DE3633266A1 - Method of joining a wafer-type semiconductor body over a large area to a metallic substrate disc - Google Patents

Method of joining a wafer-type semiconductor body over a large area to a metallic substrate disc

Info

Publication number
DE3633266A1
DE3633266A1 DE19863633266 DE3633266A DE3633266A1 DE 3633266 A1 DE3633266 A1 DE 3633266A1 DE 19863633266 DE19863633266 DE 19863633266 DE 3633266 A DE3633266 A DE 3633266A DE 3633266 A1 DE3633266 A1 DE 3633266A1
Authority
DE
Germany
Prior art keywords
semiconductor body
layers
wafer
metallic substrate
substrate disc
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
DE19863633266
Other languages
German (de)
Inventor
Bernd Dr Kolbesen
Herbert Dr Schwarzbauer
Michael Dr Stoisiek
Manfred Ing Grad Wintzer
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Siemens AG
Original Assignee
Siemens AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens AG filed Critical Siemens AG
Priority to DE19863633266 priority Critical patent/DE3633266A1/en
Publication of DE3633266A1 publication Critical patent/DE3633266A1/en
Withdrawn legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L24/83Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/74Apparatus for manufacturing arrangements for connecting or disconnecting semiconductor or solid-state bodies
    • H01L24/75Apparatus for connecting with bump connectors or layer connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66083Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by variation of the electric current supplied or the electric potential applied, to one or more of the electrodes carrying the current to be rectified, amplified, oscillated or switched, e.g. two-terminal devices
    • H01L29/6609Diodes
    • H01L29/66136PN junction diodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66234Bipolar junction transistors [BJT]
    • H01L29/66272Silicon vertical transistors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66363Thyristors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/83Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
    • H01L2224/8319Arrangement of the layer connectors prior to mounting
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/83Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
    • H01L2224/838Bonding techniques
    • H01L2224/83801Soldering or alloying
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01005Boron [B]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01006Carbon [C]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01013Aluminum [Al]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01015Phosphorus [P]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/0102Calcium [Ca]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01042Molybdenum [Mo]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01079Gold [Au]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/1015Shape
    • H01L2924/10155Shape being other than a cuboid
    • H01L2924/10157Shape being other than a cuboid at the active surface
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/12Passive devices, e.g. 2 terminal devices
    • H01L2924/1203Rectifying Diode
    • H01L2924/12036PN diode
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/13Discrete devices, e.g. 3 terminal devices
    • H01L2924/1301Thyristor

Abstract

To join the semiconductor body (3) of a power semiconductor component over a large area to a metallic substrate disc (4), both the back boundary surface (9) of the semiconductor body (3) and the front (10) of the substrate disc (4) are polished to such an extent that they exhibit only a few Newton rings in the interference pattern. An adhesive base layer (19, 20) composed, for example, of titanium and having a thickness of approximately 40 A is then vapour-deposited on each of the polished surfaces (9, 10) in a vacuum system (5-8 and 12-17). Gold layers (23, 24) approximately 60 Ä thick are then vapour-deposited in each case on these layers (19, 20) and said gold layers (23, 24) are placed one on top of the other at room temperature. <IMAGE>

Description

Die Erfindung bezieht sich auf ein Verfahren zum großflächigen Verbinden eines scheibenförmigen Halbleiterkörpers mit einer metallischen Substratscheibe nach dem Oberbegriff des Patent­ anspruchs 1.The invention relates to a method for large-area Connecting a disk-shaped semiconductor body with one metallic substrate wafer according to the preamble of the patent claim 1.

