Optimized device for swept source Optical Coherence Domain Reflectometry and Tomography
US9629528B2 (en) 2012-03-30 2017-04-25 The General Hospital Corporation Imaging system, method and distal attachment for multidirectional field of view endoscopy
US9646377B2 (en) 2006-01-19 2017-05-09 The General Hospital Corporation Methods and systems for optical imaging or epithelial luminal organs by beam scanning thereof
US9642531B2 (en) 2010-03-05 2017-05-09 The General Hospital Corporation Systems, methods and computer-accessible medium which provide microscopic images of at least one anatomical structure at a particular resolution
US9664615B2 (en) 2004-07-02 2017-05-30 The General Hospital Corporation Imaging system and related techniques
US9668652B2 (en) 2013-07-26 2017-06-06 The General Hospital Corporation System, apparatus and method for utilizing optical dispersion for fourier-domain optical coherence tomography
US9733460B2 (en) 2014-01-08 2017-08-15 The General Hospital Corporation Method and apparatus for microscopic imaging
US9763623B2 (en) 2004-08-24 2017-09-19 The General Hospital Corporation Method and apparatus for imaging of vessel segments
US9777053B2 (en) 2006-02-08 2017-10-03 The General Hospital Corporation Methods, arrangements and systems for obtaining information associated with an anatomical sample using optical microscopy
US9784681B2 (en) 2013-05-13 2017-10-10 The General Hospital Corporation System and method for efficient detection of the phase and amplitude of a periodic modulation associated with self-interfering fluorescence
US9791317B2 (en) 2006-01-19 2017-10-17 The General Hospital Corporation Spectrally-encoded endoscopy techniques and methods
US9795301B2 (en) 2010-05-25 2017-10-24 The General Hospital Corporation Apparatus, systems, methods and computer-accessible medium for spectral analysis of optical coherence tomography images
US9812846B2 (en) 2003-10-27 2017-11-07 The General Hospital Corporation Method and apparatus for performing optical imaging using frequency-domain interferometry
US9897538B2 (en) 2001-04-30 2018-02-20 The General Hospital Corporation Method and apparatus for improving image clarity and sensitivity in optical coherence tomography using dynamic feedback to control focal properties and coherence gating
US9951269B2 (en) 2010-05-03 2018-04-24 The General Hospital Corporation Apparatus, method and system for generating optical radiation from biological gain media
US10117576B2 (en) 2013-07-19 2018-11-06 The General Hospital Corporation System, method and computer accessible medium for determining eye motion by imaging retina and providing feedback for acquisition of signals from the retina
US10228556B2 (en) 2014-04-04 2019-03-12 The General Hospital Corporation Apparatus and method for controlling propagation and/or transmission of electromagnetic radiation in flexible waveguide(s)
US10241028B2 (en) 2011-08-25 2019-03-26 The General Hospital Corporation Methods, systems, arrangements and computer-accessible medium for providing micro-optical coherence tomography procedures
US10285568B2 (en) 2010-06-03 2019-05-14 The General Hospital Corporation Apparatus and method for devices for imaging structures in or at one or more luminal organs
WO2019120470A1 (en) 2017-12-18 2019-06-27 Universität Stuttgart Method and assembly for chromatic confocal spectral interferometry or spectral domain oct
US10413175B2 (en) 2006-05-10 2019-09-17 The General Hospital Corporation Process, arrangements and systems for providing frequency domain imaging of a sample
US10426548B2 (en) 2006-02-01 2019-10-01 The General Hosppital Corporation Methods and systems for providing electromagnetic radiation to at least one portion of a sample using conformal laser therapy procedures
USRE47675E1 (en) 2003-06-06 2019-10-29 The General Hospital Corporation Process and apparatus for a wavelength tuning source
US10478072B2 (en) 2013-03-15 2019-11-19 The General Hospital Corporation Methods and system for characterizing an object

