DE3915116C1 - Electrically non-conducting crucible - includes pyrolytic carbon layer and aluminium nitride or aluminium oxide-contg. ceramic - Google Patents

Electrically non-conducting crucible - includes pyrolytic carbon layer and aluminium nitride or aluminium oxide-contg. ceramic

Info

Publication number
DE3915116C1
DE3915116C1 DE19893915116 DE3915116A DE3915116C1 DE 3915116 C1 DE3915116 C1 DE 3915116C1 DE 19893915116 DE19893915116 DE 19893915116 DE 3915116 A DE3915116 A DE 3915116A DE 3915116 C1 DE3915116 C1 DE 3915116C1
Authority
DE
Germany
Prior art keywords
crucible
ceramic
pyrolytic carbon
boron nitride
conductive layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
DE19893915116
Other languages
German (de)
Inventor
Ulrich 8959 Buching De Goetz
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
CVT GMBH & CO. KG, 87642 HALBLECH, DE
Original Assignee
Sintec Keramik 8959 Buching De GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sintec Keramik 8959 Buching De GmbH filed Critical Sintec Keramik 8959 Buching De GmbH
Priority to DE19893915116 priority Critical patent/DE3915116C1/en
Application granted granted Critical
Publication of DE3915116C1 publication Critical patent/DE3915116C1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B6/00Heating by electric, magnetic or electromagnetic fields
    • H05B6/02Induction heating
    • H05B6/10Induction heating apparatus, other than furnaces, for specific applications
    • H05B6/105Induction heating apparatus, other than furnaces, for specific applications using a susceptor
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/10Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on aluminium oxide
    • C04B35/111Fine ceramics
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/009After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone characterised by the material treated
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/45Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements
    • C04B41/50Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements with inorganic materials
    • C04B41/5001Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements with inorganic materials with carbon or carbonisable materials
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/45Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements
    • C04B41/52Multiple coating or impregnating multiple coating or impregnating with the same composition or with compositions only differing in the concentration of the constituents, is classified as single coating or impregnation
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/80After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone of only ceramics
    • C04B41/81Coating or impregnation
    • C04B41/85Coating or impregnation with inorganic materials
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/80After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone of only ceramics
    • C04B41/81Coating or impregnation
    • C04B41/89Coating or impregnation for obtaining at least two superposed coatings having different compositions
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B23/00Single-crystal growth by condensing evaporated or sublimed materials
    • C30B23/02Epitaxial-layer growth
    • C30B23/06Heating of the deposition chamber, the substrate or the materials to be evaporated
    • C30B23/066Heating of the material to be evaporated
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B35/00Apparatus not otherwise provided for, specially adapted for the growth, production or after-treatment of single crystals or of a homogeneous polycrystalline material with defined structure
    • C30B35/002Crucibles or containers
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B3/00Ohmic-resistance heating
    • H05B3/62Heating elements specially adapted for furnaces

Abstract

A ceramic, electrically non-conducting crucible includes a pyrolytic C layer on the crucible outer wall. The C layer acts as a susceptor or resistance heater for inductive heating. The crucible consists of pyrolytically pptd. boron nitride. The ceramic crucible pref. consists of aluminium nitride or aluminium oxide. ADVANTAGE - The crucible electrically conducting layer is stable at high temperatures.

Description

Die Erfindung betrifft keramische elektrisch nichtleitende Tiegel, welche sich dadurch auszeichnen, daß eine elektrisch leitfähige Schicht aus pyrclytischem Kohlenstoff an der Außenwandung des Tiegels aufgebracht wird, welche als Widerstandsheizung oder als Suszeptor dient.The invention relates to ceramic electrically non-conductive Crucibles, which are characterized in that an electrical conductive layer of pyrolytic carbon on the External wall of the crucible is applied, which as Resistance heating or serves as a susceptor.

