DE19954230A1 - 16-Halogen-Epothilon-Derivate, Verfahren zu deren Herstellung und ihre pharmazeutische Verwendung - Google Patents

16-Halogen-Epothilon-Derivate, Verfahren zu deren Herstellung und ihre pharmazeutische Verwendung

Info

Publication number
DE19954230A1
DE19954230A1 DE19954230A DE19954230A DE19954230A1 DE 19954230 A1 DE19954230 A1 DE 19954230A1 DE 19954230 A DE19954230 A DE 19954230A DE 19954230 A DE19954230 A DE 19954230A DE 19954230 A1 DE19954230 A1 DE 19954230A1
Authority
DE
Germany
Prior art keywords
methyl
compounds according
dione
ethenyl
dihydroxy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
DE19954230A
Other languages
English (en)
Inventor
Ulrich Klar
Werner Skuballa
Bernd Buchmann
Wolfgang Schwede
Michael Schirner
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Bayer Pharma AG
Original Assignee
Schering AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Schering AG filed Critical Schering AG
Priority to DE19954230A priority Critical patent/DE19954230A1/de
Priority to AT00909205T priority patent/ATE370946T1/de
Priority to KR1020017010455A priority patent/KR100718616B1/ko
Priority to AU31567/00A priority patent/AU3156700A/en
Priority to HU0105478A priority patent/HUP0105478A3/hu
Priority to EEP200100431A priority patent/EE200100431A/xx
Priority to MXPA01008328A priority patent/MXPA01008328A/es
Priority to PCT/EP2000/001333 priority patent/WO2000049021A2/de
Priority to YU59001A priority patent/YU59001A/sh
Priority to CA002361278A priority patent/CA2361278A1/en
Priority to DE50014587T priority patent/DE50014587D1/de
Priority to US09/913,495 priority patent/US6610736B1/en
Priority to BR0008331-3A priority patent/BR0008331A/pt
Priority to CNB008039763A priority patent/CN1209360C/zh
Priority to ES00909205T priority patent/ES2291194T3/es
Priority to IL14451900A priority patent/IL144519A0/xx
Priority to EP00909205A priority patent/EP1150980B1/de
Priority to JP2000599760A priority patent/JP2002537301A/ja
Priority to SK1185-2001A priority patent/SK11852001A3/sk
Priority to EA200100826A priority patent/EA009206B1/ru
Priority to PL00349863A priority patent/PL349863A1/xx
Priority to NZ513268A priority patent/NZ513268A/en
Priority to UA2001096380A priority patent/UA74542C2/uk
Priority to CZ20012951A priority patent/CZ20012951A3/cs
Priority to ARP000100714A priority patent/AR022636A1/es
Priority to TW089102834A priority patent/TWI285645B/zh
Priority to BG105802A priority patent/BG105802A/bg
Priority to NO20014013A priority patent/NO20014013L/no
Priority to HR20010677A priority patent/HRP20010677A2/hr
Publication of DE19954230A1 publication Critical patent/DE19954230A1/de
Priority to HK02106485A priority patent/HK1044945A1/xx
Priority to US10/364,337 priority patent/US6930102B2/en
Priority to US11/090,841 priority patent/US20050187270A1/en
Withdrawn legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D405/00Heterocyclic compounds containing both one or more hetero rings having oxygen atoms as the only ring hetero atoms, and one or more rings having nitrogen as the only ring hetero atom
    • C07D405/02Heterocyclic compounds containing both one or more hetero rings having oxygen atoms as the only ring hetero atoms, and one or more rings having nitrogen as the only ring hetero atom containing two hetero rings
    • C07D405/06Heterocyclic compounds containing both one or more hetero rings having oxygen atoms as the only ring hetero atoms, and one or more rings having nitrogen as the only ring hetero atom containing two hetero rings linked by a carbon chain containing only aliphatic carbon atoms
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D417/00Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and sulfur atoms as the only ring hetero atoms, not provided for by group C07D415/00
    • C07D417/02Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and sulfur atoms as the only ring hetero atoms, not provided for by group C07D415/00 containing two hetero rings
    • C07D417/06Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and sulfur atoms as the only ring hetero atoms, not provided for by group C07D415/00 containing two hetero rings linked by a carbon chain containing only aliphatic carbon atoms
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D493/00Heterocyclic compounds containing oxygen atoms as the only ring hetero atoms in the condensed system
    • C07D493/02Heterocyclic compounds containing oxygen atoms as the only ring hetero atoms in the condensed system in which the condensed system contains two hetero rings
    • C07D493/04Ortho-condensed systems
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D493/00Heterocyclic compounds containing oxygen atoms as the only ring hetero atoms in the condensed system
    • C07D493/02Heterocyclic compounds containing oxygen atoms as the only ring hetero atoms in the condensed system in which the condensed system contains two hetero rings
    • C07D493/08Bridged systems
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/55Design of synthesis routes, e.g. reducing the use of auxiliary or protecting groups

Abstract

Die vorliegende Erfindung beschreibt die neuen Epothilon-Derivate der allgemeinen Formel I DOLLAR F1 worin DOLLAR A R·8· ein Halogenatom, insbesondere ein Fluor- oder Chromatom, bedeutet, sowie die übrigen Substituenten die in der Beschreibung angegebene Bedeutung haben. DOLLAR A Die neuen Verbindungen sind zur Herstellung von Arzneimitteln geeignet.

Description

Von Höfle et al. wird die cytotoxische Wirkung der Naturstoffe Epothilon A (R = Wasserstoff) und Epothilon B (R = Methyl)
z. B. in Angew. Chem. 1996, 108, 1671-1673, beschrieben. Wegen der in-vitro- Selektivität gegenüber Brust- und Darmzelllinien und ihrer im Vergleich zu Taxol deutlich höheren Aktivität gegen P-Glycoprotein-bildende, multiresistente Tumorlinien sowie ihre gegenüber Taxol verbesserten physikalischen Eigenschaften, z. B. eine um den Faktor 30 höhere Wasserlöslichkeit, ist diese neuartige Strukturklasse für die Entwicklung eines Arzneimittels zur Therapie maligner Tumoren besonders interessant.
Die Naturstoffe sind sowohl chemisch als auch metabolisch für eine Arzneimittelentwicklung nicht ausreichend stabil. Zur Beseitigung dieser Nachteile sind Modifikationen an dem Naturstoff nötig. Derartige Modifikationen sind nur auf totalsynthetischem Wege möglich und setzen Synthesestrategien voraus, die eine breite Modifikation des Naturstoffes ermöglichen. Ziel der Strukturveränderungen ist es auch, die therapeutische Breite zu erhöhen. Dies kann durch eine Verbesserung der Selektivität der Wirkung und/oder eine Erhöhung der Wirkstärke und/oder eine Reduktion unerwünschter toxischer Nebenwirkungen, wie sie in Proc. Natl. Acad. Sci. USA 1998, 95, 9642-9647 beschrieben sind, erfolgen.
Die Totalsynthese von Epothilon A ist von Schinzer et al. in Chem. Eur. J. 1996, 2, No. 11, 1477-1482 und in Angew. Chem. 1997, 109, Nr. 5, S. 543-544 beschrieben. Epothilon-Derivate wurden bereits von Höfle et al. in der WO 97/19086 beschrieben. Diese Derivate wurden ausgehend vom natürlichen Epothilon A oder B hergestellt.
Eine weitere Synthese von Epothilon und Epothilonderivaten wurde von Nicolaou et al. in Angew. Chem. 1997, 109, Nr. 1/2, S. 170-172 beschrieben. Die Synthese von Epothilon A und B und einiger Epothilon-Analoga wurde in Nature, Vol. 387, 1997, S. 268-272, die Synthese von Epothilon A und seinen Derivaten in J. Am. Chem. Soc., Vol. 119, No. 34, 1997, S. 7960-7973 sowie die Synthese von Epothilon A und B und einiger Epothilon-Analoga in J. Am. Chem. Soc., Vol. 119, No. 34, 1997, S. 7974-7991 ebenfalls von Nicolaou et al. beschrieben.
Ebenfalls Nicolaou et al. beschreiben in Angew. Chem. 1997, 109, Nr. 19, S. 2181-2187 die Herstellung von Epothilon A-Analoga mittels kombinatorischer Festphasensynthese. Auch einige Epothilon B-Analoga sind dort beschrieben.
Die Aufgabe der vorliegenden Erfindung besteht darin, neue Epothilon-Derivate zur Verfügung zu stellen, die sowohl chemisch als auch metabolisch für eine Arzneimittelentwicklung ausreichend stabil sind und die hinsichtlich ihrer therapeutischen Breite, ihrer Selektivität der Wirkung und/oder unerwünschter toxischer Nebenwirkungen und/oder ihrer Wirkstärke den natürlichen Derivaten überlegen sind.
Die vorliegende Erfindung beschreibt die neuen Epothilon-Derivate der allgemeinen Formel I,
worin
R1a, R1b gleich oder verschieden sind und Wasserstoff, C1-C10-Alkyl, Aryl, C7-C20- Aralkyl, oder gemeinsam eine -(CH2)m-Gruppe mit m = 2, 3, 4 oder 5,
R2a, R2b gleich oder verschieden sind und Wasserstoff, C1-C10-Alkyl, Aryl, C7-C20- Aralkyl oder gemeinsam eine -(CH2)n-Gruppe mit n = 2, 3, 4 oder 5
R3 Wasserstoff, C1-C10-Alkyl, Aryl, C7-C20-Aralkyl,
R4a, R4b gleich oder verschieden sind und Wasserstoff, C1-C10-Alkyl, Aryl, C7-C20- Aralkyl oder gemeinsam eine -(CH2)p-Gruppe mit p = 2, 3, 4 oder 5,
D-E eine Gruppe
R5 Wasserstoff, C1-C10-Alkyl, Aryl, C7-C20-Aralkyl, CO2H, CO2-Alkyl, CH2OH, CH2O-Alkyl, CH2O-Acyl, CN, CH2NH2, CH2N(Alkyl, Acyl)1,2, CH2Hal,
R6, R7 je ein Wasserstoffatom, gemeinsam eine zusätzliche Bindung oder ein Sauerstoffatom,
R8 ein Halogenatom,
X ein Sauerstoffatom, zwei Alkoxygruppen OR23, eine C2-C10-Alkylen-α,ω- dioxygruppe, die geradkettig oder verzweigt sein kann, H/OR9 oder eine Gruppierung CR10R11,
wobei
R23 für einen C1-C20-Alkylrest,
R9 für Wasserstoff oder eine Schutzgruppe PGX,
R10, R11 gleich oder verschieden sind und für Wasserstoff, einen C1-C20-Alkyl-, Aryl-, C7-C20-Aralkylrest oder R10 und R11 zusammen mit dem Methylenkohlen­ stoffatom gemeinsam für einen 5- bis 7gliedrigen carbocyclischen Ring
stehen,
Y ein Sauerstoffatom oder zwei Wasserstoffatome,
Z ein Sauerstoffatom oder H/OR12, wobei
R12 Wasserstoff oder oder eine Schutzgruppe PGZ ist,
bedeuten.
Das Halogenatom R8 kann ein Fluor-, Chlor-, Brom- oder Iodatom sein. Fluor und Chlor sind bevorzugt.
R2a soll vorzugsweise eine Methyl-, Ethyl- oder Propylgruppe bedeuten.
Für die Substituenten R1a und R1b steht vorzugsweise gemeinsam eine Trimethylengruppe, oder R1a und R1b bedeuten je eine Methylgruppe.
R10/R11 in der Gruppe X stehen vorzugsweise für 2-Pyridylrest/Wasserstoff oder 2-Methyl- 4-thiazolylrest/Wasserstoff.
Y und Z bedeuten jeweils in erster Linie ein Sauerstoffatom.
Zwischen den Kohlenstoffatomen 10 und 11 befindet sich in den bevorzugten Verbindungen der allgemeinen Formel I eine Einfachbindung, d. h. -D-E- steht für eine Ethylengruppe.
Außerdem steht in den erfindungsgemäßen Verbindungen R3 gewöhnlich für ein Wasserstoffatom.
Für die beiden Substituenten R4a/R4b steht vorzugsweise die Kombination H/CH3.
Eine Ausführungsform der Erfindung sieht solche Verbindungen der allgemeinen Formel I vor, worin R8 für ein Fluoratom steht und R1a + R1b gemeinsam eine Trimethylengruppe bedeuten.
Gemäß einer weiteren Ausführungsform betrifft die Erfindung solche Verbindungen der allgemeinen Formel I, worin R8 für ein Fluoratom und R10/R11 für 2-Pyridylrest/Wasserstoff stehen.
Noch eine andere Variante sind solche Verbindungen der allgemeinen Formel I, worin R8 für ein Fluoratom und R2a/R2b für Ethyl/Wasserstoff stehen.
Noch eine weitere Ausführungsform der Erfindung sind solche Verbindungen der allgemeinen Formel I, worin R8 für ein Fluoratom steht, R1a + R1b gemeinsam eine Trimethylengruppe bedeuten sowie R2a/R2b für Ethyl/Wasserstoff stehen.
Außerdem ist noch diese Variante für die erfindungsgemäßen Verbindungen zu nennen, worin R8 für ein Fluoratom steht, R2a/R2b für Ethyl/Wasserstoff und R10/R11 für 2- Pyridylrest/Wasserstoff stehen.
Die Darstellung der neuen Epothilon-Derivate basiert auf der Verknüpfung dreier Teilfragmente A, B und C. Dieses Verfahren ist zur Herstellung von Epothilon- Derivaten, welche als R8 anstelle des erfindungsgemäßen Halogenatoms beispielsweise eine Methyl- oder längere Alkylgruppe enthalten, in der DE 197 51 200.3, Anmeldetag 13.11.1997 sowie in der dazu korrespondierenden PCT/EP 98/05064 beschrieben. Die Schnittstellen liegen wie in der allgemeinen Formel I' angedeutet.
A bedeutet ein C1-C6-Fragment (Epothilon-Zählweise) der allgemeinen Formel
worin
R1a', R1b', R2a' und R2b' die bereits für R1a, R1b, R2a und R2b genannten Bedeutungen haben und
R13 CH2OR13a, CH2-Hal, CHO, CO2R13b, COHal,
R14 Wasserstoff, OR14a, Hal, OSO2R14b,
R13a, R14a Wasserstoff, SO2-Alkyl, SO2-Aryl, SO2-Aralkyl oder gemeinsam eine -(CH2)o-Gruppe oder gemeinsam eine CR15aR15b-Gruppe,
R13b, R14b Wasserstoff, C1-C20-Alkyl, Aryl, C7-C20-Aralkyl,
R15a, R15b gleich oder verschieden sind und Wasserstoff, C1-C10-Alkyl, Aryl, C7-C20- Aralkyl, oder gemeinsam eine -(CH2)q-Gruppe,
Hal Halogen (F, Cl, Br, I),
o 2 bis 4,
q 3 bis 6,
einschließlich aller Stereoisomeren sowie deren Gemische bedeuten sowie
freie Hydroxylgruppen in R13 und R14 verethert oder verestert, freie Carbonylgruppen in A und R13 ketalisiert, in einen Enolether überführt oder reduziert sowie freie Säuregruppen in A in deren Salze mit Basen überführt sein können.
B steht für ein C7-C12-Fragment (Epothilon-Zählweise) der allgemeinen Formel
worin
R3', R4a', R4b' und R5' die bereits für R3, R4a, R4b und R5 genannten Bedeutungen haben, und
V ein Sauerstoffatom, zwei Alkoxygruppen OR17, eine C2-C10-Alkylen- α,ω-dioxygruppe, die geradkettig oder verzweigt sein kann oder H/OR16,
W ein Sauerstoffatom, zwei Alkoxygruppen OR19, eine C2-C10-Alkylen- α,ω-dioxygruppe, die geradkettig oder verzweigt sein kann oder H/OR18,
R16, R18 unabhängig voneinander Wasserstoff oder eine Schutzgruppe PG1
R17, R19 unabhängig voneinander C1-C20-Alkyl,
bedeuten.
C steht für ein C13-C16-Fragment (Epothilon-Zählweise) der allgemeinen Formel
worin
R8' die bereits in der allgemeinen Formel I für R8 genannte Bedeutung (Halogen) hat und
R7' ein Wasserstoffatom,
R20 ein Wasserstoffatom oder eine Schutzgruppe PG2
R21 eine Hydroxygruppe, Halogen, eine geschützte Hydroxygruppe OPG3, ein Phosphoniumhalogenidrest PPh3 +Hal- (Ph = Phenyl; Hal = F, Cl, Br, I), ein Phosphonatrest P(O)(OQ)2 (Q = C1-C10-Alkyl oder Phenyl) oder ein Phosphinoxidrest P(O)Ph2 (Ph = Phenyl),
U ein Sauerstoffatom, zwei Alkoxygruppen OR23, eine C2-C10-Alkylen-α,ω- dioxygruppe, die geradkettig oder verzweigt sein kann, H/OR9 oder eine Gruppierung CR10R11,
wobei
R23 für einen C1-C20-Alkylrest,
R9 für Wasserstoff oder eine Schutzgruppe PG3,
R10, R11 gleich oder verschieden sind und für Wasserstoff, einen C1-C20-Alkyl-, Aryl-, C7-C20-Aralkylrest oder R10 und R11 zusammen mit dem Methylenkohlen­ stoffatom gemeinsam für einen 5- bis 7gliedrigen carbocyclischen Ring
stehen,
bedeuten.
Als Alkylgruppen R1a, R1b, R2a, R2b, R3, R4, R5, R9, R10, R11, R12, R13b, R14b, R15a, R15b, R17 und R23 sind gerad- oder verzweigtkettige Alkylgruppen mit 1-20 Kohlenstoffatomen zu betrachten, wie beispielsweise Methyl, Ethyl, Propyl, Isopropyl, Butyl, Isobutyl, tert.-Butyl, Pentyl, Isopentyl, Neopentyl, Heptyl, Hexyl, Decyl.
Die Alkylgruppen R1a, R1b, R2a, R2b, R3, R4, R5, R9, R10, R11, R12, R13b, R14b, R15a, R15b, R17 und R23 können perfluoriert oder substituiert sein durch 1-5 Halogenatome, Hydroxygruppen, C1-C4-Alkoxygruppen, C6-C12-Arylgruppen (die durch 1-3 Halogenatome substituiert sein können).
Als Arylrest R1a, R1b, R2a, R2b, R3, R4, R5, R9, R10, R11, R12, R13b, R14b, R15a und R15b kommen substituierte und unsubstituierte carbocyclische oder heterocyclische Reste mit einem oder mehreren Heteroatomen wie z. B. Phenyl, Naphthyl, Furyl, Thienyl, Pyridyl, Pyrazolyl, Pyrimidinyl, Oxazolyl, Pyridazinyl, Pyrazinyl, Chinolyl, Thiazolyl, die einfach oder mehrfach substituiert sein können durch Halogen, OH, O-Alkyl, CO2H, CO2-Alkyl, -NH2, -NO2, -N3, -CN, C1-C20-Alkyl, C1-C20-Acyl, C1-C20-Acyloxy-Gruppen, in Frage. Heteroatome in den Heteroarylresten können oxidiert sein; so kann beispielsweise der Thiazolring in Form des N-Oxids vorliegen.
Die Aralkylgruppen in R1a, R1b, R2a, R2b, R3, R4, R5, R9, R10, R11, R12, R13b, R14b, R15a und R15b können im Ring bis 14 C-Atome, bevorzugt 6 bis 10 und in der Alkylkette 1 bis 8, bevorzugt 1 bis 4 Atome enthalten. Als Aralkylreste kommen beispielweise in Betracht Benzyl, Phenylethyl, Naphthylmethyl, Naphthylethyl, Furylmethyl, Thienylethyl, Pyridylpropyl. Die Ringe können einfach oder mehrfach substituiert sein durch Halogen, OH, O-Alkyl, CO2H, CO2-Alkyl, -NO2, -N3, -CN, C1-C20- Alkyl, C1-C20-Acyl, C1-C20-Acyloxy-Gruppen.
Die in X in der allgemeinen Formel I enthaltenen Alkoxygruppen sollen jeweils 1 bis 20 Kohlenstoffatome enthalten, wobei Methoxy-, Ethoxy-, Propoxy-, Isopropoxy- und t- Butyloxygruppen bevorzugt sind.
Als Vertreter für die Schutzgruppen PG sind Alkyl- und/oder Aryl-substituiertes Silyl, C1-C20-Alkyl, C4-C7-Cycloalkyl, das im Ring zusätzlich ein Sauerstoffatom enthalten kann, Aryl, C7-C20-Aralkyl, C1-C20-Acyl sowie Aroyl zu nennen.
Als Alkyl-, Silyl- und Acylreste für die Schutzgruppen PG kommen die dem Fachmann bekannten Reste in Betracht. Bevorzugt sind aus den entsprechenden Alkyl- und Silylethern leicht abspaltbare Alkyl- bzw. Silylreste, wie beispielsweise der Methoxymethyl-, Methoxyethyl, Ethoxyethyl-, Tetrahydropyranyl-, Tetrahydrofuranyl-, Trimethylsilyl-, Triethylsilyl-, tert.-Butyldimethylsilyl-, tert.-Butyldiphenylsilyl-, Tribenzylsilyl-, Triisopropylsilyl-, Benzyl, para-Nitrobenzyl-, para-Methoxybenzyl-Rest sowie Alkylsulfonyl- und Arylsulfonylreste. Als Acylreste kommen z. B. Formyl, Acetyl, Propionyl, Isopropionyl, Pivalyl, Butyryl oder Benzoyl, die mit Amino- und/oder Hydroxygruppen substituiert sein können, in Frage.
Die Acylgruppen PGX bzw. PGZ in R9 und R12 können 1 bis 20 Kohlenstoffatome enthalten, wobei Formyl-, Acetyl-, Propionyl-, Isopropionyl und Pivalylgruppen bevorzugt sind.
Der Index m in der aus R1a und R1b gebildeten Alkylengruppe steht vorzugsweise für 2, 3 oder 4.
Die für X mögliche C2-C10-Alkylen-α,ω-dioxygruppe ist vorzugsweise eine Ethylenketal- oder Neopentylketalgruppe.
Die vorliegende Erfindung betrifft insbesondere die folgenden Verbindungen
(4S,7R,8S,9S,13(E oder Z),16S(Z))-4,8-Dihydroxy-16-(1-fluor-2-(2-methyl-4- thiazolyl)ethenyl)-1-oxa-5,5,7,9,13-pentamethyl-cyclohexadec-13-en-2,6-dion
(1(S oder R),3S(Z),7S,10R,11S,12S,16R)-7,11-Dihydroxy-3-(1-fluor-2-(2-methyl-4-thiazolyl)ethe­ nyl)-8,8,10,12,16-pentamethyl-4,17-dioxabicyclo[14.1.0]heptadec-5,9-dion
(1(R oder S),3S(Z),7S,11R,11S,12S,16S)-7,11-Dihydroxy-3-(1-(1-fluor-2-(2-methyl-4- thiazolyl)ethenyl)-8,8,10,12,16-pentamethyl-4,17-dioxabicyclo[14.1.0]heptadec-5,9-dion
(4S,7R,8S,9S,13(E oder Z),16S(Z))-4,8-Dihydroxy-7-ethyl-16-(1-fluor-2-(2-methyl-4- thiazolyl)ethenyl)-1-oxa-5,5,9,13-tetramethyl-cyclohexadec-13-en-2,6-dion
(1(S oder R),3S(Z),7S,10R,11S,12S,16R)-7,11-Dihydroxy-10-ethyl-3-(1-fluor-2-(2-methyl-4- thiazolyl)ethenyl)-8,8,12,16-tetramethyl-4,17-dioxabicyclo[14.1.0]heptadeca-5,9-dion
(1(R oder S),3S(Z),7S,10R,11S,12S,16S)-7,11-Dihydroxy-10-ethyl-3-(1-fluor-2-(2-methyl-4- thiazolyl)ethenyl)-8,8,12,16-tetramethyl-4,17-dioxabicyclo[14.1.0]heptadeca-5,9-dion
(4S,7R,8S,9S,13(E oder Z),16S(Z))-4,8-Dihydroxy-16-(1-fluor-2-(2-methyl-4- thiazolyl)ethenyl)-1-oxa-5,5-(1,3-trimethylen)-7,9,13-trimethyl-cyclohexadec-13-en-2,6-dion
(1(S oder R),3S(Z),7S,10R,11S,12S,16R)-7,11-Dihydroxy-3-(1-fluor-2-(2-methyl-4- thiazolyl)ethenyl)-8,8-(1,3-trimethylen)-10,12,16-trimethyl-4,17- dioxabicyclo[14.1.0]heptadeca-5,9-dion
(1(R oder S),3S(Z),7S,10R,11S,12S,16S)-7,11-Dihydroxy-3-(1-fluor-2-(2-methyl-4- thiazolyl)ethenyl)-8,8-(1,3-trimethylen)-10,12,16-trimethyl-4,17- dioxabicyclo[14.1.0]heptadeca-5,9-dion
(4S,7R,8S,9S,13(E oder Z),16S(Z))-4,8-Dihydroxy-16-(1-fluor-2-(2-pyridyl)ethenyl)-1-oxa- 5,5,7,9,13-pentamethyl-cyclohexadec-13-en-2,6-dion
(1(S oder R),3S(E),7S,10R,11S,12S,16R)-7,11-Dihydroxy-3-(1-fluor-2-(2-pyridyl)ethenyl)- 8,8,10,12,16-pentamethyl-4,17-dioxabicyclo[14.1.0]heptadec-5,9-dion
(1(R oder S),3S(Z),7S,10R,11S,12S,16S)-7,11-Dihydroxy-3-(1-fluor-2-(2-pyridyl)ethenyl)- 8,8,10,12,16-pentamethyl-4,17-dioxabicyclo[14.1.0]heptadec-5,9-dion
(4S,7R,8S,9S,13(E oder Z),16S(Z))-4,8-Dihydroxy-7-ethyl-16-(1-fluor-2-(2-methyl-4- thiazolyl)ethenyl)-1-oxa-5,5-(1,3-trimethylen)-9,13-dimethyl-cyclohexadec-13-en-2,6-dion
(1(S oder R),3S(Z),7S,10R,11S,12S,16R)-7,11-Dihydroxy-10-ethyl-3-(1-fluor-2-(2-methyl-4- thiazolyl)ethenyl)-8,8-(1,3-trimethylen)-12,16-dimethyl-4,17-dioxabicyclo[14.1.0]heptadeca- 5,9-dion
(1(R oder S),3S(Z),7S,10R,11S,12S,16S)-7,11-Dihydroxy-10-ethyl-3-(1-fluor-2-(2-methyl-4- thiazolyl)ethenyl)-8,8-(1,3-trimethylen)-12,16-dimethyl-4,17-dioxabicyclo[14.1.0]heptadeca- 5,9-dion
(4S,7R,8S,9S,13(E oder Z),16S(Z))-4,8-Dihydroxy-7-ethyl-16-(1-fluor-2-(2-pyridyl)ethenyl)- 1-oxa-5,5,9,13-tetramethyl-cyclohexadec-13-en-2,6-dion
(1(S oder R),3S(Z),7S,10R,11S,12S,16R)-7,11-Dihydroxy-10-ethyl-3-(1-fluor-2-(2- pyridyl)ethenyl)-8,8,12,16-tetramethyl-4,17-dioxabicyclo[14.1.0]heptadeca-5,9-dion
(1(R oder S),3S(Z),7S,10R,11S,12S,16S)-7,11-Dihydroxy-10-ethyl-3-(1-fluor-2-(2- pyridyl)ethenyl)-8,8,12,16-tetramethyl-4,17-dioxabicyclo[14.1.0]heptadeca-5,9-dion
(4S,7R,8S,9S,13(E oder Z),16S(Z))-4,8-Dihydroxy-7-ethyl-16-(1-fluor-2-(2-pyridyl)ethenyl)- 1-oxa-5,5-(1,3-trimethylen)-9,13-dimethyl-cyclohexadec-13-en-2,6-dion
(1(S oder R),3S(Z),7S,10R,11S,12S,16R)-7,11-Dihydroxy-10-ethyl-3-(1-fluor-2-(2-pyridyl)ethe­ nyl)-8,8-(1,3-trimethylen)-12,16-dimethyl-4,17-dioxabicyclo[14.1.0]heptadeca-5,9-dion
(1(R oder S),3S(Z),7S,10R,11S,12S,16S)-7,11-Dihydroxy-10-ethyl-3-(1-fluor-2-(2-pyridyl)ethe­ nyl)-8,8-(1,3-trimethylen)-12,16-dimethyl-4,17-dioxabicyclo[14.1.0]heptadeca-5,9-dion
(4S,7R,8S,9S,13(Z),16S(Z))-4,8-Dihydroxy-16-(1-chlor-2-(2-methyl-4-thiazolyl)ethenyl)-1- oxa-5,5,7,9,13-pentamethyl-cyclohexadec-13-en-2,6-dion
4S,7R,8S,9S,13(E),16S(Z))-4,8-Dihydroxy-16-(1-chlor-2-(2-methyl-4-thiazolyl)-ethenyl)-1- oxa-5,5,7,9,13-pentamethyl-cyclohexadec-13-en-2,6-dion
(1S,3S(Z),7S,10R,11S,12S,16R)-7,11-Dihydroxy-3-(1-chlor-2-(2-methyl-4- thiazolyl)ethenyl)-8,8,10,12,16-pentamethyl-4,17-dioxabicyclo[14.1.0]heptadecan-5,9-dion
(1R,3S(Z),7S,10R,11S,11S,12S,16S)-7,11-Dihydroxy-3-(1-chlor-2-(2-methyl-4- thiazolyl)ethenyl)-8,8,10,12,16-pentamethyl-4,17-dioxabicyclo[14.1.0]heptadecan-5,9-dion
(1S,3S(Z),7S,1CR,11S,12S,16S)-7,11-Dihydroxy-3-(1-chlor-2-(2-methyl-4-thiazolyl)ethenyl)- 8,8,10,12,16-pentamethyl-4,17-dioxabicyclo[14.1.0]heptadecan-5,9-dion
(1R,3S(Z),7S,10R,11R,12S,16R)-7,11-Dihydroxy-3-(1-chlor-2-(2-methyl-4- thiazolyl)ethenyl)-8,8,10,12,16-pentamethyl-4,17-dioxabicyclo[14.1.0]heptadecan-5,9-dion.
Darstellung der Teilfragmente A
Die Teilfragmente (Synthesebausteine) der allgemeinen Formel A lassen sich leicht aus
  • a) einem Pantolacton der allgemeinen Formel IIa
    worin
    R1a', R1b' jeweils für eine Methylgruppe stehen
    oder
  • b) einem Malonsäuredialkylester der allgemeinen Formel XXVIII
    worin
    R1a', R1b' die in der allgemeinen Formel A angegebene Bedeutung haben, und Alkyl unabhängig voneinander einen C1-C20-Alkyl-, C3-C10-Cycloalkyl- oder C4-C20- Alkylcycloalkylrest bedeuten
als Ausgangsprodukt herstellen.
Die Teilfragmente A, in denen R1a' = R1b' = Methyl ist, können aus wohlfeilem Pantolacton auf effiziente Weise mit einer optischen Reinheit <98% ee hergestellt werden.
Die Synthese wird im folgenden Schema 1 am Beispiel des D-(-)-Pantolactons beschrieben. Aus L-(+)-Pantolacton erhält man die entsprechenden, zu A-II bis A-XIV enantiomeren Verbindungen ent-A-II bis ent-A-XIV und aus racemischem DL- Pantolacton die entsprechenden racemischen Verbindungen rac-A-II bis rac-A-XIV:
Schema 1
Schritt a (A-II ### A-III)
Die freie Hydroxygruppe des Pantolactons (A-II) wird nach den, dem Fachmann bekannten Methoden geschützt. Als Schutzgruppe PG4 kommen die, dem Fachmann bekannten Schutzgruppen wie z. B. der Methoxymethyl-, Methoxyethyl, Ethoxyethyl-, Tetrahydropyranyl-, Tetrahydrofuranyl-, Trimethylsilyl-, Triethylsilyl-, tert.-Butyldimethylsilyl-, tert.-Butyldiphenylsilyl-, Tribenzylsilyl-, Trilsopropylsilyl-, Benzyl, para-Nitrobenzyl-, para-Methoxybenzyl-, Formyl-, Acetyl-, Propionyl-, Isopropionyl-, Pivalyl-, Butyryl- oder Benzoylrest in Frage.
Eine Übersicht befindet sich z. B. in "Protective Groups in Organic Synthesis", Theodora W. Green, John Wiley and Sons.
Bevorzugt sind solche Schutzgruppen, die unter sauren Reaktionsbedingungen gespalten werden können, wie z. B. der Methoxymethyl-, Tetrahydropyranyl-, Tetrahydrofuranyl-, Trimethylsilyl-Rest.
Besonders bevorzugt ist der Tetrahydropyranyl-Rest.
Schritt b (A-III ### A-IV)
Das geschützte Lacton A-III wird zum Lactol A-IV reduziert. Als Reduktionsmittel eignen sich in ihrer Reaktivität modifizierte Aluminiumhydride wie z. B. Diisobutylaluminium-hydrid. Die Reaktion erfolgt in einem inerten Lösungsmittel wie z. B. Toluol, vorzugsweise bei niedrigen Temperaturen.
Schritt c (A-IV ### A-V)
Das Lactol A-IV wird unter Erweiterung um ein C-Atom zum Hydroxyolefin A-V geöffnet. Hierzu eignen sich die, dem Fachmann bekannten Methoden wie z. B. die Olefinierung nach Tebbe, die Wittig- oder Wittig/Horner-Reaktion, die Addition einer metallorganischen Verbindung unter Abspaltung von Wasser. Bevorzugt ist die Wittigreaktion unter Verwendung von Methyltriarylphosphoniumhalogeniden wie z. B. Methyltriphenylphosphoniumbromid mit starken Basen wie z. B. n-Butyllithium, Kalium-tert.-butanolat, Natriumethanolat, Natriumhexamethyldisilazan; als Base bevorzugt ist n-Butyllithium.
Schritt d (A-V ### A-VI)
Die freie Hydroxygruppe in A-V wird nach den, dem Fachmann bekannten Methoden geschützt. Als Schutzgruppe PG5 kommen die, dem Fachmann bekannten Schutzgruppen, wie sie schon vorstehend für PG4 im Schritt a (A-II ### A-III) genannt wurden, in Frage.
Bevorzugt sind solche Schutzgruppen, die unter Einwirkung von Fluorid gespalten werden können, wie z. B. der Trimethylsilyl-, tert.-Butyldimethylsilyl-, tert.- Butyldiphenylsilyl-, Tribenzylsilyl-, Triisopropylsilyl-Rest.
Besonders bevorzugt ist der tert.-Butyldimethylsilyl-, der Triisopropylsilyl- und der tert.-Butyldiphenylsilyl-Rest.
Schritt e (A-VI ### A-VII)
An die Doppelbindung in A-VI wird nach anti-Markovnikov Wasser addiert. Hierzu eignen sich die dem Fachmann bekannten Verfahren wie z. B. die Umsetzung mit Boranen, deren anschließende Oxidation zu den entsprechenden Borsäureestern und deren Verseifung. Als Borane bevorzugt sind z. B. der Boran-Tetrahydrofuran- Komplex, der Boran-Dimethylsulfid-Komplex, 9-Borabicyclo[3.3.1]nonan in einem inerten Lösungsmittel wie beispielsweise Tetrahydrofuran oder Diethylether. Als Oxidationsmittel wird vorzugsweise Wasserstoffperoxid verwendet, zur Verseifung der Borester vorzugsweise Alkalihydroxide wie z. B. Natriumhydroxid.
Schritt f (A-VI ### A-VII)
Die unter Schritt a) eingeführte Schutzgruppe PG4 wird nun nach den dem Fachmann bekannten Verfahren gespalten. Handelt es sich um eine sauer spaltbare Schutzgruppe, so eignen sich für die Spaltung verdünnte Mineralsäuren in wässrig- alkoholischen Lösungen, die Verwendung von katalytischen Mengen Säuren wie z. B. para-Toluolsulfonsäure, para-Toluolsulfonsäurepyridiniumsalz, Camphersulfonsäure in alkoholischen Lösungen, vorzugsweise in Ethanol oder Isopropanol.
Schritt g (A-VII ### A-IX)
Ein gemeinsamer Schutz beider Alkoholfunktionen des monogeschützten 1.3-Diols in A-VII ist durch direkte Ketalisierung mit einer Carbonylverbindung der allgemeinen Formel R15a-CO-R15b, oder durch Umketalisierung mit einem Ketal der allgemeinen Formeln, R15a-C(OC2H5)2-R15b, R15a C(OC2H4)2-R15b, R15a- C(OCH2C(CH3)2CH2O)-R15b worin jeweils R15a und R15b die oben angegebenen Bedeutungen haben, unter Säurekatalyse möglich. Als Säuren eignen sich die bereits unter Schritt f) genannten Säuren, bevorzugt ist die Verwendung von para- Toluolsulfonsäure gegebenenfalls unter Zusatz von Kupfer(II)- oder Kobalt(II)-Salzen wie z. B. Kupfer(II)sulfat.
Schritt h (A-VIII ### A-IX)
Ein Schutz beider Alkoholfunktionen des 1.3-Diols in A-VIII ist durch direkte Ketalisierung mit einer Carbonylverbindung der allgemeinen Formel R15a-CO-R15b, oder durch Umketalisierung mit einem Ketal der allgemeinen Formeln, R15a- C(OC2H5)2-R15b, R15a-C(OC2H4)2-R15b, R15a-C(OCH2C(CH3)2CH2O)-R15b worin jeweils R15a und R15b die oben angegebenen Bedeutungen haben, unter Säurekatalyse möglich. Bevorzugt ist die Umketalisierung vorzugsweise mit 2,2- Dimethoxypropan. Als Säuren eignen sich die bereits unter Schritt f) genannten Säuren, bevorzugt ist die Verwendung von Camphersulfonsäure.