Families Citing this family (62)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6485413B1 (en) 1991-04-29 2002-11-26 The General Hospital Corporation Methods and apparatus for forward-directed optical scanning instruments
US6445939B1 (en) 1999-08-09 2002-09-03 Lightlab Imaging, Llc Ultra-small optical probes, imaging optics, and methods for using same
JP4241038B2 (en) 2000-10-30 2009-03-18 ザ ジェネラル ホスピタル コーポレーション Optical method and system for tissue analysis
US9295391B1 (en) 2000-11-10 2016-03-29 The General Hospital Corporation Spectrally encoded miniature endoscopic imaging probe
DE10297689B4 (en) 2001-05-01 2007-10-18 The General Hospital Corp., Boston Method and device for the determination of atherosclerotic coating by measurement of optical tissue properties
US8054468B2 (en) 2003-01-24 2011-11-08 The General Hospital Corporation Apparatus and method for ranging and noise reduction of low coherence interferometry LCI and optical coherence tomography OCT signals by parallel detection of spectral bands
US7355716B2 (en) 2002-01-24 2008-04-08 The General Hospital Corporation Apparatus and method for ranging and noise reduction of low coherence interferometry LCI and optical coherence tomography OCT signals by parallel detection of spectral bands
US7869057B2 (en) 2002-09-09 2011-01-11 Zygo Corporation Multiple-angle multiple-wavelength interferometer using high-NA imaging and spectral analysis
WO2004066824A2 (en) 2003-01-24 2004-08-12 The General Hospital Corporation System and method for identifying tissue using low-coherence interferometry
EP2436307B1 (en) 2003-03-31 2015-10-21 The General Hospital Corporation Speckle reduction in optical coherence tomography by path length encoded angular compounding
EP1754016B1 (en) 2004-05-29 2016-05-18 The General Hospital Corporation Process, system and software arrangement for a chromatic dispersion compensation using reflective layers in optical coherence tomography (oct) imaging
US8081316B2 (en) 2004-08-06 2011-12-20 The General Hospital Corporation Process, system and software arrangement for determining at least one location in a sample using an optical coherence tomography
US8965487B2 (en) 2004-08-24 2015-02-24 The General Hospital Corporation Process, system and software arrangement for measuring a mechanical strain and elastic properties of a sample
WO2006039091A2 (en) 2004-09-10 2006-04-13 The General Hospital Corporation System and method for optical coherence imaging
US7366376B2 (en) 2004-09-29 2008-04-29 The General Hospital Corporation System and method for optical coherence imaging
EP1825214A1 (en) 2004-11-24 2007-08-29 The General Hospital Corporation Common-path interferometer for endoscopic oct
US8922781B2 (en) 2004-11-29 2014-12-30 The General Hospital Corporation Arrangements, devices, endoscopes, catheters and methods for performing optical imaging by simultaneously illuminating and detecting multiple points on a sample
EP1853874B1 (en) 2005-01-20 2009-09-02 Zygo Corporation Interferometer for determining characteristics of an object surface
US7884947B2 (en) 2005-01-20 2011-02-08 Zygo Corporation Interferometry for determining characteristics of an object surface, with spatially coherent illumination
WO2006116769A1 (en) 2005-04-28 2006-11-02 The General Hospital Corporation Systems, processes and software arrangements for evaluating information associated with an anatomical structure by an optical coherence ranging technique
EP1887926B1 (en) 2005-05-31 2014-07-30 The General Hospital Corporation System and method which use spectral encoding heterodyne interferometry techniques for imaging
JP5702049B2 (en) 2005-06-01 2015-04-15 ザ ジェネラル ホスピタル コーポレイション Apparatus, method and system for performing phase resolved optical frequency domain imaging
ES2354287T3 (en) 2005-08-09 2011-03-11 The General Hospital Corporation Apparatus and method for performing a demodulation in quadrature by polarization in optical coherence tomography.
CN101360447B (en) 2005-09-29 2012-12-05 通用医疗公司 Method and apparatus for optical imaging via spectral encoding
US7889348B2 (en) 2005-10-14 2011-02-15 The General Hospital Corporation Arrangements and methods for facilitating photoluminescence imaging
US7796270B2 (en) 2006-01-10 2010-09-14 The General Hospital Corporation Systems and methods for generating data based on one or more spectrally-encoded endoscopy techniques
US9186066B2 (en) 2006-02-01 2015-11-17 The General Hospital Corporation Apparatus for applying a plurality of electro-magnetic radiations to a sample
EP2004041B1 (en) 2006-04-05 2013-11-06 The General Hospital Corporation Methods, arrangements and systems for polarization-sensitive optical frequency domain imaging of a sample
US7782464B2 (en) 2006-05-12 2010-08-24 The General Hospital Corporation Processes, arrangements and systems for providing a fiber layer thickness map based on optical coherence tomography images
EP3006920A3 (en) 2006-08-25 2016-08-03 The General Hospital Corporation Apparatus and methods for enhancing optical coherence tomography imaging using volumetric filtering techniques
