Patents

Search tools Text Classification Chemistry Measure Numbers Full documents Title Abstract Claims All Any Exact Not Add AND condition These CPCs and their children These exact CPCs Add AND condition
Exact Exact Batch Similar Substructure Substructure (SMARTS) Full documents Claims only Add AND condition
Add AND condition
Application Numbers Publication Numbers Either Add AND condition

Chirale phenolester mesogener carbonsaeuren, ein verfahren zu deren herstellung und ihre verwendung als dotierstoff in fluessigkristall-phasen

Classifications

C09K19/58 Dopants or charge transfer agents

Landscapes

Show more

DE3534780A1

Germany

Other languages
English
Inventor
Gerd Prof Dr Heppke
Detlef Loetzsch
Feodor Dr Oestreicher
Current Assignee
Hoechst AG

Worldwide applications
1985 DE 1986 JP

Application DE19853534780 events
Withdrawn

Description

Die Kennlinien der in Flüssigkristall-Displays verwendeten elektro-optischen Effekte verändern sich im allgemeinen mit der Temperatur. Insbesondere bei einer Ansteuerung im Multiplexbetrieb ergeben sich daraus Schwierigkeiten, die zu einer unerwünschten Einschränkung des Arbeitstemperaturbereiches führen können. Bei verschiedenen elektrooptischen Effekten kann durch Zusatz chiraler Verbindungen zum nematischen Flüssigkristall über die Temperaturfunktion der Ganghöhe der dadurch induzierten cholesterischen Helixstruktur die Temperaturabhängigkeit der elektrooptischen Kennlinien vorteilhaft beeinflußt werden, so beim cholesterisch-nematischen Phasenumwandlungseffekt, der TN ("twisted nematic")-Zelle und dem kürzlich vorgestellten SBE ("supertwisted birefringence effect"). Die üblichen bekannten Dotierstoffe induzieren im allgemeinen eine mit zunehmender Temperatur ansteigende Ganghöhe; es sind in jüngster Zeit auch bereits Dotierstoffe beschrieben worden, die diesen oftmals unerwünschten Effekt nicht zeigen.
Aus der DE-C 28 27 471 (= US-A 42 64 148) ist der Zusatz von zwei unterschiedlichen chiralen Dotierstoffen zu nematischen Trägersubstanzen bekannt; dabei erzeugt der eine chirale Dotierstoff in der nematischen Trägersubstanz eine rechtshändige Verdrillung, der andere eine linkshändige Verdrillung. Mit einer solchen Dotierung wird eine Abnahme der Ganghöhe erreicht, aber es sich zur Erreichung dieses Effekts relativ hohe Gesamtkonzentrationen erforderlich, die zu einer negativen Beeinflussung der anderen Materialparameter führen können.
In der DE-A 33 33 677 werden u. a. Umsetzungsprodukte (Ester) von chiralem Butandiol-(2,3) mit mesogenen Carbonsäuren beschrieben, die bereits in Einzeldosierung in Flüssigkristall-Phasen die Optimierung der Temperaturkompensation vereinfachen können. Diese bekannten Ester weisen aber oftmals ein für bestimmte Anwendungen noch zu niedriges Verdrillungsvermögen auf, dieses beträgt - ausgedrückt durch das "pc-Produkt" - nach den Angaben in dieser DE-A 9,2 bis 116 µm·Gew.-%.
Aufgabe der vorliegenden Erfindung ist es deshalb, neue Verbindungen aufzufinden, die bei ihrem Einsatz als chirale Dotierstoffe in Flüssigkristall-Phasen bei verhältnismäßig geringen Zusatzmengen bereits eine Optimierung der Temperaturkompensation und gleichzeitig eine hohe Verdrillung der induzierten Helixstrukturen bewirken.
Die Erfindung geht aus von einem bekannten Ester aus einer chiralen Verbindung mit zwei OH-Gruppen und einer mesogenen Carbonsäure. Die erfindungsgemäßen Verbindungen sind gekennzeichnet durch die allgemeine Formel (I) in der MC einen Molekülrest einer mesogenen Monocarbonsäure nach Abspaltung einer OH-Gruppe bedeutet.
Eine weitere Lösung der gestellten Aufgabe ist eine verdrillbare Flüssigkristall-Phase mit einem Gehalt an mindestens einer chiralen Verbindung, die dadurch gekennzeichnet ist, daß sie als chirale Verbindung mindestens eine Verbindung der allgemeinen Formel (I) oder eines im aromatischen Teil des Phenolteils substituierten Phenolesters (entsprechend dieser allgemeinen Formel (I) als unsubstituiertem Grundmolekül) enthält. Unter dem Begriff "verdrillbare Flüssigkristall-Phase" sind nematische, cholesterische, geneigte ("tilted")-smektische, insbesondere smektisch C (Sc oder SmC), Phasen zu verstehen.