Speziell in der Molekularepitaxie oder auch bei anderen thermischen Prozessen im Ultrahochvakuum besteht generell das Problem, daß höchstreine Materialien mit äußerst niedrigen Dampfdrucken und extrem guter chemischer Beständigkeit verwendet werden müssen. Typische Ofenaufbauten bestehen derzeit aus keramischen Tiegeln wie z. B. pyrolytischem Bornitrid, welche über Strahlungswärme von vorzugsweise Tantalheizern beheizt werden. Speziell im Temperaturbereich bis 700°C ist dieser Ofenaufbau äußerst ineffizient und träge, da in diesem Nieder­ temperaturbereich über thermische Strahlung nur eine geringe Leistung übertragen werden kann. Betrachtet man den Ofenbau in Molekularstrahlepitaxieanlagen (MBE-Anlagen), in welchen monomolekulare Schichten auf Halbleitersubstrate aus solchen Ofenaufbauten aufgedampft werden, so wird die Notwendigkeit einer exakten Temperaturregelung, verbunden mit extrem hoher Reinheit der verwendeten Bauteile klar. Das sich stellende Problem wird heute in Standardanlagen gelöst, wobei die o. g. Nachteile wie geringe Kontaktwärme, zusätzliche Fremdelemente wie Tantal und Isolationsmaterial gegeben sind. Darüber ist das Handling und der Aufbau der Heizer verbesserungsfähig.Especially in molecular epitaxy or in others Thermal processes in ultra high vacuum generally exist the problem that ultra-pure materials with extremely low Steam printing and extremely good chemical resistance are used Need to become. Typical furnace structures currently consist of ceramic crucibles such as B. pyrolytic boron nitride, which heated by radiant heat from preferably tantalum heaters will. This is especially in the temperature range up to 700 ° C Oven construction extremely inefficient and sluggish, because in this low temperature range over thermal radiation only a small one  Power can be transferred. If you look at furnace construction in molecular beam epitaxy systems (MBE systems), in which monomolecular layers on semiconductor substrates from such Oven superstructures are evaporated, so will the need exact temperature control combined with extremely high Purity of the components used clear. The posed The problem today is in standard systems solved, the above Disadvantages like low contact heat, additional foreign elements such as tantalum and insulation material are given. That's about it Handling and the structure of the heater could be improved.

Im Falle von Aluminiumoxyd und Aluminiumnitrid werden bereits elektrisch leitende Schichten mittels einer Metallisierung aufgebracht, wobei diese Art von Tiegel oder Flächenheizer wegen des hohen Dampfdruckes der Metalle und den unterschied­ lichen Ausdehnungskoeffizienten von Keramik und Metall nur für den Einsatz bis Temperaturen deutlich <1000°C einge­ setzt werden.In the case of aluminum oxide and aluminum nitride are already electrically conductive layers by means of a metallization applied, this type of crucible or panel heater because of the high vapor pressure of the metals and the difference expansion coefficient of ceramic and metal only for use up to temperatures significantly <1000 ° C be set.

Aus der EP 01 94 358 A1 sind Heizsysteme auf keramischen Grund­ körpern bekannt. Als Grundkörper werden vor allen Dingen kubisches Bornitrid mit Oberflächendotierungen verwendet bzw. im Vergleich auch z. B. Berylliumoxyd. Das Heizsystem selbst ist metallischen Ursprungs und dient in dieser Anmeldung dazu, die Wärmeleitfähigkeit der erfindungsgemäßen Bornitrid­ keramik im Vergleich zu anderen bestehenden Keramiken, welche in der Halbleitertechnik als Substrate ein­ gesetzt werden, zu vergleichen. Die Temperaturen liegen bei wenigen 10°C. Darüberhinaus wird die Strahlungswärme untersucht, wobei nicht unterschiedliche Emmissionsfaktoren verwendet werden, sondern geometrische Varianten mit dem Ziel, die zur Wärmeabfuhr genutzten Oberflächen zu optimieren.From EP 01 94 358 A1, heating systems are based on ceramic known bodies. Above all, as a basic body cubic boron nitride with surface doping used or in comparison also z. B. Beryllium oxide. The heating system itself  is of metallic origin and is used in this application the thermal conductivity of the boron nitride according to the invention ceramic compared to other existing ceramics, which in semiconductor technology as substrates be set to compare. The temperatures are a few 10 ° C. In addition, the radiant heat is examined not using different emission factors, but geometrical variants with the aim of dissipating heat optimize used surfaces.