US8838213B2 (en) 2006-10-19 2014-09-16 The General Hospital Corporation Apparatus and method for obtaining and providing imaging information associated with at least one portion of a sample, and effecting such portion(s)
WO2008089342A1 (en) 2007-01-19 2008-07-24 The General Hospital Corporation Rotating disk reflection for fast wavelength scanning of dispersed broadband light
EP2102583A2 (en) 2007-01-19 2009-09-23 The General Hospital Corporation Apparatus and method for controlling ranging depth in optical frequency domain imaging
US7889355B2 (en) 2007-01-31 2011-02-15 Zygo Corporation Interferometry for lateral metrology
EP2602651A3 (en) 2007-03-23 2014-08-27 The General Hospital Corporation Methods, arrangements and apparatus for utilizing a wavelength-swept laser using angular scanning and dispersion procedures
WO2008121844A1 (en) 2007-03-30 2008-10-09 The General Hospital Corporation System and method providing intracoronary laser speckle imaging for the detection of vulnerable plaque
WO2008131082A1 (en) 2007-04-17 2008-10-30 The General Hospital Corporation Apparatus and methods for measuring vibrations using spectrally-encoded endoscopy techniques
US8115919B2 (en) 2007-05-04 2012-02-14 The General Hospital Corporation Methods, arrangements and systems for obtaining information associated with a sample using optical microscopy
US9375158B2 (en) 2007-07-31 2016-06-28 The General Hospital Corporation Systems and methods for providing beam scan patterns for high speed doppler optical frequency domain imaging
US8040608B2 (en) 2007-08-31 2011-10-18 The General Hospital Corporation System and method for self-interference fluorescence microscopy, and computer-accessible medium associated therewith
US8072611B2 (en) 2007-10-12 2011-12-06 Zygo Corporation Interferometric analysis of under-resolved features
US7933021B2 (en) 2007-10-30 2011-04-26 The General Hospital Corporation System and method for cladding mode detection
WO2009064670A2 (en) 2007-11-13 2009-05-22 Zygo Corporation Interferometer utilizing polarization scanning
EP2232195B1 (en) 2007-12-14 2015-03-18 Zygo Corporation Analyzing surface structure using scanning interferometry
US9332942B2 (en) 2008-01-28 2016-05-10 The General Hospital Corporation Systems, processes and computer-accessible medium for providing hybrid flourescence and optical coherence tomography imaging
EP2274572A4 (en) 2008-05-07 2013-08-28 Gen Hospital Corp System, method and computer-accessible medium for tracking vessel motion during three-dimensional coronary artery microscopy
US8861910B2 (en) 2008-06-20 2014-10-14 The General Hospital Corporation Fused fiber optic coupler arrangement and method for use thereof
WO2010009136A2 (en) 2008-07-14 2010-01-21 The General Hospital Corporation Apparatus and methods for color endoscopy
US8120781B2 (en) 2008-11-26 2012-02-21 Zygo Corporation Interferometric systems and methods featuring spectral analysis of unevenly sampled data
EP2198771A1 (en) 2008-12-02 2010-06-23 Optopol Technology S.A. Method and apparatus for eye movement tracking in spectral optical coherence tomography (SD-OCT)
EP2359121A4 (en) 2008-12-10 2013-08-14 Gen Hospital Corp Systems, apparatus and methods for extending imaging depth range of optical coherence tomography through optical sub-sampling
JP2012515930A (en) 2009-01-26 2012-07-12 ザ ジェネラル ホスピタル コーポレーションThe General Hospitalcorporation System, method and computer-accessible medium for providing a wide-field super-resolution microscope
CN102308444B (en) 2009-02-04 2014-06-18 通用医疗公司 Apparatus and method for utilization of a high-speed optical wavelength tuning source
WO2010105197A2 (en) 2009-03-12 2010-09-16 The General Hospital Corporation Non-contact optical system, computer-accessible medium and method for measuring at least one mechanical property of tissue using coherent speckle techniques(s)
WO2011149972A2 (en) 2010-05-25 2011-12-01 The General Hospital Corporation Systems, devices, methods, apparatus and computer-accessible media for providing optical imaging of structures and compositions
JP5883018B2 (en) 2010-10-27 2016-03-09 ザ ジェネラル ホスピタル コーポレイション Apparatus, system, and method for measuring blood pressure within at least one blood vessel
WO2012149175A1 (en) 2011-04-29 2012-11-01 The General Hospital Corporation Means for determining depth-resolved physical and/or optical properties of scattering media
JP2014523536A (en) 2011-07-19 2014-09-11 ザ ジェネラル ホスピタル コーポレイション System, method, apparatus and computer-accessible medium for providing polarization mode dispersion compensation in optical coherence tomography
WO2013066631A1 (en) 2011-10-18 2013-05-10 The General Hospital Corporation Apparatus and methods for producing and/or providing recirculating optical delay(s)
US9332902B2 (en) 2012-01-20 2016-05-10 Carl Zeiss Meditec, Inc. Line-field holoscopy
EP2888616A4 (en) 2012-08-22 2016-04-27 Gen Hospital Corp System, method, and computer-accessible medium for fabrication minature endoscope using soft lithography
US10113856B2 (en) 2013-10-09 2018-10-30 Carl Zeiss Meditec, Inc. Line-field imaging systems and methods incorporating planar waveguides