Schritt i (A-IX ### A-X)
Die unter Schritt d) eingeführte Schutzgruppe PG5 wird nun nach den dem Fachmann bekannten Verfahren gespalten. Handelt es sich um einen Silylether, so eignet sich für die Spaltung die Umsetzung mit Fluoriden wie beispielsweise Tetrabutylammoniumfluorid, dem Fluorwasserstoff-Pyridin-Komplex, Kaliumfluorid oder die Anwendung verdünnter Mineralsäuren, die Verwendung von katalytischen Mengen Säuren wie z. B. para-Toluolsulfonsäure, para-Toluolsulfonsäure­ pyridiniumsalz, Camphersulfonsäure in alkoholischen Lösungen, vorzugsweise in Ethanol oder Isopropanol.
Schritt k (A-X ### A-XI)
Die Oxidation des primären Alkohols in A-X zum Aldehyd erfolgt nach den, dem Fachmann bekannten Methoden. Beispielsweise genannt sei die Oxidation mit Pyridiniumchlorochromat, Pyridiniumdichromat, Chromtrioxid-Pyridin-Komplex, die Oxidation nach Swern oder verwandter Methoden z. B. unter Verwendung von Oxalylchlorid in Dimethylsulfoxid, die Verwendung des Dess-Martin-Periodinans, die Verwendung von Stickstoffoxiden wie z. B. N-Methyl-morpholino-N-oxid in Gegenwart geeigneter Katalysatoren wie z. B. Tetrapropylammoniumperruthenat in inerten Lösungsmitteln. Bevorzugt ist die Oxidation nach Swern sowie mit N-Methyl­ morpholino-N-oxid unter Verwendung von Tetrapropylammoniumperruthenat.
Schritt l (A-XI ### A-XII)
Die Umsetzung der Aldehyde A-XI zu Alkoholen der Formel A-XII erfolgt mit metallorganischen Verbindungen der allgemeinen Formel M-CHR2a'R2b', worin M für ein Alkalimetall, vorzugsweise Lithium oder ein zweiwertiges Metall MX, worin X ein Halogen repräsentiert und die Reste R2a' und R2b' jeweils die oben genannten Bedeutungen aufweisen. Als zweiwertiges Metall ist bevorzugt Magnesium und Zink, als Halogen X ist bevorzugt Chlor, Brom und Iod.
Schritt m (A-XII ### A-XIII)
Die Oxidation des sekundären Alkohols in A-XII zum Keton A-XIII erfolgt nach den, unter Schritt k) genannten Bedingungen. Bevorzugt ist die Oxidation mit N-Methyl- morpholino-N-oxid unter Verwendung von Tetrapropylammoniumperruthenat.
Schritt n (A-XIII ### A-XIV)
Für den Fall, daß R2a' in A-XIII gleich Wasserstoff ist, besteht die Möglichkeit, hierfür einen zweiten Rest R2a', der die oben genannten Bedeutungen, ausgenommen Wasserstoff besitzt, einzuführen. Hierzu wird unter Anwendung starker Basen wie z. B. Lithiumdiisopropylamid das Keton in A-XIII in das Enolat überführt und mit einer Verbindung der allgemeinen Formel X-R2a', worin X ein Halogen repräsentiert umgesetzt. Als Halogen X ist bevorzugt Chlor, Brom und Iod.
Der zuvor beschriebene Weg kann ebenfalls dazu benutzt werden, C1-C6-Epothilon- Bausteine zu synthetisieren, die an C-1 eine Carbonsäure oder deren Ester enthalten (R13 = CO2R13b in A).
Die Synthese des Bausteins A-XXII wird im folgenden Schema 2 am Beispiel der von D-(-)-Pantolacton abgeleiteten Zwischenstufe A-V beschrieben. Aus L-(+)- Pantolacton erhält man die entsprechenden, zu A-V bis A-XXVII enantiomeren Verbindungen ent-A-V bis ent-A-XXVII und aus racemischem DL-Pantolacton die entsprechenden racemischen Verbindungen rac-A-V bis rac-A-XXVII:
Schema 2
Schritt o (A-V ### A-XV)
Die Oxidation des primären Alkohols in A-V zum Aldehyd A-XV erfolgt nach den unter Schritt k) genannten Bedingungen. Bevorzugt ist das Oxidationsverfahren nach Swern.
Schritt p (A-XV ### A-XVI)
Die Umsetzung der Aldehyde A-XV zu Alkoholen der Formel A-XVI erfolgt mit metallorganischen Verbindungen der allgemeinen Formel M-CHR2a'R2b', worin M für ein Alkalimetall, vorzugsweise Lithium oder ein zweiwertiges Metall MX, worin X ein Halogen repräsentiert und die Reste R2a' und R2b' jeweils die oben genannten Bedeutungen aufweisen. Als zweiwertiges Metall ist bevorzugt Magnesium und Zink, als Halogen X ist bevorzugt Chlor, Brom und Iod.
Schritt q (A-XVI ### A-XVII)
An die Doppelbindung in A-XVI wird nach anti-Markovnikov Wasser addiert. Hierzu eignen sich die unter e) beschriebenen Verfahren.
Schritt r (A-XVII ### A-XVIII)
Die freie Hydroxygruppe in A-XVII wird nach den, dem Fachmann bekannten Methoden geschützt. Als Schutzgruppe PG6 kommen die, dem Fachmann bekannten Schutzgruppen, wie sie schon vorstehend für PG4 im Schritt a (A-II ### A-III) genannt wurden, in Frage.
Bevorzugt sind solche Schutzgruppen, die unter basischen oder hydrogenolytischen Reaktionsbedingungen gespalten werden können, wie z. B. Benzyl-, para- Nitrobenzyl-, Acetyl-, Propionyl-, Butyryl-, Benzoyl-Rest.
Besonders bevorzugt ist der Benzoyl-Rest.
Schritt s (A-XVII ### A-XIX)
Die Oxidation des sekundären Alkohols in A-XVII zum Keton A-XIX erfolgt nach den, unter Schritt k) genannten Bedingungen. Bevorzugt ist die Oxidation mit N-Methyl- morpholino-N-oxid unter Verwendung von Tetrapropylammoniumperruthenat.
Schritt t (A-XIX ### A-XX)
Die Schutzgruppe PG6 in XIX wird nun selektiv gespalten. Handelt es sich um eine hydrogenolytisch spaltbare Schutzgruppe, so wird vorzugsweise in Gegenwart von Palladium- oder Platin-Katalysatoren in inerten Lösungsmitteln wie beispielsweise Ethylacetat oder Ethanol hydriert. Handelt es sich um eine basisch spaltbare Schutzgruppe, so findet vorzugsweise Verwendung die Verseifung mit Carbonaten in alkoholischer Lösung wie z. B. Kaliumcarbonat in Methanol, die Verseifung mit wässrigen Lösungen von Alkalihydroxiden wie z. B. Lithiumhydroxid oder Natriumhydroxid unter Verwendung von organischen, mit Wasser mischbaren Lösungsmitteln wie z. B. Methanol, Ethanol, Tetrahydrofuran oder Dioxan.
Schritt u (A-XVII ### A-XXI)
Die Oxidation der Alkohole in A-XVII zum Ketoaldehyd A-XXI erfolgt nach den, unter Schritt k) genannten Bedingungen. Bevorzugt ist die Oxidation mit N-Methyl- morpholino-N-oxid unter Verwendung von Tetrapropylammoniumperruthenat sowie die Methode nach Swern.
Schritt v (A-XX ### A-XXI)
Die Oxidation des primären Alkohols in A-XX zum Ketoaldehyd A-XXI erfolgt nach den, unter Schritt k) genannten Bedingungen. Bevorzugt ist die Oxidation mit N- Methyl-morpholino-N-oxid unter Verwendung von Tetrapropylammoniumperruthenat.
Schritt w (A-XXI ### A-XXII)
Die Oxidation des Aldehydes in A-XXI zur Carbonsäure A-XXII (R13b = Wasserstoff) erfolgt nach den, dem Fachmann bekannten Methoden. Beispielsweise genannt sei die Oxidation nach Jones, die Oxidation mit Kaliumpermanganat beispielsweise in einem wässrigen System aus tert.-Butanol und Natriumdihydrogenphosphat, die Oxidation mit Natriumchlorit in wässrigem tert.-Butanol gegebenenfalls in Gegenwart eines Chlorfängers wie z. B. 2-Methyl-2-buten.
Die Oxidation des Aldehydes in A-XXI zum Ester A-XXII, worin R13b die oben genannten Bedeutungen hat und ungleich Wasserstoff ist, kann beispielsweise mit Pyridiniumdichromat und dem gewünschten Alkohol HO-R13b in einem inerten Lösungsmittel wie z. B. Dimethylformamid erfolgen.
Schritt x (A-VII ### A-XXIII)
Die Oxidation des primären Alkohols in A-VII zum Aldehyd A-XXIII erfolgt nach den, unter Schritt k) genannten Bedingungen. Bevorzugt ist die Oxidation mit N-Methyl- morpholino-N-oxid unter Verwendung von Tetrapropylammoniumperruthenat sowie die Methode nach Swern.
Schritt y (A-XXIII ### A-XXIV)
Die Oxidation des Aldehyds A-XXIII zur Carbonsäure bzw. deren Ester A-XXIV erfolgt nach den bereits unter w) beschriebenen Bedingungen.
Schritt z (A-XXIV ### A-XXV)
Die unter Schritt d) eingeführte Schutzgruppe PG5 wird wie unter Schritt i beschrieben gespalten.
Schritt aa (A-XXV### A-XXVI)
Die Oxidation des primären Alkohols in A-XXV zum Aldehyd A-XXVI erfolgt nach den, unter Schritt k) genannten Bedingungen. Bevorzugt ist die Oxidation mit N- Methyl-morpholino-N-oxid unter Verwendung von Tetrapropylammoniumperruthenat sowie die Methode nach Swern.
Schritt ab (A-XXVI ### A-XXVII)
Die Umsetzung der Aldehyde A-XXVI zu Alkoholen der Formel A-XXVII erfolgt nach den, unter Schritt I) genannten Bedingungen.
Schritt ac (A-XXVII ### A-XXII)
Die Oxidation des sekundären Alkohols in A-XXVII zum Keton A-XXII erfolgt nach den, unter Schritt k) genannten Bedingungen. Bevorzugt ist die Oxidation mit N- Methyl-morpholino-N-oxid unter Verwendung von Tetrapropylammoniumperruthenat.
Die Verbindungen der Formel A, in der R1a' und R1b' alle die in der allgemeinen Formel A angegebenen Bedeutungen haben können, lassen sich ferner aus wohlfeilen oder leicht zugänglichen Malonsäuredialkylestern auf effiziente Weise mit hoher optischer Reinheit herstellen.
Die Synthese wird im folgenden Schema 3 beschrieben:
Schema 3
Schritt ad (A-XXVIII ### A-XXIX)
Entsprechend substituierte Malonsäuresterderivate A-XXVIII, die entweder käuflich sind oder nach den, dem Fachmann bekannten Verfahren aus Malonsäuren oder deren Alkylestern hergestellt werden können, werden zu Diolen A-XXIX reduziert. Hierzu eignen sich die, dem Fachmann bekannten Reduktionsmittel wie z. B. Diisobutylaluminium-hydrid, komplexe Metallhydride wie z. B. Lithiumaluminiumhydrid.
Schritt ae (A-XXIX ### A-XXX)
Eine freie Hydroxylgruppe in A-XXIX wird nach den, dem Fachmann bekannten Methoden selektiv geschützt. Als Schutzgruppe PG7 kommen die, dem Fachmann bekannten Schutzgruppen, wie sie schon vorstehend für PG4 im Schritt a (A-II ### A- III) genannt wurden, in Frage.
Bevorzugt sind Silizium-haltige Schutzgruppen.
Schritt af (A-XXX ### A-XXXI)
Die Oxidation der verbliebenen, primären Hydroxylgruppe in A-XXX zum Aldehyd A- XXXI erfolgt nach den, unter Schritt k) genannten Bedingungen. Bevorzugt ist die Oxidation mit N-Methyl-morpholino-N-oxid unter Verwendung von Tetrapropylammoniumperruthenat, die Verwendung von Pyridiniumchlorochromat, Pyridiniumdichromat sowie die Methode nach Swern.
Schritt ag (A-XXXI ### A-XXXII)
Die Aldehyde A-XXXI werden mit einem Ester der Essigsäure chG1OC(O)CH3, worin chG1 eine chirale Hilfsgruppe bedeutet, im Sinne einer Aldolreaktion umgesetzt. Die Verbindungen chG1OC(O)CH3 werden in optisch reiner Form in die Aldolreaktion eingesetzt. Die Art der chiralen Hilfsgruppe bestimmt, ob die Aldolreaktion mit hoher Diastereoselektivität verläuft oder ein mit physikalischen Methoden trennbares Diastereomerengemisch ergibt. Eine Übersicht über vergleichbare diastereoselektive Aldolreaktionen findet sich in Angew. Chem. 99 (1987), 24-37. Als chirale Hilfsgruppen chG1-OH eignen sich beispielsweise optisch reines 2-Phenyl­ cyclohexanol, Pulegol, 2-Hydroxy-1,2,2-triphenylethanol, 8-Phenylmenthol.
Schritt ah (A-XXXII ### A-XXXIII)
Die diastereomerenreinen Verbindungen A-XXXII können dann nach dem Fachmann bekannten Verfahren durch Verseifung der Estereinheit unter gleichzeitiger Freisetzung der wiederverwendbaren chiralen Hilfskomponente chG1-OH in enantiomerenreine Verbindungen des Typs A-XXXIII oder ent-A-XXXIII überführt werden. Für die Verseifung geeignet sind Carbonate in alkoholischer Lösung wie z. B. Kaliumcarbonat in Methanol, wässrige Lösungen von Alkalihydroxiden wie z. B. Lithiumhydroxid oder Natriumhydroxid unter Verwendung von organischen, mit Wasser mischbaren Lösungsmitteln wie z. B. Methanol, Ethanol, Tetrahydrofuran oder Dioxan.
Schritt ai (A-XXXII ### A-VIII)
Alternativ zum Schritt ah kann die chirale Hilfsgruppe auch reduktiv entfernt werden. Auf diese Weise werden die enantiomerenreinen Verbindungen des Typs A-VIII bzw. ent-A-VIII erhalten. Die Reduktion kann nach den, dem Fachmann bekannten Verfahren durchgeführt werden. Als Reduktionsmittel kommen z. B. Diisobutyl­ aluminiumhydrid und komplexe Metallhydride wie z. B. Lithiumaluminiumhydrid in Frage.
Die Verbindungen A-VIII bzw. ent-A-VIII können wie zuvor beschrieben in Verbindungen des Typs A-XIII bzw. ent-A-XIII überführt werden. Entsprechend lassen sich Verbindungen des Typs A-XXXIII bzw. ent-A-XXXIII gemäß oben beschriebenen Verfahren in Verbindungen des Typs A-XXII bzw. ent-A-XXII überführen.
Alternativ zum oben geschilderten Weg kann die Sequenz auch ohne Verwendung einer chiralen Hilfsgruppe chG1 durchgeführt werden. Auf diese Weise werden dann racemische Mischungen von Verbindungen des Typs rac-A-VIII bzw. rac-A-XXXIII über die entsprechenden, racemischen Vorstufen erhalten. Diese Mischungen können wiederum nach den, dem Fachmann bekannten Verfahren zur Racematspaltung, z. B. Chromatographie an chiralen Säulen, getrennt werden. Die Fortsetzung der Synthese kann aber auch mit den racemischen Gemischen erfolgen.
Synthesebausteine der allgemeinen Formel A"
worin
R3 OR3a und
R3a Wasserstoff oder eine Schutzgruppe PG
R4a, R4b gleich oder verschieden sind und Wasserstoff, C1-C10-Alkyl, C7-C20- Aralkyl, oder gemeinsam eine -(CH2)m-Gruppe,
m 2 bis 5,
R5a, R5b gleich oder verschieden sind und Wasserstoff, C1-C10-Alkyl, C7-C20- Aralkyl, oder gemeinsam eine -(CH2)p-Gruppe,
p 2 bis 5,
einschließlich aller Stereoisomeren sowie deren Gemische bedeuten sowie
freie Carbonylgruppen in I ketalisiert sein können,
leicht durch Umsetzung einer Verbindung der allgemeinen Formel II
worin
X ein Chlor- oder Bromatom ist, und der 2-Oxazolidinon-Ring entweder (4R,5S)- oder (4S,5R)-Konformation aufweist,
mit einer Verbindung der allgemeinen Formel III
worin
R4a, R4b gleich oder verschieden sind und Wasserstoff, C1-C10-Alkyl, C7-C20- Aralkyl, oder gemeinsam eine -(CH2)m-Gruppe,
m 2 bis 5,
R5a, R5b gleich oder verschieden sind und Wasserstoff, C1-C10-Alkyl, C7-C20- Aralkyl, oder gemeinsam eine -(CH2)p-Gruppe,
p 2 bis 5,
bedeuten,
zu einer Verbindung der allgemeinen Formel IV
worin
der 2-Oxazolidinon-Ring (4R,5S)- und das 3'-Kohlenstoffatom R-Konformation oder der 2-Oxazolidinon-Ring (4S,5R)- und das 3'-Kohlenstoffatom S-Konformation aufweisen,
sowie nach Schutz der 3'-Hydroxygruppe in IV mit einer Schutzgruppe PG, durch Abspaltung des Oxazolidinon-Restes und gegebenenfalls Abspaltung der Schutzgruppe PG hergestellt werden.
Die Umsetzung einer Verbindung der allgemeinen Formel II mit einer Verbindung der allgemeinen Formel III gelingt nach Überführung der Verbindung der allgemeinen Formel II in ein Metallenolat durch Insertion eines Metalls oder Metallsalzes in die Kohlenstoff-Halogen-Bindung der Verbindung der allgemeinen Formel II.
Als Metall oder Metallsalz kommen generell alle dem Fachmann bekannten Metalle oder Metallsalze in Frage, die für eine Reformatzky-Reaktion geeignet sind (siehe z. B. A. Fürstner, Synthesis 1989, 571-590).
Vorzugsweise wird Chrom(II)-chlorid verwendet.
Der Oxazolidon-Ring wird bei der Abspaltung aus den Verbindungen der allgemeinen Formel IV fast quantitativ und ohne Verlust der optischen Aktivität zurückgewonnen.
Als Alkylgruppen R4a, R4b, R5a und R5b sind gerad- oder verzweigtkettige Alkylgruppen mit 1 bis maximal 10 Kohlenstoffatomen zu betrachten, wie beispielsweise Methyl, Ethyl, Propyl, Isopropyl, Butyl, Isobutyl, tert.-Butyl, Pentyl, Isopentyl, Neopentyl, Heptyl, Hexyl, Decyl.
Die Alkylgruppen R4a, R4b, R5a und R5b können perfluoriert oder substituiert sein durch 1-5 Halogenatome, Hydroxygruppen, C1-C4-Alkoxygruppen und C6-C12- Arylgruppen (die durch 1-3 Halogenatome substituiert sein können).
Die Aralkylgruppen in R4a, R4b, R5a und R5b können im Ring bis 14 C-Atome, bevorzugt 6 bis 10 enthalten und in der Alkylkette 1 bis 8, bevorzugt 1 bis 4 Atome. Als Aralkylreste kommen beispielweise in Betracht Benzyl, Phenylethyl, Naphthylmethyl, Naphthylethyl, Furylmethyl, Thienylethyl, Pyridylpropyl. Die Ringe können ein- bis dreifach substituiert sein durch Halogen, OH, O-Alkyl, NH2, CO2H, CO2-Alkyl, -NO2, -N3, -CN, C1-C20-Alkyl, C1-C20-Acyl, C1-C20-Acyloxy-Gruppen.
Als Schutzgruppe PG kommen alle, dem Fachmann als derartige Schutzgruppen bekannten Reste in Betracht. Bevorzugt sind hierbei silylhaltige Schutzgruppen, wie beispielsweise der Trimethylsilyl-, Triethylsilyl-, tert.-Butyldimethylsilyl-, tert.- Butyldiphenylsilyl-, Tribenzylsilyl-, Triisopropylsilyl-Rest.
Eine Übersicht über Schutzgruppen findet sich z. B. in "Protective Groups in Organic Synthesis" Theodora W. Green, John Wiley and Sons).
Halogen bedeutet Fluor, Chlor, Brom und Iod.
Die für das Verfahren benötigten Verbindungen der allgemeinen Formel II sind durch Acetylierung von (4R,5S)- bzw. (4S,5R)-4-Methyl-5-phenyl-2-oxazolidinon mit Brom- oder Chloracetylchlorid in Gegenwart einer starken Base, wie beispielsweise n- Butyllithium, zugänglich.
Durch die Wahl des chiralen Auxiliars wird später die Stereochemie der Hydroxygruppe in Position 3 gesteuert.
Die für das Verfahren benötigten Verbindungen der allgemeinen Formeln III sind käuflich oder lassen sich einfach herstellen.
Sofern die Verbindungen der allgemeinen Formel III nicht käuflich sind, lassen sie sich beispielsweise nach den in Abb. 1 und 2 angegebenen Methoden herstellen.
Abb. 1
Ausgangsmaterial ist (substituierter) Malonester
  • 1. siehe hierzu Ausgangsprodukt C, worin R4a + R4b = Trimethylen
  • 2. diese 1,3-Propandiole sind z. T. käuflich und können dann an dieser Stelle in die Synthese eingesetzt werden.
Abb. 2
  • 1. diese Ausgangsverbindungen sind käuflich oder lassen sich nach den, dem Fachmann bekannten Methoden erhalten.
  • 2. sekundäres Amin: vorzugsweise Piperidin oder Morpholin oder R6 und R7 bedeuten unabhängig voneinander eine geradkettige oder verzweigte C1-C6- Alkylgruppe.
Die auf diesen Wegen erhaltenen Bausteine, auch deren Enantiomere oder Gemische aus diesen Enantiomeren, eignen sich für die Aldokondensation mit einem Epothilonbaustein, der an C-7 (Epothilon-Zählweise) eine Carbonylfunktion trägt, wie dies bei den oben genannten Totalsynthesen von Epothilon A und Epothilon B der Fall ist.
Die Bausteine A, deren Enantiomere oder Gemische aus diesen Enantiomeren eignen sich darüber hinaus für die Veresterung mit einem Epothilonbaustein, der an C-15 (Epothilon-Zählweise) eine Hydroxylfunktion trägt, wie dies bei den oben genannten Totalsynthesen von Epothilon A und B der Fall ist.
Darstellung der Teilfragmente B
Schema 4
Schritt a (B-II ### B-III)
Eine Hydroxylgruppe in B-II wird nach den, dem Fachmann bekannten Methoden geschützt. Als Schutzgruppe PG8 kommen die, dem Fachmann bekannten Schutzgruppen, wie sie schon vorstehend für PG4 im Schritt a (A-II ### A-III) genannt wurden, in Frage.
Bevorzugt sind Silizium-haltige Schutzgruppen, die unter sauren Reaktions­ bedingungen oder Anwendung von Fluorid gespalten werden können, wie z. B. der Trimethylsilyl-, Triethylsilyl-, tert.-Butyldimethylsilyl-, tert.-Butyldiphenylsilyl-, Tribenzylsilyl-, Triisopropylsilyl-Rest.
Besonders bevorzugt ist der tert.-Butyldimethylsilyl-Rest.
Schritt b (B-III ### B-IV)
Die freie Hydroxylgruppe in B-III wird nach den, dem Fachmann bekannten Methoden in eine Abgangsgruppe LG überführt. Als Abgangsgruppe LG eignen sich beispielsweise Halogene wie z. B. Brom oder Iod oder Alkyl- bzw. Arylsulfonate, die aus den entsprechenden Sulfonsäurehalogeniden bzw. Sulfonsäureanhydriden nach den, dem Fachmann bekannten Methoden hergestellt werden.
Als Abgangsgruppe LG bevorzugt ist das Trifluormethansulfonat.
Schritt c (B-IV ### B-VII)
Die Verbindung B-IV wird mit dem Enolat einer Carbonylverbindung der allgemeinen Formel B-V, worin chG2 eine einfache Alkoxygruppe oder aber eine chirale Hilfsgruppe sein kann, nach den, dem Fachmann bekannten Methoden alkyliert. Das Enolat wird durch Einwirkung starker Basen wie z. B. Lithiumdiisopropylamid, Lithiumhexamethyldisilazan bei niedrigen Temperaturen hergestellt. Als chirale Hilfsgruppe chG2-H (B-VI) eignen sich chirale, optisch rein herstellbare und wohlfeile Alkohole wie z. B. Pulegol, 2-Phenylcyclohexanol, 2-Hydroxy-1,2,2-triphenylethanol, 8-Phenylmenthol oder optisch rein herstellbare und wohlfeile, reaktive NH-Gruppen enthaltende Verbindungen wie z. B. Amine, Aminosäuren, Lactame oder Oxazolidinone. Bevorzugt sind Oxazolidinone, besonders bevorzugt die Verbindungen der Formeln B-VIa bis B-VId. Durch die Wahl des jeweiligen Antipoden wird die absolute Stereochemie am α-Carbonylkohlenstoff der Verbindung der allgemeinen Formel B-VII festgelegt. Auf diesem Wege lassen sich die Verbindungen der allgemeinen Formeln B-VII bis B-XVII bzw. deren jeweilige Enantiomere ent-B-VII bis ent-B-XVII enantiomerenrein erhalten. Wird als chG2-H (B-VI) ein achiraler Alkohol wie z. B. Ethanol eingesetzt, so erhält man die racemischen Verbindungen rac-B-VII bis rac-B-XVII.
Schritt d (B-VII ### B-VIII)
Repräsentiert die Gruppe chG2 eine der unter Schritt c erwähnten chiralen Hilfsgruppen, so wird diese durch Umesterung von B-VII in einen Alkylester der allgemeinen Formel B-VIII wiedergewonnen. Die Umesterung erfolgt nach den, dem Fachmann bekannten Methoden. Bevorzugt ist die Umesterung mit einfachen Alkoholen wie z. B. Methanol oder Ethanol in Gegenwart entsprechender Titan(IV)alkoholate.
Schritt e (B-VIII ### B-IX)
Der Ester in B-VIII wird zum Alkohol B-IX reduziert. Als Reduktionsmittel eignen sich die, dem Fachmann bekannten Reduktionsmittel wie z. B. Aluminiumhydride wie z. B. Lithiumaluminiumhydrid oder Diisobutylaluminium-hydrid. Die Reaktion erfolgt in einem inerten Lösungsmittel wie z. B. Diethylether, Tetrahydrofuran, Toluol.
Schritt e' (B-VII ### B-IX)
Alternativ zu den Schritten d) und e) kann die Carbonylgruppe in B-VII nach den unter Schritt e) genannten Bedingungen direkt zu den Alkoholen der allgemeinen Formel B-IX reduziert werden. Auch hier kann die chirale Hilfskomponente chG2-H wiedergewonnen werden.
Schritt f (B-IX ### B-X)
Die freie Hydroxylgruppe in B-IX wird nach den, dem Fachmann bekannten Methoden geschützt. Als Schutzgruppe PG9 kommen die, dem Fachmann bekannten Schutzgruppen, wie sie schon vorstehend für PG4 im Schritt a (A-II ### A- III) genannt wurden, in Frage.
Bevorzugt sind solche Schutzgruppen, die unter sauren Reaktionsbedingungen gespalten werden können, wie z. B. der Methoxymethyl-, Tetrahydropyranyl-, Tetrahydrofuranyl-, Trimethylsilyl-Rest.
Besonders bevorzugt ist der Tetrahydropyranyl-Rest.
Schritt g (B-X ### B-XI)
Die unter Schritt a) eingeführte Schutzgruppe PC8 wird nun nach den, dem Fachmann bekannten Verfahren gespalten. Handelt es sich um einen Silylether, so eignet sich für die Spaltung die Umsetzung mit Fluoriden wie beispielsweise Tetrabutylammoniumfluorid, dem Fluorwasserstoff-Pyridin-Komplex, Kaliumfluorid oder die Anwendung verdünnter Mineralsäuren, die Verwendung von katalytischen Mengen Säuren wie z. B. para-Toluolsulfonsäure, para-Toluolsulfonsäure- pyridiniumsalz, Camphersulfonsäure in alkoholischen Lösungen, vorzugsweise in Ethanol oder Isopropanol.
Schritt h (B-XI ### B-XII)
Die Oxidation des primären Alkohols in B-XI zum Aldehyd der allgemeinen Formel B-XII erfolgt nach den, dem Fachmann bekannten Verfahren. Beispielsweise genannt sei die Oxidation mit Pyridiniumchlorochromat, Pyridiniumdichromat, Chromtrioxid- Pyridin-Komplex, die Oxidation nach Swern oder verwandter Methoden, z. B. unter Verwendung von Oxalylchlorid in Gegenwart geeigneter Katalysatoren wie z. B. Tetrapropylammoniumperruthenat in inerten Lösungsmitteln. Bevorzugt ist die Oxidation nach Swern sowie mit N-Methyl-morpholino-N-oxid unter Verwendung von Tetrapropylammoniumperruthenat.
Schritt i (B-XII ### B-XIII)
Die Umsetzung der Aldehyde B-XII zu Alkoholen der allgemeinen Formel B-XIII erfolgt nach den, dem Fachmann bekannten Methoden mit metallorganischen Verbindungen der allgemeinen Formel M-R5', worin M für ein Alkalimetall, vorzugsweise Lithium oder ein zweiwertiges Metall MX, worin X ein Halogen repräsentiert und der Rest R5' die oben genannte Bedeutung aufweist. Als zweiwertiges Metall ist bevorzugt Magnesium und Zink, als Halogen X ist bevorzugt Chlor, Brom und Iod.
Schritt k (B-XIII ### B-XIV)
Die Oxidation des Alkohols B-XIII zum Keton der allgemeinen Formel B-XIV erfolgt nach den unter h) genannten Verfahren. Bevorzugt ist die Oxidation mit N-Methyl- morpholino-N-oxid unter Verwendung von Tetrapropylammoniumperruthenat.
Schritt l (B-XIII ### B-XV)
Die Hydroxylgruppe in B-XIII kann unter den unter a) genannten Verfahren mit einer Schutzgruppe PG10 versehen werden. Bevorzugt sind siliziumhaltige Schutzgruppen, die unter sauren Reaktionsbedingungen unter Anwendung von Fluorid gespalten werden können, wie z. B. der Trimethylsilyl-, Triethylsilyl-, tert.- Butyldimethylsilyl-, tert.-Butyldiphenylsilyl-, Tribenzylsilyl-, Triisopropylsilyl-Rest. Besonders bevorzugt ist der tert.-Butyldiphenylsilyl-Rest.
Schritt m (B-XV ### B-XVI)
Die unter Schritt f) eingeführte Schutzgruppe PG9 wird nach den unter Schritt g) beschriebenen Verfahren gespalten.
Schritt n (B-XVI ### B-XVII)
Die Oxidation des Alkohols B-XVI zum Aldehyd der allgemeinen Formel B-XVII erfolgt nach den unter h) genannten Verfahren. Bevorzugt ist die Oxidation nach Swern.
Alternativ können die Verbindungen der allgemeinen Formel B-XIII über den in Schema 5 beschriebenen Weg hergestellt werden.
Schema 5
Schritt o (B-XVIII ### B-XIX)
Ausgehend von wohlfeil erhältlichen Essigesterderivaten der allgemeinen Formel B-XVIII, in denen R4a' und R4b' die oben genannten Bedeutungen haben, wird das Esterenolat durch Einwirkung starker Basen wie z. B. Lithiumdiisopropylamid, Lithiumhexamethyldisilazan bei niedrigen Temperaturen hergestellt und mit 3- Halogen-1-propin, vorzugsweise 3-Brom-1-propin zu Verbindungen der allgemeinen Formel B-XIX umgesetzt.
Schritt p (B-XIX ### B-XX)
Die Reduktion des Esters B-XIX zum Akohol B-XX erfolgt nach den unter Schritt e) beschriebenen Methoden, vorzugsweise unter Verwendung von Diisobutylaluminium­ hydrid.
Schritt q (B-XX ### B-XXI)
Die Hydroxylgruppe in B-XX kann nach den unter a) genannten Bedingungen mit einer Schutzgruppe PG11 versehen werden. Bevorzugt sind Silizium haltige Schutzgruppen, die unter sauren Reaktionsbedingungen oder Anwendung von Fluorid gespalten werden können, wie z. B. der Trimethylsilyl-, Triethylsilyl-, tert.- Butyldimethylsilyl-, tert.-Butyldiphenylsilyl-, Tribenzylsilyl-, Triisopropylsilyl-Rest. Besonders bevorzugt ist der tert.-Butyldimethylsilyl-Rest.
Schritt r (B-XXI ### B-XIII)
Das Acetylen B-XXI kann nach den, dem Fachmann bekannten Verfahren deprotoniert und das erhaltene Acetylid mit Carbonylverbindungen der allgemeinen Formel B-XXII, in der R5' die oben genannte Bedeutung hat, zu einem Alkohol der allgemeinen Formel XIII umgesetzt werden. Zur Deprotonierung eignen sich Alkylalkaliverbindungen wie z. B. Buthyllithium oder andere starke Basen wie z. B. Alkalihexamethyldisilazane oder Lithiumdiisopropylamid. Bevorzugt wird n- Buthyllithium.
Auf dem in Schema 5 beschriebenen Weg werden zunächst die racemischen Verbindungen rac-B-XIII erhalten. Optional bieten die durchlaufenen Stufen rac-B- XIX bzw. rac-B-XX gemäß Schema 6 die Möglichkeit zur chemischen Racematspaltung und somit auch einen Zugang zu den enantiomerenreinen Verbindungen B-XX bzw. ent-B-XX, sofern R4a' nicht identisch ist mit R4b'.
Schema 6
Schritt s (rac-B-XIX ### B-XIXa)
Die racemische Verbindung rac-B-XIX läßt sich mit einem chiralen, optisch rein erhältlichen Alkohol chG3-OH nach den, dem Fachmann bekannten Methoden, bespielsweise dem unter Schritt d) genannten Verfahren zu einem Gemisch der diastereomeren Ester B-XIXa umestern und mit einfachen chromatographischen Methoden trennen. Als chirale Alkohole kommen beispielsweise Pulegol, 2- Phenylcyclohexanol, 2-Hydroxy-1,2,2-triphenylethanol, 8-Phenylmenthol in Betracht.
Schritt t (B-XIXa ### B-XX und ent-B-XX)
Die diastereomerenreinen Ester B-XIXa lassen sich jeweils nach dem unter Schritt e beschriebenen Verfahren zu den Alkoholen B-XX bzw. ent-B-XX reduzieren, wobei die unter Schritt s beschriebene Hilfskomponente chG3-OH wiedergewonnen werden kann.
Schritt u (rac-B-XX ### B-XXa)
Die racemische Verbindung rac-B-XX läßt sich mit einer chiralen, optisch rein erhältlichen Säure chG4-CO2H, deren Ester, Anhydrid oder Säurehalogenid nach den, dem Fachmann bekannten Methoden zu einem Gemisch der diastereomeren Ester XXa umsetzen und mit einfachen chromatographischen Methoden trennen. Als chirale Säuren kommen beispielsweise Äpfelsäure, Weinsäure bzw. deren Derivate in Betracht.
Schritt v (B-XXa ### B-XX und ent-B-XX)
Die diastereomerenreinen Ester B-XXa lassen sich jeweils nach dem unter Schritt e beschriebenen Verfahren zu den Alkoholen B-XX bzw. ent-B-XX reduzieren, oder nach den, dem Fachmann bekannten Methoden verseifen wobei im letztgenannten Fall die unter Schritt u beschriebene Hilfskomponente chG4-CO2H wiedergewonnen werden kann.
Darstellung der Teilfragmente C
Die Darstellung der erfindungsgemäßen Teilfragmente der Formel C kann, wie in den nachfolgenden Formelschemata innerhalb der Herstellung der erfindungsgemäßen Verbindungen der Beispiele 1 bis 4 angegeben ist, durchgeführt werden. Durch Variation des (Hetero)arylrestes im Ausgangsprodukt im Reaktionsschritt a) (im vorliegenden Fall ist dies der 2-Methyl-4-thiazolylrest) kommt man zu entsprechend substituierten Bausteinen der Formel C und letztendlich Verbindungen der Formel I.
Formelschemata zu den Beispielen 1 bis 4
Beispiel 1
Beispiel 2
Beispiel 3
Beispiel 4
Die vorliegende Erfindung betrifft außerdem die neuen C13-C16-Epothilon-Bausteine der allgemeinen Formel C als Zwischenprodukte
worin
R8' die bereits in der allgemeinen Formel I für R8 genannte Bedeutung (Halogen) hat und
R7' ein Wasserstoffatom,
R20 ein Wasserstoffatom oder eine Schutzgruppe PG2
R21 eine Hydroxygruppe, Halogen, eine geschützte Hydroxygruppe OPG3, ein Phosphoniumhalogenidrest PPh3 +Hal- (Ph = Phenyl; Hal = F, Cl, Br, I), ein Phosphonatrest P(O)(OQ)2 (Q = C1-C10-Alkyl oder Phenyl) oder ein Phosphinoxidrest P(O)Ph2 (Ph = Phenyl),
U ein Sauerstoffatom, zwei Alkoxygruppen OR23, eine C2-C10-Alkylen-α,ω- dioxygruppe, die geradkettig oder verzweigt sein kann, H/OR9 oder eine Gruppierung CR10R11,
wobei
R23 für einen C1-C20-Alkylrest,
R9 für Wasserstoff oder eine Schutzgruppe PG3,
R10, R11 gleich oder verschieden sind und für Wasserstoff, einen C1-C20-Alkyl-, Aryl-, C7-C20-Aralkylrest oder R10 und R11 zusammen mit dem Methylenkohlen­ stoffatom gemeinsam für einen 5- bis 7gliedrigen carbocyclischen Ring
stehen,
bedeuten.