Bei herkömmlichen Verfahren dieser Art wird der scheibenförmige Halbleiterkörper, z. B. aus Silizium, an seiner rückwärtigen Grenzfläche unter Zwischenfügung einer Aluminiumfolie mit einer Substratscheibe aus Molybdän bei einer Temperatur von ca. 700°C im Vakuum zusammenlegiert. Nachteilig ist jedoch, daß die unter­ schiedlichen thermischen Ausdehnungskoeffizienten von Molybdän und dem verwendeten Halbleitermaterial zwischen den auf diese Weise miteinander verbundenen Teilen beim Abkühlen derselben Spannungen hervorrufen, die zu einem Verbiegen des mit der Substratscheibe versehenen Halbleiterkörpers führen. Wird Silizium als Halbleitermaterial verwendet, so muß die rückwär­ tige Grenzfläche eine (111)-orientierte Fläche sein. Wegen der hohen Legierungstemperatur muß das Anlegieren der Substrat­ scheibe vor dem Aufbringen und Strukturieren der Metallisierung auf der Vorderseite des Halbleiterkörpers erfolgen. Eine nach dem Legierungsprozeß vorgesehene Strukturierung von Metall- und/oder Halbleiterschichten auf der Vorderseite des Halblei­ terkörpers kann jedoch wegen der genannten Verformung des Halb­ leiterkörpers im allgemeinen nicht mehr mit hoher Genauigkeit erfolgen. Auch muß die anzulegierende Substratscheibe aus einem hochwertigen, porenfreien, gewalzten Blech gefertigt sein. Da das Testen von Bauelementen, die auf dem Halbleiterkörper auf­ integriert werden, üblicherweise erst nach dem Legierungsprozeß erfolgt, führt der Ausfall der funktionsuntüchtigen Exemplare zum Verlust der jeweils anlegierten Substratscheiben.In conventional methods of this type, the disc-shaped Semiconductor body, e.g. B. made of silicon, on its rear Interface with the interposition of an aluminum foil with a Molybdenum substrate disc at a temperature of approx. 700 ° C alloyed in a vacuum. The disadvantage, however, is that the under different coefficients of thermal expansion of molybdenum and the semiconductor material used between them Parts that are connected to one another when they cool down Tensions that lead to bending of the Guide wafer provided semiconductor body. Becomes Silicon used as a semiconductor material, so the Rückwär interface is a (111) -oriented surface. Because of the high alloy temperature must be the alloying of the substrate before applying and structuring the metallization done on the front of the semiconductor body. One after structuring of metal and / or semiconductor layers on the front side of the semiconductor body can, however, because of the deformation of the half conductor body in general no longer with high accuracy respectively. The substrate wafer to be applied must also consist of one high-quality, non-porous, rolled sheet. There testing components based on the semiconductor body be integrated, usually only after the alloying process  occurs, the failure of the inoperative copies leads to the loss of the respective alloyed substrate wafers.

Der Erfindung liegt die Aufgabe zugrunde, ein Verfahren der eingangs genannten Art anzugeben, bei dem diese Nachteile ver­ mieden werden. Das wird erfindungsgemäß durch eine Ausbildung nach dem Kennzeichen des Patentanspruchs 1 erreicht.The invention has for its object a method of Specify the type mentioned, in which these disadvantages ver be avoided. According to the invention, this is achieved through training achieved according to the characterizing part of patent claim 1.

Der mit der Erfindung erzielbare Vorteil besteht insbesondere darin, daß durch das Aneinanderfügen der beiden Gold-Schichten eine sehr dauerhafte und hochbelastbare Verbindung zwischen dem Halbleiterkörper und der Substratscheibe erzielt wird. Da die Verbindung bei Zimmertemperatur erfolgt und die Gold-Schichten nicht in den Halbleiterkörper einlegiert werden, treten die genannten, bei den herkömmlichen Verfahren vorliegenden Beein­ trächtigungen nicht auf.The advantage that can be achieved with the invention is in particular in that by joining the two gold layers together a very permanent and heavy-duty connection between the Semiconductor body and the substrate wafer is achieved. Since the Connection is done at room temperature and the gold layers are not alloyed into the semiconductor body, the Legs mentioned in the conventional methods do not show up.

Der Anspruch 2 ist auf bevorzugte Anwendungen des Verfahrens nach der Erfindung gerichtet.Claim 2 is for preferred applications of the method directed according to the invention.