Aus der DE 29 24 292 C2 sind ebenfalls Keramikkörper mit einer elektrisch leitenden Schicht bekannt. Diese elektrisch leitende Schicht besteht aus Boriden oder Siliciden bzw. Übergangsmetallen der Gruppen 5 und 6 des periodischen Systems. Die Anwendung solcher aufgebrachten Schichten auf Keramikkörper sind aus­ schließlich in der Mikroelektronik und Substrattechnik zu sehen, wobei Temperaturen bis zu 200°C garantiert werden können. Die Funktion der Metallschicht ist nicht als Heizung, sondern als Leiterbahn zu sehen.From DE 29 24 292 C2 are also ceramic bodies with a electrically conductive layer known. This electrically conductive Layer consists of borides or silicides or transition metals of groups 5 and 6 of the periodic system. The application such applied layers on ceramic bodies are made finally seen in microelectronics and substrate technology temperatures of up to 200 ° C can be guaranteed. The The function of the metal layer is not as heating, but as Track to see.

Die Aufgabe dieser Erfindung ist es nun, hochreine keramische Tiegelmaterialien aus z. B. Aluminiumoxyd, Bornitrid oder Aluminiumnitrid mit einer elektrisch leitenden Schicht zu versehen, welche auch bei sehr hohen Temperaturen stabil ist und somit in entsprechenden Anlagen eingesetzt werden kann. The object of this invention is now to provide high purity ceramic Crucible materials made from e.g. As aluminum oxide, boron nitride or Aluminum nitride with an electrically conductive layer provided which is stable even at very high temperatures and can therefore be used in corresponding systems.  

Diese Aufgabe wird mit den in Anspruch 1 angegebenen Merkmalen gelöst.This object is achieved with those specified in claim 1 Features resolved.

Es bedeutet eine deutliche Verbesserung, wenn als elektrischer Widerstand pyrolytischer Kohlenstoff abgeschieden wird anstelle von Metallen. Der Vorteil von pyrolytischem Kohlenstoff besteht darin, daß Schichten, welche bereits ab 800°C auf Keramiken abgeschieden werden können, einen äußerst geringen Dampfdruck aufweisen. In Ab­ hängigkeit der Schichtdicke kann der elektrische Widerstand auf bestehende Systeme optimiert werden. Auch ist es möglich, durch gezielte Abscheidung von anisotropem bzw. isotropem Kohlenstoff den Ausdehnungskoeffizient auf das Grundmaterial, die Keramik, weitgehend abzustimmen und somit eine Haftung, ohne daß die Materialien chemisch reagieren müssen, zu garan­ tieren.It means a significant improvement if as electrical resistance pyrolytic carbon is deposited instead of metals. The advantage of pyrolytic carbon consists of layers which are deposited on ceramics from 800 ° C can have an extremely low vapor pressure. In Ab The electrical resistance can depend on the layer thickness be optimized for existing systems. It is also possible through selective deposition of anisotropic or isotropic Carbon the coefficient of expansion on the base material, the ceramics to be largely coordinated and thus a liability, without the materials having to react chemically animals.

Durch die Auswahl des Grundmaterials von z. B. pyrolytischem Bornitrid kann wegen der hohen Anisotropie des Materials die Wärmeleitfähigkeit in Wandrichtung des Heizelementes beein­ flußt werden bzw. bei Verwendung von Aluminiumnitrid in Richtung Tiegelinneres.By choosing the base material from z. B. pyrolytic Because of the high anisotropy of the material, boron nitride can Thermal conductivity in the wall direction of the heating element affected are flowing or when using aluminum nitride in the direction Inside of the crucible.

Somit kann speziell durch die Auswahl unterschiedliche Keramiken die Wärmeleitfähigkeit gesteuert werden.This means that different ceramics can be selected the thermal conductivity can be controlled.

Beispiele:Examples: 1. Beispiel:1st example:

In Abb. 1 ist ein Keramiktiegel (1) dargestellt, welcher eine metallisierte elektrisch leitfähige Widerstandsheizung (2) besitzt. Dieser Tiegel ist in Abhängigkeit der verwendeten Metallisierung (z. B. Platin, Nickel, Gold) bis zu Temperaturen von 1000°C limitiert. Auch ist als Grundmaterial bislang pyrolytisches Bornitrid nicht verwendbar, da auf pyrolytischem Bornitrid keine haftfähigen metallisierten Schichten aufgebracht werden können.In Fig. 1 a ceramic crucible ( 1 ) is shown, which has a metallized electrically conductive resistance heater ( 2 ). This crucible is limited up to temperatures of 1000 ° C depending on the metallization used (e.g. platinum, nickel, gold). So far, pyrolytic boron nitride cannot be used as the base material, since no adhesive metallized layers can be applied to pyrolytic boron nitride.