Erfindungsgemäß sind solche Verbindungen der allgemeinen Formel C bevorzugt,
worin
R8' für ein Fluor- oder Chloratom und/oder
U für ein Sauerstoffatom steht und/oder
der für R10 und/oder R11 stehende Arylrest für einen gegebenenfalls mit 1 bis 3 Resten, ausgewählt aus der Gruppe der Substituenten Halogen, freie Hydroxygruppe oder geschützte Hydroxygruppe OPG5, CO2H, CO2-Alkyl, C1-C4-Alkyl, Azido, Nitro, Nitril, Amino (NH2), substituierten Phenylrest oder für einen gegebenenfalls mit 1 bis 2 C1-C4-Alkylresten substituierten 5- oder 6gliedrigen Heteroarylrest,
insbesondere für einen aus der Gruppe 2-, 3-Furanyl-, 2-, 3-, 4-Pyridinyl-, 2-, 4-, 5-Thiazolyl-, 2-, 4- und 5-Imidazolylrest, der gegebenenfalls durch 1 oder 2 C1-C4-Alkylreste substituiert ist, ausgewählten Substituenten steht und/oder
PG2 und PG3 aus der Gruppe der Substituenten Methoxymethyl-, Methoxyethyl, Ethoxyethyl-, Tetrahydropyranyl-, Tetrahydrofuranyl-, Trimethylsilyl-, Triethylsilyl-, tert.- Butyldimethylsilyl-, tert.-Butyldiphenylsilyl-, Tribenzylsilyl-, Triisopropylsilyl-, Benzyl-, para-Nitrobenzyl-, para-Methoxybenzyl-, Acetyl-, Propionyl-, Butyryl- und Benzoylrest ausgewählt sind,
insbesondere PG2 ein tert.-Butyldimethylsilyl-, Acetyl, Benzoyl-, Benzyl-, Tetrahydropyranyl-Rest ist.
Als Schutzgruppen PG4 und PG5 kommen alle schon vorstehend für PG2 und PG3 angegebenen Schutzgruppen in Frage.
Darstellung der Teilfragmente ABC und deren Zyklisierung zu I
Teilfragmente der allgemeinen Formel AB
worin R1a', R1b', R2a', R2b', R3, R4a, R4b, R5, R13, R14, D, E, V und Z die bereits genannten Bedeutungen haben und PG14 ein Wasserstoffatom oder eine Schutzgruppe PG darstellt, werden aus den zuvor beschriebenen Fragmenten A und B nach dem in Schema 8 gezeigten Verfahren erhalten.
Schema 8
Schritt a (A + B ### AB)
Die Verbindung B, worin W die Bedeutung eines Sauerstoffatomes hat und eventuell vorhandene zusätzliche Carbonylgruppen geschützt sind, wird mit dem Enolat einer Carbonylverbindung der allgemeinen Formel A alkyliert. Das Enolat wird durch Einwirkung starker Basen wie z. B. Lithiumdiisopropylamid, Lithiumhexamethyldisilazan bei niedrigen Temperaturen hergestellt.
Teilfragmente der allgemeinen Formel ABC
worin R1a', R1b', R2a', R2b', R3, R4a, R4b, R5, R6, R7, R8, R13, R14, D, E, U und Z die bereits genannten Bedeutungen haben, werden aus den zuvor beschriebenen Fragmenten AB und C nach dem in Schema 9 gezeigten Verfahren erhalten.
Schema 9
Schritt b (AB + C ### ABC)
Die Verbindung C, in der R21 die Bedeutung eines Wittigsalzes hat und eventuell vorhandene zusätzliche Carbonylgruppen geschützt sind, wird durch eine geeignete Base wie z. B. n-Butyllithium, Lithiumdiisopropylamid, Kalium-tert.-butanolat, Natrium- oder Lithium-hexamethyldisilazid deprotoniert und mit einer Verbindung AB, worin V die Bedeutung eines Sauerstoffatomes hat, umgesetzt.
Schritt c (ABC ### I)
Die Verbindungen ABC, in denen R13 eine Carbonsäure CO2H und R20 ein Wasserstoffatom darstellt, setzt man nach den, dem Fachmann bekannten Methoden für die Bildung großer Macrolide zu Verbindungen der Formel I, in denen Y die Bedeutung eines Sauerstoffatomes besitzt, um. Bevorzugt wird die in "Reagents for Organic Synthesis" Vol. 16, p 353 beschriebene Methode unter Verwendung von 2,4,6-Trichlorbenzoesäurechlorid und geeigneten Basen wie z. B. Triethylamin, 4- Dimethylaminopyridin, Natriumhydrid.
Schritt d (ABC ### I)
Die Verbindungen ABC, in denen R13 eine Gruppe CH2OH und R20 ein Wasserstoffatom darstellt, lassen sich vorzugsweise unter Verwendung von Triphenylphosphin und Azodiestern wie beispielsweise Azodicarbonsäurediethylester zu Verbindungen der Formel I, in denen Y die Bedeutung zweier Wasserstoffatome hat, umsetzen.
Die Verbindungen ABC, in denen R13 eine Gruppe CH2OSO2Alkyl oder CH2OSO2Aryl oder CH2OSO2Aralkyl und R20 ein Wasserstoffatom darstellt, lassen sich nach Deprotonierung mit geeigneten Basen wie beispielsweise Natriumhydrid, n- Buthyllithium, 4-Dimethylaminopyridin, Hünig-Base, Alkylhexamethyldisilazanen zu Verbindungen der Formel I, in denen Y die Bedeutung zweier Wasserstoffatome hat, zyklisieren.
Die flexible Funktionalisierung der beschriebenen Bausteine A, B und C gewährleistet auch eine von dem oben beschriebenen Verfahren abweichende Verknüpfungsreihenfolge, die zu den Bausteinen ABC führt. Diese Verfahren sind in der folgenden Tabelle zusammengestellt:
Nach diesen Verfahren lassen sich die Bausteine A, B und C, wie in Schema 10 angegeben, verknüpfen:
Schema 10
Freie Hydroxylgruppen in I, A, B, C, AB, ABC können durch Veretherung oder Veresterung, freie Carbonylgruppen durch Ketalisierung, Enoletherbildung oder Reduktion weiter funktionell abgewandelt sein.
Die Erfindung betrifft alle Stereoisomeren dieser Verbindungen und auch deren Gemische.
Biologische Wirkungen und Anwendungsbereiche der neuen Derivate
Die neuen Verbindungen der Formel I sind wertvolle Pharmaka. Sie interagieren mit Tubulin, indem sie gebildete Mikrotubuli stabilisieren und sind somit in der Lage, die Zellteilung phasenspezifisch zu beeinflussen. Dies betrifft vor allem schnell wachsende, neoplastische Zellen, deren Wachstum durch interzelluläre Regelmechnismen weitgehend unbeeinflußt ist. Wirkstoffe dieser Art sind prinzipiell geeignet zur Behandlung maligner Tumoren. Als Anwendungsbereich seien beispielweise genannt die Therapie von Ovarial-, Magen-, Colon-, Adeno-, Brust-, Lungen-, Kopf- und Nacken-Karzinomen, dem malignen Melanom, der akuten lymphozytären und myelocytären Leukämie. Die erfindungsgemäßen Verbindungen eignen sich aufgrund ihrer Eigenschaften prinzipiell zur Anti-Angiogenese-Therapie sowie zur Behandlung chronischer entzündlicher Erkrankungen wie beispielsweise der Psoriasis oder der Arthritis. Zur Vermeidung unkontrollierter Zellwucherungen an sowie der besseren Verträglichkeit von medizinischen Implantaten lassen sie sich prinzipiell in die hierfür verwendeten polymeren Materialien auf- bzw. einbringen. Die erfindungsgemäßen Verbindungen können alleine oder zur Erzielung additiver oder synergistischer Wirkungen in Kombination mit weiteren in der Tumortherapie anwendbaren Prinzipien und Substanzklassen verwendet werden.
Als Beispiele seien genannt die Kombination mit
  • - Platinkomplexen wie z. B. Cisplatin, Carboplatin,
  • - interkalierenden Substanzen z. B. aus der Klasse der Anthracycline wie z. B. Doxorubicin oder aus der Klasse der Antrapyrazole wie z. B. Cl-941,
  • - mit Tubulin interagierenden Substanzen z. B. aus der Klasse der Vinka- Alkaloide wie z. B. Vincristin, Vinblastin oder aus der Klasse der Taxane wie z. B. Taxol, Taxotere oder aus der Klasse der Makrolide wie z. B. Rhizoxin oder andere Verbindungen wie z. B. Colchicin, Combretastatin A-4,
  • - DNA Topoisomeraseinhibitoren wie z. B. Camptothecin, Etoposid, Topotecan, Teniposid,
  • - Folat- oder Pyrimidin-Antimetaboliten wie z. B. Lometrexol, Gemcitubin,
  • - DNA alkylierenden Verbindungen wie z. B. Adozelesin, Dystamycin A,
  • - Inhibitoren von Wachstumsfaktoren (z. B. von PDGF, EGF, TGFb, EGF) wie z. B. Somatostatin, Suramin, Bombesin-Antagonisten,
  • - Inhibitoren der Protein Tyrosin Kinase oder der Protein Kinasen A oder C wie z. B. Erbstatin, Genistein, Staurosporin, Ilmofosin, 8-Cl-cAMP,
  • - Antihormonen aus der Klasse der Antigestagene wie z. B. Mifepriston, Onapriston oder aus der Klasse der Antiöstrogene wie z. B. Tamoxifen oder aus der Klasse der Antiandrogene wie z. B. Cyproteronacetat,
  • - Metastasen inhibierenden Verbindungen z. B. aus der Klasse der Eicosanoide wie z. B. PGl2, PGE1, 6-Oxo-PGE1 sowie deren stabiler Derivate (z. B. Iloprost, Cicaprost, Misoprostol),
  • - Inhibitoren onkogener RAS-Proteine, welche die mitotische Signaltransduktion beeinflussen wie beispielsweise Inhibitoren der Farnesyl-Protein-Transferase,
  • - natürlichen oder künstlich erzeugten Antikörpern, die gegen Faktoren bzw. deren Rezeptoren, die das Tumorwachstum fördern, gerichtet sind wie beispielsweise der erbB2-Antikörper.
Die Erfindung betrifft auch Arzneimittel auf Basis der pharmazeutisch verträglichen, d. h. in den verwendeten Dosen nicht toxischen Verbindungen der allgemeinen Formel I, gegebenenfalls zusammen mit den üblichen Hilfs- und Trägerstoffen.
Die erfindungsgemäßen Verbindungen können nach an sich bekannten Methoden der Galenik zu pharmazeutischen Präparaten für die enterale, percutane, parenterale oder lokale Applikation verarbeitet werden. Sie können in Form von Tabletten, Dragees, Gelkapseln, Granulaten, Suppositorien, Implantaten, injizierbaren sterilen wäßrigen oder öligen Lösungen, Suspensionen oder Emulsionen, Salben, Cremes und Gelen verabreicht werden.
Der oder die Wirkstoffe können dabei mit den in der Galenik üblichen Hilfsstoffen wie z. B. Gummiarabikum, Talk, Stärke, Mannit, Methylcellulose, Laktose, Tensiden wie Tweens oder Myrj, Magnesiumstearat, wäßrigen oder nicht wäßrigen Trägern, Paraffinderivaten, Netz-, Dispergier-, Emulgier-, Konservierungsmitteln und Aromastoffen zur Geschmackskorrektur (z. B. etherischen Ölen) gemischt werden.
Die Erfindung betrifft somit auch pharmazeutische Zusammensetzungen, die als Wirkstoff zumindest eine erfindungsgemäße Verbindung enthalten. Eine Dosiseinheit enthält etwa 0,1-100 mg Wirkstoff(e). Die Dosierung der erfindungsgemäßen Verbindungen liegt beim Menschen bei etwa 0,1-1000 mg pro Tag.
Die nachfolgenden Beispiele dienen der näheren Erläuterung der Erfindung, ohne sie darauf einschränken zu wollen.
Bei der Numerierung der Beispiele für die jeweiligen Ausgangsverbindungen und bei der Numerierung der Beispiele für die erfindungsgemäßen Verbindungen wird jeweils mit der Numerierung als Beispiel 1 begonnen:
Herstellung der Bausteine der allgemeinen Formel A aus Pantolacton bzw. aus Malonsäuredialkylestern (DE 197 51 200.3 bzw. PCT/EP 98/05064) Beispiel 1 (3S)-1-Oxa-2-oxo-3-(tetrahydropyran-2(RS)-yloxy)-4,4-dimethyl-cyclopentan
Die Lösung von 74,1 g (569 mmol) D-(-)-Pantolacton in 1 l wasserfreiem Dichlormethan versetzt man unter einer Atmosphäre aus trockenem Argon mit 102 ml 3,4-Dihydro-2H-pyran, 2 g p-Toluolsulfonsäure-Pyridiniumsalz und rührt 16 Stunden bei 23°C. Man gießt in eine gesättigte Natriumhydrogencarbonatlösung, trennt die organische Phase ab und trocknet über Natriumsulfat. Nach Filtration und Lösungsmittelabzug chromatographiert man den Rückstand an ca. 5 kg feinem Kieselgel mit einem Gemisch aus n-Hexan und Ethylacetat. Isoliert werden 119,6 g (558 mmol, 98%) der Titelverbindung als farbloses Öl.
1H-NMR (CDCl3): δ = 1,13 (3H), 1,22 (3H), 1,46-1,91 (6H), 3,50-3,61 (1H), 3,86 (1H), 3,92 (1H), 4,01 (1H), 4,16 (1H), 5,16 (1H) ppm.
Beispiel 2 (2RS,3S)-1-Oxa-2-hydroxy-3-(tetrahydropyran-2(RS)-yloxy)-4,4- dimethyl-cyclopentan
Die Lösung von 117,5 g (548 mmol) der nach Beispiel 1 dargestellten Verbindung in 2,4 l wasserfreiem Toluol kühlt man unter einer Atmosphäre aus trockenem Argon auf -70°C, versetzt innerhalb 1 Stunde mit 540 ml einer 1,2molaren Lösung von Diisobutylaluminiumhydrid in Toluol und rührt noch 3 Stunden bei -70°C. Man läßt auf -20°C erwärmen, versetzt mit gesättigter Ammoniumchloridlösung, Wasser und trennt die ausgefallenen Aluminiumsalze durch Filtration über Celite ab. Das Filtrat wird mit Wasser und gesättigter Natriumchloridlösung gewaschen und über Magnesiumsulfat getrocknet. Isoliert werden nach Filtration und Lösungsmittelabzug 111,4 g (515 mmol, 94%) der Titelverbindung als farbloses Öl, das man ohne Reinigung weiter umsetzt.
IR (CHCl3): 3480, 3013, 2950, 2874, 1262, 1133, 1074, 1026 und 808 cm-1.
Beispiel 3 (3S)-2,2-Dimethyl-3-(tetrahydropyran-2(R)-yloxy)-pent-4-en-1-ol und (3S)-2,2- Dimethyl-3-(tetrahydropyran-2(S)-yloxy)-pent-4-en-1-ol
Die Aufschlämmung von 295 g Methyltriphenylphosphoniumbromid in 2,5 l wasserfreiem Tetrahydrofuran versetzt man unter einer Atmosphäre aus trockenem Argon bei -60°C mit 313 ml einer 2,4 molaren Lösung von n-Butyllithium in n-Hexan, läßt auf 23°C erwärmen, eine Stunde nachrühren und kühlt auf 0°C. Man versetzt mit der Lösung von 66,2 g (306 mmol) der nach Beispiel 2 dargestellten Verbindung in 250 ml Tetrahydrofuran, läßt auf 23°C erwärmen und 18 Stunden rühren. Man gießt in eine gesättigte Natriumhydrogencarbonatlösung, extrahiert mehrfach mit Dichlormethan und trocknet die vereinigten organischen Extrakte über Natriumsulfat. Nach Filtration und Lösungsmittelabzug chromatographiert man den Rückstand an ca. 5 l feinem Kieselgel mit einem Gradientensystem aus n-Hexan und Ethylacetat. Isoliert werden 36,5 g (170 mmol, 56%) des unpolaren, 14,4 g (67,3 mmol, 22%) des polaren THP-Isomeren der Titelverbindung sowie 7,2 g (33,3 mmol; 11%) des Ausgangsmaterials jeweils als farbloses Öl.
1H-NMR (CDCl3), unpolares Isomer: δ = 0,78 (3H), 0,92 (3H), 1,41-1,58 (4H), 1,63-1,87 (2H), 3,18 (1H), 3,41 (1H), 3,48 (1H), 3,68 (1H), 3,94 (1H), 4,00 (1H), 4,43 (1H), 5,19 (1H), 5,27 (1H), 5,75 (1H) ppm.
1H-NMR (CDCl3), polares Isomer: δ = 0,83 (3H), 0,93 (3H), 1,42-1,87 (6H), 2,76 (1H), 3,30 (1H), 3,45 (1H), 3,58 (1H), 3,83 (1H), 3,89 (1H), 4,65 (1H), 5,12-5,27 (2H), 5,92 (1H) ppm.
Beispiel 4 (3S)-1-(tert.-Butyldiphenylsilyloxy)-2,2-dimethyl-pentan-3-(tetrahydropyran-2- yloxy)-pent-4-en
Die Lösung von 59,3 g (277 mmol) des nach Beispiel 3 dargestellten THP-Isomeren- Gemisches in 1000 ml wasserfreiem Dimethylformamid versetzt man unter einer Atmosphäre aus trockenem Argon mit 28 g Imidazol, 85 ml tert.- Butyldiphenylchlorsilan und rührt 16 Stunden bei 23°C. Man gießt in Wasser, extrahiert mehrfach mit Dichlormethan, wäscht die vereinigten organischen Extrakte mit Wasser und trocknet über Natriumsulfat. Nach Filtration und Lösungsmittelabzug chromatographiert man den Rückstand an feinem Kieselgel mit einem Gradientensystem aus n-Hexan und Ethylacetat. Isoliert werden 106,7 g (236 mmol, 85%) der Titelverbindung als farbloses Öl.
1H-NMR (CDCl3): δ = 0,89 (3H), 0,99 (3H), 1,08 (9H), 1,34-1,82 (6H), 3,40 (1H), 3,51 (2H), 3,76 (1H), 4,02 (1H), 4,67 (1H), 5,18 (1H), 5,23 (1H), 5,68 (1H), 7,30-7,48 (6H), 7,60-7,73 (4H) ppm.
Beispiel 5 (3S)-1-(tert.-Butyldiphenylsilyloxy)-2,2-dimethyl-3-(tetrahydropyran-2-yloxy)- pentan-5-ol
Die Lösung von 3,09 g (6,83 mmol) der nach Beispiel 4 dargestellten Verbindung in 82 ml Tetrahydrofuran versetzt man unter einer Atmosphäre aus trockenem Argon bei 23°C mit 13,1 ml einer 1molaren Lösung von Boran in Tetrahydrofuran und läßt 1 Stunde reagieren. Anschließend versetzt man unter Eiskühlung mit 16,4 ml einer 5%igen Natronlauge sowie 8,2 ml einer 30%igen Wasserstoffperoxidlösung und rührt weitere 30 Minuten. Man gießt in Wasser, extrahiert mehrfach mit Ethylacetat, wäscht die vereinigten organischen Extrakte mit Wasser, gesättigter Natriumchloridlösung und trocknet über Magnesiumsulfat. Den nach Filtration und Lösungsmittelabzug erhaltenen Rückstand reinigt man durch Chromatographie an feinem Kieselgel mit einem Gradientensystem aus n-Hexan und Ethylacetat. Isoliert werden 1,78 g (3,78 mmol, 55%) der Titelverbindung als chromatographisch trennbares Gemisch der beiden THP-Epimeren sowie 0,44 g (1,14 mmol, 17%) der Titelverbindung aus Beispiel 6 jeweils als farbloses Öl.
1H-NMR (CDCl3), unpolares THP-Isomer: δ = 0,80 (3H), 0,88 (3H), 1,10 (9H), 1,18-­ 1,80 (9H), 3,27 (1H), 3,39 (1H), 3,48 (1H), 3,64 (1H), 3,83 (1H), 3,904,08 (2H), 4,49 (1H), 7,31-7,50 (6H), 7,58-7,73 (4H) ppm.
1H-NMR (CDCl3), polares THP-Isomer: δ = 0,89 (3H), 0,98 (3H), 1,08 (9H), 1,36-1,60 (4H), 1,62-1,79 (3H), 1,88 (1H), 2,03 (1H), 3,37 (1H), 3,50 (1H), 3,57 (1H), 3,62-3,83 (4H), 4,70 (1H), 7,30-7,48 (6H), 7,61-7,73 (4H) ppm.
Beispiel 6 (3S)-1-(tert.-Butyldiphenylsilyloxy)-2,2-dimethyl-pentan-3,5-diol
Die Lösung von 570 mg (1,55 mmol) der nach Beispiel 12 dargestellten Verbindung setzt man in Analogie zu Beispiel 5 um und isoliert nach Aufarbeitung und Reinigung 410 mg (1,06 mmol, 68%) der Titelverbindung als farbloses Öl.
1H-NMR (CDCl3): δ = 0,82 (3H), 0,93 (3H), 1,08 (9H), 1,56-1,79 (2H), 3,11 (1H), 3,50 (2H), 3,78-3,92 (3H), 4,02 (1H), 7,34-7,51 (6H), 7,61-7,71 (4H) ppm.
Beispiel 7, Variante I 4(S)-[2-Methyl-1-(tert.-butyldiphenylsilyloxy)-prop-2-yl]-2,2-dimethyl-[1,3]dioxan
Die Lösung von 100 mg (0,212 mmol) der nach Beispiel 5 dargestellten Verbindungen in 2,6 ml wasserfreiem Aceton versetzt man unter einer Atmosphäre aus trockenem Argon mit 78,9 mg Kupfer(II)sulfat, einer Spatelspitze p- Toluolsulfonsäure-Monohydrat und rührt 16 Stunden bei 23°C. Man versetzt mit gesättigter Natriumhydrogencarbonatlösung, extrahiert mehrfach mit Diethylether, wäscht mit gesättigter Natriumchloridlösung und trocknet über Natriumsulfat. Den nach Filtration und Lösungsmittelabzug erhaltenen Rückstand reinigt man durch Chromatographie an feinem Kieselgel mit einem Gradientensystem aus n-Hexan und Ethylacetat. Isoliert werden 24 mg (56 µmol, 27%) der Titelverbindung als farbloses Öl.
1H-NMR (CDCl3): δ = 0,83 (3H), 0,89 (3H), 1,07 (9H), 1,30 (1H), 1,36 (3H), 1,44 (3H), 1,71 (1H), 3,24 (1H), 3,62 (1H), 3,86 (1H), 3,91-4,03 (2H), 7,31-7,48 (6H), 7,61-7,74 (4H) ppm.
Variante II
320 mg (0,88 mmol) der nach Beispiel 6 dargestellten Verbindung setzt man in Analogie zu Beispiel 7; Variante I um und isoliert nach Aufarbeitung und Reinigung 234 mg (0,548 mmol, 62%) der Titelverbindung.
Variante III
Die Lösung von 5,60 g (14,5 mmol) der nach Beispiel 6 dargestellten Verbindung in 250 ml wasserfreiem Dichlormethan versetzt man unter einer Atmosphäre aus trockenem Argon mit 10 ml 2,2-Dimethoxypropan, 145 mg Campher-10-sulfonsäure und rührt 6 Stunden bei 23°C. Man versetzt mit Triethylamin, verdünnt mit Ethylacetat, wäscht mit gesättigter Natriumhydrogencarbonatlösung und trocknet über Natriumsulfat. Nach Filtration und Lösungsmittelabzug chromatographiert man den Rückstand an feinem Kieselgel mit einem Gemisch aus n-Hexan und Ethylacetat. Isoliert werden 5,52 g (12,9 mmol, 89%) der Titelverbindung als farbloses Öl.
Beispiel 8 (4S)-4-(2-Methyl-1-hydroxy-prop-2-yl)-2,2-dimethyl-[1,3]dioxan
Die Lösung von 5,6 g (13,1 mmol) der nach Beispiel 7 dargestellten Verbindung in 75 ml wasserfreiem Tetrahydrofuran versetzt man unter einer Atmosphäre aus trockenem Argon mit 39 ml einer 1molaren Lösung von Tetrabutylammoniumfluorid in Tetrahydrofuran und erwärmt 16 Stunden auf 50°C. Man versetzt mit gesättigter Natriumhydrogencarbonatlösung, extrahiert mehrfach mit Ethylacetat, wäscht mit gesättigter Natriumchloridlösung und trocknet über Natriumsulfat. Den nach Filtration und Lösungsmittelabzug erhaltenen Rückstand reinigt man durch Chromatographie an feinem Kieselgel mit einem Gradientensystem aus n-Hexan und Ethylacetat. Isoliert werden 2,43 g (12,9 mmol, 99%) der Titelverbindung als farbloses Öl.
1H-NMR (CDCl3): δ = 0,87 (3H), 0,90 (3H), 1,35 (1H), 1,37 (3H), 1,43 (3H), 1,77 (1H), 2,93 (1H), 3,36 (1H), 3,53 (1H), 3,79 (1H), 3,87 (1H), 3,96 (1H) ppm.
Beispiel 9 (4S)-4-(2-Methyl-1-oxo-prop-2-yl)-2,2-dimethyl-[1,3]dioxan
Die Lösung von 0,13 ml Oxalylchlorid in 5,7 ml wasserfreiem Dichlormethan kühlt man unter einer Atmosphäre aus trockenem Argon auf -70°C, versetzt mit 0,21 ml Dimethylsulfoxid, der Lösung von 200 mg (1,06 mmol) der nach Beispiel 8 dargestellten Verbindung in 5,7 ml wasserfreiem Dichlormethan und rührt 0,5 Stunden. Anschließend versetzt man mit 0,65 ml Triethylamin, läßt 1 Stunde bei -30°C reagieren und versetzt mit n-Hexan und gesättigter Natriumhydrogencarbonatlösung. Die organische Phase wird abgetrennt, die wässrige noch mehrfach mit n-Hexan extrahiert, die vereinigten organischen Extrakte mit Wasser gewaschen und über Magnesiumsulfat getrocknet. Den nach Filtration und Lösungsmittelabzug erhaltenen Rückstand setzt man ohne Reinigung weiter um.
Beispiel 10 (4S)-4-(2-Methyl-3(RS)-hydroxy-pent-2-yl)-2,2-dimethyl-[1,3]dioxan
Die Lösung von 900 mg (4,83 mmol) der nach Beispiel 9 dargestellten Verbindung in 14 ml wasserfreiem Diethylether versetzt man unter einer Atmosphäre aus trockenem Argon bei 0°C mit 2,42 ml einer 2,4molaren Lösung von Ethylmagnesiumbromid in Diethylether, läßt auf 23°C erwärmen und 16 Stunden rühren. Man versetzt mit gesättigter Ammoniumchloridlösung, trennt die organische Phase ab und trocknet über Natriumsulfat. Den nach Filtration und Lösungsmittelabzug erhaltenen Rückstand reinigt man durch Chromatographie an fei 99999 00070 552 001000280000000200012000285919988800040 0002019954230 00004 99880nem Kieselgel mit einem Gradientensystem aus n-Hexan und Ethylacetat. Isoliert werden 321 mg (1,48 mmol, 31%) des unpolaren 3R- oder 3S-Epimeren der Titelverbindung, 542 mg (2,51 mmol, 52%) des polaren 3S- oder 3R-Epimeren der Titelverbindung sowie 77 mg der in Beispiel 8 beschriebenen Titelverbindung jeweils als farbloses Öl.
1H-NMR (CDCl3) unpolares Isomer: δ = 0,86 (3H), 0,89 (3H), 1,03 (3H), 1,25-1,37 (2H), 1,37 (3H), 1,46 (3H), 1,49 (1H), 1,84 (1H), 3,35 (1H), 3,55 (1H), 3,81-4,02 (3H) ppm.
1H-NMR (CDCl3) polares Isomer: δ = 0,72 (3H), 0,91 (3H), 0,99 (3H), 1,25-1,44 (2H), 1,38 (3H), 1,43-1,60 (1H), 1,49 (3H), 1,76 (1H), 3,39 (1H), 3,63 (1H), 3,794,03 (3H) ppm.
Beispiel 11 (4S)-4-(2-Methyl-3-oxo-pent-2-yl)-2,2-dimethyl-[1,3]dioxan
Die Lösung von 850 mg (3,93 mmol) eines Gemisches der nach Beispiel 10 dargestellten Verbindungen in 63 ml wasserfreiem Dichlormethan versetzt man mit Molekularsieb (4A, ca. 80 Kugeln), 690 mg N-Methylmorpholino-N-oxid, 70 mg Tetrapropylammoniumperruthenat und rührt 16 Stunden bei 23°C unter einer Atmosphäre aus trockenem Argon. Man engt ein und reinigt das erhaltene Rohprodukt durch Chromatographie an ca. 200 ml feinem Kieselgel mit einem Gradientensystem aus n-Hexan und Ethylacetat. Isoliert werden 728 mg (3,39 mmol, 86%) der Titelverbindung als farbloses Öl.
1H-NMR (CDCl3): δ = 1,00 (3H), 1,07 (3H), 1,11 (3H), 1,31 (1H), 1,32 (3H), 1,41 (3H), 1,62 (1H), 2,52 (2H), 3,86 (1H), 3,97 (1H), 4,05 (1H) ppm.
Beispiel 12 (3S)-1-(tert.-Butyldiphenylsilyloxy)-2,2-dimethyl-3-hydroxy-pent-4-en
Die Lösung von 106,7 g (236 mmol) der nach Beispiel 4 dargestellten Verbindung in 1,5 l wasserfreiem Ethanol versetzt man unter einer Atmosphäre aus trockenem Argon mit 5,9 g Pyridinium-p-Toluolsulfonat und erhitzt 6 Stunden auf 50°C. Nach Lösungsmittelabzug chromatographiert man den Rückstand an feinem Kieselgel mit einem Gemisch aus n-Hexan und Ethylacetat. Isoliert werden 82,6 g (224 mmol, 95%) der Titelverbindung als farbloses Öl, in dem noch zusätzlich ca. 5 g Ethoxy­ tetrahydropyran enthalten sind.
1H-NMR (CDCl3) einer analytischen Probe: δ = 0,89 (6H), 1,08 (9H), 3,45 (1H), 3,49 (1H), 3,58 (1H), 4,09 (1H), 5,21 (1H), 5,33 (1H), 5,93 (1H), 7,34-7,51 (6H), 7,63-7,73 (4H) ppm.
Beispiel 13 (4S)-4-((2RS)-3-Methyl-2-hydroxy-prop-3-yl)-2,2-dimethyl-[1,3]dioxan
In Analogie zu Beispiel 10 werden 450 mg (2,42 mmol) der nach Beispiel 9 dargestellten Verbindung unter Verwendung von Methylmagnesiumbromid umgesetzt. Nach Aufarbeitung und Reinigung isoliert man 431 mg (2,13 mmol, 88%) eines chromatographisch trennbaren Gemisches der epimeren Titelverbindungen als farbloses Öl.
Beispiel 14 (4S)-4-(3-Methyl-2-oxo-prop-3-yl)-2,2-dimethyl-[1,3]dioxan
In Analogie zu Beispiel 11 werden 420 mg (2,08 mmol) der nach Beispiel 13 dargestellten Verbindungen umgesetzt. Nach Aufarbeitung und Reinigung isoliert man 388 mg (1,94 mmol, 93%) der Titelverbindung als farbloses Öl.
1H-NMR (CDCl3): δ = 1,08 (3H), 1,12 (3H), 1,33 (3H), 1,35 (1H), 1,42 (3H), 1,63 (1H), 2,17 (3H), 3,87 (1H), 3,98 (1H), 4,04 (1H) ppm.
Beispiel 15 (4S)-4-((3RS)-2-Methyl-3-hydroxy-hex-2-yl)-2,2-dimethyl-[1,3]dioxan
In Analogie zu Beispiel 10 werden 450 mg (2,42 mmol) der nach Beispiel 9 dargestellten Verbindung unter Verwendung von n-Propylmagnesiumbromid umgesetzt. Nach Aufarbeitung und Reinigung isoliert man insgesamt 244 mg (1,06 mmol, 44%) eines trennbaren Gemisches der epimeren Titelverbindungen sowie 191 mg der in Beispiel 8 beschriebenen Titelverbindung jeweils als farbloses Öl.
1H-NMR (CDCl3) unpolares Isomer: δ = 0,87 (3H), 0,89 (3H), 0,94 (3H), 1,25-1,52 (4H), 1,38 (3H), 1,45 (3H), 1,66 (1H), 1,85 (1H), 3,46 (1H), 3,80-4,02 (4H) ppm.
1H-NMR (CDCl3) polares Isomer: δ = 0,73 (3H), 0,92 (3H), 0,95 (3H), 1,19-1,84 (6H), 1,37 (3H), 1,49 (3H), 3,49 (1H), 3,60 (1H), 3,80-4,03 (3H) ppm.
Beispiel 16 (4S)-4-(2-Methyl-3-oxo-hex-2-yl)-2,2-dimethyl-[1,3]dioxan
In Analogie zu Beispiel 11 werden 230 mg (1,00 mmol) der nach Beispiel 15 dargestellten Verbindungen umgesetzt. Nach Aufarbeitung und Reinigung isoliert man 185 mg (0,81 mmol, 81%) der Titelverbindung als farbloses Öl
1H-NMR (CDCl3): δ = 0,88 (3H), 1,04 (3H), 1,12 (3H), 1,22-1,37 (1H), 1,31 (3H), 1,40 (3H), 1,48-1,71 (3H), 2,46 (2H), 3,83 (1H), 3,96 (1H), 4,04 (1H) ppm.
Beispiel 17 (4R)-4-(2-Methyl-3-oxo-pent-2-yl)-2,2-dimethyl-[1,3]dioxan
Ausgehend von L-(+)-Pantolacton wird in Analogie zu den in den Beispielen 1 bis 9 und 12 beschriebenen Verfahren über die jeweils enantiomeren Zwischenstufen die Titelverbindung hergestellt.
1H-NMR (CDCl3): δ = 1,00 (3H), 1,07 (3H), 1,12 (3H), 1,24-1,37 (1H), 1,31 (3H), 1,40 (3H), 1,61 (1H), 2,50 (2H), 3,84 (1H), 3,95 (1H), 4,03 (1H) ppm.
Beispiel 18 (4R)-4-(3-Methyl-2-oxo-prop-3-yl)-2,2-dimethyl-[1,3]dioxan
Ausgehend von L-(+)-Pantolacton wird in Analogie zu den in den Beispielen 1 bis 9 und 12 bis 14 beschriebenen Verfahren über die jeweils enantiomeren Zwischenstufen die Titelverbindung hergestellt.
1H-NMR (CDCl3): δ = 1,07 (3H), 1,12 (3H), 1,30-1,39 (1H); 1,33 (3H), 1,43-1,62 (1H), 2,17 (3H), 3,86 (1H), 3,96 (1H), 4,03 (1H) ppm.
Beispiel 19 (4R)-4-(2-Methyl-3-oxo-hex-2-yl)-2,2-dimethyl-[1,3]dioxan
Ausgehend von L-(+)-Pantolacton wird in Analogie zu den in den Beispielen 1 bis 9, 12, 15 und 16 beschriebenen Verfahren über die jeweils enantiomeren Zwischenstufen die Titelverbindung hergestellt.
1H-NMR (CDCl3): δ = 0,88 (3H), 1,04 (3H), 1,12 (3H), 1,22-1,37 (1H), 1,31 (3H), 1,41 (3H), 1,48-1,72 (3H), 2,47 (2H), 3,84 (1H), 3,96 (1H), 4,05 (1H) ppm.
Beispiel 20 (2S,4S)-2-(2-Cyanophenyl)-4-(2-methyl-1-(tert.-butyldiphenylsilyloxy)-prop-2-yl]- [1,3]dioxan
Die Lösung von 1,00 g (2,59 mmol) der nach Beispiel 6 dargestellten Verbindung in 50 ml Benzol versetzt man mit 850 mg 2-Cyanobenzaldehyd, einer Spatelspitze p- Toluolsulfonsäure-Monohydrat und refluxiert 16 Stunden am Wasserabscheider unter einer Atmosphäre aus trockenem Argon. Man versetzt mit 0,5 ml Triethylamin, verdünnt mit Ethylacetat, wäscht mit gesättigter Natriumhydrogencarbonatlösung und trocknet über Natriumsulfat. Nach Filtration und Lösungsmittelabzug chromatographiert man den Rückstand an feinem Kieselgel mit einem Gemisch aus n-Hexan und Ethylacetat. Isoliert werden 1,22 g (2,44 mmol, 94%) der Titelverbindung als farbloses Öl.
1H-NMR (CDCl3): δ = 0,99 (6H), 1,05 (9H), 1,47 (1H), 1,98 (1H), 3,34 (1H), 3,63 (1H), 3,96-4,09 (2H), 4,31 (1H), 5,75 (1H), 7,17 (2H), 7,24-7,51 (5H), 7,51-7,74 (7H) ppm.
Beispiel 21 (2S,4S)-2-(2-Cyanophenyl)-4-(2-methyl-1-hydroxy-prop-2-yl)-[1,3]dioxan
In Analogie zu Beispiel 8 setzt man 1,22 g (2,44 mmol) der nach Beispiel 20 dargestellten Verbindung um und isoliert nach Aufarbeitung und Reinigung 593 mg (2,27 mmol, 93%) der Titelverbindung als farbloses Öl.
1H-NMR (CDCl3): δ = 0,89 (3H), 0,97 (3H), 1,51 (1H), 2,01 (1H), 2,42 (1H), 3,31 (1H), 3,72 (1H), 3,97 (1H), 4,02 (1H), 4,39 (1H), 5,78 (1H), 7,46 (1H), 7,63 (1H), 7,69 (1H), 7,75 (1H) ppm.
Beispiel 22 (2S,4S)-2-(2-Cyanophenyl)-4-(2-methyl-1-oxo-prop-2-yl)-[1,3]dioxan
In Analogie zu Beispiel 9 setzt man 570 mg (2,18 mmol) der nach Beispiel 21 dargestellten Verbindung um und isoliert nach Aufarbeitung 780 mg der Titelverbindung als gelbes Öl, die man ohne Reinigung weiter umsetzt.
Beispiel 23 (2S,4S)-2-(2-Cyanophenyl)-4-((3RS)-2-methyl-3-hydroxy-pent-2-yl)- [1,3]dioxan
In Analogie zu Beispiel 10 setzt man 780 mg (max. 2,18 mmol) des nach Beispiel 22 dargestellten Rohproduktes um und isoliert nach Aufarbeitung und Reinigung 468 mg (1,62 mmol, 74%) der epimeren Titelverbindungen als farbloses Öl.