Die Erfindung wird nachfolgend anhand der Zeichnung näher er­ läutert. Dabei zeigt Fig. 1 in schematischer Darstellung eine Einrichtung, die zur Durchführung des erfindungsgemäßen Ver­ fahrens geeignet ist. Beispielsweise soll der aus einer n-lei­ tenden Schicht 1 und einer p-leitenden Schicht 2 bestehende Silizium-Halbleiterkörper 3 einer Hochleistungsdiode, der be­ reits mit einer kathodenseitigen Elektrode E versehen ist, mit einer Substratscheibe 4 aus Molybdän verbunden werden. Dies geschieht in einer Vakuumanlage, bestehend aus einem Gehäuse 5, das mit einem Deckel 6 verschließbar ist und über ein Absaugrohr 7 mit einer Vakuumpumpe 8 in Verbindung steht. Der Halbleiterkörper 3 hat vorzugsweise die Form einer sehr flachen kreisförmigen Scheibe, deren in vertikaler Richtung gemessene Dicke wesentlich kleiner ist als der in lateraler Richtung gemessene Scheibendurchmesser. In Fig. 1 sind die lateralen Abmessungen des Halbleiterkörpers aus Gründen einer einfachen Darstellung stark verkürzt dargestellt. The invention is explained in more detail with reference to the drawing. Here, FIG. 1 is a schematic representation showing a device which is suitable for performing the driving Ver invention. For example, the silicon semiconductor body 3 of a high-performance diode consisting of an n-conductive layer 1 and a p-conductive layer 2 , which is already provided with a cathode-side electrode E , is to be connected to a substrate wafer 4 made of molybdenum. This takes place in a vacuum system, consisting of a housing 5 , which can be closed with a cover 6 and is connected to a vacuum pump 8 via a suction pipe 7 . The semiconductor body 3 preferably has the shape of a very flat circular disk, the thickness of which is measured in the vertical direction is substantially smaller than the disk diameter measured in the lateral direction. In Fig. 1, the lateral dimensions of the semiconductor body are shown in a greatly shortened form for reasons of a simple representation.