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3318678A1 (en) * 1983-05-21 1984-11-22 Fercher Adolf Friedrich Method and apparatus for interferometry rough surfaces
DE3623265C2 (en) * 1986-07-10 1994-11-03 Siemens Ag Method and arrangement for the fiber optic measuring a path length or path length
DE3938317A1 (en) * 1989-11-17 1991-05-23 Siemens Ag Interferometric distance measurement method - using selectable period of interferometer output signal using Echelle filter to derive spectrally filtered light
DE4108944C2 (en) * 1991-03-19 1993-07-01 Gerd Prof. Dr. 8520 Erlangen De Haeusler

Cited By (87)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6111645A (en) * 1991-04-29 2000-08-29 Massachusetts Institute Of Technology Grating based phase control optical delay line
US6282011B1 (en) 1991-04-29 2001-08-28 Massachusetts Institute Of Technology Grating based phase control optical delay line
DE19814057A1 (en) * 1998-03-30 1999-10-07 Zeiss Carl Jena Gmbh Spectral interferometric optical tomography device
DE19814057B4 (en) * 1998-03-30 2009-01-02 Carl Zeiss Meditec Ag Arrangement for optical coherence tomography and coherence topography
US9897538B2 (en) 2001-04-30 2018-02-20 The General Hospital Corporation Method and apparatus for improving image clarity and sensitivity in optical coherence tomography using dynamic feedback to control focal properties and coherence gating
US6980299B1 (en) 2001-10-16 2005-12-27 General Hospital Corporation Systems and methods for imaging a sample
DE10207186C1 (en) * 2002-02-21 2003-04-17 Alexander Knuettel Low coherence interferometry device for object scanning has variable wavelength selection device used for varying selected wavelengths of detection beam dependent on scanning position
US7170610B2 (en) 2002-02-21 2007-01-30 Knuettel Alexander Low-coherence inferometric device for light-optical scanning of an object
EP1348980A2 (en) * 2002-03-26 2003-10-01 Fuji Photo Film Co. Ltd. Ultrasonic receiving apparatus and ultrasonic receiving method
US6881189B2 (en) 2002-03-26 2005-04-19 Fuji Photo Film Co., Ltd. Ultrasonic receiving apparatus and ultrasonic receiving method
EP1348980A3 (en) * 2002-03-26 2004-11-10 Fuji Photo Film Co. Ltd. Ultrasonic receiving apparatus and ultrasonic receiving method
US7403289B2 (en) 2002-09-09 2008-07-22 Zygo Corporation Interferometry method for ellipsometry, reflectometry, and scatterometry measurements, including characterization of thin film structures
US7315382B2 (en) 2002-09-09 2008-01-01 Zygo Corporation Interferometry method for ellipsometry, reflectometry, and scatterometry measurements, including characterization of thin film structures
US7139081B2 (en) 2002-09-09 2006-11-21 Zygo Corporation Interferometry method for ellipsometry, reflectometry, and scatterometry measurements, including characterization of thin film structures
WO2004043245A1 (en) * 2002-11-07 2004-05-27 Pawel Woszczyk A method of fast imaging of objects by means of spectral optical coherence tomography
US7239398B2 (en) 2003-03-06 2007-07-03 Zygo Corporation Profiling complex surface structures using height scanning interferometry
US7271918B2 (en) 2003-03-06 2007-09-18 Zygo Corporation Profiling complex surface structures using scanning interferometry
US7106454B2 (en) 2003-03-06 2006-09-12 Zygo Corporation Profiling complex surface structures using scanning interferometry
US7324214B2 (en) 2003-03-06 2008-01-29 Zygo Corporation Interferometer and method for measuring characteristics of optically unresolved surface features