1H-NMR (CDCl3): δ = 0,81-1,09 (9H), 1,22-1,43 (1H), 1,43-1,70 (2H), 2,04 (1H), 2,35 (0,55H), 2,89 (0,45H), 3,41-3,59 (1H), 3,89-4,13 (2H), 4,36 (1H), 5,78 (0,45H), 5,81 (0,55H), 7,45 (1H), 7,54-7,78 (3H) ppm.
Beispiel 24 (2S,4S)-2-(2-Cyanophenyl)-4-(2-methyl-3-oxo-pent-2-yl)-[1,3]dioxan
In Analogie zu Beispiel 11 setzt man 463 mg (1,60 mmol) der nach Beispiel 23 dargestellten Verbindung um und isoliert nach Aufarbeitung und Reinigung 420 mg (1,46 mmol, 91%) der Titelverbindung als farbloses Öl.
1H-NMR (CDCl3): δ = 1,00 (3H), 1,19 (3H), 1,24 (3H), 1,49 (1H), 1,92 (1H), 2,56 (2H), 4,03 (1H), 4,16 (1H), 4,32 (1H), 5,78 (1H), 7,44 (1H), 7,60 (1H), 7,64-7,72 (2H) ppm.
Beispiel 25
(4S,2S)-4-[2-Methyl-1-(tert.-butyldiphenylsilyloxy)-prop-2-yl]-2-phenyl- [1,3]dioxan
In Analogie zu Beispiel 20 setzt man 1,00 g (2,59 mmol) der nach Beispiel 6 dargestellten Verbindung in 50 ml Toluol unter Verwendung von Benzaldehyd um und isoliert nach Aufarbeitung und Reinigung 1,2 g (2,53 mmol, 98%) der Titelverbindung als farbloses Öl.
1H-NMR (CDCl3): δ = 0,93 (3H), 1,00 (3H), 1,07 (9H), 1,43 (1H), 1,92 (1H), 3,30 (1H), 3,72 (1H), 3,95 (1H), 4,00 (1H), 4,30 (1H), 5,53 (1H), 7,18 (2H), 7,29-7,49 (9H), 7,61 (2H), 7,67 (2H) ppm.
Beispiel 26 (4S,2S)-4-(2-Methyl-1-hydroxy-prop-2-yl)-2-phenyl-[1,3]dioxan
In Analogie zu Beispiel 8 setzt man 1,20 g (2,53 mmol) der nach Beispiel 25 dargestellten Verbindung um und isoliert nach Aufarbeitung und Reinigung 518 mg (2,19 mmol, 87%) der Titelverbindung als farbloses Öl.
1H-NMR (CDCl3): δ = 0,98 (6H), 1,49 (1H), 2,00 (1H), 2,49 (1H), 3,46 (1H) 3,6 (1H), 3,81 (1H), 3,98 (1H), 4,33 (1H), 5,51 (1H), 7,30-7,41 (3H), 7,41-7,51 (2H) ppm.
Beispiel 27 (2S,4S)-4-(2-Methyl-1-oxo-prop-2-yl)-2-phenyl-[1,3]dioxan
In Analogie zu Beispiel 9 setzt man 500 mg (2,12 mmol) der nach Beispiel 26 dargestellten Verbindung um und isoliert nach Aufarbeitung 715 mg der Titelverbindung als gelbes Öl, die man ohne Reinigung weiter umsetzt.
Beispiel 28 (2S,4S)-4-((3RS)-2-Methyl-3-hydroxy-pent-2-yl)-2-phenyl-[1,3]dioxan
In Analogie zu Beispiel 10 setzt man 715 mg (max. 2,12 mmol) des nach Beispiel 27 dargestellten Rohproduktes um und isoliert nach Aufarbeitung und Reinigung 440 mg (1,66 mmol, 79%) der epimeren Titelverbindungen als farbloses Öl.
1H-NMR (CDCl3): δ = 0,80-1,10 (9H), 1,23-1,42 (1H), 1,42-1,70 (2H), 1,90-2,16 (1H), 2,92 (0,6 H), 3,07 (0,4H), 3,40-3,53 (1H), 3,86 (1H), 3,98 (1H), 4,32 (1H), 5,49 (0,4H), 5,55 (0,6H), 7,28-7,40 (3H), 7,40-7,51 (2H) ppm.
Beispiel 29 (2S,4S)-4-(2-Methyl-3-oxo-pent-2-yl)-2-phenyl-[1,3]dioxan
In Analogie zu Beispiel 11 setzt man 435 mg (1,65 mmol) der nach Beispiel 28 dargestellten Verbindung um und isoliert nach Aufarbeitung und Reinigung 410 mg (1,56 mmol, 95%) der Titelverbindung als farbloses Öl.
1H-NMR (CDCl3): δ = 1,02 (3H), 1,17 (3H), 1,23 (3H), 1,44 (1H), 1,84 (1H), 2,58 (2H), 3,97 (1H), 4,06 (1H), 4,30 (1H), 5,50 (1H), 7,28-7,49 (5H) ppm.
Beispiel 30 (4S)-4-(2-Methyl-1-(tert.-butyldiphenylsilyloxy)-prop-2-yl]-2,2-pentamethylen- [1,3]dioxan
In Analogie zu Beispiel 20 setzt man 1,00 g (2,59 mmol) der nach Beispiel 6 dargestellten Verbindung in 50 ml Toluol unter Verwendung von Cyclohexanon um und isoliert nach Aufarbeitung und Reinigung 1,09 g (2,34 mmol, 90%) der Titelverbindung als farbloses Öl.
1H-NMR (CDCl3): δ = 0,84 (3H), 0,89 (3H), 0,97-1,10 (10H), 1,20-1,64 (9H), 1,71 (1H), 2,13 (1H), 3,33 (1H), 3,56 (1H), 3,81 (1H), 3,89 (1H), 3,99 (1H), 7,32-7,49 (6H), 7,60-7,74 (4H) ppm.
Beispiel 31 (4S)-4-(2-Methyl-1-hydroxy-prop-2-yl)-2,2-pentamethylen-[1,3]dioxan
In Analogie zu Beispiel 8 setzt man 1,09 g (2,34 mmol) der nach Beispiel 30 dargestellten Verbindung um und isoliert nach Aufarbeitung und Reinigung 470 mg (2,06 mmol, 88%) der Titelverbindung als farbloses Öl.
1H-NMR (CDCl3): δ = 0,88 (3H), 0,94 (3H), 1,24-1,71 (10H), 1,81 (1H), 2,18 (1H), 3,09 (1H), 3,39 (1H), 3,60 (1H), 3,80 (1H), 3,87 (1H), 4,02 (1H) ppm.
Beispiel 32 (4S)-4-(2-Methyl-1-oxo-prop-2-yl)-2,2-pentamethylen-[1,3]dioxan
In Analogie zu Beispiel 9 setzt man 450 mg (1,97 mmol) der nach Beispiel 31 dargestellten Verbindung um und isoliert nach Aufarbeitung 678 mg der Titelverbindung als gelbes Öl, die man ohne Reinigung weiter umsetzt.
Beispiel 33 (4S)-4-(2-Methyl-3-hydroxy-pent-2-yl)-2,2-pentamethylen-[1,3]dioxan
In Analogie zu Beispiel 10 setzt man 678 mg (max 1,97 mmol) des nach Beispiel 32 dargestellten Rohproduktes um und isoliert nach Aufarbeitung und Reinigung 391 mg (1,54 mmol, 77%) der epimeren Titelverbindungen als farbloses Öl.
1H-NMR (CDCl3): δ = 0,70-1,08 (9H), 1,23-1,98 (13H), 2,01-2,13 (1H), 3,37-3,50 (1H), 3,61 (0,5H), 3,80-4,06 (3,5H) ppm.
Beispiel 34 (4S)-(2-Methyl-3-oxo-pent-2-yl)-2,2-pentamethylen-[1,3]dioxan
In Analogie zu Beispiel 11 setzt man 386 mg (1,51 mmol) der nach Beispiel 33 dargestellten Verbindung um und isoliert nach Aufarbeitung und Reinigung 376 mg (1,48 mmol, 98%) der Titelverbindung als farbloses Öl.
1H-NMR (CDCl3): δ = 1,01 (3H), 1,09 (3H), 1,17 (3H), 1,22-1,38 (3H), 1,40-1,72 (8H), 2,15 (1H), 2,57 (2H), 3,81 (1H), 3,92-4,07 (2H) ppm.
Beispiel 35 (4S)-4-[2-Methyl-1-(tert.-butyldiphenylsilyloxy)-prop-2-yl]-2,2-tetramethylen- [1,3]dioxan
In Analogie zu Beispiel 20 setzt man 1,00 g (2,59 mmol) der nach Beispiel 6 dargestellten Verbindung in 50 ml Toluol unter Verwendung von Cyclopentanon um und isoliert nach Aufarbeitung und Reinigung 997 mg (2,20 mmol, 85%) der Titelverbindung als farbloses Öl.
1H-NMR (CDCl3): δ = 0,84 (3H), 0,88 (3H), 0,99-1,10 (10H), 1,30 (1H), 1,50-1,99 (8H), 3,23 (1H), 3,60 (1H), 3,80-3,98 (3H), 7,31-7,49 (6H), 7,61-7,73 (4H) ppm.
Beispiel 36 (4S)-4-(2-Methyl-1-hydroxy-prop-2-yl)-2,2-tetramethylen-[1,3]dioxan
In Analogie zu Beispiel 8 setzt man 997 mg (2,20 mmol) der nach Beispiel 35 dargestellten Verbindung um und isoliert nach Aufarbeitung und Reinigung 415 mg (1,94 mmol, 88%) der Titelverbindung als farbloses Öl.
1H-NMR (CDCl3): δ = 0,90 (6H), 1,36 (1H), 1,53-2,02 (9H), 2,93 (1H), 3,39 (1H), 3,55 (1H), 3,70 (1H), 3,87 (1H), 3,96 (1H) ppm.
Beispiel 37 (4S)-4-(2-Methyl-1-oxo-prop-2-yl)-2,2-tetramethylen-[1,3]dioxan
In Analogie zu Beispiel 9 setzt man 400 mg (1,87 mmol) der nach Beispiel 36 dargestellten Verbindung um und isoliert nach Aufarbeitung 611 mg der Titelverbindung als gelbes Öl, die man ohne Reinigung weiter umsetzt.
Beispiel 38 (4S)-4-(2-Methyl-3-hydroxy-pent-2-yl)-2,2-tetramethylen-[1,3]dioxan
In Analogie zu Beispiel 10 setzt man 611 mg (max. 1,87 mmol) der nach Beispiel 37 dargestellten Verbindung um und isoliert nach Aufarbeitung und Reinigung 353 mg (1,46 mmol, 78%) der epimeren Titelverbindungen als farbloses Öl.
1H-NMR (CDCl3): δ = 0,71-1,09 (9H), 1,20-1,44 (2H), 1,44-1,78 (5H), 1,78-2,02 (5H), 3,32-3,44 (1H), 3,51-3,60 (1H), 3,76 (1H), 3,80-4,02 (2H) ppm.
Beispiel 39 (4S)-4-(2-Methyl-3-oxo-pent-2-yl)-2,2-tetramethylen-[1,3]dioxan
In Analogie zu Beispiel 11 setzt man 348 mg (1,44 mmol) der nach Beispiel 38 dargestellten Verbindung um und isoliert nach Aufarbeitung und Reinigung 332 mg (1,38 mmol, 96%) der Titelverbindung als farbloses Öl.
1H-NMR (CDCl3): δ = 1,00 (3H), 1,07 (3H), 1,17 (3H), 1,31 (1H), 1,50-2,00 (9H), 2,52 (2H), 3,84 (1H), 3,88-3,99 (2H) ppm.
Beispiel 40 1,1-Cyclobutandimethanol
Zu einer Lösung von 20 g (99,9 mmol) 1,1-Cyclobutandicarbonsäurediethylester in 200 ml absolutem Tetrahydrofuran werden bei 0°C 170 ml einer 1,2molaren Lösung von Diisobutylaluminiumhydrid getropft. Man läßt eine Stunde bei 0°C nachrühren und addiert dann 30 ml Wasser. Es wird über Celite filtriert. Das Filtrat wird mit Natriumsulfat getrocknet und im Vakuum eingeengt. Das erhaltene Rohprodukt (9,9 g, 85,2 mmol, 85%) wird ohne Aufreinigung in die Folgestufe eingesetzt.
Beispiel 41 1-[[[Dimethyl(1,1-dimethylethyl)silyl]oxy]methyl]cyclobutanmethanol
Zu einer Suspension von 3,4 g Natriumhydrid (60%ig in Öl) in 35 ml absolutem Tetrahydrofuran wird bei 0°C eine Lösung von 9,9 g (85 mmol) der nach Beispiel 40 dargestellten Verbindung in 100 ml absolutem Tetrahydrofuran gegeben. Man läßt 30 Minuten nachrühren und addiert dann eine Lösung von 12,8 g tert.-Butyldimethylsilylchlorid in 50 ml Tetrahydrofuran. Man läßt eine Stunde bei 25°C nachrühren und gießt dann das Reaktionsgemisch auf gesättigte wäßrige Natriumhydrogencarbonatlösung. Es wird mit Ethylacetat extrahiert. Die organische Phase wird mit gesättigter Natriumchloridlösung gewaschen und über Natriumsulfat getrocknet. Nach Abziehen des Lösungsmittels im Vakuum wird das erhaltene Rohprodukt durch Säulenchromatographie an Kieselgel mit einem Gemisch aus Hexan/Ethylacetat gereinigt. Man erhält 13,5 g (58,6 mmol, 69%) der Titelverbindung.
1H-NMR (CDCl3): δ = 0,04 (6H), 0,90 (9H), 1,70-2,00 (6H), 3,70 (4H) ppm.
Beispiel 42 1-[[[Dimethyl(1,1-dimethylethyl)silyl]oxy]methyl]cyclobutancarbaldehyd
8 ml Oxalylchlorid werden in 100 ml Dichlormethan gelöst. Man kühlt auf -78°C und addiert 13 ml Dimethylsulfoxid. Man läßt 3 Minuten nachrühren und addiert dann eine Lösung von 13,5 g (58,6 mmol) der nach Beispiel 41 dargestellten Verbindung in 80 ml Dichlormethan. Nach weiteren 15 Minuten Nachrührzeit werden 58 ml Triethylamin hinzugetropft. Anschließend läßt man auf 0°C erwärmen. Dann wird das Reaktionsgemisch auf gesättigte Natriumhydrogencarbonatlösung gegossen. Man extrahiert mit Dichlormethan, wäscht die organische Phase mit gesättigter Natriumchloridlösung, trocknet über Natriumsulfat und engt im Vakuum ein. Nach Chromatographie des Rohprodukts an Kieselgel mit einem Gemisch aus Hexan/Ethylacetat erhält man 7,7 g (33,7 mmol, 58%) der Titelverbindung.
1H-NMR (CDCl3): δ = 9,70 s (1H), 3,83 s (2H), 2,20-2,30 m (2H), 1,85-2,00 m (4H), 0,90 s (9H), 0,03 s (6H) ppm.
Beispiel 43 [1R-[1α(R*),2β]]-2-Phenylcyclohexyl-3-[1-[[[dimethyl(1,1- dimethylethyl)silyl]oxy]methyl]cyclobutyl]-3-hydroxypropanoat (A) und [1R-[1α(S*,2β)]-2-Phenylcyclohexyl 3-[1-[[[dimethyl(1,1- dimethylethyl)silyl]oxy]methyl]cyclobutyl]-3-hydroxypropanoat (B)
Aus 7,2 ml Diisopropylamin und Butyllithium (32 ml einer 1,6molaren Lösung in Hexan) wird in absolutem Tetrahydrofuran Lithiumdiisopropylamid hergestellt. Dann addiert man bei -78°C eine Lösung von 11,2 g (1R-trans)-2-Phenylcyclohexyl-acetat in 100 ml absolutem Tetrahydrofuran und läßt 30 Minuten bei dieser Temperatur nachrühren. Anschließend wird eine Lösung von 7,7 g (33,7 mmol) der nach Beispiel 42 dargestellten Verbindung in 50 ml Tetrahydrofuran addiert. Man läßt 1,5 Stunden bei -78°C nachrühren und gießt danach das Reaktionsgemisch auf gesättigte wäßrige Ammoniumchloridlösung. Man extrahiert mit Ethylacetat, wäscht die organische Phase mit gesättigter Natriumchloridlösung, trocknet über Natriumsulfat und engt im Vakuum ein. Nach Säulenchromatographie des Rohprodukts an Kieselgel mit einem Gemisch aus Hexan/Ethylacetat erhält man 6,34 g (14,2 mmol, 42%) der Titelverbindung A und 4,22 g (9,4 mmol, 28%) der Titelverbindung B.
1H-NMR (CDCl3) von A: δ = 0,04 (6H), 0,98 (9H), 2,69 (1H), 3,08 (1H), 3,60 (1H), 3,67 (1H), 3,78-3,84 (1H), 4,97 (1H), 7,15-7,30 (5H) ppm.
1H-NMR (CDCl3) von B: δ = 0,03 (6H) 0,90 (9H), 2,68 (1H), 2,80 (1H), 3,56 (2H), 3,68-3,72 (1H), 4,99 (1H), 7,18-7,30 m (5H) ppm.
Beispiel 44 (S)-1-[1-[[[Dimethyl(1,1-dimethylethyl)silyl]oxy]methyl]cyclobutyl]-1,3- propandiol
Zu einer Lösung von 1 g (2,24 mmol) der nach Beispiel 43 dargestellten Verbindung A in 10 ml absolutem Toluol werden bei 0°C 4 ml einer 1,2molaren Lösung von Diisobutylaluminiumhydrid in Toluol getropft. Man läßt 1,5 Stunden bei 0°C nachrühren und addiert dann 5 ml Wasser. Es wird über Celite filtriert. Das Filtrat wird über Natriumsulfat getrocknet und im Vakuum eingeengt. Man erhält nach Säulenchromatographie des Rohprodukts an Kieselgel mit einem Gemisch aus Hexan/Ethylacetat 370 mg (1,35 mmol, 60%) der Titelverbindung.
1H-NMR (CDCl3): δ = 0,05 (6H), 0,90 (9H), 1,55-1,60 (2H), 1,80 (2H), 1,90 (3H), 2,10 (1H), 3,75 (1H), 3,85-3,95 (4H) ppm.
Beispiel 45 (S)-2,2-Dimethyl-4-[1-([[(dimethyl(1,1-dimethylethyl)silyl]oxy]methyl]cyclobutyl]- 1,3-dioxan
370 mg (1,35 mmol) der nach Beispiel 44 dargestellten Verbindung werden in 10 ml Aceton gelöst. Man addiert eine Spatelspitze p-Toluolsulfonsäure und läßt 2 Stunden bei 25°C nachrühren. Anschließend wird das Reaktionsgemisch auf gesättigte Natriumhydrogencarbonatlösung gegossen. Man extrahiert mit Ethylacetat, wäscht die organische Phase mit gesättigter Natriumchloridlösung, trocknet über Natriumsulfat und engt im Vakuum ein. Nach Säulenchromatographie an Kieselgel mit einem Gemisch aus Hexan/Ethylacetat werden 338 mg (1,07 mmol, 79%) der Titelverbindung erhalten.
1H-NMR (CDCl3): δ = 0,03 (6H), 0,88 (9H), 1,38 (3H), 1,42 (3H), 1,50-1,80 (4H), 2,00 (1H), 3,52 (1H), 3,62 (1H), 3,85-4,00 (3H) ppm.
Beispiel 46 (R)-1-[1-[[[Dimethyl(1,1-dimethylethyl)silyl]oxy]methyl]cyclobutyl]-1,3- propandiol
In Analogie zu Beispiel 44 setzt man 700 mg (1,57 mmol) der nach Beispiel 43 hergestellten Verbindung B um und isoliert nach Aufarbeitung und Reinigung 250 mg (0,91 mmol, 58%) der Titelverbindung.
Das 1H-NMR-Spektrum ist deckungsgleich mit dem in Beispiel 44 beschriebenen.
Beispiel 47 (R)-2,2-Dimethyl-4-[1-[[[dimethyl(1,1-dimethylethyl)silyl]oxy]methyl]cyclobutyl]- 1,3-dioxan
In Analogie zu Beispiel 45 setzt man 250 mg (0,91 mmol) der nach Beispiel 46 hergestellten Verbindung um und isoliert nach Aufarbeitung und Reinigung 228 mg (0,72 mmol, 60%) der Titelverbindung.
Das 1H-NMR-Spektrum ist deckungsgleich mit dem in Beispiel 45 beschriebenen.
Beispiel 48 1-[1-[[[Dimethyl(1,1-dimethylethyl)silyl]oxy]methyl]cyclobutyl]-1,3-propandiol
In Analogie zu Beispiel 44 setzt man 500 mg (1,12 mmol) eines Gemisches der nach Beispiel 43 hergestellten Verbindungen A und B um und isoliert nach Aufarbeitung und Reinigung 190 mg (0,69 mmol, 62%) der Titelverbindung.
Das 1H-NMR-Spektrum ist deckungsgleich mit dem in Beispiel 44 beschriebenen.
Beispiel 49 2,2-Dimethyl-4-[1-[[(dimethyl(1,1-dimethylethyl)silyl]oxy]methyl)cyclobutyl]-1,3- dioxan
In Analogie zu Beispiel 45 setzt man 190 mg (0,69 mmol) der nach Beispiel 48 hergestellten Verbindung um und isoliert nach Aufarbeitung und Reinigung 171 mg (0,54 mmol, 79%) der Titelverbindung.
Das 1H-NMR-Spektrum ist deckungsgleich mit dem in Beispiel 45 beschriebenen.
Beispiel 50 [1R-[1α(3S*),2β]]-2-Phenylcyclohexyl-3-[1-[([dimethyl(1,1- dimethylethyl)silyl]oxy]methyl]cyclobutyl]-3-[(tetrahydro-2H-pyran-2- yl)oxy]propanoat
In Analogie zu Beispiel 1 setzt man 460 mg (1,03 mmol) der nach Beispiel 45 dargestellten Verbindung um und isoliert nach Aufarbeitung und Reinigung 398 mg (0,75 mmol, 73%) der Titelverbindung als farbloses Öl.
1H-NMR (CDCl3): δ = 0,01 (6H), 0,89 (9H), 1,24-1,97 (19H), 2,15-2,27 (3H), 2,66 (1H), 3,12 (1H), 3,50 (2H), 3,58 (1H), 3,98 (1H), 4,52 (1H), 4,87 (1H), 7,09-7,27 (5H) ppm.
Beispiel 51 (S)-3-[1-[[[Dimethyl(1,1-dimethylethyl)silyl]oxy]methyl]cyclobutyl]-3- [(tetrahydro-2H-pyran-2-yl)oxy]propansäure
420 mg (3,75 mmol) Kalium-tert.-butylat werden in 5 ml Diethylether suspendiert. Man addiert 16 µl Wasser und läßt 5 Minuten nachrühren. Anschließend wird eine Lösung von 398 mg (0,75 mmol) der nach Beispiel 50 dargestellten Verbindung in 5 ml Diethylether addiert. Man läßt 3 Stunden nachrühren. Danach wird die Reaktionslösung mit Wasser verdünnt und mit 10%iger Salzsäure neutralisiert. Man extrahiert mit Dichlormethan, wäscht die organische Phase mit gesättigter wäßriger Natriumchloridlösung, trocknet über Natriumsulfat und engt im Vakuum ein. Säulenchromatographie des Rohprodukts an Kieselgel mit einem Gemisch aus Hexan/Ethylacetat ergibt 112 mg (0,3 mmol).
1H-NMR (CDCl3): δ = 0,01 (6H), 0,90 (9H), 1,30-2,25 (10H), 3,12 (1H), 3,50 (2H), 3,58 (1H), 3,98 (1H), 4,45 (1H) ppm.
Das Reaktionsprodukt kann nach Spaltung der Silylschutzgruppe durch Oxidation analog zu Beispiel 9 in den Aldehyd überführt, analog zu Beispiel 10 mit einer metallorganischen Verbindung wie z. B. XMgCHR5aR5b, beispielsweise mit Ethylmagnesiumbromid, zur Reaktion gebracht und durch anschließende Oxidation des erhaltenen Alkoholgemisches analog zu Beispiel 11 in Verbindungen gemäß Anspruch 1 überführt werden.
Ersetzt man in Beispiel 40 das Ausgangsmaterial 1,1- Cyclobutandicarbonsäurediethylester durch andere 2-substituierte- oder 2,2- disubstituierte Malonesterderivate, so lassen sich in Analogie zu den Beispielen 9, 10 und 40-51 beispielsweise folgende Verbindungen herstellen:
Beispiel 52 (3S)-4,4-Dimethyl-5-oxo-3-(tetrahydropyran-2-yloxy)-pent-1-en
In Analogie zu Beispiel 9 setzt man 5,0 g (23,3 mmol) der nach Beispiel 3 dargestellten Verbindung um und isoliert nach Aufarbeitung 6,1 g der Titelverbindung als farbloses Öl, die man ohne Reinigung weiter umsetzt.
Beispiel 53 (3S,5RS)-4,4-Dimethyl-5-hydroxy-3-(tetrahydropyran-2-yloxy)-hept-1-en
In Analogie zu Beispiel 10 setzt man 6,1 g (max. 23,3 mmol) des nach Beispiel 52 dargestellten Rohproduktes um und isoliert nach Aufarbeitung und Reinigung 1,59 g (6,56 mmol, 28%) des unpolaren Diastereomeren sowie 1,67 g (6,89 mmol, 30%) des polaren Diastereomeren jeweils als farbloses Öl.
1H-NMR (CDCl3) unpolares Isomer: δ = 0,79 (3H), 0,84 (3H), 1,03 (3H), 1,23-1,62 (6H), 1,62-1,88 (2H), 3,41-3,58 (2H), 3,88-4,01 (2H), 4,08 (1H), 4,47 (1H), 5,20 (1H), 5,29 (1H), 5,78 (1H) ppm.
1H-NMR (CDCl3) polares Isomer: δ = 0,78 (3H), 0,93 (3H), 1,01 (3H), 1,38 (1H), 1,47-1,85 (7H), 3,39-3,57 (3H), 3,90 (1H), 4,04 (1H), 4,62 (1H), 5,21 (1H), 5,32 (1H), 5,69 (1H) ppm.
Beispiel 54 (3S,5S)-4,4-Dimethyl-3-(tetrahydropyran-2-yloxy)-heptan-1,5-diol und/oder (3S,5R)-4,4-Dimethyl-3-(tetrahydropyran-2-yloxy)-heptan-1,5-diol
In Analogie zu Beispiel 5 setzt man 1,59 g (6,56 mmol) des nach Beispiel 53 dargestellten unpolaren Alkohols um und isoliert nach Aufarbeitung und 1,14 g (4,38 mmol, 67%) der Titelverbindung als farbloses Öl.
1H-NMR (CDCl3): δ = 0,78 (6H), 1,01 (3H), 1,28 (1H), 1,36-1,64 (6H), 1,64-1,93 (4H), 3,41-3,55 (2H), 3,61-3,82 (2H), 3,87 (1H), 3,99 (1H), 4,28 (1H), 4,56 (1H) ppm.
Beispiel 55 (3S,5R oder 5S)-1-Benzoyloxy-4,4-dimethyl-3-(tetrahydropyran-2-yloxy)-heptan- 5-ol
Die Lösung von 1,04 g (3,99 mmol) der nach Beispiel 54 dargestellten Verbindung in 20 ml wasserfreiem Pyridin versetzt man unter einer Atmosphäre aus trockenem Argon mit 476 µl Benzoylchlorid und rührt 16 Stunden bei 23°C. Man gießt in eine gesättigte Natriumhydrogencarbonatlösung, extrahiert mit Dichlormethan und trocknet über Natriumsulfat. Den nach Filtration und Lösungsmittelabzug erhaltenen Rückstand reinigt man durch Chromatographie an ca. 300 ml feinem Kieselgel mit einem Gradientensystem aus n-Hexan und Ethylacetat. Isoliert werden 785 mg (2,15 mmol, 54%) der Titelverbindung als farbloses Öl sowie 352 mg Startmaterial.
1H-NMR (CDCl3): δ = 0,83 (6H), 1,04 (3H), 1,31 (1H), 1,38-1,58 (5H), 1,74-1,99 (3H), 2,12 (1H), 3,40 (1H), 3,52 (1H), 3,90-4,03 (2H), 4,28-4,56 (4H), 7,45 (2H), 7,58 (1H), 8,05 (2H) ppm.
Beispiel 56 (3S)-1-Benzoyloxy-4,4-dimethyl-3-(tetrahydropyran-2-yloxy)-heptan-5-on
In Analogie zu Beispiel 11 setzt man 780 mg (2,14 mmol) der nach Beispiel 55 dargestellten Verbindung um und isoliert nach Aufarbeitung und Reinigung 641 mg (1,77 mmol, 83%) der Titelverbindung als farbloses Öl.
1H-NMR (CDCl3): δ = 1,02 (3H), 1,11 (3H), 1,23 (3H), 1,40-1,56 (4H), 1,65-1,87 (3H), 1,93 (1H), 2,59 (2H), 3,36 (1H), 3,80 (1H), 4,13 (1H), 4,32 (1H), 4,45 (1H), 4,53 (1H), 7,45 (2H), 7,58 (1H), 8,05 (2H) ppm.
Beispiel 57 (3S)-1-Hydroxy-4,4-dimethyl-3-(tetrahydropyran-2-yloxy)-heptan-5-on
Die Lösung von 636 mg (1,75 mmol) der nach Beispiel 56 dargestellten Verbindung in 25 ml Methanol versetzt man mit 738 mg Kaliumcarbonat und rührt 2 Stunden bei 23°C. Man versetzt mit Dichlormethan, filtriert ab, wäscht mit Wasser und trocknet die organische Phase über Natriumsulfat. Den nach Filtration und Lösungsmittelabzug erhaltenen Rückstand reinigt man durch Chromatographie an ca. 100 ml feinem Kieselgel mit einem Gradientensystem aus n-Hexan und Ethylacetat. Isoliert werden 311 mg (1,20 mmol, 69%) der Titelverbindung als farbloses Öl.
1H-NMR (CDCl3): δ = 0,98 (3H), 1,07 (3H), 1,18 (3H), 1,44-1,90 (10H), 2,00 (1H), 3,50-3,68 (2H), 3,74 (1H), 3,83-4,06 (2H), 4,79 (1H) ppm.
Herstellung der Bausteine der allgemeinen Formel A' mit der 2-Oxazolidinon- Hilfsgruppe (PCT/EP 98/05064) Ausgangsprodukte A) 2,2-Dimethyl-3-oxopentanal Aa) 4-(2-Methylprop-1-enyl)morpholin
In einem 250-ml-Dreihalsrundkolben werden 43,6 g Morpholin vorgelegt. Unter Eisbadkühlung werden bei einer Temperatur von 5°C innerhalb von 20 Minuten 46 ml Isobutylaldehyd zugetropft. Dabei war eine starke Temperaturerhöhung zu beobachten (stark exotherme Reaktion). Nach beendeter Zugabe wird der Ansatz über einen Wasserabscheider 4 Stunden refluxiert. Das Volumen des Wasserabscheiders wird mit Isobutylaldehyd gefüllt. Es werden 7,5 ml H2O abgeschieden. Nach Ablauf der Reaktion wird das Reaktionsgemisch im Vakuum destilliert.
Ölbadtemperatur: 85°-90°C
Hauptlauf m = 58,37 g 82,03%
Siedepunkt: 59°C bei 11 mbar
Ausbeute: 58,37 g 82,03% Aa)
A) 2,2-Dimethyl-3-oxopentanal
In einem 1000-ml-Dreihalsrundkolben wird die Lösung von 77,14 g Propionsäurechlorid in 200 ml Ether p. a. vorgelegt. Unter Eisbadkühlung wird innerhalb von 30 Minuten bei einer Reaktionstempertur von 6°C eine Lösung von 117,73 g der unter Aa) erhaltenen Verbindung in 200 ml Ether p. A. zugetropft. Ausfällung, weißer Niederschlag entsteht. Nach beendeter Zugabe wird der Ansatz 5 Stunden am Rückfluß gekocht und anschließend über Nacht bei Raumtemperatur gerührt. Der entstehende weiße Niederschlag, feuchtigkeitsempfindlich, wird abgesaugt, mit Ether gewaschen und an der Ölpumpe getrocknet.
Rohprodukt: m = 65,26 g Hydrochlorid.
Im Filtrat ist eine Nachfällung zu beobachten.
Rohprodukt m = 35,49 g Gesamt: m = 100,75 g.
Die 100,75 g Hydrochlorid werden in 150 ml H2O gelöst. Anschließend wird die Wasserphase mit NaHCO3 insgesamt auf pH 0,5 eingestellt und dann 4 mal mit je 150 ml Ether extrahiert. Die organische Phase wird einmal mit Sole gewaschen und dann über Na2SO4 getrocknet. Der Ether wird bei Normaldruck abdestilliert, und der Rückstand wird im Vakuum über eine kleine Vigreux-Kolonne (6 Böden destilliert.
Hauptlauf: m = 29,65 g 27,75%
Siedepunkt: 62°C bei 15 mbar
Ausbeute: 29,65 g 27,75% A)
B) 2.2-Dimethyl-3-oxo-butanal
Durchführung analog A).
Ansatz: 58,37 g = 413,36 mMol Aa), M = 141,21 g/mol
100 ml Diethylether p. A.
32,45 g = 413,38 mMol Acetylchlorid, M = 0 78,5 g/mol = 1,104 g/ml
100 ml Diäthylether p. A.
übers Wochenende bei Raumtemperatur gerührt.
Rohprodukt m = 72,07 g Hydrochlorid
Aufarbeitung siehe Ab)
Ölbadtemperatur: 75°C bis 80°C
Hauptlauf: m = 18,75 g 39,74%
Siedepunkt: 50°C bei 11 mbar
Ausbeute m = 18,7 g 39,6% B)
C) 1-(1-Oxopropyl)cyclobutancarbaldehyd Ca) 1,1-Cyclobutandimethanol
Zu einer Lösung von 20 g (100 mmol) 1,1-Cyclobutandicarbonsäurediethylester in 200 ml absolutem Tetrahydrofuran werden bei 0°C 170 ml einer 1,2 molaren Lösung von Diisobutylaluminiumhydrid getropft. Man läßt eine Stunde bei 0°C nachrühren und addiert dann 30 ml Wasser. Es wird über Celite filtriert. Das Filtrat wird mit Natriumsulfat getrocknet und im Vakuum eingeengt. Das erhaltene Rohprodukt (9,9 g) wird ohne Aufreinigung in die Folgestufe eingesetzt.
Cb) 1-[[[Dimethyl(1,1-dimethylethyl)silyl]oxy]methyl]cyclobutanmethanol
Zu einer Suspension von 3,4 g Natriumhydrid (60%ig in Öl, 85 mmol)) in 35 ml absolutem Tetrahydrofuran wird bei 0°C eine Lösung von 9,9 g Ca) (85 mmol) in 100 ml absolutem Tetrahydrofuran gegeben. Man läßt 30 Minuten nachrühren und addiert dann eine Lösung von 12,8 g tert.-Butyldimethylsilylchlorid (85 mmol) in 50 ml Tetrahydrofuran. Man läßt eine Stunde bei 25°C nachrühren und gießt dann das Reaktionsgemisch auf gesättigte wäßrige Natriumhydrogencarbonatlösung. Es wird mit Ethylacetat extrahiert. Die organische Phase wird mit gesättigter Natriumchloridlösung gewaschen und über Natriumsulfat getrocknet. Nach Abziehen des Lösungsmittels im Vakuum wird das erhaltene Rohprodukt durch Säulenchromatographie an Kieselgel mit einem Gemisch aus Hexan/Ethylacetat gereinigt. Man erhält 13,5 g (69%) der Titelverbindung.
1H-NMR (CDCl3): δ = 0,04 (6H), 0,90 (9H), 1,70-2,00 (6H), 3,70 (4H) ppm.
Cc) 1-[[[Dimethyl(1,1-dimethylethyl)silyl]oxy]methyl]cyclobutancarbaldehyd
8 ml Oxalylchlorid werden in 100 ml Dichlormethan gelöst. Man kühlt auf -78°C und addiert 13 ml Dimethylsulfoxid. Man läßt 3 Minuten nachrühren und addiert dann eine Lösung von 13,5 g Cb) (58,6 mmol) in 80 ml Dichlormethan. Nach weiteren 15 Minuten Nachrührzeit werden 58 ml Triethylamin hinzugetropft. Anschließend läßt man auf 0°C erwärmen. Dann wird das Reaktionsgemisch auf gesättigte Natriumhydrogencarbonatlösung gegossen. Man extrahiert mit Dichlormethan, wäscht die organische Phase mit gesättigter Natriumchloridlösung, trocknet über Natriumsulfat und engt im Vakuum ein. Nach Chromatographie des Rohprodukts an Kieselgel mit einem Gemisch aus Hexan/Ethylacetat erhält man 7,7 g (58%) der Titelverbindung.
1H-NMR (CDCl3): δ = 0,03 (6H), 0,90 (9H), 1,85-2,00 (4H), 2,20-2,30 (2H), 3,83 (2H), 9,70 (1H) ppm.
Cd) 1-[[[Dimethyl(1,1-dimethylethyl]silyl]oxy]methyl]-α-ethylcyclobutanmethanol
Eine Lösung von 7,7 g (33,7 mmol) der unter Cc) beschriebenen Verbindung in 80 ml Tetrahydrofuran wird bei 0°C zu 20 ml einer 2 molaren Lösung von Ethylmagnesium­ chlorid (40 mmol) in Tetrahydrofuran getropft. Man läßt 30 Minuten bei 0°C nachrühren und gießt dann das Reaktionsgemisch auf gesättigte Ammonium­ chloridlösung. Es wird mit Ethylacetat extrahiert. Die organische Phase wird mit gesättigter Natriumchloridlösung gewaschen und über Natriumsulfat getrocknet. Nach dem Abziehen des Lösungsmittels wird das erhaltene Rohprodukt durch Säulenchromatographie an Kieselgel gereinigt. Man erhält 7,93 g (91,5%) der Titelverbindung.