Beim erfindungsgemäßen Verfahren werden zunächst die Rückseite 9 des Halbleiterkörpers und die Vorderseite 10 der Substrat­ scheibe 4 außerhalb der Vakuumanlage in herkömmlicher Weise so weit poliert, daß sehr glatte Oberflächen entstehen, die im In­ terferenzbild jeweils nur wenige Newton-Ringe aufweisen. An­ schließend werden die Teile 3 und 4 in das Gehäuse 5 einge­ bracht, in dem sich ein Tiegel 11 befindet, der ein Haftgrund­ material, z.B. Titan, enthält. Dabei wird der Halbleiterkörper 3 von einer federnden Klammer 12 gehalten, die an einem Arm 13 befestigt ist, welcher mittels einer Hülse 14 auf einer durch 5 nach außen geführten Achse 15 drehbar gelagert ist. Eine weite­ re, entsprechend gelagerte Hülse ist mit einem Arm 16 verbun­ den. Dieser weist eine endseitige, federnde Klammer 17 auf, die die Substratscheibe 4 hält. Durch Verdrehen der beiden Hülsen können die Teile 3 und 4 gegeneinander verschwenkt werden, wobei sich ihre Flächen 9 und 10 einander weitgehend annähern. Nach dem Evakuieren des Gehäuses 5 wir die elektrische Heizung 18 des Tiegels 11 eingeschaltet, so daß sich das Haftgrundma­ terial auf eine Temperatur von etwa 1700°C erhitzt. Dabei ver­ dampft das Haftgrundmaterial, so daß in der gezeichneten Stellung der Arme 13 und 16 eine Haftgrundschicht 19 von etwa 40 Å Dicke auf der Fläche 9 des Halbleiterkörpers 3 und eine entsprechende Schicht 20 auf der Vorderseite 10 der Substrat­ scheibe aufgedampft werden. Anschließend wird ein weiterer Tiegel 21, der im Gehäuse 5 angeordnet ist und Gold enthält, unter Aufrechterhaltung des Vakuums mittels einer elektrischen Heizung 22 auf eine Temperatur von etwa 1100°C erhitzt. Dabei werden auf den Schichten 19 und 20 jeweils Goldschichten 23 und 24 von z.B. 60 Å Dicke aufgedampft. Die so beschichteten Flächen 9 und 10 werden bei Zimmertemperatur durch Schwenken der Arme 13 und 16 mit geringem Druck aufeinandergelegt. Dabei gehen die Goldschichten 23 und 24 eine so innige Verbindung miteinander ein, daß eine hochbelastbare Verbindung des scheibenförmigen Halbleiterkörpers 3 mit der Substratscheibe 4 entsteht. Der zuletzt genannte Schritt des Aufeinanderlegens der Schichten 23 und 24 erfolgt im Inneren des evakuierten Gehäuses 5. In the method according to the invention, the back 9 of the semiconductor body and the front 10 of the substrate 4 are first polished outside the vacuum system in a conventional manner to such an extent that very smooth surfaces are formed which each have only a few Newton rings in the interference image. At closing, the parts 3 and 4 are brought into the housing 5 , in which there is a crucible 11 which contains an adhesive base material, for example titanium. The semiconductor body 3 is held by a resilient bracket 12 which is fastened to an arm 13 which is rotatably mounted by means of a sleeve 14 on an axis 15 guided through 5 to the outside. A wide re, appropriately mounted sleeve is with an arm 16 verbun the. This has an end resilient clamp 17 which holds the substrate wafer 4 . By rotating the two sleeves, parts 3 and 4 can be pivoted against one another, their surfaces 9 and 10 largely approaching one another. After evacuating the housing 5, we turned on the electric heater 18 of the crucible 11 , so that the Haftgrundma material heated to a temperature of about 1700 ° C. This evaporates the adhesive base material, so that in the drawn position of the arms 13 and 16, an adhesive base layer 19 of about 40 Å thickness on the surface 9 of the semiconductor body 3 and a corresponding layer 20 on the front 10 of the substrate wafer are evaporated. A further crucible 21 , which is arranged in the housing 5 and contains gold, is then heated to a temperature of approximately 1100 ° C. by means of an electrical heater 22 while maintaining the vacuum. Gold layers 23 and 24, for example 60 Å thick, are deposited on layers 19 and 20, respectively. The surfaces 9 and 10 coated in this way are placed on one another at room temperature by pivoting the arms 13 and 16 with low pressure. The gold layers 23 and 24 form such an intimate connection with one another that a heavy-duty connection of the disk-shaped semiconductor body 3 to the substrate disk 4 is produced. The last-mentioned step of stacking the layers 23 and 24 takes place inside the evacuated housing 5 .

Da die Verbindung der Schichten 23 und 24 bei Zimmertemperatur erfolgt und ein Eindringen der Schichten 19, 20, 23, 24 in das Silizium nicht stattfindet, ist das erfindungsgemäße Verfahren nicht mit den Nachteilen der herkömmlichen Legierungsverfahren behaftet. Die Substratscheibe 4 stellt die anodenseitige Elek­ trode der Leistungsdiode dar und gibt dem Halbleiterkörper 3 zusätzlich die notwendige Biegefestigkeit.Since the layers 23 and 24 are connected at room temperature and the layers 19 , 20 , 23 , 24 do not penetrate into the silicon, the method according to the invention is not burdened with the disadvantages of the conventional alloying methods. The substrate wafer 4 represents the anode-side electrode of the power diode and also gives the semiconductor body 3 the necessary flexural strength.

Anstelle einer Leistungsdiode kann z.B. auch ein Leistungstran­ sistor unter Verwendung des erfindungsgemäßen Verfahrens mit der Substratscheibe 4 verbunden werden. Bei einem solchen weist der Halbleiterkörper 3 zusätzlich eine in die Schicht 2 einge­ fügte, n-leitende Schicht 25 auf, die durch einen gestrichelten pn-Übergang 26 von 2 getrennt ist. Die Schichten 25 und 2 sind dabei jeweils mit einer Emitterelektrode E und einer Basiselek­ trode B versehen. Die Substratscheibe 4 bildet dann die Kollek­ torelektrode.Instead of a power diode, for example, can also be a Leistungstran sistor using the method according to the invention with the substrate wafer 4 are connected. In such a case, the semiconductor body 3 additionally has an n-type layer 25 inserted into the layer 2, which is separated from FIG. 2 by a dashed pn junction 26 . The layers 25 and 2 are each provided with an emitter electrode E and a base electrode B. The substrate wafer 4 then forms the collector gate electrode.