WO2004088580A1 (en) * 2003-04-01 2004-10-14 Medizinisches Laserzentrum Luebeck Gmbh Method and device for reading deep barcodes by way of optical interference
USRE47675E1 (en) 2003-06-06 2019-10-29 The General Hospital Corporation Process and apparatus for a wavelength tuning source
WO2004113828A1 (en) * 2003-06-19 2004-12-29 Medizinisches Laserzentrum Luebeck Gmbh Interferometric method for the measurement of plane separations with sub-nanometre accuracy
DE10328412A1 (en) * 2003-06-19 2005-01-20 Medizinisches Laserzentrum Lübeck GmbH Interferometer for measuring plane distances with subnanometer accuracy
DE10328412B4 (en) * 2003-06-19 2005-11-17 Medizinisches Laserzentrum Lübeck GmbH Method for the interferometric determination of optical plane distances with subnanometer accuracy
US7289225B2 (en) 2003-09-15 2007-10-30 Zygo Corporation Surface profiling using an interference pattern matching template
US7292346B2 (en) 2003-09-15 2007-11-06 Zygo Corporation Triangulation methods and systems for profiling surfaces through a thin film coating
US7298494B2 (en) 2003-09-15 2007-11-20 Zygo Corporation Methods and systems for interferometric analysis of surfaces and related applications
US7289224B2 (en) 2003-09-15 2007-10-30 Zygo Corporation Low coherence grazing incidence interferometry for profiling and tilt sensing
US9812846B2 (en) 2003-10-27 2017-11-07 The General Hospital Corporation Method and apparatus for performing optical imaging using frequency-domain interferometry
US7324210B2 (en) 2003-10-27 2008-01-29 Zygo Corporation Scanning interferometry for thin film thickness and surface measurements
US7468799B2 (en) 2003-10-27 2008-12-23 Zygo Corporation Scanning interferometry for thin film thickness and surface measurements
DE10351319A1 (en) * 2003-10-31 2005-06-16 Medizinisches Laserzentrum Lübeck GmbH Interferometer for optical coherence tomography, e.g. for use with a medical scanning OCT-enabled endoscope, has a deflection mirror for beam deflection in the sample arm of the interferometer
DE10351319B4 (en) * 2003-10-31 2005-10-20 Med Laserzentrum Luebeck Gmbh Interferometer for optical coherence tomography
US7999948B2 (en) 2004-04-05 2011-08-16 Robert Bosch Gmbh Interferometric system for the use of special-purpose optical systems
WO2005098398A1 (en) * 2004-04-05 2005-10-20 Robert Bosch Gmbh Interferometric system for use of a special lenses
US9664615B2 (en) 2004-07-02 2017-05-30 The General Hospital Corporation Imaging system and related techniques
US7695140B2 (en) 2004-08-03 2010-04-13 Carl Zeiss Meditec Ag Fourier-domain OCT ray-tracing on the eye
WO2006015717A1 (en) 2004-08-03 2006-02-16 Carl Zeiss Meditec Ag Fourier-domain oct ray-tracing on the eye
DE102004037479A1 (en) * 2004-08-03 2006-03-16 Carl Zeiss Meditec Ag Fourier domain OCT ray tracing on the eye
US9763623B2 (en) 2004-08-24 2017-09-19 The General Hospital Corporation Method and apparatus for imaging of vessel segments
US7564566B2 (en) 2005-05-19 2009-07-21 Zygo Corporation Method and system for analyzing low-coherence interferometry signals for information about thin film structures
US7321431B2 (en) 2005-05-19 2008-01-22 Zygo Corporation Method and system for analyzing low-coherence interferometry signals for information about thin film structures
US7756311B2 (en) 2005-10-12 2010-07-13 Kabushiki Kaisha Topcon Optical image measuring device, optical image measuring program, fundus observation device, and fundus observation program