2. Beispiel:2nd example:

Abb. 2 zeigt eine deutliche Verbesserung des ersten Ver­ fahrens, indem pyrolytischer Kohlenstoff (2) als Widerstands­ heizer aufgebracht wird. Die Abscheidung dieses pyrolytischen Kohlenstoffs, z. B. erfolgt auf Bornitrid (1) bei Temperaturen um 1700°C, womit eine haftfähige Leiterbahn mittels dem CVD-Verfahren aufgedampft werden konnte. Der elektrische Widerstand eines solchen Elementes kann durch mechanische Bearbeitung der Leiterbahnbreite bzw. durch die Dicke in Abhängigkeit der Beschichtungsdauer beeinflußt werden. Der Vorteil bei Verwendung von pyrolytischem Bornitrid ist die extreme Temperaturhomogenität in Wandebene. Fig. 2 shows a significant improvement in the first process by applying pyrolytic carbon ( 2 ) as a resistance heater. The deposition of this pyrolytic carbon, e.g. B. takes place on boron nitride ( 1 ) at temperatures around 1700 ° C, with which an adhesive conductor track could be evaporated by means of the CVD process. The electrical resistance of such an element can be influenced by mechanical processing of the conductor track width or by the thickness as a function of the coating duration. The advantage of using pyrolytic boron nitride is the extreme temperature homogeneity in the wall plane.

3. Beispiel:3rd example:

Eine weitere Verbesserung in thermischer Hinsicht bedeutet die Verwendung von Aluminiumnitrid als Tiegelwerkstoff (1), verbunden mit pyrolytischem Kohlenstoff (2), welcher eben­ falls über das CVD-Verfahren aufgebracht wird (Abb. 3). Der Vorteil von dieser Ausführung besteht darin, daß wegen der höheren Wärmeleitfähigkeit von Aluminiumnitrid dieses Heizelement noch schneller reagiert. Auch ist Aluminiumnitrid wegen seiner höheren Emmissivität gegenüber dem weißen pyro­ lytischen Bornitrid vorzuziehen, da der Wirkungsgrad in bezug auf Strahlungswärme deutlich höher liegt. Nachteil von Aluminiumnitrid ist in wenigen Fällen die geringere chemische Stabilität gegenüber Schmelzen als es pyrolytisches Bornitrid aufweist. A further improvement in thermal terms means the use of aluminum nitride as crucible material ( 1 ), combined with pyrolytic carbon ( 2 ), which is also applied using the CVD process ( Fig. 3). The advantage of this design is that because of the higher thermal conductivity of aluminum nitride, this heating element reacts even faster. Aluminum nitride is also preferable because of its higher emissivity than the white pyrolytic boron nitride, since the efficiency in terms of radiant heat is significantly higher. The disadvantage of aluminum nitride is in a few cases the lower chemical stability towards melting than it has pyrolytic boron nitride.

4. Beispiel:4. Example:

Abb. 4 zeigt eine weitere Verbesserung des Heizelementes, indem der elektrisch beheizte Tiegel (1) (2) mit keramischem Material (3) versiegelt wird. Lediglich die elektrischen An­ schlüsse (4) sind direkt der Ofenatmosphäre ausgesetzt. Durch diese Versiegelung kann speziell bei Verwendung in Molekular­ strahlepitaxieanlagen eine eventuelle Kontaminierung von Kohlenstoff unterbunden werden. Durch unterschiedliche Materialstärken der Keramik kann die Wärmeleitfähigkeit auch mit einer Vorzugsrichtung nach dem Tiegelinneren beeinflußt werden. Fig. 4 shows a further improvement of the heating element by sealing the electrically heated crucible ( 1 ) ( 2 ) with ceramic material ( 3 ). Only the electrical connections ( 4 ) are directly exposed to the furnace atmosphere. This sealing can prevent any contamination of carbon, especially when used in molecular beam epitaxial systems. Due to the different material thicknesses of the ceramic, the thermal conductivity can also be influenced with a preferred direction towards the inside of the crucible.