In Fig. 2 ist ein Leistungsthyristor dargestellt, dessen Halb­ leiterkörper aus einem p-Emitter 27, einer n-Basis 28, einer p-Basis 29 und einem n-Emitter 30 besteht. Auch hier kann das erfindungsgemäße Verfahren verwendet werden, um die anodensei­ tige Elektrode 31 mit dem p-Emitter 27 zu verbinden. Dabei sind die Schichten 30 und 29 bereits vor dem Einbringen des Halblei­ terkörpers in das Gehäuse 5 jeweils mit der kathodenseitigen Elektrode 32 und der Zündelektrode 33 versehen. FIG. 2 shows a power thyristor whose semiconductor body consists of a p-emitter 27 , an n-base 28 , a p-base 29 and an n-emitter 30 . The method according to the invention can also be used here to connect the anode-side electrode 31 to the p-emitter 27 . The layers 30 and 29 are already provided with the cathode-side electrode 32 and the ignition electrode 33 before the introduction of the semiconductor body into the housing 5 .

Claims (2)

1. Verfahren zum großflächigen Verbinden des scheibenförmigen Halbleiterkörpers (3) eines Leistungshalbleiter-Bauelements mit einer metallischen Substratscheibe (4), dadurch ge­ kennzeichnet, daß sowohl die rückwärtige Grenz­ fläche (9) des Halbleiterkörpers (3) als auch die Vorderseite (10) der Substratscheibe (4) soweit poliert werden, daß sie im Interferenzbild jeweils nur wenige Newton-Ringe aufweisen, daß in einer Vakuumanlage (5-8 und 12-17) auf die polierten Flächen (9, 10) jeweils Schichten (19, 20) aus einem als Haftgrund dienenden Material, insbesondere aus Titan, mit Schichtdicken von etwa 40 Å aufgedampft werden, daß auf diese Schichten (19, 20) unter Aufrechterhaltung des Vakuums jeweils Gold-Schichten (23, 24) mit Schichtdicken von etwa 60 Å aufge­ dampft werden und daß die rückwärtige Grenzfläche (9) des Halbleiterkörpers (3) und die Vorderseite (10) der Substrat­ scheibe (4) nach dieser Beschichtung bei Zimmertemperatur mit hinreichendem Druck im Vakuum aufeinandergelegt werden.1. A method for large-area connection of the disk-shaped semiconductor body ( 3 ) of a power semiconductor component with a metallic substrate wafer ( 4 ), characterized in that both the rear boundary surface ( 9 ) of the semiconductor body ( 3 ) and the front ( 10 ) of the Substrate disk ( 4 ) are polished to such an extent that they each have only a few Newton rings in the interference pattern, that layers ( 19 , 20 ) are applied to the polished surfaces ( 9 , 10 ) in a vacuum system ( 5-8 and 12-17 ) a serving as a primer material, in particular titanium, are deposited with a layer thickness of approximately 40 Å, that gold layers ( 23 , 24 ) with a layer thickness of approximately 60 Å are vapor-deposited onto these layers ( 19 , 20 ) while maintaining the vacuum and that the rear interface ( 9 ) of the semiconductor body ( 3 ) and the front ( 10 ) of the substrate wafer ( 4 ) after this coating at room temperature with sufficient Dr be placed on top of each other in a vacuum. 2. Anwendung des Verfahrens nach Anspruch 1 zum Anbringen einer Elektrode (4, 31) auf der rückwärtigen Grenzfläche des Halblei­ terkörpers (3) einer Diode, eines Transistors (1, 2, 25) oder eines Thyristors (27 bis 30).2. Application of the method according to claim 1 for attaching an electrode ( 4 , 31 ) on the rear interface of the semiconductor body ( 3 ), a diode, a transistor ( 1 , 2 , 25 ) or a thyristor ( 27 to 30 ).
DE19863633266 1986-09-30 1986-09-30 Method of joining a wafer-type semiconductor body over a large area to a metallic substrate disc Withdrawn DE3633266A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
DE19863633266 DE3633266A1 (en) 1986-09-30 1986-09-30 Method of joining a wafer-type semiconductor body over a large area to a metallic substrate disc