US9791317B2 (en) 2006-01-19 2017-10-17 The General Hospital Corporation Spectrally-encoded endoscopy techniques and methods
US9646377B2 (en) 2006-01-19 2017-05-09 The General Hospital Corporation Methods and systems for optical imaging or epithelial luminal organs by beam scanning thereof
US10426548B2 (en) 2006-02-01 2019-10-01 The General Hosppital Corporation Methods and systems for providing electromagnetic radiation to at least one portion of a sample using conformal laser therapy procedures
US9777053B2 (en) 2006-02-08 2017-10-03 The General Hospital Corporation Methods, arrangements and systems for obtaining information associated with an anatomical sample using optical microscopy
US10413175B2 (en) 2006-05-10 2019-09-17 The General Hospital Corporation Process, arrangements and systems for providing frequency domain imaging of a sample
US7982880B2 (en) 2006-12-26 2011-07-19 Kabushiki Kaisha Topcon Optical image measurement device
US7643154B2 (en) 2006-12-26 2010-01-05 Kabushiki Kaisha Topcon Optical image measurement device
US7777893B2 (en) 2006-12-26 2010-08-17 Kabushiki Kaisha Topcon Optical image measurement device
US7859680B2 (en) 2007-01-26 2010-12-28 Kabushiki Kaisha Topcon Optical image measurement device
EP1950526A1 (en) 2007-01-26 2008-07-30 Kabushiki Kaisha TOPCON Optical image measurement device
EP1962083A1 (en) 2007-02-23 2008-08-27 Kabushiki Kaisha TOPCON Optical image measurement device
EP2112499A1 (en) 2008-02-28 2009-10-28 Optopol Technology S.A. Method and apparatus for optical coherence tornography
EP3308694A1 (en) 2008-12-23 2018-04-18 Carl Zeiss Meditec AG Device for swept source optical coherence domain reflectometry
US8690330B2 (en) 2008-12-23 2014-04-08 Carl Zeiss Meditec Ag Device for swept-source optical coherence domain reflectometry
US9044164B2 (en) 2008-12-23 2015-06-02 Carl Zeiss Meditec Ag Device for swept source optical coherence domain reflectometry
DE102008063225A1 (en) 2008-12-23 2010-07-01 Carl Zeiss Meditec Ag Device for Swept Source Optical Coherence Domain Reflectometry
WO2010072394A1 (en) 2008-12-23 2010-07-01 Carl Zeiss Meditec Ag Device for swept-source optical coherence domain reflectometry
EP2251636A1 (en) 2009-05-15 2010-11-17 Medizinisches Laserzentrum Lübeck GmbH Forward-scanning OCT endoscope
DE102009022598A1 (en) 2009-05-20 2010-11-25 Carl Zeiss Meditec Ag Human eye's absolute measuring value determining method, involves reconstructing medium of eye by local scaling factors such that two-dimensional or three-dimensional representation of medium of eye comprises absolute measuring values
US9642531B2 (en) 2010-03-05 2017-05-09 The General Hospital Corporation Systems, methods and computer-accessible medium which provide microscopic images of at least one anatomical structure at a particular resolution
US10463254B2 (en) 2010-03-05 2019-11-05 The General Hospital Corporation Light tunnel and lens which provide extended focal depth of at least one anatomical structure at a particular resolution
DE102010018679A1 (en) 2010-04-28 2011-11-03 Medizinisches Laserzentrum Lübeck GmbH Device with OCT system for examination and treatment of living tissue under heating by absorption of electromagnetic radiation
WO2011134454A1 (en) 2010-04-28 2011-11-03 Medizinisches Laserzentrum Lübeck GmbH Device with an oct system for examining and treating living tissue being heated by absorbing electromagnetic radiation