1H-NMR (CDCl3): δ = 0,09 s (6H), 0,90 s (9H), 1,05 (3H), 1,30-1,50 (3H), 1,70-1,90 (4H), 2,09 (1H), 3,19 (1H), 3,46 (1H), 3,72 (1H), 3,85 (1H) ppm.
Ce) 1-[1-[[[Dimethyl(1,1-dimethylethyl)silyl]oxy]methyl]cyclobut-1-yl]-1-propanon
Zu 3,76 ml (43,8 mmol) Oxalylchlorid in 80 ml Dichlormethan werden bei -78°C 6 ml (85,7 mmol) Dimethylsulfoxid addiert. Man läßt 3 Minuten nachrühren und addiert dann eine Lösung von 7,93 g (30,7 mmol) der unter Cd) beschriebenen Verbindung in 80 ml Dichlormethan. Es wird weitere 15 Minuten bei -78°C nachgerührt. Anschließend wird eine Mischung aus 19 ml (136 mmol) Triethylamin und 40 ml Dichlormethan hinzugetropft. Man läßt auf -25°C erwärmen und rührt bei dieser Temperatur 30 Minuten nach. Anschließend das Reaktionsgemisch auf gesättigte eiskalte Natriumhydrogencarbonatlösung gegossen. Es wird mit Dichlormethan extrahiert. Die organische Phase wird mit gesättigter Natriumchloridlösung gewaschen und über Natriumsulfat getrocknet. Nach dem Abziehen des Lösungsmittels wird das erhaltene Rohprodukt über Kieselgel filtriert. Man erhält 7,87 g (100%) der Titelverbindung.
1H-NMR (CDCl3): δ = 0,05 (6H), 0,88 (9H), 1,04 (3H), 1,82-1,95 (4H), 2,33-2,47 (2H), 2,45-2,54 (2H), 3,81 (2H) ppm.
Cf) 1-[1-(Hydroxymethyl)cyclobut-1-yl]-1-propanon
7,87 g (30,7 mmol) der unter Ce) beschriebenen Verbindung werden in 100 ml Tetrahydrofuran gelöst. Man addiert 15 ml einer 1molaren lösung von Tetrabutylammoniumfluorid und läßt 12 Stunden bei 25°C nachrühren. Danach wird das Reaktionsgemisch auf gesättigte Natriumhydrogencarbonatlösung gegossen. Man extrahiert mit Ethylacetat. Die organische Phase wird mit gesättigter Natriumchloridlösung gewaschen und über Natriumsulfat getrocknet. Nach dem Abziehen des Lösungsmittels wird das erhaltene Rohprodukt durch Säulenchromatographie an Kieselgel gereinigt. Man erhält 3,19 g (73,4%) der Titelverbindung.
1H-NMR (CDCl3): δ = 1,07 (3H), 1,86-2,08 (4H), 2,32-2,40 (2H), 2,55-2,65 (2H), 3,88 (2H) ppm.
C) 1-(1-Oxopropyl)cyclobutancarbaldehyd
Analog zu Beispiel Ce) werden aus 3,19 g (22,4 mmol) der unter Cf) beschriebenen Verbindung durch Oxidation 3,14 g (100%) der Titelverbindung erhalten.
1H-NMR (CDCl3): δ = 1,07 (3H), 1,85-2,00 (2H), 2,40-2,53 (6H), 9,70 (1H) ppm.
Beispiel 1 (R)-4,4-Dimethyl-3-[3-[[dimethyl(1,1-dimethylethyl)silyl]oxy]-5-oxo-heptansäure
Zu einer Lösung von 190 mg des unter Beispiel 1c) hergestellten Silylethers in 2.5 ml einer Mischung aus Tetrahydrofuran und Wasser im Verhältnis 4 : 1 gibt man bei 0°C 0.17 ml einer 30%igen Wasserstoffperoxid-Lösung. Nach 5 Minuten Rühren wird dann eine Lösung von 15.8 mg Lithiumhydroxid in 0.83 ml Wasser hinzugegeben, und die Reaktionsmischung für 3 Stunden bei 25°C gerührt. Anschließend wird mit einer Lösung von 208 mg Natriumsulfit in 1.24 ml Wasser versetzt und mit 10 ml Methylenchlorid extrahiert. Die wäßrige Phase wird mit 5N Salzsäure auf pH=1 eingestellt und dreimal mit je 10 ml Essigester extrahiert. Nach dem Trocknen über Natriumsulfat und Filtration wird im Vakuum eingeengt. Zusätzlich wird die obige Methylenchlorid-Phase mit 5N Salzsäure gewaschen und dann diese wäßrige Phase dreimal mit je 10 ml Essigester extrahiert. Nach dem Trocknen über Natriumsulfat und Filtration wird im Vakuum eingeengt und eine zusätzliche Menge an Rohprodukt erhalten. Die vereinigten, so erhaltenen Rückstände reinigt man durch Chromatographie an Kieselgel. Mit Hexan/0-50% Essigester erhält man neben 70 mg (4R,5S)-4-Methyl-5-phenyloxazolidin-2-on 93 mg der Titelverbindung als farbloses Öl.
[α]D = +15.5° (CHCl3)
1H-NMR (CDCl3): δ = 0.03-0.08 (6H), 0.86 (9H), 1.01 (3H), 1.10 (3H), 1.15 (3H), 2.35 (1H), 2.4-2.7 (3H), 4.48 (1H) ppm.
1a) (4R,5S)-3-(Bromacetyl)-4-methyl-5-phenyloxazolidin-2-on
Zu einer Lösung von 30.1 g (4R,5S)-4-Methyl-5-phenyloxazolidin-2-on in 500 ml Tetrahydrofuran gibt man innerhalb von 30 Minuten bei -70°C unter Stickstoff 117 ml einer 1.6molaren Lösung von Butyllithium in Hexan zu. Anschließend wird eine Lösung von 26.8 g Bromacetylchlorid in 250 ml Tetrahydrofuran so zugetropft, daß die Temperatur nicht über -65°C steigt. Nach 1.75 Stunden Rühren bei -70°C gibt man eine gesättigte Ammoniumchlorid-Lösung hinzu, gefolgt von 60 ml einer gesättigten Natriumhydrogencarbonat-Lösung und läßt auf 25°C kommen. Nach Trennung der Phasen wird die wäßrige Phase zweimal mit je 100 ml Ether extrahiert. Die vereinigten organischen Phasen werden mit halbkonzentrierter Natriumchlorid-Lösung gewaschen, über Natriumsulfat getrocknet und nach Filtration im Vakuum eingeengt. Den so erhaltenen Rückstand reinigt man durch Chromatographie an Kieselgel. Mit Hexan/0-50% Ether erhält man 34.8 g der Titelverbindung als farbloses Öl.
1H-NMR (CDCl3): δ = 0.95 (3H), 4.57 (2H), 4.80 (2H), 5.76 (2H), 7.2-7.5 (5H) ppm.
1b) [4R-[3(R*),4α,5α]]-3-[4,4-Dimethyl-1,5-dioxo-3-hydroxyheptyl]heptyl-4-methyl-5-phenyl- oxazolidon-2-on
Zu einer Suspension von 5.0 g wasserfreiem Chrom(II)chlorid in 60 ml Tetrahydrofuran gibt man unter Argon 218 mg Lithiumiodid. Anschließend wird eine Mischung von 2.09 g des literaturbekannten 2,2-Dimethyl-3-oxo-pentanals (siehe unter "Ausgangs­ produkte" Ab) und 5.34 g der vorstehend hergestellten Bromverbindung in 10 ml Tetrahydrofuran hinzugegeben. Nach 2 Stunden Reaktionszeit wird mit 30 ml gesättigter Natriumchlorid-Lösung versetzt und 15 Minuten gerührt. Die wäßrige Phase wird dreimal mit je 200 ml Ether extrahiert. Die vereinigten organischen Phasen werden mit halbkonzentrierter Natriumchlorid-Lösung gewaschen, über Natriumsulfat getrocknet und nach Filtration im Vakuum eingeengt. Den so erhaltenen Rückstand reinigt man durch Chromatographie an Kieselgel. Mit Hexan/0-30% Essigester erhält man 1.55 g der Titelverbindung als farbloses Öl.
1H-NMR (CDCl3): δ = 0.92 (3H), 1.06 (3H), 1.18 (3H), 1.23 (3H), 2.58 (2H), 3.07 (2H), 3.28 (1H), 4.35 (1H), 4.79 (1H), 5.70 (2H), 7.2-7.5 (5H) ppm.
1c) [4R-[3(R*)4α,5α]]-3-(4,4-Dimethyl-3-[[dimethyl(1,1-dimethylethyl)silyl]oxy]-1,5- dioxoheptyl]-4-methyl-5-phenyloxazolidin-2-on
Zu einer Lösung von 347 mg des vorstehend hergestellten Alkohols in 3 ml Methylenchlorid gibt man unter Argon bei -70°C 150 mg 2,6-Lutidin. Nach 5 Minuten Rühren werden 344 mg tert.-Butyldimethylsilyltrifluormethansulfonat hinzugegeben und für weitere 45 Minuten bei -70°C gerührt. Man versetzt mit 1 ml gesättigter Natriumchlorid-Lösung und läßt auf 25°C kommen. Anschließend wird mit Ether verdünnt und die organische Phase mit gesättigter Natriumchlorid-Lösung gewaschen. Nach dem Trocknen über Natriumsulfat und Filtration wird im Vakuum eingeengt. Den so erhaltenen Rückstand reinigt man durch Chromatographie an Kieselgel. Mit Hexan/0-30% Essigester erhält man 192 mg der Titelverbindung als farblose kristalline Verbindung mit einem Schmelzpunkt von 111-112°C.
1H-NMR (CDCl3): δ = 0.01-0.12 (6H), 0.86 (9H), 0.90 (3H), 1.00 (3H), 1.13 (3H), 1.17 (3H), 2.56 (2H), 3.05 (2H), 4.65-4.80 (2H), 5.68 (1H), 7.2-7.5 (5H) ppm.
Beispiel 2 (S)-4,4-Dimethyl-3-[3-[[dimethyl(1,1-dimethylethyl)silyl]oxy]-5-oxo-heptansäure
Die Verbindung wird in Analogie zu Beispiel 1 hergestellt. Als Ausgangsprodukt dient (4S,5R)-4-Methyl-5-phenyloxazolidin-2-on. NMR ist deckungsgleich mit Beispiel 1.
[α]D = -15.7° (CHCl3)
2a) (4S,5R)-3-(Bromacetyl-4-methyl-5-phenyloxazolidin-2-on
Die Darstellung erfolgt analog zu Beispiel 1a) ausgehend von (4S,5R)-4-Methyl-5- phenyloxazolidin-2-on. NMR ist deckungsgleich mit 1a).
Beispiel 3 (S)-3-[3-[[Dimethyl(1,1-dimethyl)silyl]oxy]-3-(1-(1-oxopropyl)cyclobut-1- yl]propansäure
Analog zu Beispiel 1 werden aus 2,79 g (5,9 mmol) der unter 3b) beschriebenen Verbindung 1,49 g (80%) der Titelverbindung und 941 mg zurückgewonnenes (4S,5R)-4-Methyl-5-phenyloxazolidin-2-on erhalten. Die Titelverbindung und das zurückzugewinnende chirale Auxiliar lassen sich durch Chromatographie (analog Beispiel 1) oder auch fraktionierte Kristallisation trennen und danach durch Chromatographie gewünschtenfalls aufreinigen.
1H-NMR (CDCl3): δ = 0.09 (3H), 0.19 (3H), 0.90 (9H), 1.08 (3H), 1.70-2.00 (3H), 2.20-2.40 (4H), 2.47 (1H), 2.50-2.70 (2H), 4.45 (1H) ppm.
3a) [4S-[3(R*),4α,5α]]-3-[3-Hydroxy-1-oxo-3-[1-(1-oxopropyl)cyclobut-1-yl]propyl]-4- methyl-5-phenyloxazolidin-2-on
Analog zu Beispiel 1b) werden aus 3,14 g (22,4 mmol) der unter C) beschriebenen Verbindung, 9,7 g (78,8 mmol) wasserfreiem Chrom(II)chlorid, 9,69 g (32,5 mmol) 2a) und 300 mg (2,2 mmol) wasserfreiem Lithiumiodid in Tetrahydrofuran nach Säulenchromatographie an Kieselgel 3,0 g (37,4%) der Titelverbindung als farbloses Öl erhalten.
1H-NMR (CDCl3): δ = 0,93 (3H), 1,10 (3H), 1,80-2,03 (2H), 2,10-2,21 (1H), 2,26-2,35 (3H), 2,54-2,70 (2H), 3,03-3,08 (2H), 3,34 (1H), 4,39 (1H), 4,74-4,85 (1H), 5,69 (1H), 7,27-7,34 (2H), 7,36-7,49 (3H) ppm.
3b) [4S-[3(R*),4α,5α]]-3-[3-[[Dimethyl(1,1-dimethylethyl)silyl]oxy]-1-oxo-3-[1-(1- oxopropyl)cyclobut-1-yl]propyl]-4-methyl-5-phenyloxazolid in-2-on
Analog zu Beispiel 1c) werden aus 3,0 g (8,35 mmol) der unter Beispiel 3a) beschriebenen Verbindung, tert.-Butyldimethylsilyltrifluormethansulfonat und 2,6- Lutidin nach Umkristallisation aus Diisopropylether 2,79 g (70,6%) der Titelverbindung erhalten.
1H-NMR (CDCl3): δ = 0,10 (3H), 0,21 (3H), 0,92 (3H), 0,95 (9H), 1,10 (3H), 1,70-1,92 (2H), 2,02-2,16 (1H), 2,20-2,40 (3H), 2,50-2,72 (2H), 2,98-3,10 (2H), 4,63-4,75 (1H), 5,69 (1H), 7,28-7,35 (2H), 7,36-7,48 (3H) ppm.
Beispiel 4 (R)-3-[3-[[Dimethyl(1,1-dimethyl)silyl]oxy]-3-[1-(1-oxopropyl)cyclobut-1- yl]propansäure
Die Verbindung wird in Analogie zu Beispiel 3 hergestellt. Als Ausgangsprodukt dient (4R,5S)-3-(Bromacetyl)-4-methyl-5-phenyloxazolidin-2-on.
Das NMR-Spektrum ist deckungsgleich mit Beispiel 3.
Durch die Wahl der Stereochemie an C4 und C5 des chiralen Auxiliars 4-Methyl-5- phenyl-2-oxazolidon läßt sich die Stereochemie in Position 3 steuern.
Die Struktur des Intermediats 1b) wurde durch eine Röntgenstrukturanalyse belegt.
Beispiele für die Herstellung des Bausteins B (DE 197 51 200.3 bzw. PCT/EP 98/05064) Beispiel 1 2,2-Trimethylen-4-pentinsäureethylester
Zu 473 ml einer 1.6 M Lösung von Butyllithium in Hexan gibt man bei -15°C bis 0°C unter Stickstoff eine Lösung von 77.2 g Diisopropylamin in 270 ml Tetrahydrofuran und rührt anschließend 30 Minuten. Dann tropft man bei -70°C eine Lösung aus 85.0 g Cyclobutancarbonsäureethylester in 170 ml Tetrahydrofuran zu und nach 1.5 Stunden eine Lösung von 78.9 g 3-Brom-1-propin in 190 ml Tetrahydrofuran und rührt weitere 2.5 Stunden bei -70°C. Dann wird die Reaktionsmischung auf 600 ml gesättigte Ammoniumchlorid- Lösung gegeben und dreimal mit je 600 ml Ether extrahiert. Die vereinigten organischen Phasen werden dreimal mit je 100 ml halbgesättigter Natriumchlorid-Lösung gewaschen und über Natriumsulfat getrocknet. Nach Filtration wird im Vakuum eingeengt und der so erhaltene Rückstand durch Chromatographie an Kieselgel gereinigt. Mit Hexan/0-10% Ether erhält man 65.5 g der Titelverbindung als farbloses Öl.
1H-NMR (CDCl3): δ = 1.28 (3H), 1.9-2.3 (5H), 2.47 (2H), 2.64 (2H), 4.20 (2H) ppm.
Beispiel 2 2,2-Trimethylen-4-pentin-1-ol
Zu einer Lösung aus 65.4 g des vorstehend hergestellten Esters in 950 ml Toluol gibt man bei -70°C unter Stickstoff 335 ml einer 1.2 M Lösung von Diisobutylaluminiumhydrid in Toluol und rührt 1.5 Stunden bei dieser Temperatur. Anschließend gibt man vorsichtig 30 ml Isopropanol und nach 10 Minuten 170 ml Wasser hinzu, läßt auf 22°C kommen und rührt bei dieser Temperatur 2 Stunden. Man filtriert vom Niederschlag ab, wäscht gut mit Essigester nach und engt das Filtrat im Vakuum ein. Der so erhaltene Rückstand wird durch Chromatographie an Kieselgel gereinigt. Mit Hexan/0-40% Ether erhält man 16.5 g der Titelverbindung als farbloses Öl.
1H-NMR (CDCl3): δ 1.75 (6H), 1.98 (1H), 2.42 (2H), 3.67 (2H) ppm.
Beispiel 3 1-tert.-butyldimethylsilyloxy-2,2-trimethylen-4-pentin
Zu einer Lösung von 18.5 g des vorstehend hergestellten Alkohols in 500 ml Dimethylformamid gibt man bei 0°C unter Stickstoff 30.5 g Imidazol gefolgt von 33.8 g tert.- Butyldimethylsilylchlorid. Nach 18 Stunden Rühren bei 22°C verdünnt man mit 1 l eines 1 : 1- Gemisches aus Hexan und Ether, wäscht die organische Phase zweimal mit Wasser, dreimal mit halbgesättigter Natriumchlorid-Lösung und trocknet anschließend über Natriumsulfat. Nach Filtration wird im Vakuum eingeengt und der so erhaltene Rückstand durch Chromatographie an Kieselgel gereinigt. Mit Hexan/0-10% Ether erhält man 35.5 g der Titelverbindung als farbloses Öl.
1H-NMR (CDCl3): δ = 0.06 (6H), 0.90 (9H), 1.83 (6H), 1.91 (1H), 2.32 (2H), 3.55 (2H) ppm.
Beispiel 4 1-tert.-butyldimethylsilyloxy-2,2-trimethylen-hept-4-in-6-ol
Zu einer Lösung aus 11.0 g des vorstehend hergestellten Silylethers in 160 ml Tetrahydrofuran gibt man bei -70°C unter Stickstoff 30 ml einer 1.6 M Lösung von Butyllithium in Hexan. Nach 30 Minuten Rühren tropft man eine Lösung aus 2.3 g Acetaldehyd in 250 ml Tetrahydrofuran zu, rührt 2 Stunden bei -70°C und 2 Stunden bei 0°C. Dann wird die Reaktionsmischung auf 150 ml gesättigte Ammoniumchlorid-Lösung gegeben und dreimal mit je 300 ml Ether extrahiert. Die vereinigten organischen Phasen werden zweimal mit je 100 ml halbgesättigte Natriumchlorid-Lösung gewaschen und über Natriumsulfat getrocknet. Nach Filtration wird im Vakuum eingeengt und der so erhaltene Rückstand durch Chromatographie an Kieselgel gereinigt. Mit Hexan/0-30% Ether erhält man 9.9 g der Titelverbindung als farbloses Öl.
1H-NMR (CDCl3): δ = 0.07 (6H), 0.90 (9H), 1.45 (3H), 1.7-1.9 (m, 6H), 2.34 (2H), 3.53 (2H), 4.53 (1H) ppm.
Beispiel 5 1-tert.-butyldimethylsilyloxy-2,2-trimethylen-6-(tetrahydro-2H-pyran-2yloxy)-hept-4-in
Zu 12.0 g des vorstehend hergestellten Alkohols in 310 ml Methylenchlorid gibt man bei 0°C unter Stickstoff 4.33 g Dihydropyran gefolgt von 185 mg p-Toluolsulfonsäure-Monohydrat. Nach 2.5 Stunden Rühren bei 0°C versetzt man mit 3 ml Triethylamin und verdünnt nach 10 Minuten die Reaktionsmischung mit 500 ml Methylenchlorid. Die organische Phase wird einmal mit 50 ml gesättigter Natriumhydrogencarbonat-Lösung, dreimal mit je 50 ml halbgesättigter Natriumchlorid-Lösung gewaschen und über Natriumsulfat getrocknet. Nach Filtration wird im Vakuum eingeengt und der so erhaltene Rückstand durch Chromatographie an Kieselgel gereinigt. Mit Hexan/0-5% Ether erhält man 14.6 g der Titelverbindung als farbloses Öl.
1H-NMR (CDCl3): δ = 0.0-0.1 (6H), 0.9-1.0 (9H), 1.43 (3H), 1.4-1.9 (m, 12H), 2.32 (2H), 3.52 (2H), 3.4-3.6 (1H), 3.84/3.98 (1H), 4.4-4.6 (1H), 4.80/4.94 (1H) ppm.
Beispiel 6 1-tert.-butyldimethylsilyloxy-2,2-trimethylen-6-(tetrahydro-2H-pyran-2-yloxy)-heptan
Eine Lösung von 650 mg des in Beispiel 5 hergestellten THP-Ethers in 20 ml Essigester versetzt man mit 65 mg 10% Palladium auf Kohle und rührt 18 Stunden bei 22°C in einer Wasserstoffatmosphäre. Anschließend filtriert man vom Katalysator ab, wäscht gut mit Essigester nach und engt das Filtrat im Vakuum ein. Den so erhaltenen Rückstand reinigt man durch Chromatographie an Kieselgel. Mit Hexan/0-5% Ether erhält man 594 mg der Titelverbindung als farbloses Öl.
1H-NMR (CDCl3): δ = 0.0-0.1 (6H), 0.9 (9H), 1.23 (3H), 1.1-1.9 (18H), 3.45 (2H), 3.4-3.6 (1H), 3.6-4.00 (2H), 4.64/4.73 (1H) ppm.
Beispiel 7 4-tert.-butyldimethylsilyloxy-but-2-in-1-ol
Zu einer Lösung von 100 g 2-Butin-1-ol und 158 g Imidazol in 300 ml Dimethylformamid tropft man bei 0°C unter Stickstoff langsam eine Lösung von 175 g tert.- Butyldimethylsilylchlorid in 100 ml eines 1 : 1 Gemisches von Hexan und Dimethylformamid und rührt 2 Stunden bei 0°C und 16 Stunden bei 22°C. Man verdünnt die Reaktionsmischung mit 2.5 l Ether, wäscht einmal mit Wasser, einmal mit 5%iger Schwefelsäure, einmal mit Wasser, einmal mit gesättigter Natriumhydrogencarbonat-Lösung und mit halbgesättigter Natriumchlorid-Lösung neutral. Nach Trocknung über Natriumsulfat und Filtration wird im Vakuum eingeengt. Den so erhaltenen Rückstand reinigt man durch Chromatographie an Kieselgel. Mit Hexan/0-40% Ether erhält man 74.3 g der Titelverbindung als farbloses Öl.
IR (Film): 3357, 2929, 2858, 1472, 1362, 1255, 1132, 1083, 1015, 837, 778 cm-1.
Beispiel 8 (4R,5S,2'S)-4-Methyl-5-phenyl-3-[1-oxo-2-methyl-6-(tert.-butyldimethylsilyloxy)-hex-4- in-1-yl]-2-oxazolidinon
Zu 21 g einer Lösung des vorstehend hergestellten Silylethers in 125 ml Toluol gibt man unter Stickstoff 11.3 ml Lutidin. Anschließend kühlt man auf -40°C und tropft bei dieser Temperatur 17.7 ml Trifluormethansulfonsäureanhydrid zu. Dann verdünnt man mit 100 ml Hexan und rührt 10 Minuten. Diese Lösung wird unter Stickstoff über eine Umkehrfritte zu einer Lösung gegeben, die aus 17.8 g Hexamethyldisilazan in 140 ml Tetrahydrofuran mit 73.5 ml einer 1.6 M Lösung von Butyllithium in Hexan bei -60°C (10 Minuten Nachrührzeit) und 23.3 g (4R,5S)-4-Methyl-5-phenyl-3-propionyl-2-oxazolidinon in 62 ml Tetrahydrofuran (30 Minuten Nachrührzeit) hergestellt wurde. Man läßt 1 Stunde bei -60°C Nachrühren, versetzt dann mit 6 ml Essigsäure in 5 ml Tetrahydrofuran und läßt die Reaktionsmischung auf 22°C erwärmen. Man gibt auf 80 ml Wasser und extrahiert dreimal mit Ether. Die vereinigten organischen Phasen werden zweimal mit gesättigter Natriumchlorid-Lösung gewaschen und über Natriumsulfat getrocknet. Nach Filtration wird im Vakuum eingeengt. Den so erhaltenen Rückstand reinigt man durch Chromatographie an Kieselgel. Mit Hexan/0-20% Ether erhält man 16.0 g der Titelverbindung als farbloses Öl.
1H-NMR (CDCl3): δ = 0.10 (6H), 0.90 (9H), 0.92 (3H), 1.28 (3H), 2.47 (1H), 2.61 (1H), 3.96 (1H), 4.26 (2H), 4.78 (1H), 5.68 (1H), 7.31 (1H), 7.3-7.5 (3H) ppm.
Beispiel 9 (2S)-2-Methyl-6-(tert.-butyldimethylsilyloxy)-4-hexinsäureethylester
Zu einer Lösung von 39.3 g des vorstehend hergestellten Alkylierungsproduktes in 120 ml Ethanol gibt man unter Stickstoff 9.0 ml Titan(IV)ethylat und erhitzt unter Rückfluß für 4 Stunden. Die Reaktionsmischung wird im Vakuum eingeengt und der Rückstand in 100 ml Essigester gelöst. Man gibt 3 ml Wasser hinzu, rührt für 20 Minuten, saugt vom Niederschlag ab und wäscht gut mit Essigester nach. Das Filtrat wird eingeengt, mit 200 ml Hexan versetzt und vom Niederschlag abfiltriert. Der Niederschlag wird gut mit Hexan gewaschen. Das Filtrat wird im Vakuum eingeengt und der so erhaltene Rückstand durch Chromatographie an Kieselgel gereinigt. Mit Hexan/0-20% Ether erhält man 25.4 g der Titelverbindung als farbloses Öl.
1H-NMR (CD2Cl2): δ = 0.10 (3H), 0.90 (9H), 1.2-1.3 (6H), 2.37 (1H), 2.54 (1H), 2.60 (1H), 4.12 (2H), 4.27 (2H) ppm.
Beispiel 10 (2S)-2-Methyl-6-(tert.-butyldimethylsilyloxy)-hexansäureethylester
Eine Lösung von 10.5 g des vorstehend hergestellten Esters in 200 ml Essigester versetzt man mit 1 g 10% Palladium auf Kohle und rührt 3 Stunden bei 22°C in einer Wasserstoffatmosphäre. Anschließend filtriert man vom Katalysator ab, wäscht gut mit Essigester nach und engt das Filtrat im Vakuum ein. Den so erhaltenen Rückstand reinigt man durch Chromatographie an Kieselgel. Mit Hexan/0-10% Ether erhält man 9.95 g der Titelverbindung als farbloses Öl.
1H-NMR (CD2Cl2): δ = 0.01 (6H), 0.84 (9H), 1.07 (3H), 1.18 (3H), 1.2-1.7 (6H), 2.38 (1H), 3.57 (2H), 4.05 (2H) ppm.
Beispiel 11 (2S)-2-Methyl-6-(tert.-butyldimethylsilyloxy)-hexan-1-ol
Zu einer Lösung aus 9.94 g des vorstehend hergestellten Esters in 130 ml Toluol gibt man bei -40°C unter Stickstoff 63 ml einer 1.2 M Lösung von Diisobutylaluminiumhydrid in Toluol und rührt 1 Stunde bei dieser Temperatur. Anschließend gibt man vorsichtig 15 ml Isopropanol und nach 10 Minuten 30 ml Wasser hinzu, läßt auf 22°C kommen und rührt bei dieser Temperatur 2 Stunden. Man filtriert vom Niederschlag ab, wäscht gut mit Essigester nach und engt das Filtrat im Vakuum ein. Der so erhaltene Rückstand wird durch Chromatographie an Kieselgel gereinigt. Mit Hexan/0-30% Ether erhält man 7.9 g der Titelverbindung als farbloses Öl.
[α]D = -8.1° (c = 0.97, CHCl3)
1H-NMR (CDCl3): δ = 0.07 (3H), 0.89 (9H), 0.91 (3H), 1.0-1.7 (7H), 3.48 (2H), 3.52 (2H) ppm.
Beispiel 12 (2S)-2-Methyl-6-(tert.-butyldimethylsilyloxy)-1-(tetrahydro-2H-pyran-2-yloxy)-hexan
Zu 6.4 g des vorstehend hergestellten Alkohols in 26 ml Methylenchlorid gibt man bei 0°C unter Argon 3.52 ml Dihydropyran gefolgt von 49 mg p-Toluolsulfonsäure-Monohydrat. Nach 1.5 Stunden Rühren bei 0°C wird mit 10 ml gesättigte Natriumhydrogencarbonat-Lösung versetzt und mit Ether verdünnt. Die organische Phase wird zweimal mit halbgesättigter Natriumchlorid-Lösung gewaschen und über Natriumsulfat getrocknet. Nach Filtration wird im Vakuum eingeengt und der so erhaltene Rückstand durch Chromatographie an Kieselgel gereinigt. Mit Hexan/0-5% Ether erhält man 4.75 g der Titelverbindung als farbloses Öl.
1H-NMR (CDCl3): δ = 0.05 (6H), 0.89 (9H), 0.92 (3H), 1.0-1.9 (13H), 3.19 (1H), 3.50 (1H), 3.55-3.65 (3H), 4.87 (1H), 4.57 (1H) ppm.
Beispiel 13 (5S)-5-Methyl-6-(tetrahydro-2H-pyran-2-yloxy)-hexan-1-ol
Zu einer Lösung von 4.7 g des vorstehend hergestellten THP-Ethers in 170 ml Tetrahydrofuran gibt man unter Stickstoff 13.5 g Tetrabutylammoniumfluorid-Trihydrat und rührt 3 Stunden. Anschließend verdünnt man die Reaktionsmischung mit 800 ml Ether und wäscht dreimal mit je 20 ml halbgesättigter Natriumchlorid-Lösung und trocknet über Natriumsulfat. Nach Filtration wird im Vakuum eingeengt und der so erhaltene Rückstand durch Chromatographie an Kieselgel gereinigt. Mit Hexan/0-50% Essigester erhält man 2.88 g der Titelverbindung als farbloses Öl.
1H-NMR (CD2Cl2): δ = 0.90/0.92 (3H), 1.1-1.9 (13H), 3.18 (1H), 3.40-3.65 (4H), 3.82 (1H), 4.53 (1H) ppm.
Beispiel 14
  • 1. (5S)-5-Methyl-6-(tetrahydro-2H-pyran-2-yloxy)-hexanal
Zu 1.08 ml Oxalylchlorid gelöst in 10 ml Methylenchlorid tropft man unter Stickstoff vorsichtig bei -70°C 1.9 ml Dimethylsulfoxid gelöst in 7 ml Methylenchlorid und rührt 10 Minuten bei dieser Temperatur. Anschließend tropft man eine Lösung von 2.0 g des vorstehend hergestellten Alkohols in 7 ml Methylenchlorid zu und rührt 2 Stunden zwischen -60°C und -70°C. Dann gibt man 3.86 ml Triethylamin zu, und nach 1 Stunde Rühren bei -60°C wird die Reaktionsmischung auf 30 ml Wasser gegeben. Nach Phasentrennung wird die wäßrige Pase zweimal mit je 30 ml Methylenchlorid extrahiert. Die vereinigten organischen Phasen werden dreimal mit gesättigter Natriumchlorid-Lösung gewaschen. Nach dem Trocknen über Natriumsulfat und Filtration wird im Vakuum eingeengt. Man erhält 1.99 g des Aldehyds, der ohne weitere Reinigung verwendet wird.
Beispiel 15 (2RS,6S)-6-Methyl-7-(tetrahydro-2H-pyran-2-yloxy)-heptan-2-ol
Zu einer Lösung von 1.98 g des vorstehend hergestellten Aldehyds in 30 ml Ether tropft man unter Stickstoff bei 0°C langsam 6.16 ml einer 3M Methylmagnesiumbromid-Lösung in Ether. Nach 60 Minuten gießt man langsam auf 50 ml eiskalte gesättigte Ammoniumchlorid-Lösung und extrahiert dreimal mit Ether. Die vereinigten organischen Phasen werden einmal mit Wasser zweimal mit gesättigter Natriumchlorid-Lösung gewaschen und über Natriumsulfat getrocknet. Nach Filtration wird im Vakuum eingeengt und der so erhaltene Rückstand durch Chromatographie an Kieselgel gereinigt. Mit Hexan/0-60% Ether erhält man 1.57 g der Titelverbindung als farbloses Öl.
1H-NMR (CD2Cl2): δ = 0.90/0.93 (3H), 1.15 (3H), 1.0-1.9 (13H), 3.18 (1H), 3.4-3.6 (2H), 3.7-3.9 (2H), 4.53 (1H) ppm.
Beispiel 16 (6S)-6-Methyl-7-(tetrahydro-2H-pyran-2-yloxy)-heptan-2-on
Zu einer Lösung von 700 mg des in Beispiel 15 hergestellten Alkohols in einer Mischung aus 14 ml Methylenchlorid und 4.7 ml Acetonitril gibt man unter Argon 163 mg aktiviertes Molsieb (4Å, Pulver) und 533 mg N-Methylmorpholin-N-oxid zu, rührt für 10 Minuten um dann 10.5 mg Tetrapropylammoniumperruthenat hinzuzugeben. Die Reaktionsmischung wird nach 20 Stunden im Vakuum eingeengt. Den so erhaltenen Rückstand reinigt man durch Chromatographie an Kieselgel. Mit Hexan/0-40% Ether erhält man 690 mg der Titelverbindung als farbloses Öl.
1H-NMR (CDCl3): δ = 0.91/0.93 (3H), 1.0-1.9 (11H), 2.13 (3H), 2.42 (2H), 3.19 (1H), 3.4-3.6 (2H), 3.85 (1H), 4.55 (1H) ppm.
Beispiel 17 (2S,6RS)-2-Methyl-6-(tert.-butyl-diphenylsilyloxy)-1-(tetrahydro-2H-pyran-2-yloxy)- heptan
Zu einer Lösung von 1.57 g des unter Beispiel 15 hergestellten Alkohols und 1.11 g Imidazol in 20 ml Dimethylformamid gibt man bei 0°C unter Stickstoff 2.13 ml tert.- Butyldiphenylsilylchlorid, rührt 15 Minuten bei 0°C und 16 Stunden bei 22°C. Man verdünnt die Reaktionsmischung mit 200 ml Ether, wäscht einmal mit Wasser, einmal mit 10%iger Schwefelsäure, einmal mit gesättigter Natriumhydrogencarbonat-Lösung und mit gesättigter Natriumchlorid-Lösung neutral. Nach Trocknung über Natriumsulfat und Filtration wird im Vakuum eingeengt. Den so erhaltenen Rückstand reinigt man durch Chromatographie an Kieselgel. Mit Hexan/0-10% Ether erhält man 2.87 g der Titelverbindung als farbloses Öl.
1H-NMR (CDCl3): δ = 0.87/0.89 (3H), 1.04 (9H), 0.9-1.9 (16H), 3.15 (1H), 3.4-3.6 (2H), 3.8-3.9 (2H), 4.56 (1H), 7.3-7.5 (6H), 7.69 (4H) ppm.
Beispiel 18 (2S,6RS)-2-Methyl-6-(tert.-butyl-diphenylsilyloxy)-heptan-1-ol
Zu einer Lösung von 2.3 g des unter Beispiel 17 hergestellten Silylethers in 100 ml Ethanol gibt man 131 mg Pyridinium-p-toluolsulfonat und rührt 4 Stunden bei 40°C. Anschließend wird im Vakuum eingeengt und der so erhaltene Rückstand durch Chromatographie an Kieselgel gereinigt. Mit Hexan/20% Ether erhält man 1.68 g der Titelverbindung als farbloses Öl.
Beispiel 19 (2S)-2-Methyl-6-(tert.-butyldimethylsilyloxy)-hexanal
2,07 g des unter Beispiel 11 dargestellten Alkohols oxidiert man in Analogie zu Beispiel 14 und isoliert nach Aufarbeitung und chromatographischer Reinigung 2,09 g der Titelverbindung als farbloses Öl.
1H-NMR (CDCl3): δ = 0,04 (6H), 0,90 (9H), 1,10 (3H), 1,31-1,48 (3H), 1,48-1,60 (2H), 1,72 (1H), 2,34 (1H), 3,61 (2H), 9,62 (1H) ppm.
Beispiel 20 (2S,6RS)-2-Methyl-6-(tert.-butyl-diphenylsilyloxy)-heptanal
2,13 g des unter Beispiel 18 dargestellten Alkohols oxidiert man in Analogie zu Beispiel 14 und isoliert nach Aufarbeitung und chromatographischer Reinigung 2,10 g der Titelverbindung als farbloses Öl.
1H-NMR (CDCl3): δ = 1,00-1,12 (15H), 1,18-1,63 (6H), 2,22 (1H), 3,83 (1H), 7,32-7,47 (6H), 7,61-7,72 (4H), 9,54 (1H) ppm.
Beispiele für die Herstellung der erfindungsgemäßen Verbindungen der allgemeinen Formel I Beispiel 1 (4S,7R,8S,9S,13(Z),16S(Z))-4,8-Dihydroxy-16-(1-fluor-2-(2-methyl-4- thiazolyl)ethenyl)-1-oxa-5,5,7,9,13-pentamethyl-cyclohexadec-13-en-2,6-dion
In Analogie zu den in DE 197 51 200.3 beschriebenen Verfahren erhält man aus dem Phosphoniumsalz aus Beispiel 1j 36.5 mg der Titelverbindung als schwach gelbgefärbtes Öl.