Die erfindungsgemäßen verdrillbaren Flüssigkristallphasen bestehen aus 2 bis 20, vorzugsweise 2 bis 15 Komponenten, darunter mindestens einem der erfindungsgemäß beanspruchten chiralen Dotierstoffe. Die anderen Bestandteile werden vorzugsweise ausgewählt aus den bekannten Verbindungen mit nematischen, cholesterischen und/oder geneigt- smektischen Phasen, dazu gehören beispielsweise Schiffsche Basen, Biphenyle, Terphenyle, Phenylcyclohexane, Cyclohexylbiphenyle, Pyrimidine, Zimtsäureester, Cholesterinester, verschieden überbrückte, terminal-polare mehrkernige Ester von p-Alkylbenzoesäuren. Im allgemeinen liegen die im Handel erhältlichen Flüssigkristall-Phasen bereits vor der Zugabe des chiralen Dotierstoffes als Gemische verschiedenster Komponenten vor, von denen mindestens eine mesogen ist, d. h. als Verbindung, in derivatisierter Form oder im Gemisch mit bestimmten Cokomponenten eine Flüssigkristall- Phase zeigt [= mindestens eine enantiotrope (Klärtemperatur Schmelztemperatur) oder monotrope (Klärtemperatur Schmelztemperatur) Mesophasenbildung erwarten läßt].
Mit Hilfe der neu-entwickelten Verbindungen als Dotierstoff gelingt es bei geringer Menge an Dotierstoff in Flüssigkristall-Phasen eine hohe Verdrillung zu erzielen, wobei die Verbindungen außerdem eine bei Temperaturänderung im wesentlichen unabhängige Ganghöhe aufweisen, d. h. die im allgemeinen im Bereich von 1% bis 1‰ pro K liegende Zu- oder Abnahme der Ganghöhe liegt insbesondere bei weniger als 3‰. Das Verdrillungsvermögen - ausgedrückt durch das Produkt p·c (p= Ganghöhe der induzierten Helixstruktur in µm, c= Konzentration des chiralen Dotierstoffes in Gew.-%), normiert auf 1 Gew.-% des chiralen Dotierstoffes und eine bestimmte Meßtemperatur (z. B. bei 25°C) - ist kleiner als 5, insbesondere liegt es zwischen 0,5 und 4. Ein weiterer Einsatz kann bei der Thermotopographie oder zur Erzeugung von "blue phases" (=cholesterische Systeme mit relativ kleiner Ganghöhe von z. B. weniger als 800 nm) erfolgen.
Unter den Verbindungen der allgemeinen Formel (I) sind die bevorzugt, bei denen der Rest MC bedeutet:
in der die Symbole folgende Bedeutung haben:
R3 = ein geradkettiges oder verzweigtes (C1-C12)Alkyl, wobei eine oder zwei CH2-Gruppen durch O-Atome ersetzt sein können, oder falls n1= 1 auch F, Cl, Br oder CN,
A1, A2 = unabhängig voneinander 1,4-Phenylen, Pyrimidin-2,5- diyl, 1,4-Cyclohexylen, 1,3-Dioxan-2,5-diyl, 1,3-Dithian-2,5-diyl oder 1,4-Bicyclo(2,2,2)octylen, wobei diese Gruppen auch mindestens einfach substituiert sein können durch F, Cl, Br, CN und/oder (C1-C12)Alkyl (gegebenenfalls sind ein oder zwei CH2-Gruppen durch O-Atome ersetzt),
B = CO-O, O-CO, CH2-CH2, OCH2, CH2O, CH=N, N=CH, N=N, N(O)=N,
n1, n2, n3 = unabhängig voneinander 0 oder 1.
Unter den Verbindungen sind die bevorzugt, bei denen die Symbole folgende Bedeutung haben: R3 = geradkettiges (C4-C10)Alkyl, wobei eine CH2-Gruppe durch ein O-Atom ersetzt sein kann, A1, A2= unabhängig voneinander unsubstituiertes 1,4-Phenylen oder 1,4-Cyclohexylen, B= CO-O, O-CO, n1= 1, n2= 1, und n3= 0 oder 1.
Von der oder den erfindungsgemäßen Dotierstoffen enthalten die Flüssigkristall-Phasen im allgemeinen 0,01 bis 70 Gew.-%, insbesondere 0,05 bis 50 Gew.-%.
Beispiele und Vergleichsbeispiele Synthesevorschrift
1,1′-Bi-2-naphtholdiester der p-(4-trans-Heptyl-cyclohexyl)- benzoesäure
Zu 10 mmol der mesogenen p(4-trans-Heptyl-cyclohexyl)-benzoesäure werden 100 mmol SOCl2 zugesetzt. Es werden 5 Tropfen Pyridin zugegeben und das Reaktionsgemisch wird wärend 2 h unter Rückfluß erhitzt. Das überschüssige SOCl2 wird abgezogen (abdestilliert). Das entstehende Säurechlorid wird in Pyridin gelöst. Das optisch aktive 1,1′-Bi-2-naphthol wird in äquimolarer Menge langsam der Lösung zugesetzt und das Reaktionsgemisch unter Zusatz einer Spatelspitze Dimethylaminopyridin wird danach während 20 h unter Rückfluß erhitzt. Das Gemisch wird filtriert, die Lösung eingedampft und über eine Kieselgelsäure gereinigt. Das umkristallisierte Produkt entspricht nach den analytischen Daten (Elementaranalyse, NMR-Spektrum, IR-Spektrum) der angegebenen Formel (I).
Entsprechend wird die nachstehende Verbindung (2) synthetisiert. 1,1′-Bi-2-naphtholdiester der (p′-Pentyl-phenyl)-p- benzoesäure
Anwendungsvorschrift
In einer handelsüblichen nematischen Weitbereichsmischung - "RO-TN 404" der Hoffmann-La Roche Aktiengesellschaft (Basel/Schweiz) - mit einem Klärpunkt von 104°C wird je eine der Verbindungen (1) und (2) und zum Vergleich je eine der Verbindungen (X) und (Y) zugesetzt; die Vergleichsverbindungen sind die handelsüblichen chiralen Dotierstoffe "CB 15" von BDH (British Drug House), Poole (GB) und "S 811" von E. Merck, Darmstadt (DE). In dieser Flüssigkristall-Phase werden dann die Verdrillung in µm·Gew.-% (=p·c) - angegeben bei einer Temperatur von 25°C - und die Temperaturabhängigkeit der Ganghöhe in ‰ pro K bestimmt.
In dieser Meßreihe werden vom jeweiligen Dotierstoff 10 mol% zugesetzt.