US9951269B2 (en) 2010-05-03 2018-04-24 The General Hospital Corporation Apparatus, method and system for generating optical radiation from biological gain media
US9795301B2 (en) 2010-05-25 2017-10-24 The General Hospital Corporation Apparatus, systems, methods and computer-accessible medium for spectral analysis of optical coherence tomography images
US10285568B2 (en) 2010-06-03 2019-05-14 The General Hospital Corporation Apparatus and method for devices for imaging structures in or at one or more luminal organs
DE102010044826A1 (en) * 2010-09-09 2012-03-15 Visiocraft Gmbh Detector i.e. two dimensional grid spectrometer, for determining human eye cornea thickness for e.g. operation planning, has lens, where detector is supplied with light for registration of distributions associated to discrete point
DE102010044826B4 (en) 2010-09-09 2018-05-17 Visiocraft Gmbh Detector and measuring device and method for determining the thickness of a sample
WO2012062453A1 (en) 2010-11-12 2012-05-18 Carl Zeiss Meditec Ag Method for the model-based determination of the biometry of eyes
DE102010051281A1 (en) 2010-11-12 2012-05-16 Carl Zeiss Meditec Ag Method for the model-based determination of the biometry of eyes
US9649024B2 (en) 2010-11-12 2017-05-16 Carl Zeiss Meditec Ag Method for the model-based determination of the biometry of eyes
US9492077B2 (en) 2011-02-11 2016-11-15 Carl Zeiss Meditec Ag Optimized device for swept source optical coherence domain reflectometry and tomography
WO2012107307A1 (en) 2011-02-11 2012-08-16 Carl Zeiss Meditec Ag Optimized device for swept source optical coherence domain reflectometry and tomography
DE102011011277A1 (en) 2011-02-11 2012-08-16 Carl Zeiss Meditec Ag Optimized device for swept source Optical Coherence Domain Reflectometry and Tomography
US10241028B2 (en) 2011-08-25 2019-03-26 The General Hospital Corporation Methods, systems, arrangements and computer-accessible medium for providing micro-optical coherence tomography procedures
US9629528B2 (en) 2012-03-30 2017-04-25 The General Hospital Corporation Imaging system, method and distal attachment for multidirectional field of view endoscopy
US10478072B2 (en) 2013-03-15 2019-11-19 The General Hospital Corporation Methods and system for characterizing an object
US9784681B2 (en) 2013-05-13 2017-10-10 The General Hospital Corporation System and method for efficient detection of the phase and amplitude of a periodic modulation associated with self-interfering fluorescence
US10117576B2 (en) 2013-07-19 2018-11-06 The General Hospital Corporation System, method and computer accessible medium for determining eye motion by imaging retina and providing feedback for acquisition of signals from the retina
US9668652B2 (en) 2013-07-26 2017-06-06 The General Hospital Corporation System, apparatus and method for utilizing optical dispersion for fourier-domain optical coherence tomography
US10058250B2 (en) 2013-07-26 2018-08-28 The General Hospital Corporation System, apparatus and method for utilizing optical dispersion for fourier-domain optical coherence tomography
US9733460B2 (en) 2014-01-08 2017-08-15 The General Hospital Corporation Method and apparatus for microscopic imaging
US10228556B2 (en) 2014-04-04 2019-03-12 The General Hospital Corporation Apparatus and method for controlling propagation and/or transmission of electromagnetic radiation in flexible waveguide(s)
WO2019120470A1 (en) 2017-12-18 2019-06-27 Universität Stuttgart Method and assembly for chromatic confocal spectral interferometry or spectral domain oct