1H-NMR (DMSO-d6): δ = 0.93 (3H), 0.94 (3H), 1.10 (3H), 0.8-1.4 (6H), 1.21 (3H), 1.62 (1H), 1.66 (3H) 1.87 (1H), 2.24 (1H), 2.3-2.6 (3H), 2.64 (3H), 2.73 (1H), 3.13 (1H), 3.53 (1H), 4.22 (1H), 5.16 (1H), 5.36 (1H), 6.22 (1H), 7.46 (1H) ppm.
Beispiel 1a 2-Methylthiazol-4-carbaldehyd
Zu einer Lösung aus 60 g 2-Methylthiazol-4-carbonsäureethylester in 1070 ml Methylenchlorid tropft man bei -75°C unter Stickstoff langsam 476 ml einer 1.2molaren Lösung von DIBAH in Toluol. Man rührt 2 Stunden nach. Dann tropft man langsam 150 ml Isopropanol, anschließend 230 ml Wasser dazu, entfernt das Kältebad und rührt bei 25°C 2 Stunden kräftig nach. Der entstandene Niederschlag wird abgesaugt und mit Essigester nachgewaschen. Das Filtrat wird im Vakuum eingeengt und der so erhaltene Rückstand durch Chromatographie an Kieselgel gereinigt. Mit Hexan/Ether 1 : 1 erhält man 35.6 g der Titelverbindung als farbloses Öl.
1H-NMR (CDCl3): δ = 2.8 (3H), 8.05 (1H), 10.0 (1H) ppm.
Beispiel 1b (2Z)-3-(2-Methylthiazol-4-yl)-2-fluor-2-propensäureethylester
Zu einer Suspension von 9.64 g Natriumhydrid (60%ige Suspension in Mineralöl) in 120 ml Dimethoxyethan fügt man bei 0°C eine Lösung von 58.7 g Phosphonofluoressigsäuretriethylester in 120 ml Dimethoxyethan. Man rührt 40 Minuten und tropft dann eine Lösung von 15.4 g des unter Beispiel 1a hergestellten Aldehyds in 120 ml Dimethoxyethan zu und rührt anschließend 2 Stunden bei 24°C unter Argon. Nach dem Versetzen mit wäßriger Ammoniumchlorid-Lösung extrahiert man dreimal mit Essigester, wäscht die organische Phase mit verdünnter Natriumchlorid-Lösung, trocknet über Natriumsulfat und dampft im Vakuum ein. Das Gemisch der Z- und E-konfigurierten Olefine trennt man durch Säulenchromatographie an Kieselgel. Mit Hexan/Essigester 4 : 6 bis 3 : 7 erhält man neben 3.9 g einer Mischfraktion 7.5 g (2E)-3-(2-Methylthiazol-4-yl)-2-fluor-2- propensäureethylester und 7.3 g der Titelverbindung als farblose Öle.
1H-NMR (CDCl3): δ = 1.36 (3H), 2.73 (3H), 4.33 (2H), 7.20 (1H), 7.67 (1H) ppm.
Beispiel 1c (2Z)-3-(2-Methylthiazol-4-yl)-2-fluor-2-propen-1-ol
Zu einer Lösung aus 18,8 g des vorstehend hergestellten Esters in 260 ml Toluol tropft man bei -70°C unter Stickstoff 136 ml einer 1.2molaren Lösung von DIBAH in Toluol. Nach einer Stunde tropft man langsam 55 ml Isopropanol und anschließend 68 ml Wasser dazu und rührt 2 Stunden kräftig nach. Der entstandene Niederschlag wird abgesaugt und gut mit Essigester gewaschen. Das Filtrat wird im Vakuum eingeengt, der so erhaltene Rückstand durch Chromatographie an Kieselgel gereinigt. Mit Hexan/0-70% Essigester erhält man 13,4 g der Titelverbindung als farbloses Öl.
1H-NMR (CDCl3): δ = 2.69 (3H), 3.71 (1H), 4.27 (2H), 6.18 (1H), 7.35 (1H) ppm.
Beispiel 1d (2Z)-3-(2-Methylthiazol-4-yl)-2-fluor-2-propenal
Zu einer Lösung aus 13,28 g des vorstehend hergestellten Alkohols in 200 ml Toluol gibt man portionsweise insgesamt 53.3 g Braunstein und rührt kräftig unter Stickstoff 4 Stunden nach. Braunstein wird über Celite abgesaugt, gut mit Essigester gewaschen, und das Filtrat im Vakuum eingeengt. Der so erhaltene Rückstand durch Chromatographie an Kieselgel gereinigt. Mit Hexan/0-30% Essigester erhält man 9,93 g der Titelverbindung als farbloses Öl.
1H-NMR (CDCl3): δ = 2.77 (3H), 6.95 (1H), 7.88 (1H), 9.36 (1H) ppm.
Beispiel 1e (3S,4Z)-5-(2-Methylthiazol-4-yl)-1-[(4S,5R)-4-methyl-5-phenyl-oxazolidin-2-on-3-yl]-3- hydroxy-4-fluor-4-penten-1-on
Es werden 17.6 g wasserfreies Chrom(II)chlorid in 210 ml THF unter Argon vorgelegt und mit 766 mg Lithiumiodid versetzt. Anschließend wird eine Lösung aus 9,8 g des vorstehend hergestellten Aldehyds und 18.8 g (4S,5R)-3-(Bromacetyl)-4-methyl-5-phenyloxazolidin-2-on in 38 ml THF dazugetropft. Es wird 3 Stunden nachgerührt. Man gibt 150 ml gesättigte Natriumchlorid-Lösung dazu, rührt 30 Minuten und trennt die Phasen. Die wäßrige Phase wird zweimal mit Essigester extrahiert, die vereinigten organischen Phasen einmal mit Wasser, einmal mit gesättigter Natriumchlorid-Lösung extrahiert. Die organische Phase wird über Natriumsulfat getrocknet, abfiltriert und das Filtrat im Vakuum eingeengt. Der so erhaltene Rückstand wird durch Chromatographie an Kieselgel gereinigt. Mit Hexan/0-60% Essigester erhält man 11,22 g der Titelverbindung neben 9,53 g einer Mischfraktion und 1,8 g der entsprechenden diastereomeren Titelverbindung als helle Öle.
1H-NMR (CDCl3): δ = 0.93 (3H), 2.71 (3H), 3.36 (1H), 3.52 (1H), 4.82 (1H), 5.72 (1H), 6.29 (1H), 7.2-7.5 (6H) ppm.
Beispiel 1f (3S,4Z)-5-(2-Methylthiazol-4-yl)-1-[(4S,5R)-4-methyl-5-phenyl-oxazolidin-2-on-3-yl]-3- (tert.-butyl-dimethylsilyloxy)-4-fluor-4-penten-1-on
Zu einer Lösung aus 11,2 g der vorstehend hergestellten Titelverbindung in 86 ml Methylenchlorid tropft man bei -70°C unter Stickstoff 4,68 ml Lutidin und rührt 5 Minuten nach. Dann wird langsam 8,56 ml tert.- Butyldimethylsilyltrifluormethansulfonat zugetropft. Nach einer Stunde versetzt man mit gesättigter Ammoniumchloridlösung und läßt das Reaktionsgemisch auf 25°C erwärmen. Man verdünnt mit Ether, wäscht einmal mit Wasser und einmal mit gesättigter Natriumchlorid-Lösung. Die organische Phase wird über Natriumsulfat getrocknet und im Vakuum eingeengt. Der so erhaltene Rückstand wird durch Chromatographie an Kieselgel gereinigt. Mit Hexan/Ether 1 : 1 erhält man 9,3 g der Titelverbindung als farbloses Öl.
1H-NMR (CDCl3): δ = 0.15 (6H), 0.90 (9H), 0.93 (3H), 2.70 (3H), 3.27 (1H), 3.57 (1H), 4.77 (1H), 4.90 (1H), 5.66 (1H), 6.15 (1H), 7.26-7.50 (6H) ppm.
Beispiel 1g (3S,4Z)-5-(2-Methylthiazol-4-yl)-3-(tert.-butyl-dimethylsilyloxy)-4-fluor-4- pentensäureethylester
Zu einer Lösung aus 15,5 g der vorstehend hergestellten Titelverbindung in 70 ml Ethanol gibt man 2,8 ml Titan(IV)ethylat und kocht 4 Stunden am Rückfluß unter Stickstoff. Die Reaktionslösung wird im Vakuum eingeengt, der Rückstand in 70 ml Essigester aufgenommen, mit Wasser versetzt und 20 Minuten gerührt. Titanoxid wird abgesaugt, gut mit Essigester gewaschen und das Filtrat im Vakuum eingeengt. Der Rückstand wird mit Hexan versetzt, die Kristalle werden abgesaugt und zweimal mit Hexan gewaschen. Das Filtrat wird im Vakuum eingeengt. Der so erhaltene Rückstand wird durch Chromatographie an Kieselgel gereinigt. Mit Hexan/0-50% Essigester erhält man 11,9 g der Titelverbindung als farbloses Öl.
1H-NMR (CDCl3): δ = 0.11 (6H), 0.91 (9H), 1.26 (3H), 2.70 (2H), 2.71 (3H), 4.15 (2H), 4.74 (1H), 6.12 (1H), 7.37 (1H) ppm.
Beispiel 1h (3S,4Z)-5-(2-Methylthiazol-4-yl)-3-(tert.-butyl-dimethylsilyloxy)-4-fluor-4-penten-1-ol
Zu einer Lösung aus 10.5 g der vorstehend hergestellten Titelverbindung in 250 ml Toluol tropft man unter Stickstoff bei -70°C langsam 58.6 ml einer 1.2molaren Lösung von DIBAH in Toluol und rührt eine Stunde bei -30°C. Man tropft langsam bei -70°C 10 ml Isopropanol dazu, anschließend 22 ml Wasser und rührt bei 25°C 2 Stunden kräftig nach. Der Niederschlag wird abgesaugt, gut mit Essigester gewaschen, und das Filtrat im Vakuum eingeengt. Der so erhaltene Rückstand wird durch Chromatographie an Kieselgel gereinigt. Mit Hexan/0-70% Essigester erhält man 7.73 g der Titelverbindung als gelbes Öl.
1H-NMR (CDCl3): δ = 0.12 (3H), 0.16 (3H), 0.93 (9H), 2.00 (2H), 2.72 (3H), 3.77 (1H), 3.86 (1H), 4.53 (1H), 6.13 (1H), 7.36 (1H) ppm.
Beispiel 1i (3S,4Z)-5-(2-Methylthiazol-4-yl)-3-(tert.-butyl-dimethylsilyloxy)-1-iod-4-fluor-4-penten
Zu einer Lösung aus 7,31 g Triphenylphosphin in 106 ml Methylenchlorid gibt man 1,90 g Imidazol. Zu dieser Lösung gibt man 7,07 g Iod, läßt 10 Minuten rühren und tropft dann eine Lösung aus 7.7 g der vorstehend hergestellten Titelverbindung in 28 ml Methylenchlorid zu und rührt 30 Minuten. Es wird abfiltriert, gut mit Ether gewaschen, und das Filtrat im Vakuum eingeengt. Der so erhaltene Rückstand wird durch Chromatographie an Kieselgel gereingt. Mit Hexan/0-10% Essigester erhält man 8,2 g der Titelverbindung als farbloses Öl.
1H-NMR (CDCl3): δ = 0.11 (3H), 0.16 (3H), 0.93 (9H), 2.23 (2H), 2.71 (3H), 3.24 (2H), 4.36 (1H), 6.12 (1H), 7.36 (1H) ppm.
Beispiel 1j (3S,4Z)-5-(2-Methylthiazol-4-yl)-3-(tert.-butyl-dimethylsilyloxy)-4-fluor-4-penten- triphenylphosphoniumiodid
Man mischt 8,16 g der vorstehend hergestellten Titelverbindung mit 5,33 g Triphenylphosphin und rührt unter Stickstoff bei 100°C 2 Stunden. Nach dem Abkühlen wird der feste Rückstand zweimal mit Ether und wenig Essigester verrieben, wobei die überstehende Lösung abpipettiert wird. Dann wird der Rückstand in Methanol gelöst und im Vakuum eingeengt. Der feste Schaum wird wieder in wenig Methanol gelöst, mit Toluol versetzt und wieder im Vakuum eingeengt. Dieser Vorgang wird zweimal wiederholt, anschließend wird der Rückstand im Hochvakuum getrocknet. Man erhält 12,4 g der Titelverbindung als feste Substanz.
Fp.: 70-72°C
Beispiel 2 (4S,7R,8S,9S,13(E),16S(Z))-4,8-Dihydroxy-16-(1-fluor-2-(2-methyl-4- thiazolyl)ethenyl)-1-oxa-5,5,7,9,13-pentamethyl-cyclohexadec-13-en-2,6-dion
In Analogie zu Beispiel 1 erhält man aus dem Phosphoniumsalz aus Beispiel 1j 41,5 mg der Titelverbindung als schwach gelbgefärbtes Öl.
1H-NMR (CDCl3): δ = 0.99 (3H), 1.05 (3H), 0.8-1.4 (6H), 1.16 (3H), 1.30 (3H), 1.5-1.7 (1H), 1.76 (1H), 2.00 (1H), 2.18 (1H), 2.43 (1H), 2.56 (1H), 2.63 (2H), 2.70 (3H), 3.25 (1H), 3.40 (2H), 3.66 (1H), 4.30 (1H), 5.13 (1H), 5.61 (1H), 6.18 (1H), 7.48 (1H) ppm.
Beispiel 3 (1R,3S(Z),7S,10R,11S,12S,16S)-7,11-Dihydroxy-3-(1-fluor-2-(2-methyl-4- thiazolyl)ethenyl)-8,8,10,12,16-pentamethyl-4,17- dioxabicyclo[14.1.0]heptadecan- 5,9-dion (A) und (1S,3S(Z),7S,10R,11S,12S,16R)-7,11-Dihydroxy-3-(1-fluor-2-(2-methyl-4- thiazolyl)ethenyl)-8,8,10,12,16-pentamethyl-4,17-dioxabicyclo[14.1.0]heptadecan- 5,9-dion (B)
Zu 15 mg der in Beispiel 1 hergestellten Titelverbindung in 0,3 ml Acetonitril gibt man bei 0°C unter Argon 0,172 ml EDTA und 0,288 ml 1,1,1-Trifluoraceton, anschließend eine Mischung aus 35,0 mg Oxon und 20,2 mg Natriumhydrogencarbonat. Man rührt 3,5 Stunden bei 0°C. Man versetzt mit 2 ml Natriumthiosulfatlösung, rührt 5 Minuten und verdünnt mit 80 ml Essigester. Die organische Phase wird einmal mit halbgesättigter Natriumchlorid-Lösung gewaschen, über Natriumsulfat getrocknet und im Vakuum eingeengt. Der so erhaltene Rückstand wird durch zweifache präparative Dickschichtchromatographie gereinigt. Mit Methylenchlorid/Essigester 2 : 8 (1. PDC) bzw. Methylenchlorid/methanol 98 : 2 (2. PDC), erhält man 2,5 mg der Titelverbindung A als unpolare Komponente und 6 mg der Titelverbindung B als polare Komponente als farblose Öle.
1H-NMR (MeOH-d4) von A: δ = 0.99 (3H), 1.04 (3H), 0.8-1.9 (11H), 1.30 (3H), 1.41 (3H), 2.17 (2H), 2.47 (1H), 2.58 (1H), 2.71 (3H), 3.01 (1H), 3.2-3.4 (1H), 3.78 (1H), 4.33 (1H), 4.8-5.0 (1H), 5.71 (1H), 6.26 (1H), 7.53(1H) ppm.
1H-NMR (MeOH-d4) von B: δ = 0.99 (3H), 1.01 (3H), 0.9-1.9 (6H), 1.12 (3H), 1.30 (3H), 1.33 (3H), 1.95-2.10 (4H), 2.18 (2H), 2.41 (1H), 2.48 (1H), 2.70 (3H), 3.2-3.4 (1H), 3.63 (1H), 3.85 (1H), 4.34 (1H), 5.34 (1H), 5.63 (1H), 6.19 (1H), 7.51 (1H) ppm.
Beispiel 4 (R,3S(Z),7S,10R,11S,12S,16R)-7,11-Dihydroxy-3-(1-fluor-2-(2-methyl-4- thiazolyl)ethenyl)-8,8,10,12,16-pentamethyl-4,17-dioxabicyclo[14.1.0]heptadecan- 5,9-dion (A) und (1S,3S(Z),7S,10R,11S,12S,16S)-7,11-Dihydroxy-3-(1-fluor-2-(2-methyl-4- thiazolyl)ethenyl)-8,8,10,12,16-pentamethyl-4,17-dioxabicyclo[14.1.0]heptadecan- 5,9-dion (B)
In Analogie zu Beispiel 3 erhält man aus 38 mg der in Beispiel 2 hergestellten Titelverbindung 8.8 mg der Titelverbindung A als unpolare Komponente und 9.0 mg der Titelverbindung B als polare Komponente als farblose Öle.
1H-NMR (MeOH-d4) von A: δ = 0.95 (3H), 1.00 (3H), 0.8-1.65 (8H), 1.14 (3H), 1.28 (3H), 1.33 (3H), 1.91 (1H), 2.18 (2H), 2.54 (2H), 2.68 (3H), 3.05 (1H), 3.43 (1H), 3.63 (1H), 4.26 (1H), 5.66 (1H), 6.24 (1H), 7.52 (1H) ppm.
1H-NMR (MeOH-d4) von B: δ = 0.95 (3H), 1.02 (3H), 0.8-1.7 (8H), 1.14 (3H), 1.29 (3H), 1.32 (3H), 1.77 (1H), 2.09 (1H), 2.23 (1H), 2.5-2.65 (2H), 2.69 (3H), 3.14 (1H), 3.33 (1H), 3.70 (1H), 4.38 (1H), 5.66 (1H), 6.21 (1H), 7.51 (1H) ppm.
Beispiel 5 (4S,7R,8S,9S,13(Z),16S(Z))-4,8-Dihydroxy-16-(1-chlor-2-(2-methyl-4-thiazolyl)- ethenyl)-1-oxa-5,5,7,9,13-pentamethyl-cyclohexadec-13-en-2,6-dion Beispiel 5a 2-Methylthiazol-4-ylcarbaldehyd
50 g Ethyl-2-methylthiazole-4-carboxylat werden in 700 ml Methylenchlorid gelöst, auf -70°C gekühlt und vorsichtig mit 390 ml Diisobutylaluminiumhydrid (1,2 molar in Toluol) versetzt. Nach 1 h war die Umsetzung noch nicht vollständig, es wurden nochmals 40 ml Diisobutylaluminiumhydrid zugetropft. Nach weiteren 40 Min. wurde das Reaktionsgemisch vorsichtig mit 100 ml Isopropanol versetzt und 15 Minuten gerührt. Anschließend werden 215 ml Wasser zugetropft und das Kühlbad entfernt. Nach 2 h wurde der kristalline Niederschlag über ein Fritte abgesaugt, mit Essigester gewaschen und das Filtrat im Vakuum eingedampft. Man erhält 36,1 g der Titelverbindung.
1H-NMR (CDCl3): δ = 2,8 (3H), 8,06 (1H), 9,99 (1H).
Beispiel 5b (2Z)-3-(2-Methylthiazol-4-yl)-2-chlor-2-propensäureethylester
Zu einer Suspension von 9 g Natriumhydrid (60%ige Suspension in Mineralöl) in 165 ml Dimethoxyethan fügt man, innerhalb von 15 Minuten, bei 0°C unter Stickstoff, eine Lösung von 97 g Triethyl-2-chloro-2-phosphonoacetat in 165 ml Dimethoxyethan. Man rührt 45 Minuten bei 24°C und tropft dann eine Lösung von 31,8 g der unter Beispiel 5a hergestellten Titelverbindung in 165 ml Dimethoxyethan zu und rührt anschließend 1 Stunde nach. Nach dem Versetzen mit wäßriger Ammoniumchlorid- Lösung extrahiert man 3× mit Essigester, wäscht die organische Phase mit verdünnter Natriumchlorid-Lösung, trocknet über Natriumsulfat und dampft im Vakuum ein. Das Gemisch der Z- und E-konfigurierten Olefine trennt man durch Säulenchromatographie an Kieselgel. Nach Säulenchromatographie mit Hexan/Essigester 10-30% und anschließender Kristallisation aus Hexan erhält man 32 g der Titelverbindung (FP. 61°C-62°C).
1H-NMR (CDCl3): δ = 1,37 (3H), 2,76 (3H), 4,33 (2H), 8,13 (1H), 8,18 (1H).
Beispiel 5c (2Z)-3-(2-Methylthiazol-4-yl)-2-chlor-2-propen-1-ol
In Analogie zu Beispiel 1c erhält man aus 32 g des in Beispiel 5b hergestellten Esters, in Toluol als Lösungsmittel, 22,8 g der Titelverbindung.
Beispiel 5d (2Z)-3-(2-Methylthiazol-4-yl)-2-chlor-2-propenal
9,8 g des in Beispiel 1c hergestellten Alkohols werden in 500 ml Methylenchlorid gelöst und mit 26,14 ml Triethylamin versetzt. Anschließend werden 16,14 g SO3- Pyridin-Komplex addiert und 1 h bei 24°C gerührt. Nun wird mit Ammoniumchlorid- Lösung versetzt, mit Essigester extrahiert, die organische Phase mit gesättigter Natriumchlorid-Lösung gewaschen und über Natriumsulfat getrocknet. Nach Eindampfen im Vakuum erhält man 10,03 g der Titelverbindung.
Beispiel 5e (3S,4Z)-5-(2-Methylthiazol-4-yl)-1-[(4S,5R)-4-methyl-5-phenyl-oxazolidin-2-on-3- yl]-3-hydroxy-4-chlor-4-penten-1-on
In Analogie zu Beispiel 1e erhält man aus 3,3 g des in Beispiel 5d hergestellten Aldehyds 1,4 g der Titelverbindung.
1H-NMR (CDCl3): δ = 0,95 (3H), 2,7 (3H), 3,38 (1H), 3,45-3,55 (1H), 3,56 (1H), 4,8 (1H), 4,89 (1H), 5,7 (1H), 7,18 (1H), 7,28-7,48 (5H), 7,83 (1H).
Beispiel 5f (3S,4Z)-5-(2-Methylthiazol-4-yl)-1-[(4S,5R)-4-methyl-5-phenyl-oxazolidin-2-on-3- yl]-3-(tert.-butyl-dimethylsilyloxy)-4-chlor-4-penten-1-on
In Analogie zu Beispiel 1f erhält man aus 1,4 g des in Beispiel 5e hergestellten Alkohols 580 mg der Titelverbindung.
1H-NMR (CDCl3): δ = 0,11 (3H), 0,15 (3H), 0,9 (9H), 0,85-0,95 (3H), 2,7 (3H), 3,26 (1H), 3,58 (1H), 4,77 (1H), 4,99 (1H), 5,64 (1H), 7,05 (1H), 7,25-7,46 (5H), 7,83 (1H).
Beispiel 5g (3S,4Z)-5-(2-Methylthiazol-4-yl)-3-(tert.-butyl-dimethylsilyloxy)-4-chlor-4- pentensäureethylester
In Analogie zu Beispiel 1g erhält man aus 12,5 g des in Beispiel 5f hergestellten Silylethers 9,1 g der Titelverbindung.
1H-NMR (CDCl3): δ = 0,09 (3H), 0,1 (3H), 0,9 (9H), 1,26 (3H), 2,68-2,78 (2H), 2,72 (3H), 4,15 (2H), 4,82 (1H), 7,04 (1H), 7, 8 (1H).
Beispiel 5h (3S,4Z)-5-(2-Methylthiazol-4-yl)-3-(tert.-butyl-dimethylsilyloxy)-4-chlor-4-penten- 1-ol
In Analogie zu Beispiel 1 h erhält man aus 9,1 g des in Beispiel 5g hergestellten Ethylesters 7,5 g der Titelverbindung.
1H-NMR (CDCl3): δ = 0,09 (3H), 0,14 (3H), 0,94 (9H), 1,92-2,12 (3H), 2,72 (3H), 3,68-3,88 (2H), 4,58 (1H), 7,04 (1H), 7,81 (1H).
Beispiel 5i (3S,4Z)-5-(2-Methylthiazol-4-yl)-3-(tert.-butyl-dimethylsilyloxy)-1-Iod-4-chlor-4- penten
In Analogie zu Beispiel 1i erhält man aus 1,7 g des in Beispiel 5h hergestellten Alkohols 2,02 g der Titelverbindung.
1H-NMR (CDCl3): δ = 0,08 (3H), 0,14 (3H), 0,92 (9H), 2,1-2,33 (2H), 2,72 (3H), 3,2 (2H), 4,45 (1H), 7,03 (1H), 7,82 (1H).
Beispiel 5j (3S,4Z)-5-(2-Methylthiazol-4-yl)-3-(tert.-butyl-dimethylsilyloxy)-4-chlor-4-penten- triphenylphosphoniumiodid
In Analogie zu Beispiel 1j erhält man aus 9.6 g des in Beispiel 51 hergestellten Iodids 14.8 g der Titelverbindung.
1H-NMR (CDCl3): δ = 0,1 (3H), 0,18 (3H), 0,9 (9H), 2,07 (2H), 2,69 (3H), 3,47-3,63 (1H), 3,68-3,85 (1H), 4,99 (1H), 7,21 (1H), 7,67-7,87 (16H).
Beispiel 5k (2S,6E/Z,9S,10Z)-10-chlor-9-[[dimethyl(1,1-dimethylethyl)silyl]oxy]-11-(2-methyl- 4-thiazolyl)-2,6-dimethyl-undeca-6,10-dienol-tetrahydropyran-2-yl-ether
Zu einer Lösung aus 8 g des in Beispiel 5j hergestellten Phosphoniumsalzes in 22 ml Tetrahydrofuran werden, bei 0°C unter Stickstoff, vorsichtig 6,94 ml Butyllithium (1,6molar in Hexan) getropft und 20 Minuten gerührt (dunkelrote Lösung). Nun wurden 1,69 g (6S)-6-Methyl-7-(tetrahydro-2H-pyran-2-y(oxy)-heptan-2-on, gelöst in 11 ml Tetrahydrofuran, zum Reaktionsgemisch getropft. Das Reaktionsgemisch rührte 30 Minuten nach und wurde anschließend mit 11 ml gesättigter Ammoniumchlorid-Lösung versetzt. Nach weiteren 5 Minuten wurde das Reaktionsgemisch mit Essigester verdünnt, 1× mit gesättigter Natriumchlorid-Lösung gewaschen, über Natriumsulfat getrocknet und im Vakuum eingedampft. Nach Säulenchromatographie mit Hexan/Ether 0-50% erhält man 4,8 g der Titelverbindung.
1H-NMR (CDCl3): δ = 0,05-0,1 (6H), 0,85-0,95 (12H), 1,0-2,52 (14H), 1,6 (3H), 2,7 (3H), 3,07-3,27 (1H), 3,42-3,54 (3H), 3,86 (1H), 4,26 (1H), 4,56 (1H), 5,12 (1H), 6,97 (1H), 7,81 (1H).
Beispiel 5l (2S,6E/Z,9S,10Z)-10-chlor-9-[[dimethyl(1,1-dimethylethyl)silyl]oxy]-11-(2-methyl- 4-thiazolyl)-2,6-dimethyl-undeca-6,10-dienol
Zu einer Lösung aus 2,9 g des in Beispiel 5k hergestellten Olefins in 40 ml Ethanol werden 134,38 mg Pyridinium-p-toluolsulfonat addiert und 6 Stunden, bei 55°C unter Stickstoff, gerührt. Anschließend wird im Vakuum eingedampft. Nach Säulenchromatographie mit Hexan/Essigester 0-30% erhält man 1,73 g der Titelverbindung.
1H-NMR (CDCl3): δ = 0,05-0,1 (6H), 0,92 (9H), 1,02/1,09 (3H), 1,59/1,61 (3H), 1,15-1,8 (4H), 1,93-2,08 (2H), 2,23-2,52 (3H), 2,72 (3H), 4,27 (1H), 5,15 (1H), 6,95/6,98 (1H), 7,81 (1H), 9,54/9,6 (1H).
Beispiel 5m (2S,6E/Z,9S,10Z)-10-chlor-9-[[dimethyl(1,1-dimethylethyl)silyl]oxy]-11-(2- methyl-4-thiazolyl)-2,6-dimethyl-undeca-6,10-dienal
Zu einer Lösung aus 1,5 g des in Beispiel 51 hergestellten Alkohols in 32,7 ml. Methylenchlorid und 11 ml Dimethylsulfoxid gibt man bei Raumtemperatur unter Stickstoff 2,28 ml Triethylamin. Anschließend wird das Reaktionsgemisch mit 1,042 g SO3-Pyridin-Komplex versetzt und 35 Minuten gerührt. Nach Zugabe von gesättigter Ammoniumchlorid-Lösung wird 5 Minuten nachgerührt, mit Ether verdünnt, mit halbgesättigter Natriumchlorid-Lösung gewaschen, die organische Phase über Natriumsulfat getrocknet und im Vakuum eingedampft. Man erhält 216 mg der Titelverbindung.
Beispiel 5n (3S,6R,7S,8S,12E/Z,15S,16Z)-16-Chlor-17-(2-methyl-4-thiazolyl)-5-oxo-1,3,15- tris[[dimethyl(1,1-dimethylethyl)silyl]oxy]-4,4,6,8,12-pentamethyl-heptadeca- 12,16-dien-7-ol
3,3 ml Butyllithium (1,6 molar in Hexan) werden auf 0°C gekühlt und vorsichtig mit einer Lösung aus 535 mg Diisopropylamin in 12 ml Tetrahydrofuran versetzt. Anschließend wird das Reaktionsgemisch auf -70°C gekühlt und mit einer Lösung aus 1,78 g (35)-1,3-Bis[[dimethyl(1,1-dimethylethyl)silil]oxy]-4,4-dimethyl-heptan-5-on in 12 ml Tetrahydrofuran zugetropft. Es wird 1 Stunde bei bleibender Temperatur gerührt. Nun wird eine Lösung aus 1,34 g des in Beispiel 5 m herstellten Aldehyds in 9,7 ml Tetrahydrofuran zum Reaktionsgemisch getropft und nochmals 1,5 Stunden gerührt. Anschließend wird mit gesättigter Ammoniumchlorid-Lösung versetzt, mit Ether verdünnt, 2× mit halbgesättigter Natriumchlorid-Lösung gewaschen, die organische Phase mit Natriumsulfat getrocknet und im Vakuum eingeengt. Nach Säulenchromatographie mit Hexan/Essigester 25% erhält man 2,52 g der Titelverbindung.
1H-NMR (CDCl3): δ = 0,0-0,1 (18H), 0,77/0,81 (3H), 0,7-1,8 (8H), 0,85-0,9 (27H), 1,0 (3H), 1,07 (3H), 1,21 (3H), 1,58 (3H), 1,9-2,04 (2H), 2,34-2,47 (2H), 2,71 (3H), 3,28 (2H), 3,53-3,7 (2H), 3,88 (1H), 4,18-4,28 (1H), 5,11 (1H), 6,92 (1H), 7,79 (1H).
Beispiel 50 (3S,6R,7S,8S,12E/Z,15S,16Z)-16-Chlor-17-(2-methyl-4-thiazolyl)-5-oxo-1,3,7,15- tetrakis[[dimethyl(1,1-dimethylethyl)silyl]oxy]-4,4,6,8,12-pentamethyl- heptadeca-12,16-dien
Zu einer Lösung aus 1,52 g des in Beispiel 5n hergestellten Alkohols gelöst in 21,3 ml Methylenchlorid tropft man bei 0°C unter Stickstoff 722 µl Lutidin. Nach 5 Minuten gibt man 813 µl tert.-Butyldimethylsilyltriflat zum Reaktionsgemisch und rührt 1,5 Stunden nach. Anschließend wird mit Ether verdünnt, 1× mit 1N Salzsäure, 2× mit gesättigter Natriumchlorid-Lösung gewaschen, die organische Phase mit Natriumsulfat getrocknet und im Vakuum eingedampft. Nach Säulenchromatographie mit Hexan/Ether 0-20% erhält man 221 mg der Titelverbindung.
Beispiel 5p (3S,6R,7S,8S,12E/Z,15S,16Z)-16-Chlor-17-(2-methyl-4-thiazolyl)-5-oxo-3,7,15- tris[[dimethyl(1,1-dimethylethyl)silyl]oxy]-4,4,6,8,12-pentamethyl-heptadeca- 12,16-dien-1-ol
Zu einer Lösung aus 1,9 g des in Beispiel 50 hergestellten Silylethers in 15 ml Methylenchlorid und 15 ml Methanol gibt man bei 0°C unter Stickstoff 453,45 mg Campher-10-sulfonsäure und rührt 2 Stunden nach. Anschließend wird mit 13 ml Triethylamin versetzt, nach 5 Minuten wird das Reaktionsgemisch auf gesättigte Natriumhydrogencarbonat-Lösung gegeben, mit Methylenchlorid verdünnt, die organische Phase 1× mit gesättigter Natriumchlorid-Lösung gewaschen, über Natriumsulfat getrocknet und im Vakuum eingedampft. Man erhält 1,41 g der Titelverbindung.
1H-NMR (CDCl3): δ = 0,02-0,13 (18H), 0,85-0,96 (30H), 1,08 (3H), 1,23 (3H), 1,6 (3H), 1,0-2,1 (10H), 2,32-2,52 (2H), 2,72 (3H), 3,13 (1H), 3,65 (2H), 3,8 (1H), 4,08 (1H), 4,21-4,3 (1H), 5,13 (1H), 6,98 (1H), 7, 8 (1H).
Beispiel 5q (3S,6R,7S,8S,12E/Z,15S,16Z)-16-Chlor-17-(2-methyl-4-thiazolyl)-5-oxo-3,7,15- tris[[dimethyl(1,1-dimethylethyl)silyl]oxy]-4,4,6,8,12-pentamethyl-heptadeca- 12,16-dienal
Zu einer Lösung aus 1,4 g des in Beispiel 5p hergestellten Alkohols in 19 ml Methylenchlorid und 4,5 ml Dimethylsulfoxid gibt man bei Raumtemperatur unter Stickstoff 1,14 ml Triethylamin. Anschließend wird das Reaktionsgemisch mit 520 mg SO3-Pyridin-Komplex versetzt und 2 Stunden gerührt. Nach Zugabe von gesättigter Ammoniumchlorid-Lösung wird 5 Minuten gerührt, mit Ether verdünnt, 2× mit halbgesättigter Natriumchlorid-Lösung gewaschen, die organische Phase über Natriumsulfat getrocknet und im Vakuum eingedampft. Man erhält 1,44 g der Titelverbindung.
Beispiel 5r (3S,6R,7S,8S,12E/Z,15S,16Z)-16-Chlor-17-(2-methyl-4-thiazolyl)-5-oxo-3,7,15- tris[[dimethyl(1,1-dimethylethyl)silyl]oxy]-4,4,6,8,12-pentamethyl-heptadeca- 12,16-diensäure
Zu einer Lösung aus 1,44 g des in Beispiel 5q hergestellten Aldehyds in 35 ml Aceton gibt man bei -30°C unter Stickstoff 1,89 ml Jones Reagenz. Nach 45 Minuten wird das Reaktionsgemisch mit 1,3 ml Isopropanol versetzt, 10 Minuten gerührt, mit Ether verdünnt, 3× mit halbgesättigter Natriumchlorid-Lösung gewaschen, die organische Phase über Natriumsulfat getrocknet und im Vakuum eingedampft. Nach Reinigung des Rohproduktes mittels präparativer Dünnschichtchromatographie mit Hexan/Ether 50% (3× gelaufen) erhält man 202 mg der Titelverbindung.
1H-NMR (CDCl3): δ = 0,03-0,16 (18H), 0,88-0,94 (30H), 1,09 (3H), 1,15 (3H), 1,18 (3H), 1,7 (3H), 1,0-2,44 (12H), 2,7 (3H), 3,15 (1H), 3,72 (1H), 4,32 (1H), 4,42 (1H), 5,19 (1H), 7,25 (1H), 7,87 (1H).
Beispiel 55 (3S,6R,7S,8S,12E/Z,15S,16Z)-16-Chlor-17-(2-methyl-4-thiazolyl)-5-oxo-3,7- bis[[dimethyl(1,1-dimethylethyl)silyl]oxy]-15-hydroxy-4,4,6,8,12-pentamethyl- heptadeca-12,16-diensäure
Zu einer Lösung aus 22 mg der in Beispiel 5r hergestellten Carbonsäure in 4,3 ml Tetrahydrofuran gibt man bei Raumtemperatur unter Stickstoff 433,7 mg Tetrabutylammoniumfluorid und rührt 1,5 h nach. Anschließend wird mit Essigester verdünnt, 1× mit 0,5N Salzsäure, 2× mit halbgesättigter Natriumchlorid-Lösung gewaschen, über Natriumsulfat getrocknet und im Vakuum eingedampft. Nach Säulenchromatographie mit Hexan/Essigester 50% erhält man 43 mg der Titelverbindung.
1H-NMR (CDCl3): δ = 0,03-0,17 (12H), 0,83-0,98 (21H), 1,08 (3H), 1,18 (6H), 1,1-2,6 (12H), 1,73 (3H), 1,95 (2H), 2,22 (2H), 2,71 (3H), 3,16 (1H), 3,77 (1H), 4,33 (1H), 4,42 (1H), 5,2 (1H), 7,29 (1H), 7,85 (1H).