5. Beispiel:5th example:

Abb. 5 zeigt eine weitere Verbesserung der Erfindung. Bei Verwendung von Aluminiumnitrid mit der entsprechend hohen Wärmeleitfähigkeit als Innentiegel (1), verbunden mit einem pyrolytischem Kohlenstoffheizer (2) und einer zusätz­ lichen Versiegelung mittels pyrolytischem Bornitrid (3) wird erreicht, daß wegen der unterschiedlichen thermischen Leit­ fähigkeiten die keramische Versiegelung im Verhältnis zum Innentiegel als elektrische und thermische Isolation ver­ wendet wird. Aluminiumnitrid besitzt eine Wärmeleitfähigkeit von über 150 W/mK im Gegensatz zu pyrolytischem Bornitrid mit einer Wärmeleitfähigkeit in C-Richtung um 1,5. Verbunden mit der höheren Emmissivität von Aluminiumnitrid bedeutet dies einen 100fach höheren Wärmefluß zum Tiegelinneren. Diese Konzipierung kann sicherlich in den meisten Fällen ver­ wendet werden, da Aluminiumnitrid in bezug auf elektrischen Widerstand und chemische Beständigkeit ähnliche Voraussetzungen zeigt wie pyrolytisches Bornitrid. Fig. 5 shows a further improvement of the invention. When using aluminum nitride with the correspondingly high thermal conductivity as an inner crucible ( 1 ), combined with a pyrolytic carbon heater ( 2 ) and an additional sealing by means of pyrolytic boron nitride ( 3 ), it is achieved that because of the different thermal conductivities, the ceramic sealing in relation to Inner crucible is used as electrical and thermal insulation. Aluminum nitride has a thermal conductivity of over 150 W / mK in contrast to pyrolytic boron nitride with a thermal conductivity in the C direction of around 1.5. Combined with the higher emissivity of aluminum nitride, this means a 100 times higher heat flow to the inside of the crucible. This design can certainly be used in most cases, since aluminum nitride shows similar requirements with regard to electrical resistance and chemical resistance as pyrolytic boron nitride.

Gleiche Effekte erzielt man, wenn der Innentiegel (1) z. B. aus isotropem Bornitrid und die Versiegelung (3) mit aniso­ tropem Bornitrid erfolgt.The same effects are achieved if the inner pan ( 1 ) z. B. isotropic boron nitride and the seal ( 3 ) with anisotropic boron nitride.

6. Beispiel:6. Example:

Abb. 6 zeigt die Anordnung des Heizsystems nicht auf elektrischer Widerstandsheizung, sondern auf induktiver Heizung (5). Hier wird die elektrisch leitfähige Schicht (2) gekapselt (3), so daß überhaupt keine metallischen oder graphitischen Oberflächen frei der Ofenatmosphäre ausgesetzt sind. Wie in den Beispielen für die Widerstandsheizung sind die gleichen Freiheitsgrade und Optimierungen bei induktiver Heizung möglich. Fig. 6 shows the arrangement of the heating system not on electrical resistance heating, but on inductive heating ( 5 ). Here, the electrically conductive layer ( 2 ) is encapsulated ( 3 ) so that no metallic or graphitic surfaces are exposed to the furnace atmosphere at all. As in the examples for resistance heating, the same degrees of freedom and optimizations are possible with inductive heating.