Also Published As

Publication number Publication date
DE4309056B4 (en) 2006-05-24

Similar Documents

Publication Publication Date Title
Schmitt Array detection for speckle reduction in optical coherence microscopy
JP4863381B2 (en) Spectral interferometry and spectral interferometer
De Boer et al. Imaging thermally damaged tissue by polarization sensitive optical coherence tomography
EP0985902B1 (en) Interferometric device for picking up optical subsurface reflexion and/or transmission characteristics of an object
US5892583A (en) High speed inspection of a sample using superbroad radiation coherent interferometer
US5994690A (en) Image enhancement in optical coherence tomography using deconvolution
US6437867B2 (en) Performing selected optical measurements with optical coherence domain reflectometry
JP5555277B2 (en) System and method for angle resolved low coherence interferometry with endoscope
EP0449597B1 (en) Highly directional optical system and optical sectional image forming apparatus employing the same
US6377349B1 (en) Arrangement for spectral interferometric optical tomography and surface profile measurement
JP4734326B2 (en) Eye Fourier domain OCT ray tracing method
Wojtkowski et al. In vivo human retinal imaging by Fourier domain optical coherence tomography
US6735463B2 (en) Doppler flow imaging using optical coherence tomography
Sarunic et al. Full-field swept-source phase microscopy
De Boer et al. Two-dimensional birefringence imaging in biological tissue by polarization-sensitive optical coherence tomography
DE4200741C2 (en) Means for detecting caries of teeth
EP0904011B1 (en) Apparatus for imaging microvascular blood flow
US5706085A (en) Method for the non-contact rapid and accurate acquisition of the surface topology of objects
JP5149535B2 (en) Polarization-sensitive optical coherence tomography apparatus, signal processing method for the apparatus, and display method for the apparatus
Mitsui Dynamic range of optical reflectometry with spectral interferometry
EP0458601B1 (en) Method of and apparatus for measuring spectral absorption in opaque specimens and method of and apparatus for measuring microscopic absorption distribution
Szkulmowski et al. Flow velocity estimation using joint Spectral and Time domain Optical Coherence Tomography
US5570182A (en) Method for detection of dental caries and periodontal disease using optical imaging
CN101639339B (en) Optical coherence tomographic imaging method and optical coherence tomographic imaging apparatus
US5986770A (en) Apparatus and method for the optical characterization of the structure and composition of a light scattering sample

Legal Events

Date Code Title Description
8122 Nonbinding interest in granting licenses declared
8141 Disposal/no request for examination
8170 Reinstatement of the former position
8110 Request for examination paragraph 44
8363 Opposition against the patent
8327 Change in the person/name/address of the patent owner

Owner name: CARL ZEISS MEDITEC AG, 07745 JENA, DE

8381 Inventor (new situation)

Inventor name: HäUSLER, GERD,PROF.DR., 91056 ERLANGEN, DE

Inventor name: NEUMANN, JOCHEN, 90768 FüRTH, DE

Inventor name: HERRMANN, JüRGEN, 91522 ANSBACH, DE

R071 Expiry of right
R071 Expiry of right