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE19863633266 DE3633266A1 (en) 1986-09-30 1986-09-30 Method of joining a wafer-type semiconductor body over a large area to a metallic substrate disc

Publications (1)

Publication Number Publication Date
DE3633266A1 true DE3633266A1 (en) 1988-03-31

Family

ID=6310719

Family Applications (1)

Application Number Title Priority Date Filing Date
DE19863633266 Withdrawn DE3633266A1 (en) 1986-09-30 1986-09-30 Method of joining a wafer-type semiconductor body over a large area to a metallic substrate disc

Country Status (1)

Country Link
DE (1) DE3633266A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0715351A1 (en) 1994-12-02 1996-06-05 eupec Europäische Gesellschaft für Leistungshalbleiter mbH & Co. KG Semiconductor power component

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0715351A1 (en) 1994-12-02 1996-06-05 eupec Europäische Gesellschaft für Leistungshalbleiter mbH & Co. KG Semiconductor power component
US6054727A (en) * 1994-12-02 2000-04-25 Eupec Europaische Gesellschaft fuer Leistungshalbleiter mbH & Co. KG Power semiconductor component

Similar Documents

Publication Publication Date Title
DE2215526C3 (en) Method for producing a lock-free metal connection contact on p- or n-conducting semiconductor bodies
DE1127488B (en) Semiconductor device made of silicon or germanium and process for their manufacture
DE4021377A1 (en) METHOD FOR PRODUCING A SEMICONDUCTOR ARRANGEMENT
DE2228678A1 (en) METHOD FOR PRODUCING A LAYER FROM CONDUCTOR MATERIAL FOR SEMICONDUCTOR COMPONENTS
DE1192749B (en) Method for recording a ring-shaped pattern on the surface of a semiconductor body
DE19734434C1 (en) Semiconductor body with reverse-side metallisation e.g. for power semiconductor
DE1071847B (en) Method for producing an essentially non-rectifying sheet-like electrode on the semiconductor body of a semiconductor arrangement by alloying
DE1614148B2 (en) PROCESS FOR PRODUCING AN ELECTRODE FOR SEMICONDUCTOR COMPONENTS
DE3633266A1 (en) Method of joining a wafer-type semiconductor body over a large area to a metallic substrate disc
DE2500235C2 (en) One PN junction planar transistor
DE1286642B (en) Method for manufacturing a semiconductor device
DE3044514A1 (en) SEMICONDUCTOR ARRANGEMENT
DE2654416A1 (en) PROCESS FOR MANUFACTURING SCHOTTKY DIODES WITH IMPROVED BARRIER HEIGHT
DE2141718A1 (en) Method for producing electrical contacts on the surface of a semiconductor component
DE19639438A1 (en) Semiconductor body with solder material layer
EP0966764A1 (en) Source-down fet
DE2450341A1 (en) SEMICONDUCTOR COMPONENTS WITH HEAT-RESISTANT METAL LAYERS
DE2828044A1 (en) HIGH PERFORMANCE SEMI-CONDUCTOR ARRANGEMENT
DE1283969B (en) Semiconductor component with an electrically insulating intermediate body between the semiconductor body and a housing part, and a method for its manufacture
DE3917768A1 (en) Bonded semiconductor diode and thyristor device prodn. - by vapour coating and pressure bonding in vacuum chamber
DE2134647C2 (en) Semiconductor component for limiting overvoltages
DE1564146A1 (en) Semiconductor device and method of manufacturing
CH499878A (en) Contact electrode for semiconductor device formed of - two metal layers
DE1090326B (en) Process for the production of a transistor with three zones from different semiconductor materials of alternating conductivity type
WO2016113079A1 (en) Method for the production of a bondable metal coating for small copper ribbon bonds or large-diameter copper wire bonds on a semiconductor substrate, comprising a sintered copper metal coat, and corresponding bondable metal coating

Legal Events

Date Code Title Description
8141 Disposal/no request for examination