Beispiel 5t (A) (4S,7R,8S,9S,13(E),16S(Z))-4,8-Bis[[dimethyl(1,1-dimethylethyl)silyl]oxy]-16- (1-chlor-2-(2-methyl-4-thiazolyl)ethenyl)-1-oxa-5,5,7,9,13-pentamethyl- cyclohexadec-13-en-2,6-dion (B) (4S,7R,8S,9S,13(Z),16S(Z))-4,8-Bis[[dimethyl(1,1-dimethylethyl)silyl]oxy]-16- (1-chlor-2-(2-methyl-4-thiazolyl)ethenyl)-1-oxa-5,5,7,9,13-pentamethyl- cyclohexadec-13-en-2,6-dion
Zu einer Lösung aus 180 mg des in Beispiel 55 hergestellten Alkohols in 3,4 ml Tetrahydrofuran gibt man bei 0°C unter Stickstoff 72,7 µl Triethylamin. Anschließend werden 48,2 µl 2,4,6-Trichlorbenzoylchlorid addiert und 1 Stunde gerührt. Nun wird diese Suspension über 3 Stunden mit einer Dosierpumpe zu einer Lösung aus 289,91 mg 4-N,N-Dimethylaminopyridin in 25,4 ml Toluol getropft und 1 Stunde gerührt. Dann wird das Reaktionsgemisch wird im Vakuum eingedampft. Nach Säulenchromatographie mit Hexan/Essigester 20% und anschließender Reinigung mittels präparativer Dünnschichtchromatographie mit Methylenchlorid/Methanol 0,5% erhält man 32 mg (E-Verbindung) Titelverbindung A und 81 mg (Z-Verbindung) der Titelverbindung B.
(B) 1H-NMR (CDCl3): δ = 0,02-0,15 (12H), 0,85 (9H), 0,97 (9H), 0,9-2,95 (11H), 1,0 (3H), 1,1 (3H), 1,15 (3H), 1,27 (3H), 1,57 (3H), 2,71 (3H), 3,04 (1H), 3,9 (1H), 4,01 (1H), 5,13 (1H), 5,19 (1H), 7,06 (1H), 7,83 (1H)
Beispiel 5 (4S,7R,8S,9S,13(Z),16S(Z))-4,8-Dihydroxy-16-(1-chlor-2-(2-methyl-4- thiazolyl)ethenyl)-1-oxa-5,5,7,9,13-pentamethyl-cyclohexadec-13-2,6-2,6-dion
Zu einer Lösung aus 80 mg der in Beispiel 5t hergestellten Titelverbindung B in 314 µl Methylenchlorid gibt man bei -20°C unter Stickstoff 702 µl einer 20%igen Lösung von Trifluoressigsäure in Methylenchlorid und rührt 5,5 Stunden bei 0°C nach. Anschließend wird das Reaktionsgemisch im Vakuum eingedampft. Nach Säulenchromatographie mit Hexan/Essigester 50% erhält man 43,8 mg der Titelverbindung.
1H-NMR (DMSO-d6, 100°C): δ = 0,94 (3H), 0,82-3,3 (14H), 1,11 (3H), 1,23 (6H), 1,67 (3H), 2,64 (3H), 3,58 (1H), 4,27 (1H), 5,16 (1H), 5,39 (1H), 7,06 (1H), 7,77 (1H).
Beispiel 6 (4S,7R,8S,9S,13(E),16S(Z))-4,8-Dihydroxy-16-(1-chlor-2-(2-methyl-4- thiazolyl)ethenyl)-1-oxa-5,5,7,9,13-pentamethyl-cyclohexadec-13-en-2,6-dion
Zu einer Lösung aus 45 mg der in Beispiel 5t hergestellten Titelverbindung A in 177 µl Methylenchlorid gibt man bei -20°C unter Stickstoff 395 µl einer 20%igen Lösung von Trifluoressigsäure in Methylenchlorid und rührt 5,5 Stunden bei 0°C nach. Anschließend wird das Reaktionsgemisch im Vakuum eingedampft. Nach Säulenchromatographie mit Hexan/Essigester 50% erhält man 27 mg der Titelverbindung.
1H-NMR (DMSO-d6, 100°C): 0,8-2,7 (13H), 0,91 (3H), 1,11 (3H), 1,12 (6H), 1,6 (3H), 2,65 (3H), 3,25 (1H), 3,54 (1H), 4,46 (1H), 5,18 (1H), 5,44 (1H), 7,05 (1H), 7,83 (1H).
Beispiel 7 (A) (1S,3S(Z),7S,10R,11S,12S,16R)-7,11-Dihydroxy-3-(1-chlor-2-(2-methyl-4- thiazolyl)ethenyl)-8,8,10,12,16-pentamethyl-4,17- dioxabicyclo[14.1.0]heptadecan-5,9-dion (B) (1R,3S(Z),7S,10R,11S,12S,16S)-7,11-Dihydroxy-3-(1-chlor-2-(2-methyl-4- thiazolyl)ethenyl)-8,8,10,12,16-pentamethyl-4,17- dioxabicyclo[14.1.0]heptadecan-5,9-dion
Zu einer Lösung aus 14 mg des in Beispiel 5 hergestellten Epothilon-D-Derivates in 0,3 ml Acetonitril gibt man bei 0°C unter Stickstoff 154,8 µg Ethylendiamintetraessigsäure-di-Natriumsalz und 324,73 µg 1,1,1-Trifluoraceton. Anschließend werden 34,65 µg Oxone und 17,74 µg Natriumhydrogencarbonat zum Reaktionsgemisch gegeben und 4 Stunden gerührt. Nun wird mit 2 ml Natriumthiosulfat-Lösung versetzt, mit 100 ml Essigester verdünnt, mit halbgesättigter Natriumchlorid-Lösung gewaschen, über Natriumsulfat getrocknet und im Vakuum eingedampft. Nach Reinigung des Rohproduktes mittels präparativer Dünnschichtchromatographie mit Methylenchlorid/Methanol 20% erhält man 3,8 mg (polar) A und 2,5 mg (unpolar) B der Titelverbindung.
(A) 1H-NMR (MeOH-d4: δ = 0,8-2,6 (9H), 1,03 (3H), 1,2 (3H), 1,29 (6H), 1,33 (3H), 2,7 (3H), 2,93 (1H), 3,67 (1H), 4,23 (1H), 5,63 (1H), 7,12 (1H), 7,44 (1H).
Beispiel 8 (A) (1S,3S(Z),7S,10R,11S,12S,16S)-7,11-Dihydroxy-3-(1-chlor-2-(2-methyl-4- thiazolyl)ethenyl)-8,8,10,12,16-pentamethyl-4,17- dioxabicyclo[14.1.0]heptadecan-5,9-dion (B) (1 R,3S(Z),7S,10R,11S,12S,16R)-7,11-Dihydroxy-3-(1-chlor-2-(2-methyl-4- thiazolyl)ethenyl)-8,8,10,12,16-pentamethyl-4,17- dioxabicyclo[14.1.0]heptadecan-5,9-dion
Zu einer Lösung aus 14 mg des in Beispiel 6 hergestellten Epothilon-D-Derivates in 0,3 ml Acetonitril gibt man bei 0°C unter Stickstoff 154,8 µg Ethylendiamintetraessigsäure-di-Natriumsalz und 324,73 µg 1,1,1-Trifluoraceton. Anschließend werden 34,65 µg Oxone und 17,74 µg Natriumhydrogencarbonat zum Reaktionsgemisch gegeben und 4 Stunden gerührt. Nun wird mit 2 ml Natriumthiosulfat-Lösung versetzt, mit 100 ml Essigester verdünnt, mit halbgesättigter Natriumchlorid-Lösung gewaschen, über Natriumsulfat getrocknet und im Vakuum eingedampft. Nach Reinigung des Rohproduktes mittels präparativer Dünnschichtchromatographie mit Methylenchlorid/Methanol 20% erhält man 6,8 mg (polar) A und 3,4 mg (unpolar) B der Titelverbindung.
Beispiel 1 aus der hier in Bezug genommenen DE 197 51 200.3 (korresp. zu PCT/EP 98/05064) zur Veranschaulichung des dort beschriebenen Verfahrens Be 50585 00070 552 001000280000000200012000285915047400040 0002019954230 00004 50466ispiel 1 (4S,7R,8S,9S,13(Z),16S(E))-4,8-Dihydroxy-7-ethyl-16-(1-methyl-2-(2-methyl-4- thiazolyl)ethenyl)-1-oxa-5,5,9,13-tetramethyl-cyclohexadec-13-en-2,6-dion Beispiel 1a (3S)-1-Oxa-2-oxo-3-(tetrahydropyran-2(RS)-yloxy)-4,4-dimethyl-cyclopentan
Die Lösung von 74,1 g (569 mmol) D-(-)-Pantolacton in 1 l wasserfreiem Dichlormethan versetzt man unter einer Atmosphäre aus trockenem Argon mit 102 ml 3,4-Dihydro-2H-pyran, 2 g p-Toluolsulfansäure-Pyridiniumsalz und rührt 16 Stunden bei 23°C. Man gießt in eine gesättigte Natriumhydrogencarbonatlösung, trennt die organische Phase ab und trocknet über Natriumsulfat. Nach Filtration und Lösungsmittelabzug chromatographiert man den Rückstand an ca. 5 kg feinem Kieselgel mit einem Gemisch aus n-Hexan und Ethylacetat. Isoliert werden 119,6 g (558 mmol, 98%) der Titelverbindung als farbloses Öl.
1H-NMR (CDCl3): δ = 1,13 (3H), 1,22 (3H), 1,46-1,91 (6H), 3,50-3,61 (1H), 3,86 (1H), 3,92 (1H), 4,01 (1H), 4,16 (1H), 5,16 (1H) ppm.
Beispiel 1b (2RS,3S)-1-Oxa-2-hydroxy-3-(tetrahydropyran-2(RS)-yloxy)-4,4-dimethyl- cyclopentan
Die Lösung von 117,5 g (548 mmol) der nach Beispiel 1a dargestellten Verbindung in 2,4 l wasserfreiem Toluol kühlt man unter einer Atmosphäre aus trockenem Argon auf -70°C, versetzt innerhalb 1 Stunde mit 540 ml einer 1,2molaren Lösung von Diisobutylaluminiumhydrid in Toluol und rührt noch 3 Stunden bei -70°C. Man läßt auf -20°C erwärmen, versetzt mit gesättigter Ammoniumchloridlösung, Wasser und trennt die ausgefallenen Aluminiumsalze durch Filtration über Celite ab. Das Filtrat wird mit Wasser und gesättigter Natriumchloridlösung gewaschen und über Magnesiumsulfat getrocknet. Isoliert werden nach Filtration und Lösungsmittelabzug 111,4 g (515 mmol, 94%) der Titelverbindung als farbloses Öl, das man ohne Reinigung weiter umsetzt.
IR (CHCl3): 3480, 3013, 2950, 2874, 1262, 1133, 1074, 1026 und 808 cm-1.
Beispiel 1c (3S)-2,2-Dimethyl-3-(tetrahydropyran-2(R)-yloxy)-pent-4-en-1-ol und (3S)-2,2- Dimethyl-3-(tetrahydropyran-2(S)-yloxy)-pent-4-en-1-ol
Die Aufschlämmung von 295 g Methyl-triphenylphosphoniumbromid in 2,5 l wasserfreiem Tetrahydrofuran versetzt man unter einer Atmosphäre aus trockenem Argon bei -60°C mit 313 ml einer 2,4molaren Lösung von n-Butyllithium in n-Hexan, läßt auf 23°C erwärmen, eine Stunde nachrühren und kühlt auf 0°C. Man versetzt mit der Lösung von 66,2 g (306 mmol) der nach Beispiel 1b dargestellten Verbindung in 250 ml Tetrahydrofuran, läßt auf 23°C erwärmen und 18 Stunden rühren. Man gießt in eine gesättigte Natriumhydrogencarbonatlösung, extrahiert mehrfach mit Dichlormethan und trocknet die vereinigten organischen Extrakte über Natriumsulfat. Nach Filtration und Lösungsmittelabzug chromatographiert man den Rückstand an ca. 5 l feinem Kieselgel mit einem Gradientensystem aus n-Hexan und Ethylacetat. Isoliert werden 36,5 g (170 mmol, 56%) des unpolaren, 14,4 g (67,3 mmol, 22%) des polaren THP-Isomeren der Titelverbindung sowie 7,2 g (33,3 mmol; 11%) des Ausgangsmaterials jeweils als farbloses Öl.
1H-NMR (CDCl3), unpolares Isomer: δ = 0,78 (3H), 0,92 (3H), 1,41-1,58 (4H), 1,63-1,87 (2H), 3,18 (1H), 3,41 (1H), 3,48 (1H), 3,68 (1H), 3,94 (1H), 4,00 (1H), 4,43 (1H), 5,19 (1H), 5,27 (1H), 5,75 (1H) ppm.
1H-NMR (CDCl3), polares Isomer: δ = 0,83 (3H), 0,93 (3H), 1,42-1,87 (6H), 2,76 (1H), 3,30 (1H), 3,45 (1H), 3,58 (1H), 3,83 (1H), 3,89 (1H), 4,65 (1H), 5,12-5,27 (2H), 5,92 (1H) ppm.
Beispiel 1d (3S)-1-(tert.-Butyldiphenylsilyloxy)-2,2-dimethyl-pentan-3-(tetrahydropyran-2- yloxy)-pent-4-en
Die Lösung von 59,3 g (277 mmol) des nach Beispiel 1c dargestellten THP- Isomeren-Gemisches in 1000 ml wasserfreiem Dimethylformamid versetzt man unter einer Atmosphäre aus trockenem Argon mit 28 g Imidazol, 85 ml tert.- Butyldiphenylchlorsilan und rührt 16 Stunden bei 23°C. Man gießt in Wasser, extrahiert mehrfach mit Dichlormethan, wäscht die vereinigten organischen Extrakte mit Wasser und trocknet über Natriumsulfat. Nach Filtration und Lösungsmittelabzug chromatographiert man den Rückstand an feinem Kieselgel mit einem Gradientensystem aus n-Hexan und Ethylacetat. Isoliert werden 106,7 g (236 mmol, 85%) der Titelverbindung als farbloses Öl.
1H-NMR (CDCl3): δ = 0,89 (3H), 0,99 (3H), 1,08 (9H), 1,34-1,82 (6H), 3,40 (1H), 3,51 (2H), 3,76 (1H), 4,02 (1H), 4,67 (1H), 5,18 (1H), 5,23 (1H), 5,68 (1H), 7,30-7,48 (6H), 7,60-7,73 (4H) ppm.
Beispiel 1e (3S)-1-(tert.-Butyldiphenylsilyloxy)-2,2-dimethyl-3-(tetrahydropyran-2-yloxy)- pentan-5-ol
Die Lösung von 3,09 g (6,83 mmol) der nach Beispiel 1d dargestellten Verbindung in 82 ml Tetrahydrofuran versetzt man man unter einer Atmosphäre aus trockenem Argon bei 23°C mit 13,1 ml einer 1molaren Lösung von Boran in Tetrahydrofuran und läßt 1 Stunde reagieren. Anschließend versetzt man unter Eiskühlung mit 16,4 ml einer 5%igen Natronlauge sowie 8,2 ml einer 30%igen Wasserstoffperoxidlösung und rührt weitere 30 Minuten. Man gießt in Wasser, extrahiert mehrfach mit Ethylacetat, wäscht die vereinigten organischen Extrakte mit Wasser, gesättigter Natriumchloridlösung und trocknet über Magnesiumsulfat. Den nach Filtration und Lösungsmittelabzug erhaltenen Rückstand reinigt man durch Chromatographie an feinem Kieselgel mit einem Gradientensystem aus n-Hexan und Ethylacetat. Isoliert werden 1,78 g (3,78 mmol, 55%) der Titelverbindung als chromatographisch trennbares Gemisch der beiden THP-Epimeren sowie 0,44 g (1,14 mmol, 17%) der Titelverbindung aus Beispiel 6 jeweils als farbloses Öl.
1H-NMR (CDCl3), unpolares THP-Isomer: δ = 0,80 (3H), 0,88 (3H), 1,10 (9H), 1,18-1,80 (9H), 3,27 (1H), 3,39 (1H), 3,48 (1H), 3,64 (1H), 3,83 (1H), 3,90-4,08 (2H), 4,49 (1H), 7,31-7,50 (6H), 7,58-7,73 (4H) ppm.
1H-NMR (CDCl3), polares THP-Isomer: δ = 0,89 (3H), 0,98 (3H), 1,08 (9H), 1,36-1,60 (4H), 1,62-1,79 (3H), 1,88 (1H), 2,03 (1H), 3,37 (1H), 3,50 (1H), 3,57 (1H), 3,62-3,83 (4H), 4,70 (1H), 7,30-7,48 (6H), 7,61-7,73 (4H) ppm.
Beispiel 1f (3S)-1-(tert.-Butyldiphenylsilyloxy)-2,2-dimethyl-3-hydroxy-pent-4-en
Die Lösung von 106,7 g (236 mmol) der nach Beispiel 1d dargestellten Verbindung in 1,5 l wasserfreiem Ethanol versetzt man unter einer Atmosphäre aus trockenem Argon mit 5,9 g Pyridinium-p-Toluolsulfonat und erhitzt 6 Stunden auf 50°C. Nach Lösungsmittelabzug chromatographiert man den Rückstand an feinem Kieselgel mit einem Gemisch aus n-Hexan und Ethylacetat. Isoliert werden 82,6 g (224 mmol, 95%) der Titelverbindung als farbloses Öl, in dem noch zusätzlich ca. 5g Ethoxy­ tetrahydropyran enthalten sind.
1H-NMR (CDCl3) einer analytischen Probe: δ = 0,89 (6H), 1,08 (9H), 3,45 (1H), 3,49 (1H), 3,58 (1H), 4,09 (1H), 5,21 (1H), 5,33 (1H), 5,93 (1H), 7,34-7,51 (6H), 7,63-7,73 (4H) ppm.
Beispiel 1 g (3S)-1-(tert.-Butyldiphenylsilyloxy)-2,2-dimethyl-pentan-3,5-diol
Die Lösung von 570 mg (1,55 mmol) der nach Beispiel 1f dargestellten Verbindung setzt man in Analogie zu Beispiel 1e um und isoliert nach Aufarbeitung und Reinigung 410 mg (1,06 mmol, 68%) der Titelverbindung als farbloses Öl.
1H-NMR (CDCl3): δ = 0,82 (3H), 0,93 (3H), 1,08 (9H), 1,56-1,79 (2H), 3,11 (1H), 3,50 (2H), 3,78-3,92 (3H), 4,02 (1H), 7,34-7,51 (6H), 7,61-7,71 (4H) ppm.
Beispiel 1 h 4(S)-[2-Methyl-1-(tert.-butyldiphenylsilyloxy)-prop-2-yl]-2,2-dimethyl-[1,3]dioxan
Die Lösung von 100 mg (0,212 mmol) der nach Beispiel 1e dargestellten Verbindungen in 2,6 ml wasserfreiem Aceton versetzt man unter einer Atmosphäre aus trockenem Argon mit 78,9 mg Kupfer(II)sulfat, einer Spatelspitze p- Toluolsulfonsäure-Monohydrat und rührt 16 Stunden bei 23°C. Man versetzt mit gesättigter Natriumhydrogencarbonatlösung, extrahiert mehrfach mit Diethylether, wäscht mit gesättigter Natriumchloridlösung und trocknet über Natriumsulfat. Den nach Filtration und Lösungsmittelabzug erhaltenen Rückstand reinigt man durch Chromatographie an feinem Kieselgel mit einem Gradientensystem aus n-Hexan und Ethylacetat. Isoliert werden 24 mg (56 µmol, 27%) der Titelverbindung als farbloses Öl.
1H-NMR (CDCl3): δ = 0,83 (3H), 0,89 (3H), 1,07 (9H), 1,30 (1H), 1,36 (3H), 1,44 (3H), 1,71 (1H), 3,24 (1H), 3,62 (1H), 3,86 (1H), 3,91-4,03 (2H), 7,31-7,48 (6H), 7,61-7,74 (4H) ppm.
Variante II
320 mg (0,88 mmol) der nach Beispiel 1g dargestellten Verbindung setzt man in Analogie zu Beispiel 1h, Variante I, um und isoliert nach Aufarbeitung und Reinigung 234 mg (0,548 mmol, 62%) der Titelverbindung.
Variante III
Die Lösung von 5,60 g (14,5 mmol) der nach Beispiel 1g dargestellten Verbindung in 250 ml wasserfreiem Dichlormethan versetzt man unter einer Atmosphäre aus trockenem Argon mit 10 ml 2,2-Dimethoxypropan, 145 mg Campher-10-sulfonsäure und rührt 6 Stunden bei 23°C. Man versetzt mit Triethylamin, verdünnt mit Ethylacetat, wäscht mit gesättigter Natriumhydrogencarbonatlösung und trocknet über Natriumsulfat. Nach Filtration und Lösungsmittelabzug chromatographiert man den Rückstand an feinem Kieselgel mit einem Gemisch aus n-Hexan und Ethylacetat. Isoliert werden 5,52 g (12,9 mmol, 89%) der Titelverbindung als farbloses Öl.
Beispiel 1i (4S)-4-(2-Methyl-1-hydroxy-prop-2-yl)-2,2-dimethyl-[1,3]dioxan
Die Lösung von 5,6 g (13,1 mmol) der nach Beispiel 1n dargestellten Verbindung in 75 ml wasserfreiem Tetrahydrofuran versetzt man unter einer Atmosphäre aus trockenem Argon mit 39 ml einer 1molaren Lösung von Tetrabutylammoniumfluorid in Tetrahydrofuran und erwärmt 16 Stunden auf 50°C. Man versetzt mit gesättigter Natriumhydrogencarbonatlösung, extrahiert mehrfach mit Ethylacetat, wäscht mit gesättigter Natriumchloridlösung und trocknet über Natriumsulfat. Den nach Filtration und Lösungsmittelabzug erhaltenen Rückstand reinigt man durch Chromatographie an feinem Kieselgel mit einem Gradientensystem aus n-Hexan und Ethylacetat. Isoliert werden 2,43 g (12,9 mmol, 99%) der Titelverbindung als farbloses Öl.
1H-NMR (CDCl3): δ = 0,87 (3H), 0,90 (3H), 1,35 (1H), 1,37 (3H), 1,43 (3H), 1,77 (1H), 2,93 (1H), 3,36 (1H), 3,53 (1H), 3,79 (1H), 3,87 (1H), 3,96 (1H) ppm.
Beispiel 1k (4S)-4-(2-Methyl-1-oxo-prop-2-yl)-2,2-dimethyl-[1,3]dioxan
Die Lösung von 0,13 ml Oxalylchlorid in 5,7 ml wasserfreiem Dichlormethan kühlt man unter einer Atmosphäre aus trockenem Argon auf -70°C, versetzt mit 0,21 ml Dimethylsulfoxid, der Lösung von 200 mg (1,06 mmol) der nach Beispiel 1i dargestellten Verbindung in 5,7 ml wasserfreiem Dichlormethan und rührt 0,5 Stunden. Anschließend versetzt man mit 0,65 ml Triethylamin, läßt 1 Stunde bei - 30°C reagieren und versetzt mit n-Hexan und gesättigter Natriumhydrogencarbonatlösung. Die organische Phase wird abgetrennt, die wässrige noch mehrfach mit n-Hexan extrahiert, die vereinigten organischen Extrakte mit Wasser gewaschen und über Magnesiumsulfat getrocknet. Den nach Filtration und Lösungsmittelabzug erhaltenen Rückstand setzt man ohne Reinigung weiter um.
Beispiel 1l (4S)-4-((3RS)-2-Methyl-3-hydroxy-hex-2-yl)-2,2-dimethyl-[1,3]dioxan
Die Lösung von 450 mg (2,42 mmol) der nach Beispiel 1 k dargestellten Verbindung in 7 ml wasserfreiem Diethylether versetzt man unter einer Atmosphäre aus trockenem Argon bei 0°C mit 1,21 ml einer 2,4molaren Lösung von Propylmagnesiumbromid in Diethylether, läßt auf 23°C erwärmen und 16 Stunden rühren. Man versetzt mit gesättigter Ammoniumchloridlösung, trennt die organische Phase ab und trocknet über Natriumsulfat. Den nach Filtration und Lösungsmittelabzug erhaltenen Rückstand reinigt man durch Chromatographie an feinem Kieselgel mit einem Gradientensystem aus n-Hexan und Ethylacetat. Isoliert werden 244 mg (1,06 mmol, 44%) der chromatographisch trennbaren 3R- und 3S- Epimeren der Titelverbindung sowie 191 mg der in Beispiel 1 i beschriebenen Titelverbindung jeweils als farbloses Öl.
1H-NMR (CDCl3) unpolares Isomer: δ = 0,87 (3H), 0,89 (3H), 0,94 (3H), 1,25-1,52 (4H), 1,38 (3H), 1,45 (3H), 1,66 (1H), 1,85 (1H), 3,46 (1H), 3,80-4,02 (4H) ppm.
1H-NMR (CDCl3) polares Isomer: δ = 0,73 (3H), 0,92 (3H), 0,95 (3H), 1,19-1,84 (6H), 1,37 (3H), 1,49 (3H), 3,49 (1H), 3,60 (1H), 3,80-4,03 (3H) ppm.
Beispiel 1 m (4S)-4-(2-Methyl-3-oxo-hex-2-yl)-2,2-dimethyl-[1,3]dioxan
Die Lösung von 207 mg (0,90 mmol) eines Gemisches der nach Beispiel 1l dargestellten Verbindungen in 18 ml wasserfreiem Dichlormethan versetzt man mit Molekularsieb (4A, ca. 20 Kugeln), 176 mg N-Methylmorpholino-N-oxid, 18 mg Tetrapropylammoniumperruthenat und rührt 16 Stunden bei 23°C unter einer Atmosphäre aus trockenem Argon. Man engt ein und reinigt das erhaltene Rohprodukt durch Chromatographie an ca. 100 ml feinem Kieselgel mit einem Gradientensystem aus n-Hexan und Ethylacetat. Isoliert werden 185 mg (0,81 mmol, 90%) der Titelverbindung als farbloses Öl.
1H-NMR (CDCl3): δ = 0,88 (3H), 1,04 (3H), 1,12 (3H), 1,22-1,37 (1H), 1,31 (3H), 1,40 (3H), 1,48-1,71 (3H), 2,46 (2H), 3,83 (1H), 3,96 (1H), 4,04 (1H) ppm.
Beispiel 1n 4-tert.-butyldimethylsilyloxy-but-2-in-1-ol
Zu einer Lösung von 100 g 2-Butin-1-ol und 158 g Imidazol in 300 ml Dimethylformamid tropft man bei 0°C unter Stickstoff langsam eine Lösung von 175 g tert.-Butyldimethylsilylchlorid in 100 ml eines 1 : 1 Gemisches von Hexan und Dimethylformamid und rührt 2 Stunden bei 0°C und 16 Stunden bei 22°C. Man verdünnt die Reaktionsmischung mit 2.5 l Ether, wäscht einmal mit Wasser, einmal mit 5%iger Schwefelsäure, einmal mit Wasser, einmal mit gesättigter Natriumhydrogencarbonat-Lösung und mit halbgesättigter Natriumchlorid-Lösung neutral. Nach Trocknung über Natriumsulfat und Filtration wird im Vakuum eingeengt. Den so erhaltenen Rückstand reinigt man durch Chromatographie an Kieselgel. Mit Hexan/0-40% Ether erhält man 74.3 g der Titelverbindung als farbloses Öl.
IR (Film): 3357, 2929, 2858, 1472, 1362, 1255, 1132, 1083, 1015, 837, 778 cm-1.
Beispiel 1o (4R,5S,2'S)-4-Methyl-5-phenyl-3-[1-oxo-2-methyl-6-(tert.-butyldimethylsilyloxy)- hex-4-in-1-yl]-2-oxazolidinon
Zu 21 g einer Lösung des nach Beispiel 1n hergestellten Silylethers in 125 ml Toluol gibt man unter Stickstoff 11.3 ml Lutidin. Anschließend kühlt man auf -40°C und tropft bei dieser Temperatur 17.7 ml Trifluormethansulfonsäureanhydrid zu. Dann verdünnt man mit 100 ml Hexan und rührt 10 Minuten. Diese Lösung wird unter Stickstoff über eine Umkehrfritte zu einer Lösung gegeben, die aus 17.8 g Hexamethyldisilaza in 140 ml Tetrahydrofuran mit 73.5 ml einer 1.6 M Lösung von Butyllithium in Hexan bei -60°C (10 Minuten Nachrührzeit) und 23.3 g (4R,5S)-4-Methyl-5-phenyl-3-propionyl- 2-oxazolidinon in 62 ml Tetrahydrofuran (30 Minuten Nachrührzeit) hergestellt wurde. Man läßt 1 Stunde bei -60°C Nachrühren, versetzt dann mit 6 ml Essigsäure in 5 ml Tetrahydrofuran und läßt die Reaktionsmischung auf 22°C erwärmen. Man gibt auf 80 ml Wasser und extrahiert dreimal mit Ether. Die vereinigten organischen Phasen werden zweimal mit gesättigter Natriumchlorid-Lösung gewaschen und über Natriumsulfat getrocknet. Nach Filtration wird im Vakuum eingeengt. Den so erhaltenen Rückstand reinigt man durch Chromatographie an Kieselgel. Mit Hexan/0-20% Ether erhält man 16.0 g der Titelverbindung als farbloses Öl.
1H-NMR (CDCl3): δ = 0.10 (6H), 0.90 (9H), 0.92 (3H), 1.28 (3H), 2.47 (1H), 2.61 (1H), 3.96 (1H), 4.26 (2H), 4.78 (1H), 5.68 (1H), 7.31 (1H), 7.3-7.5 (3H) ppm.
Beispiel 1p (2S)-2-Methyl-6-(tert.-butyldimethylsilyloxy)-4-hexinsäureethylester
Zu einer Lösung von 39.3 g des nach Beispiel 10 hergestellten Alkylierungsproduktes in 120 ml Ethanol gibt man unter Stickstoff 9.0 ml Titan(IV)ethylat und erhitzt unter Rückfluß für 4 Stunden. Die Reaktionsmischung wird im Vakuum eingeengt und der Rückstand in 100 ml Essigester gelöst. Man gibt 3 ml Wasser hinzu, rührt für 20 Minuten, saugt vom Niederschlag ab und wäscht gut mit Essigester nach. Das Filtrat wird eingeengt, mit 200 ml Hexan versetzt und vom Niederschlag abfiltriert. Der Niederschlag wird gut mit Hexan gewaschen. Das Filtrat wird im Vakuum eingeengt und der so erhaltene Rückstand durch Chromatographie an Kieselgel gereinigt. Mit Hexan/0-20% Ether erhält man 25.4 g der Titelverbindung als farbloses Öl.
1H-NMR (CD2Cl2): δ = 0.10 (3H), 0.90 (9H), 1.2-1.3 (6H), 2.37 (1H), 2.54 (1H), 2.60 (1H), 4.12 (2H), 4.27 (2H) ppm.
Beispiel 1q (2S)-2-Methyl-6-(tert.-butyldimethylsilyloxy)-hexansäureethylester
Eine Lösung von 10.5 g des nach Beispiel 1p hergestellten Esters in 200 ml Essigester versetzt man mit 1 g 10% Palladium auf Kohle und rührt 3 Stunden bei 22°C in einer Wasserstoffatmosphäre. Anschließend filtriert man vom Katalysator ab, wäscht gut mit Essigester nach und engt das Filtrat im Vakuum ein. Den so erhaltenen Rückstand reinigt man durch Chromatographie an Kieselgel. Mit Hexan/0-10% Ether erhält man 9.95 g der Titelverbindung als farbloses Öl.
1H-NMR (CD2Cl2): δ = 0.01 (6H), 0.84 (9H), 1.07 (3H), 1.18 (3H), 1.2 -1.7 (6H), 2.38 (1H), 3.57 (2H), 4.05 (2H) ppm.
Beispiel 1 r (2S)-2-Methyl-6-(tert.-butyldimethylsilyloxy)-hexan-1-ol
Zu einer Lösung aus 9.94 g des nach Beispiel 1q hergestellten Esters in 130 ml Toluol gibt man bei -40°C unter Stickstoff 63 ml einer 1.2 M Lösung von Diisobutylaluminiumhydrid in Toluol und rührt 1 Stunde bei dieser Temperatur. Anschließend gibt man vorsichtig 15 ml Isopropanol und nach 10 Minuten 30 ml Wasser hinzu, läßt auf 22°C kommen und rührt bei dieser Temperatur 2 Stunden. Man filtriert vom Niederschlag ab, wäscht gut mit Essigester nach und engt das Filtrat im Vakuum ein. Der so erhaltene Rückstand wird durch Chromatographie an Kieselgel gereinigt. Mit Hexan/0-30% Ether erhält man 7.9 g der Titelverbindung als farbloses Öl. [α]D -8.1° (c = 0.97, CHCl3)
1H-NMR (CDCl3): δ = 0.07 (3H), 0.89 (9H), 0.91 (3H), 1.0-1.7 (7H), 3.48 (2H), 3.52 (2H) ppm.
Beispiel 1s (2S)-2-Methyl-6-(tert.-butyldimethylsilyloxy)-1-(tetrahydro-2H-pyran-2-yloxy)- hexan
Zu 6.4 g des nach Beispiel 1r hergestellten Alkohols in 26 ml Methylenchlorid gibt man bei 0°C unter Argon 3.52 ml Dihydropyran gefolgt von 49 mg p- Toluolsulfonsäure-Monohydrat. Nach 1.5 Stunden Rühren bei 0°C wird mit 10 ml gesättigte Natriumhydrogencarbonat-Lösung versetzt und mit Ether verdünnt. Die organische Phase wird zweimal mit halbgesättigter Natriumchlorid-Lösung gewaschen und über Natriumsulfat getrocknet. Nach Filtration wird im Vakuum eingeengt und der so erhaltene Rückstand durch Chromatographie an Kieselgel gereinigt. Mit Hexan/0-5% Ether erhält man 4.75 g der Titelverbindung als farbloses Öl.
1H-NMR (CDCl3): = δ 0.05 (6H), 0.89 (9H), 0.92 (3H), 1.0-1.9 (13H), 3.19 (1H), 3.50 (1H), 3.55-3.65 (3H), 4.87 (1H), 4.57 (1H) ppm.
Beispiel 1t (5S)-5-Methyl-6-(tetrahydro-2H-pyran-2-yloxy)-hexan-1-ol
Zu einer Lösung von 4.7 g des nach Beispiel 15 hergestellten THP-Ethers in 170 ml Tetrahydrofuran gibt man unter Stickstoff 13.5 g Tetrabutylammoniumfluorid- Trihydrat und rührt 3 Stunden. Anschließend verdünnt man die Reaktionsmischung mit 800 ml Ether und wäscht dreimal mit je 20 ml halbgesättigter Natriumchlorid- Lösung und trocknet über Natriumsulfat. Nach Filtration wird im Vakuum eingeengt und der so erhaltene Rückstand durch Chromatographie an Kieselgel gereinigt. Mit Hexan/0-50% Essigester erhält man 2.88 g der Titelverbindung als farbloses Öl.
1H-NMR (CD2Cl2): δ = 0.90/0.92 (3H), 1.1-1.9 (13H), 3.18 (1H), 3.40-3.65 (4H), 3.82 (1H), 4.53 (1H) ppm.
Beispiel 1u (5S)-5-Methyl-6-(tetrahydro-2H-pyran-2-yloxy)-hexanal
Zu 1.08 ml Oxalylchlorid gelöst in 10 ml Methylenchlorid tropft man unter Stickstoff vorsichtig bei -70°C 1.9 ml Dimethylsulfoxid gelöst in 7 ml Methylenchlorid und rührt 10 Minuten bei dieser Temperatur. Anschließend tropft man eine Lösung von 2.0 g des nach Beispiel 1t hergestellten Alkohols in 7 ml Methylenchlorid zu und rührt 2 Stunden zwischen -60°C und -70°C. Dann gibt man 3.86 ml Triethylamin zu, und nach 1 Stunde Rühren bei -60°C wird die Reaktionsmischung auf 30 ml Wasser gegeben. Nach Phasentrennung wird die wäßrige Pase zweimal mit je 30 ml Methylenchlorid extrahiert. Die vereinigten organischen Phasen werden dreimal mit gesättigter Natriumchlorid-Lösung gewaschen. Nach dem Trocknen über Natriumsulfat und Filtration wird im Vakuum eingeengt. Man erhält 1.99 g des Aldehyds, der ohne weitere Reinigung verwendet wird.
Beispiel 1v (2RS,6S)-6-Methyl-7-(tetrahydro-2H-pyran-2-yloxy)-heptan-2-ol
Zu einer Lösung von 1.98 g des nach Beispiel 1u hergestellten Aldehyds in 30 ml Ether tropft man unter Stickstoff bei 0°C langsam 6.16 ml einer 3M Methylmagnesiumbromid-Lösung in Ether. Nach 60 Minuten gießt man langsam auf 50 ml eiskalte gesättigte Ammoniumchlorid-Lösung und extrahiert dreimal mit Ether. Die vereinigten organischen Phasen werden einmal mit Wasser zweimal mit gesättigter Natriumchlorid-Lösung gewaschen und über Natriumsulfat getrocknet. Nach Filtration wird im Vakuum eingeengt und der so erhaltene Rückstand durch Chromatographie an Kieselgel gereinigt. Mit Hexan/0-60% Ether erhält man 1.57 g der Titelverbindung als farbloses Öl.
1H-NMR (CD2Cl2): δ = 0.90/0.93 (3H), 1.15 (3H), 1.0-1.9 (13H), 3.18 (1H), 3.4-3.6 (2H), 3.7-3.9 (2H), 4.53 (1H) ppm.
Beispiel 1w (2S,6RS)-2-Methyl-6-(tert.-butyl-diphenylsilyloxy)-1-(tetrahydro-2H-pyran-2- yloxy)-heptan
Zu einer Lösung von 1.57 g des nach Beispiel 1v hergestellten Alkohols und 1.11 g Imidazol in 20 ml Dimethylformamid gibt man bei 0°C unter Stickstoff 2.13 ml tert.- Butyldiphenylsilylchlorid, rührt 15 Minuten bei 0°C und 16 Stunden bei 22°C. Man verdünnt die Reaktionsmischung mit 200 ml Ether, wäscht einmal mit Wasser, einmal mit 10%iger Schwefelsäure, einmal mit gesättigter Natriumhydrogencarbonat-Lösung und mit gesättigter Natriumchlorid-Lösung neutral. Nach Trocknung über Natriumsulfat und Filtration wird im Vakuum eingeengt. Den so erhaltenen Rückstand reinigt man durch Chromatographie an Kieselgel. Mit Hexan/0-10% Ether erhält man 2.87 g der Titelverbindung als farbloses Öl.