Claims (7)

1. Keramische, elektrisch nichtleitende Tiegel, dadurch gekenn­ zeichnet, daß eine elektrisch leitende Schicht aus pyrolytischem Kohlenstoff an der Außenwandung des Tiegels aufgebracht wird, welche als Widerstandsheizung oder als Suszeptor für induktive Heizung dient.1. Ceramic, electrically non-conductive crucible, characterized in that an electrically conductive layer of pyrolytic carbon is applied to the outer wall of the crucible, which serves as resistance heating or as a susceptor for inductive heating. 2. Tiegel nach Anspruch 1, dadurch gekennzeichnet, daß der Tiegel aus pyrolytisch abgeschiedenem Bornitrid besteht.2. Crucible according to claim 1, characterized in that the crucible consists of pyrolytically deposited boron nitride. 3. Tiegel nach Anspruch 1, dadurch gekennzeichnet, daß der kerami­ sche Tiegel aus Aluminiumnitrid oder Aluminiumoxyd besteht.3. Crucible according to claim 1, characterized in that the kerami crucible made of aluminum nitride or aluminum oxide. 4. Tiegel nach Anspruch 1 bis 3, dadurch gekennzeichnet, daß die leitfähige Schicht mittels einer elektrisch isolierenden kera­ mischen Schicht, ausgenommen der Kontaktierungsstellen, versiegelt wird. 4. Crucible according to claim 1 to 3, characterized in that the conductive layer using an electrically insulating kera mix layer, except the contact points, sealed becomes.   5. Tiegel nach Anspruch 4, dadurch gekennzeichnet, daß der Innen­ tiegel aus einer thermisch besser leitenden Keramik als die Versiegelung besteht.5. Crucible according to claim 4, characterized in that the inside crucible made of a thermally better conductive ceramic than that Sealing exists. 6. Tiegel nach Anspruch 4, dadurch gekennzeichnet, daß die Material­ paarung aus Aluminiumnitrid als Innentiegel, pyrolytischem Kohlen­ stoff als leitfähige Schicht und pyrolytischem Bornitrid als Versiegelung besteht.6. Crucible according to claim 4, characterized in that the material Pairing of aluminum nitride as inner crucible, pyrolytic carbon fabric as a conductive layer and pyrolytic boron nitride as Sealing exists. 7. Tiegel nach Anspruch 1 bis 6, dadurch gekennzeichnet, daß die leitfähige Schicht ausschließlich als Suszeptor für induktive Heizung verwendet wird, wobei keine freien Kontaktierungsflächen notwendig sind.7. crucible according to claim 1 to 6, characterized in that the conductive layer exclusively as a susceptor for inductive Heating is used, with no free contact areas are necessary.
DE19893915116 1989-05-09 1989-05-09 Electrically non-conducting crucible - includes pyrolytic carbon layer and aluminium nitride or aluminium oxide-contg. ceramic Expired - Lifetime DE3915116C1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
DE19893915116 DE3915116C1 (en) 1989-05-09 1989-05-09 Electrically non-conducting crucible - includes pyrolytic carbon layer and aluminium nitride or aluminium oxide-contg. ceramic

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE19893915116 DE3915116C1 (en) 1989-05-09 1989-05-09 Electrically non-conducting crucible - includes pyrolytic carbon layer and aluminium nitride or aluminium oxide-contg. ceramic

Publications (1)

Publication Number Publication Date
DE3915116C1 true DE3915116C1 (en) 1990-11-15

Family

ID=6380312

Family Applications (1)

Application Number Title Priority Date Filing Date
DE19893915116 Expired - Lifetime DE3915116C1 (en) 1989-05-09 1989-05-09 Electrically non-conducting crucible - includes pyrolytic carbon layer and aluminium nitride or aluminium oxide-contg. ceramic

Country Status (1)

Country Link
DE (1) DE3915116C1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4117470A1 (en) * 1990-06-12 1992-01-30 Francesco Pedrazzini Melting crucible construction for induction melting pure titanium - produces molten titanium which flows easily and does not stick to nor react with the vessel
EP0477511A1 (en) * 1990-09-27 1992-04-01 Daimler-Benz Aerospace Aktiengesellschaft Heating chamber and method for its fabrication
DE4301330A1 (en) * 1993-01-20 1994-08-18 Didier Werke Ag Method for inductively heating up a ceramic moulding
DE4338506A1 (en) * 1993-11-11 1995-05-18 Daimler Benz Ag Arrangement for the thermal treatment of semiconductor substrates

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2924292C2 (en) * 1978-06-17 1986-09-11 NGK Insulators Ltd., Nagoya, Aichi Ceramic body with a layer of electrically conductive material that at least partially covers it
EP0194358A1 (en) * 1985-01-11 1986-09-17 Sumitomo Electric Industries, Ltd. Heat sink using a sintered body having high heat-conductivity and method of manufacturing thereof
EP0282285A2 (en) * 1987-03-13 1988-09-14 Kabushiki Kaisha Toshiba A method of metallization for a nitride ceramic member