Claims (8)
Hide Dependent

1. Ester aus einer chiralen Verbindung mit 2 OH-Gruppen und einer mesogenen Carbonsäure gekennzeichnet durch die allgemeine Formel (I) in der MC einen Molekülrest einer mesogenen Monocarbonsäure nach Abspaltung einer OH-Gruppe bedeutet.
2. Ester nach Anspruch 1, dadurch gekennzeichnet, daß der Rest MC der mesogenen Carbonsäure in der allgemeinen Formel (I) durch die allgemeine Formel (II) ausgedrückt wird in der die Symbole folgende Bedeutung haben:
R3 = ein geradkettiges oder verzweigtes (C1-C12)Alkyl, wobei eine oder zwei CH2-Gruppen durch O-Atome ersetzt sein können, oder falls n1 = 1 auch F, Cl, Br oder CN,
A1, A2 = unabhängig voneinander 1,4-Phenylen, Pyrimidin- 2,5-diyl, 1,4-Cyclohexylen, 1,3-Dioxan-2,5-diyl, 1,3- Dithian-2,5-diyl oder 1,4-Bicyclo(2,2,2)octylen, wobei diese Gruppen auch mindestens einfach substituiert sein können durch F, Cl, Br, CN und/oder (C1-C12)Alkyl (gegebenenfalls sind ein oder zwei CH2-Gruppen durch O- Atome ersetzt),
B = CO-O, O-CO, CH2-CH2, OCH2, CH2O, CH=N, N=CH, N=N, N(O)=N,
n1, n2, n3 = unabhängig voneinander 0 oder 1.
3. Verfahren zur Herstellung eines Esters nach Anspruch 1, dadurch gekennzeichnet, daß die mesogene Monocarbonsäure der Formel MC-OH zum entsprechenden Säurechlorid und anschließend mit 1,1′-Bi-2-naphthol zum Diester umgesetzt wird.
4. Verdrillbare Flüssigkristall-Phase mit einem Gehalt an mindestens einer chiralen Verbindung, dadurch gekennzeichnet, daß sie mindestens eine chirale Verbindung gemäß der allgemeinen Formel (I) nach Anspruch 1 oder eines im aromatischen Teil des Phenolteils substituierten Phenolesters, entsprechend der allgemeinen Formel (I) als unsubstituiertem Grundmolekül, enthält
5. Flüssigkristall-Phase nach Anspruch 5, dadurch gekennzeichnet, daß sie 0,01 bis 70 Gew.-% an mindestens einer der chiralen Verbindungen enthält.
6. Flüssigkristall-Anzeigeelement enthaltend eine Flüssigkristall-Phase nach Anspruch 4.
7. Verwendung einer chiralen Verbindung gemäß der allgemeinen Formel (I) nach Anspruch 1 zur Temperaturkompensation und Erzeugung einer hohen Verdrillung in Flüssigkristall-Phasen.
8. Verfahren zur Temperaturkompensation und hohen Verdrillung in Flüssigkristall-Anzeigeelementen, die eine Flüssigkristall-Phase enthalten, durch Zusatz von mindestens einer chiralen Verbindung, dadurch gekennzeichnet, daß man der Flüssigkristall-Phase 0,01 bis 70 Gew.-% mindestens eine Verbindung gemäß der allgemeinen Formel (I) nach Anspruch 1 zusetzt.