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2924292C2 (en) * 1978-06-17 1986-09-11 NGK Insulators Ltd., Nagoya, Aichi Ceramic body with a layer of electrically conductive material that at least partially covers it
EP0194358A1 (en) * 1985-01-11 1986-09-17 Sumitomo Electric Industries, Ltd. Heat sink using a sintered body having high heat-conductivity and method of manufacturing thereof
EP0282285A2 (en) * 1987-03-13 1988-09-14 Kabushiki Kaisha Toshiba A method of metallization for a nitride ceramic member

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4117470A1 (en) * 1990-06-12 1992-01-30 Francesco Pedrazzini Melting crucible construction for induction melting pure titanium - produces molten titanium which flows easily and does not stick to nor react with the vessel
EP0477511A1 (en) * 1990-09-27 1992-04-01 Daimler-Benz Aerospace Aktiengesellschaft Heating chamber and method for its fabrication
DE4301330A1 (en) * 1993-01-20 1994-08-18 Didier Werke Ag Method for inductively heating up a ceramic moulding
DE4338506A1 (en) * 1993-11-11 1995-05-18 Daimler Benz Ag Arrangement for the thermal treatment of semiconductor substrates

Similar Documents

Publication Publication Date Title
EP2457412B1 (en) Heater, in particular high-temperature heater, and method for the production thereof
DE69934049T2 (en) Ceramic multilayer heating element
ES2292720T3 (en) RESISTIVE COATING AND DRIVER DERIVED FROM SOL-GEL.
US4804823A (en) Ceramic heater
DE3239949A1 (en) RESISTANCE HEATED SHIP FOR EVAPORATING METALS
EP0571412A1 (en) High temperature sensor made of metal of the platinum group
EP0886458A2 (en) Molybdenum disilicide heating element and its production method
DE1764951B1 (en) MULTI-LAYER METALIZATION FOR SEMI-CONDUCTOR CONNECTIONS
DE19901183C2 (en) Platinum temperature sensor and manufacturing method for the same
DE102006056812A1 (en) Heater for regulating/controlling surface temperature of substrate e.g. mold for glass lens, comprises a thermal pyrolytic layer in base support for providing specific maximum temperature variation, and having specific thermal conductivity
DE3915116C1 (en) Electrically non-conducting crucible - includes pyrolytic carbon layer and aluminium nitride or aluminium oxide-contg. ceramic
DE1521153A1 (en) Process for the production of a firmly adhering, electrically conductive and solderable metallic coating on non-metallic solid carrier bodies, e.g. Glass or ceramic, by vapor deposition
EP0661763A1 (en) Superconducting ceramics elongated body and method of manufacturing the same
DE10316228B3 (en) Effusion cell with improved crucible temperature control
DE1913995A1 (en) Microcircuit with housing
WO1999054655A2 (en) Thermal insulation to be inserted between two insulating structures
US4425660A (en) Shielding arrangement for a vacuum furnace
DE102006001855A1 (en) Evaporator body and method for providing an evaporator body
DE102005054611B4 (en) Method for producing meander-shaped resistance layers of electrically heatable mirror glasses
EP1269130A1 (en) Sensor element, in particular a temperature sensor
DE10001330A1 (en) Electric cooker plate has flat coating of electrical heating resistance material with binding material containing electrical resistance element of conducting carbon in contact with underside
WO1995004443A1 (en) Ceramic heating element and process for producing such a heating element
EP0468382A1 (en) Electric conductor material for solar cell
DE4432712C2 (en) Ceramic substrate suitable for coating with a high-temperature superconducting material
DE19808132B4 (en) Component for transmitting and receiving infrared radiation

Legal Events

Date Code Title Description
8100 Publication of the examined application without publication of unexamined application
D1 Grant (no unexamined application published) patent law 81
8364 No opposition during term of opposition
8320 Willingness to grant licenses declared (paragraph 23)
8327 Change in the person/name/address of the patent owner

Owner name: CVT GMBH & CO. KG, 87642 HALBLECH, DE