1H-NMR (CDCl3): δ = 0.87/0.89 (3H), 1.04 (9H), 0.9-1.9 (16H), 3.15 (1H), 3.4-3.6 (2H), 3.8-3.9 (2H), 4.56 (1H), 7.3-7.5 (6H), 7.69 (4H) ppm.
Beispiel 1x (2S,6RS)-2-Methyl-6-(tert.-butyl-diphenylsilyloxy)-heptan-1-ol
Zu einer Lösung von 2.3 g des nach Beispiel 1w hergestellten Silylethers in 100 ml Ethanol gibt 131 mg Pyridinium-p-toluolsulfonat und rührt 4 Stunden bei 40°C. Anschließend wird im Vakuum eingeengt und der so erhaltene Rückstand durch Chromatographie an Kieselgel gereinigt. Mit Hexan/20% Ether erhält man 1.68 g der Titelverbindung als farbloses Öl.
Beispiel 1y (2S,6RS)-2-Methyl-6-(tert.-butyl-diphenylsilyloxy)-heptanal
2,13 g des unter Beispiel 1x dargestellten Alkohols oxidiert man in Analogie zu Beispiel 1u und isoliert nach Aufarbeitung und chromatographischer Reinigung 2,10 g der Titelverbindung als farbloses Öl.
1H-NMR (CDCl3): δ = 1,00-1,12 (15H), 1,18-1,63 (6H), 2,22 (1H), 3,83 (1H), 7,32-­ 7,47 (6H), 7,61-7,72 (4H), 9,54 (1H) ppm.
Beispiel 1z (S)-Dihydro-3-hydroxy-2(3H)-furanon
10 g L-(-)-Äpfelsäure werden in 45 ml Trifluoressigsäureanhydrid 2 Stunden bei 25°C gerührt. Danach engt man im Vakuum ein, addiert zu dem Rückstand 7 ml Methanol und läßt 12 Stunden nachrühren. Anschließend wird im Vakuum eingeengt. Der erhaltene Rückstand wird in 150 ml absolutem Tetrahydrofuran gelöst. Man kühlt auf 0°C und addiert 150 ml Boran-Tetrahydrofuran-Komplex und läßt 2,5 Stunden bei 0°C nachrühren. Danach werden 150 ml Methanol addiert. Man läßt eine Stunde bei Raumtemperatur nachrühren und engt dann im Vakuum ein. Das erhaltene Rohprodukt wird in 80 ml Toluol gelöst. Man addiert 5 g Dowex### (aktiviert, sauer) und kocht eine Stunde unter Rückfluß. Anschließend wird das Dowex### abfiltriert und das Filtrat im Vakuum eingeengt. Das erhaltene Rohprodukt (7,61 g) wird ohne Aufreinigung in die Folgestufe eingesetzt.
Beispiel 1aa (S)-Dihydro-3-[[(1,1-dimethylethyl)diphenylsilyl]oxy]-2(3H)-furanon
Zu einer Lösung von 7,61 g der unter Beispiel 1z beschriebenen Substanz und 10 g Imidazol in 100 ml N,N-Dimethylformamid werden 24 ml tert.-Butyldiphenylsilylchlorid addiert. Man läßt zwei Stunden bei 25°C nachrühren und gießt dann das Reaktionsgemisch auf eiskalte gesättigte Natriumhydrogencarbonatlösung. Man extrahiert mit Ethylacetat, wäscht die organische Phase mit gesättigter Natriumchloridlösung, trocknet über Natriumsulfat und engt im Vakuum ein. Nach Säulenchromatographie des Rohprodukts an Kieselgel mit einem Gemisch aus Hexan/Ethylacetat werden 13,4 g der Titelverbindung erhalten.
1H-NMR (CDCl3): δ = 7,72 (2H), 7,70 (2H), 7,40-7,50 (6H), 4,30-4,42 (2H), 4,01 (1H), 2,10-2,30 (2H), 1,11 (9H) ppm.
Beispiel 1ab (2RS,3S)-3-[[[1,1-Dimethylethyl)diphenylsilyl]oxy]tetrahydro-2-furanol
Zu einer Lösung von 13,4 g der unter Beispiel 1aa beschriebenen Substanz in 150 ml absolutem Tetrahydrofuran werden 80 ml einer 1molaren Lösung von Diisobutylaluminiumhydrid in Hexan bei -78°C addiert. Man rührt 45 Minuten bei -78°C nach und quencht dann mit Wasser. Man extrahiert mit Ethylacetat, wäscht die organische Phase mit gesättigter Natriumchloridlösung, trocknet über Natriumsulfat und engt im Vakuum ein. Man erhält 13,46 g der Titelverbindung, welche ohne Reinigung in die Folgestufe eingesetzt wird.
Beispiel 1ac (2RS,3S)-3-[[[1,1-Dimethylethyl)diphenylsilyl]oxy]-1,4-pentandiol
Zu 20 ml einer 3molaren Lösung von Methylmagnesiumchlorid in Tetrahydrofuran wird bei 0°C eine Lösung von 13,46 g der unter Beispiel 1ab beschriebenen Substanz in 150 ml absolutem Tetrahydrofuran getropft. Man läßt eine Stunde bei 0°C nachrühren und gießt dann auf gesättigte wäßrige Ammoniumchloridlösung. Man extrahiert mit Ethylacetat, wäscht die organische Phase mit gesättigter Natriumchloridlösung, trocknet über Natriumsulfat und engt im Vakuum ein. Nach Säulenchromatographie des Rohprodukts an Kieselgel mit einem Gemisch aus Hexan/Ethylacetat werden 11,42 g der Titelverbindung erhalten.
1H-NMR (CDCl3): δ = 7,65-7,75 (4H), 7,40-7,55 (6H), 5,20 (1H), 4,30 (2H), 3,70 (1H), 1,80 (2H), 1,05 (9H) ppm.
Beispiel 1ad (2RS,3S)-5-[[Dimethyl(1,1-dimethylethyl)silyl]oxy]-3-[[(1,1- dimethylethyl)diphenylsilyl]oxy]-2-pentanol
Zu einer Lösung von 11,42 g der unter Beispiel 1ac beschriebenen Substanz und 3,25 g 1H-Imidazol in 120 ml N,N-Dimethylformamid werden 4,9 g tert.- Butyldimethylsilylchlorid addiert. Man läßt 2 Stunden bei 25°C nachrühren und gießt dann das Reaktionsgemisch auf eiskalte gesättigte Natriumhydrogencarbonatlösung. Man extrahiert mit Ethylacetat, wäscht die organische Phase mit gesättigter Natriumchloridlösung, trocknet über Natriumsulfat und engt im Vakuum ein. Nach Säulenchromatographie des Rohprodukts an Kieselgel mit einem Gemisch aus Hexan/Ethylacetat werden 10,64 g der Titelverbindung erhalten.
1H-NMR (CDCl3): δ = 7,60-7,70 (4H), 7,30-7,45 (6H), 3,70-3,80 (2H), 3,40 (1H), 3,00 (1H), 1,80 (1H), 1,60 (1H), 1,05-1,12 (12H), 0,82 (9H), 0,02 (6H) ppm.
Beispiel 1ae (3S)-5-[[Dimethyl(1,1-dimethylethyl)silyl]oxy]-3-[[(1,1- dimethylethyl)diphenylsilyl]oxy]-2-pentanon
Zu 7,37 ml Oxalylchlorid in 80 ml Dichlormethan werden bei -78°C 13 ml Dimethylsulfoxid addiert. Man läßt 3 Minuten nachrühren und addiert dann 10,46 g der unter Beispiel 1ad beschriebenen Substanz in 100 ml Dichlormethan. Nach weiteren 15 Minuten Nachrührzeit werden 52 ml Triethylamin hinzugetropft. Anschließend läßt man auf 0°C erwärmen. Danach wird das Reaktionsgemisch auf gesättigte Natriumhydrogencarbonatlösung gegossen. Man extrahiert mit Dichlormethan, wäscht die organische Phase mit gesättigter Natriumchloridlösung, trocknet über Natriumsulfat und engt im Vakuum ein. Nach Säulenchromatographie des Rohprodukts an Kieselgel mit einem Gemisch aus Hexan/Ethylacetat werden 9,3 g der Titelverbindung erhalten.
1H-NMR (CDCl3): δ = 7,60-7,70 (4H), 7,32-7,50 (6H), 4,25 (1H), 3,72 (1H), 3,58 (1H), 2,05 (3H), 1,90 (1H), 1,75 (1H), 1,13 (9H), 0,89 (9H), 0,01 (6H) ppm.
Beispiel 1af (E,3S)-1-[[Dimethyl(1,1-dimethylethyl)silyl]oxy]-3-[[(1,1- dimethylethyl)diphenylsilyl]oxy]-4-methyl-5-(2-methylthiazol-4-yl)-pent-4-en
Die Lösung von 6,82 g Diethyl(2-methylthiazol-4-yl)methanphosphonat in 300 ml wasserfreiem Tetrahydrofuran kühlt man unter einer Atmosphäre aus trockenem Argon auf -5°C, versetzt mit 16,2 ml einer 1,6molaren Lösung von n-Buthyllithium in n-Hexan, läßt auf 23°C erwärmen und 2 Stunden rühren. Anschließend kühlt man auf -78°C, tropft die Lösung von 6,44 g (13,68 mmol) der nach Beispiel 1ae dargestellten Verbindung in 150 ml Tetrahydrofuran zu, läßt auf 23°C erwärmen und 16 Stunden rühren. Man gießt in gesättigte Ammoniumchloridlösung, extrahiert mehrfach mit Ethylacetat, wäscht die vereinigten organischen Extrakte mit gesättigter Natriumchloridlösung und trocknet über Natriumsulfat. Den nach Filtration und Lösungsmittelabzug erhaltenen Rückstand reinigt man durch Chromatographie an feinem Kieselgel mit einem Gradientensystem aus n-Hexan und Ethylacetat. Isoliert werden 6,46 g (11,4 mmol, 83%) der Titelverbindung als farbloses Öl.
1H-NMR (CDCl3): δ = -0,04 (6H), 0,83 (9H), 1,10 (9H), 1,79 (1H), 1,90 (1H), 1,97 (3H), 2,51 (3H), 3,51 (2H), 4,38 (1H), 6,22 (1H), 6,74 (1H), 7,23-7,47 (6H), 7,63 (2H), 7,70 (2H) ppm.
Beispiel 1ag (E,3S)-3-[[(1,1-dimethylethyl)diphenylsilyl]oxy]-4-methyl-5-(2-methylthiazol-4- yl)-pent-4-en-1-ol
Die Lösung von 4,79 g (8,46 mmol) der nach Beispiel 1af dargestellten Verbindung in 48 ml Tetrahydrofuran versetzt man mit 48 ml eines 65 : 35 : 10-Gemisches aus Eisessig/Wasser/Tetrahydrofuran und rührt 2,5 Tage bei 23°C. Man gießt in gesättigte Natriumcarbonatlösung, extrahiert mehrfach mit Ethylacetat, wäscht die vereinigten organischen Extrakte mit gesättigter Natriumchloridlösung und trocknet über Natriumsulfat. Den nach Filtration und Lösungsmittelabzug erhaltenen Rückstand reinigt man durch Chromatographie an feinem Kieselgel mit einem Gradientensystem aus n-Hexan und Ethylacetat. Isoliert werden 3,42 g (7,57 mmol, 90%) der Titelverbindung als farbloses Öl.
1H-NMR (CDCl3): δ = 1,10 (9H), 1,53 (1H), 1,81 (2H), 1,96 (3H), 2,71 (3H), 3,59 (2H), 4,41 (1H), 6,38 (1H), 6,78 (1H), 7,26-7,49 (6H), 7,65 (2H), 7,72 (2H) ppm.
Beispiel 1ah
(E,3S)-1-Iod-3-[[(1,1-dimethylethyl)diphenylsilyl]oxy]-4-methyl-5-(2- methylthiazol-4-yl)-pent-4-en
Die Lösung von 8,41 g Triphenylphosphin in 120 ml Dichlormethan versetzt man bei 23°C unter einer Atmosphäre aus trockenem Argon mit 2,19 g Imidazol, 8,14 g Iod, tropft die Lösung von 12,2 g (27,0 mmol) der nach Beispiel 1ag dargestellten Verbindung in 30 ml Dichlormethan zu und rührt 0,5 Stunden. Die Lösung chromatographiert man an feinem Kieselgel mit einem Gradientensystem aus n- Hexan und Ethylacetat. Isoliert werden 12,15 g (21,6 mmol, 80%) der Titelverbindung als farbloses Öl.
1H-NMR (CDCl3): δ = 1,08 (9H), 1,96 (3H), 2,10 (2H), 2,70 (3H), 2,87-3,08 (2H), 4,24 (1H), 6,32 (1H), 6,79 (1H), 7,28-7,48 (6H), 7,60-7,72 (4H) ppm.
Beispiel 1ai (5E,3S)-[3-[((1,1-Dimethylethyl)diphenylsilyl]oxy]-4-methyl-5-(2-methylthiazol-4- yl)-pent-4-en-1-yl]-triphenylphosphoniumiodid
Die Suspension aus 12,55 g (22,3 mmol) der nach Beispiel 1ah dargestellten Verbindung, 85 g Triphenylphosphin und 11,6 ml N-Ethyldiisopropylamin rührt man unter einer Atmosphäre aus trockenem Argon 16 Stunden bei 80°C. Nach dem Erkalten versetzt man mit Diethylether, filtriert und wäscht den Rückstand mehrfach mit Diethylether nach und kristallisiert aus Ethylacetat um. Isoliert werden 15,7 g (19,1 mmol, 74%) der Titelverbindung als kristalliner Feststoff.
1H-NMR (CDCl3): δ = 1,07 (9H), 1,68-1,92 (2H), 1,98 (3H), 2,70 (3H), 2,93 (1H), 3,30 (1H), 4,53 (1H), 6,62 (1H), 7,03 (1H), 7,23-7,47 (6H), 7,48-7,72 (16H), 7,73-7,85 (3H) ppm.
Beispiel 1ak (4S(4R,5S,6S,10RS))-4-(2,6-Dimethyl-10-[[(1,1-dimethylethyl)diphenylsilyl]oxy]- 4-ethyl-5-hydroxy-3-oxo-undec-2-yl)-2,2-dimethyl-[1,3]dioxan (A) und (4S(4S,5R,6S,10RS))-4-(2,6-Dimethyl-10-[[(1,1-dimethylethyl)diphenylsilyl]oxy]- 4-ethyl-5-hydroxy-3-oxo-undec-2-yl)-2,2-dimethyl-[1,3]dioxan (B)
Die Lösung von 1,96 ml Diisopropylamin in 44 ml wasserfreiem Tetrahydrofuran kühlt man unter einer Atmosphäre aus trockenem Argon auf -30°C, versetzt mit 6,28 ml einer 2,4 molaren Lösung von n-Butyllithium in n-Hexan und rührt noch 15 Minuten. Bei -78°C tropft man die Lösung von 3,08 g (13,47 mmol) der nach Beispiel 1 m dargestellten Verbindung in 44 ml Tetrahydrofuran zu und läßt 1 Stunde reagieren. Anschließend versetzt man mit der Lösung von 5,77 g (15,1 mmol) der nach Beispiel 1y dargestellten Verbindung in 44 ml Tetrahydrofuran und gießt nach 45 Minuten in gesättigte Ammoniumchloridlösung. Man verdünnt mit Wasser, extrahiert mehrfach mit Ethylacetat, wäscht die vereinigten organischen Extrakte mit gesättigter Natriumchloridlösung, trocknet über Natriumsulfat und engt im Vakuum ein. Nach Säulenchromatographie an Kieselgel mit einem Gradientensystem aus n-Hexan und Ethylacetat werden neben 13% Ausgangsmaterial 4,03 g (5,92 mmol, 44%) der Titelverbindung A sowie 1,58 g (2,32 mmol, 17%) eines Diastereomeren B erhalten.
1H-NMR (CDCl3) von A: δ = 0,79 (3H), 0,85 (3H), 0,90-1,10 (16H), 1,19-1,79 (10H), 1,26 (3H), 1,32 (3H), 1,38 (3H), 2,79 (1H), 3,18 (1H), 3,42 (1H), 3,78-3,92 (2H), 3,98 (1H), 4,17 (1H), 7,30-7,46 (6H), 7,62-7,72 (4H) ppm.
1H-NMR (CDCl3) von B: δ = 0,83 (3H), 0,91 (3H), 0,94-1,12 (16H), 1,19 (3H), 1,15-1,80 (10H), 1,31 (3H), 1,41 (3H), 2,54 (1H), 3,18 (1H), 3,47 (1H), 3,78-3,91 (2H), 3,97 (1H), 4,14 (1H), 7,31-7,47 (6H), 7,62-7,73 (4H) ppm.
Beispiel 1al (4S(4R,5S,6S,10RS))-4-(2,6-Dimethyl-10-[[(1,1-dimethylethyl)diphenylsilyl]oxy]- 4-ethyl-3-oxo-5-(tetrahydropyran-2-yloxy)-undec-2-yl)-2,2-dimethyl-[1,3]dioxan
Die Lösung von 4,02 g (6,58 mmol) der nach Beispiel 1ak dargestellten Verbindung setzt man in Analogie zu Beispiel 1a um und isoliert nach Aufarbeitung und Reinigung 4,26 g (6,13 mmol, 93%) der Titelverbindung als farbloses Öl.
1H-NMR (CDCl3): δ = 0,67-1,97 (47H), 3,02+3,12 (1H), 3,38 (1H), 3,48-4,04 (5H), 4,18+4,26 (1H), 4,42+4,50 (1H), 7,30-7,46 (6H), 7,61-7,72 (4H) ppm.
Beispiel 1am (4S(4R,5S,6S,10RS))-4-(2,6-Dimethyl-4-ethyl-10-hydroxy-3-oxo-5-5- (tetrahydropyran-2-yloxy)-undec-2-yl)-2,2-dimethyl-[1,3]dioxan
Die Lösung von 4,26 g (6,13 mmol) der nach Beispiel 1al dargestellten Verbindung setzt man in Analogie zu Beispiel 1i um und isoliert nach Aufarbeitung und Reinigung 2,38 g (5,21 mmol, 85%) der Titelverbindung als farbloses Öl.
1H-NMR (CDCl3): δ = 0,78+0,84 (3H), 0,92-1,10 (6H), 1,13-1,98 (29H), 2,43 (1H), 3,06+3,18 (1H), 3,42 (1H), 3,60-4,04 (5H), 4,21+4,28 (1H), 4,42+4,54 (1H) ppm.
Beispiel 1an (4S(4R,5S,6S))-4-(3,10-Dioxo-2,6-dimethyl-4-ethyl-5-(tetrahydropyran-2-yloxy)- undec-2-yl)-2,2-dimethyl-[1,3]dioxan
Die Lösung von 2,49 g (5,45 mmol) der nach Beispiel 1am dargestellten Verbindung setzt man in Analogie zu Beispiel 1 m um und isoliert nach Aufarbeitung und Reinigung 2,24 g (4,93 mmol, 90%) der Titelverbindung als farbloses Öl.
1H-NMR (CDCl3): δ = 0,78+0,86 (3H), 0,90-1,37 (15H), 1,37-1,95 (15H), 2,13 (3H), 2,42 (2H), 3,07+3,18 (1H), 3,42 (1H), 3,60-4,04 (4H), 4,22+4,27 (1H), 4,41+4,53 (1H) ppm.
Beispiel 1ao (4S(4R,5S,6S,10E/Z,13S,14E))-4-(13-[[(1,1-Dimethylethyl)dimethylsilyl]oxy]-4- ethyl-15-(2-methyl-4-thiazolyl)-3-oxo-5-(tetrahydropyran-2-yloxy)-2,6,10,14- tetramethyl-pentadeca-10,14-dien-2-yl)-2,2-dimethyl-[1,3]dioxan
Die Suspension von 4,92 g (5,97 mmol) der in Analogie zu Beispiel 1ai dargestellten Verbindung (5E,3S)-[3-[[(1,1-Dimethylethyl)dimethylsilyl]oxy]-4-methyl-5-(2-methyl- thiazol-4-yl)-pent-4-en-1-yl]-triphenylphosphoniumiodid in 14 ml wasserfreiem Tetrahydrofuran versetzt man bei 0°C unter einer Atmosphäre aus trockenem Argon mit 5,96 ml einer 1 M Lösung von Natrium-bis-(trimethylsilyl)-amid in Tetrahydrofuran und läßt auf 23°C erwärmen. Zu der roten Lösung tropft man langsam die Lösung von 877 mg (1,93 mmol) der nach Beispiel 1an dargestellten Verbindung in 14 ml Tetrahydrofuran, läßt 2 Stunden rühren, gießt auf gesättigte Ammmoniumchloridlösung und extrahiert mehrfach mit Ethylacetat. Die vereinigten organischen Extrakte trocknet man über Natriumsulfat und engt im Vakuum ein. Nach Säulenchromatographie an Kieselgel mit einem Gradientensystem aus n- Hexan und Ethylacetat werden neben 29% Ausgangsmaterial 732 mg (0,98 mmol, 51%) der Titelverbindung erhalten.
1H-NMR (CDCl3): δ = 0,01 (3H), 0,05 (3H), 0,79 (3H), 0,81-1,02 (6H), 0,90 (9H), 1,04-1,38 (11H), 1,38-2,08 (19H), 1,60 (3H), 2,01 (3H), 2,16-2,34 (2H), 2,72 (3H), 3,06+3,17 (1H), 3,42 (1H), 3,68 (1H), 3,80-4,03 (3H). 4,03-4,32 (2H), 4,46+4,54 (1H), 5,13 (1H), 6,45 (1H), 6,92 (1H) ppm.
Beispiel 1ap (3S,6R,7S,8S,12E/Z,15S,16E)-6-Ethyl-17-(2-methyl-4-thiazolyl)-5-oxo-4,4,8,12,16- pentamethyl-heptadeca-12,16-dien-1,3,7,15-tetraol (A) und (3S,6R,7S,8S,12E/Z,15S,16E)-15-[[(1,1-Dimethylethyl)dimethylsilyl]oxy]-6-ethyl- 17-(2-methyl-4-thiazolyl)-5-oxo-4,4,8,12,16-pentamethyl-heptadeca-12,16-dien- 1,3,7-triol (B)
Die Lösung von 732 mg (0,98 mmol) der nach Beispiel 1ao dargestellten Verbindung setzt man in Analogie zu Beispiel 1f um und isoliert nach Aufarbeitung und Reinigung 98 mg (0,19 mmol, 20%) der Titelverbindung A sowie 380 mg (0,61 mmol, 62%) der Titelverbindung B jeweils als farbloses Öl.
1H-NMR (CDCl3) von A: δ = 0,79-0,95 (6H), 0,98-1,19 (4H), 1,21-1,86 (15H), 1,92-2,17 (5H), 2,33 (2H), 2,74 (3H), 2,87-3,23 (3H), 3,31-3,50 (1H), 3,65-3,92 (3H), 4,05-4,20 (2H), 5,10-5,25 (1H), 6,53 (1H), 6,96 (1H) ppm.
1H-NMH (CDCl3) von B: δ = 0,01+0,05 (6H), 0,80-0,96 (15H), 1,01-1,17 (4H), 1,20-1,68 (4H), 1,68-1,90 (10H), 1,90-2,16 (5H), 2,25 (2H), 2,73+2,77 (3H), 2,91 (1H), 3,19 (1H), 3,42 (1H), 3,61 (1H), 3,79-3,93 (3H), 3,99-4,19 (2H), 5,10+5,20 (1H), 6,42 (1H), 6,94 (1H) ppm.
Beispiel 1aq (3S,6R,7S,8S,12E/Z,15S,16E)-6-Ethyl-17-(2-methyl-4-thiazolyl)-4,4,8,12,16- pentamethyl-1,3,7,15-tetrakis-[[dimethyl(1,1-dimethylethyl)silyl]oxy]-heptadeca- 12,16-dien-5-on
Die Lösung von 520 mg (ca. 0,86 mmol) eines Gemisches der nach Beispiel 1ap dargestellten Verbindungen A und B in 25 ml wasserfreiem Dichlormethan kühlt man unter einer Atmosphäre aus trockenem Argon auf -78°C, versetzt mit 2,6 ml 2,6- Lutidin, 2,57 ml Trifluormethansulfonsäure-tert.-butyldimethylsilylester und rührt 16 Stunden. Man gießt in gesättigte Natriumhydrogencarbonatlösung und extrahiert mehrfach mit Dichlormethan. Die vereinigten organischen Extrakte trocknet man über Natriumsulfat und engt im Vakuum ein. Nach Säulenchromatographie an Kieselgel mit einem Gradientensystem aus n-Hexan und Ethylacetat isoliert man 1,14 g (max. 0,86 mmol, max. 100%) der Titelverbindung, die noch Silanol enthält.
1HNMR (CDCl3) einer analytisch aufgereinigten Probe:
1HNMR (CDCl3) δ = -0,04-0,11 (24H), 0,78-0,96 (42H), 1,13 (3H), 1,20 (3H), 1,02-1,65 (6H), 1,58+1,68 (3H), 1,72 (1H), 1,88-2,07 (2H), 2,00 (3H), 2,23 (2H), 2,71 (3H), 3,01 (1H), 3,52-3,73 (2H), 3,82 (1H), 3,91 (1H), 4,09 (1H), 5,13 (1H), 6,45 (1H), 6,91 (1H) ppm.
Beispiel 1ar (3S,6R,7S,8S,12E/Z,15S,16E)-3,7,15-6-Ethyl-tris-[[dimethyl(1,1-dimethylethyl)silyl]oxy]- 1-hydroxy-17-(2-methyl-4-thiazolyl)-4,4,8,12,16-pentamethyl-heptadeca-12,16-dien-5-on
Die Lösung von 1,14 g (max. 0,86 mmol) der nach Beispiel 1aq dargestellten Verbindung in einem Gemisch aus 8 ml Dichlormethan und 8 ml Methanol versetzt man bei 0°C unter einer Atmosphäre aus trockenem Argon mit 204 mg Campher-10-sulfonsäure, läßt auf 23°C erwärmen und rührt noch 1,5 Stunden. Man versetzt mit Triethylamin, gießt in eine gesättigte Natriumhydrogencarbonatlösung und extrahiert mehrfach mit Dichlormethan. Die vereinigten organischen Extrakte trocknet man über Natriumsulfat und engt im Vakuum ein. Nach Säulenchromatographie an feinem Kieselgel mit einem Gradientensystem aus n-Hexan und Ethylacetat isoliert man 618 mg (0,78 mmol, 90%) der Titelverbindung.
1H-NMR (CDCl3): δ = -0,02-0,13 (18H), 0,77-0,98 (33H), 1,01-1,80 (10H), 1,08 (3H), 1,19 (3H), 1,55+1,66 (3H), 1,74-2,05 (2H), 2,00 (3H), 2,25 (2H), 2,70 (3H), 3,00 (1H), 3,68 (2H), 3,85 (1H), 4,08 (2H), 5,14 (1H), 6,44 (1H), 6,90 (1H) ppm.
Beispiel 1as (3S,6R,7S,8S,12E/Z,15S,16E)-6-Ethyl-3,7,15-tris-[[dimethyl(1,1-dimethylethyl)silyl]oxy]- 4,4,8,12,16-pentamethyl-17-(2-methyl-4-thiazolyl)-5-oxo-heptadeca-12,16-dienal
510 mg (0,64 mmol) der nach Beispiel 1ar dargestellten Verbindung setzt man in Analogie zu Beispiel 1k um und isoliert nach Aufarbeitung 545 mg (max. 0,64 mmol) der Titelverbindung als Rohprodukt, das man ohne Reinigung weiter umsetzt.
Beispiel 1at (3S,6R,7S,8S,12E/Z,15S,16E)-6-Ethyl-3,7,15-tris-[[dimethyl(1,1-dimethylethyl)silyl]oxy]- 4,4,8,12,16-pentamethyl-17-(2-methyl-4-thiazolyl)-5-oxo-heptadeca-12,16-diensäure
Die Lösung von 545 mg (max. 0,64 mmol) der nach Beispiel 1as dargestellten Verbindung in 15 ml Aceton kühlt man auf -30°C, versetzt mit 460 µl einer standardisierten, 8N- Chromschwefelsäurelösung und rührt 1 Stunde. Man gießt in ein Gemisch aus Wasser und Diethylether, wäscht die organische Phase mit gesättigter Natriumchloridlösung und trocknet über Natriumsulfat. Nach Filtration und Lösungsmittelabzug isoliert man 410 mg (0,47 mmol, 74% bezogen auf Edukt in Beispiel 1as) der Titelverbindungen, die chromatographisch getrennt werden kännen, als schwach gelbes Öl.
1H-NMR (CDCl3) des Z-Isomeren: δ = -0.02-0.15 (18H), 0,80-0,95 (33H), 1,03-2,28 (12H), 1.17 (3H), 1.18 (3H), 1,69 (3H), 1,96 (3H), 2,35 (1H), 2,54 (1H), 2,71 (3H), 3,03 (1H), 3,81 (1H), 4.16 (1H), 4,41 (1H), 5,20 (1H), 6,53 (1H), 6,94 (1H) ppm.
1H-NMR (CDCl3) des E-Isomeren: δ = -0.03-0,16 (18H), 0,79-0,95 (33H), 0,99-2,06 (10H), 1,17 (3H1), 1.19 (3H1), 1,57 (3H), 1,97 (3H), 2,26 (2H), 2,32 (1H), 2,61 (1H), 2,70 (3H1), 3.09 (1H), 3,85 (1H), 4.09 (1H), 4.36 (1H), 5,12 (1H), 6,48 (1H), 6,94 (1H) ppm.
Beispiel 1au (3S,6R,7S,8S,12E/Z,15S,16E)-3,7-Bis-[[dimethyl(1,1-dimethylethyl)silyl]oxy]-15- hydroxy-6-ethyl-17-(2-methyl-4-thiazolyl)-5-oxo-4,4,8,12,16-pentamethyl-heptadeca- 12,16-diensäure Variante I
Die Lösung von 310 mg (0,36 mmol) der nach Beispiel 1at dargestellten Säure in 30 ml wasserfreiem Tetrahydrofuran versetzt man unter einer Atmosphäre aus trockenem Argon mit 500 µl eines Fluorwasserstoff-Pyridin-Komplexes, 7,1 ml einer 1,1 M Lösung von Tetrabutylammoniumfluorid in Tetrahydrofuran und rührt 3 Tage bei 50°C. Man gießt in eine gesättigte Ammoniumchloridlösung, extrahiert mehrfach mit Ethylacetat, wäscht die vereinigten organischen Extrakte mit gesättigter Natriumchloridlösung und trocknet über Natriumsulfat. Nach Filtration und Lösungsmittelabzug reinigt man den Rückstand durch Chromatographie an ca. 200 ml feinem Kieselgel mit einem Gradientensystem aus Dichlormethan und Methanol. Isoliert werden 125 mg (max. 0,24 mmol, max. 66%), die noch Tetrabutylammoniumsalze enthält.
Variante II
In Analogie zu Beispiel 1t setzt man 32 mg (37 µmol) der nach Beispiel 1at dargestellten Säure um und isoliert nach Aufarbeitung und Reinigung 16 mg (31 µmol, 83%) der Titelverbindung als farbloses Öl.
1H-NMR (CDCl3) des Z-Isomeren: δ = 0,01-0,14 (12H), 0,80-0,99 (24H), 1,02-1,67 (7H), 1,18 (3H), 1,19 (3H), 1,70 (1H), 1,73 (3H), 1,97 (1H), 2,01 (3H), 2,14 (1H), 2,27-2,40 (3H), 2,53 (1H), 2,71 (3H), 2,81 (1H), 3,01 (1H), 3,82 (1H), 4,17 (1H), 4,48 (1H), 5,19 (1H), 6,69 (1H), 6,95 (1H) ppm.
1H-NMR (CDCl3) des E-Isomeren: δ = -0,02-0,11 (12H), 0,73-0,95 (24H), 1,00-1,63 (7H), 1,12 (3H), 1,17 (3H), 1,60 (3H), 1,71 (1H), 1,89-2,06 (2H), 2,00 (3H), 2,22-2,39 (3H), 2,53 (1H), 2,69 (3H), 2,79 (1H), 3,02 (1H), 3,79 (1H), 4,15 (1H), 4,34 (1H), 5,15 (1H), 6,56 (1H), 6,92 (1H) ppm.
Beispiel 1aw (4S,7R,8S,9S,13E/Z,16S(E))-4,8-Bis-[[dimethyl(1,1-dimethylethyl)silyl]oxy]-7-ethyl-16- (1-methyl-2-(2-methyl-4-thiazolyl)ethenyl)-1-oxa-5,5,9,13-tetramethyl-cyclohexadec-13- en-2,6-dion
Die Lösung von 55 mg (73 µmol) der nach Beispiel 1au dargestellten Verbindung in 0,8 ml wasserfreiem Tetrahydrofuran versetzt man unter einer Atmosphäre aus trockenem Argon mit 46 µl Triethylamin, 44 µl 2,4,6-Trichlorbenzoylchlorid und rührt 20 Minuten. Man verdünnt mit 20 ml Tetrahydrofuran, versetzt mit 68 mg 4-Dimethylaminopyridin und rührt 30 Minuten bei 23°C. Man engt ein, nimmt in wenig Dichlormethan auf und reinigt durch Chromatographie an 100 ml feinem Kieselgel mit einem Gradientensystem aus n-Hexan und Ethylacetat. Isoliert werden 49 mg (65 µmol, 89%) der Titelverbindungen als farbloses Öl.
1H-NMR (CDCl3) des Z-Isomeren: δ = -0,12 (3H), 0,08 (3H), 0,10 (3H), 0,13 (3H), 0,73 (3H), 0,79-1,78 (7H), 0,85 (9H), 0,93 (9H), 0,99 (3H), 1,10 (3H), 1,18 (3H), 1,67 (3H), 1,88 (1H), 2,05 (1H), 2,09 (3H), 2,45 (1H), 2,54-2,74 (2H), 2,69 (3H), 2,77 (1H), 3,08 (1H), 4,00 (2H), 4,56 (1H), 5,16 (1H), 6,56 (1H), 6,95 (1H) ppm.
1H-NMR (CDCl3) des E-Isomeren: δ = 0,02-0,16 (12H), 0,78-1,00 (24H), 1,09 (3H), 1,14-1,93 (8H), 1,20 (3H), 1,59 (3H), 2,09-2,21 (1H), 2,13 (3H), 2,39 (1H), 2,43-2,64 (3H), 2,70 (3H), 2,98 (1H), 3,95 (1H), 4,40 (1H), 5,21 (1H), 5,29 (1H), 6,51 (1H), 6,92 (1H) ppm.
Beispiel 1 (4S,7R,8S,9S,13Z,16S(E))-4,8-Dihydroxy-7-ethyl-16-(1-methyl-2-(2-methyl-4- thiazolyl)ethenyl)-1-oxa-5,5,9,13-tetramethyl-cyclohexadec-13-en-2,6-dion (A) und (4S,7R,8S,9S,13E,16S(E))-4,8-Dihydroxy-7-ethyl-16-(1-methyl-2-(2-methyl-4- thiazolyl)ethenyl)-1-oxa-5,5,9,13-tetramethyl-cyclohexadec-13-en-2,6-dion (B)
Die Lösung von 48 mg (64 µmol) der nach Beispiel 1aw dargestellten Verbindung in 3 ml wasserfreiem Dichlormethan versetzt man bei -20°C unter einer Atmosphäre aus trockenem Argon mit 220 µl einer ca. 20%igen Trifluoressigsäure und rührt 1 Stunde. Man gießt in eine gesättigte Natriumhydrogencarbonatlösung, extrahiert mit Dichlormethan und trocknet die organische Phase über Natriumsulfat. Nach Filtration und Lösungsmittelabzug reinigt man den Rückstand durch mehrfache Chromatographie an analytischen Dünnschichtplatten. Als Laufmittel dient ein Gemisch aus n-Hexan und Ethylacetat, als Elutionsmittel Ethylacetat. Isoliert werden 13 mg (25 µmol, 39%) der Titelverbindung A sowie 12 mg (23 µmol, 36%) der Titelverbindung B jeweils als farbloses Öl.
1H-NMR (CDCl3) von A: δ = 0,89 (3H), 1,04 (3H), 1,09 (3H), 1,19-1,94 (8H), 1,33 (3H), 1.70 (3H), 2,07 (3H), 2,15-2,33 (2H), 2,38 (1H), 2,44-2,74 (3H), 2,70 (3H), 3,23 (1H), 3,62 (1H), 3,72 (1H), 4,24 (1H), 5,12 (1H), 5,22 (1H), 6,57 (1H), 6,95 (1H) ppm.
1H-NMR (CDCl3) von B: δ = 0,84 (3H), 1,01 (6H), 1,29 (3H), 1,38-2,00 (8H), 1,61 (3H), 2,07 (3H), 2,20 (1H), 2,22-2,50 (3H), 2,58 (1H), 2,70 (3H), 3,37 (1H), 3, 73 (1H), 4,02 (1H), 4,12 (1H), 4,41 (1H), 5,05 (1H), 5,38 (1H), 6,57 (1H), 6,99 (1H) ppm.

Claims (42)

1. Epothilon-Derivate der allgemeinen Formel I
worin
R1a, R1b gleich oder verschieden sind und Wasserstoff, C1-C10-Alkyl, Aryl, C7-C20- Aralkyl, oder gemeinsam eine -(CH2)m-Gruppe mit m = 2, 3, 4 oder 5,
R2a, R2b gleich oder verschieden sind und Wasserstoff, C1-C10-Alky, Aryl, C7-C20- Aralkyl oder gemeinsam eine -(CH2)n-Gruppe mit n = 2, 3, 4 oder 5
R3 Wasserstoff, C1-C10-Alkyl, Aryl, C7-C20-Aralkyl,
R4a, R4b gleich oder verschieden sind und Wasserstoff, C1-C10-Alkyl, Aryl, C7-C20- Aralkyl oder gemeinsam eine -(CH2)p-Gruppe mit p = 2, 3, 4 oder 5,
D-E eine Gruppe
R5 Wasserstoff, C1-C10-Alkyl, Aryl, C7-C20-Aralkyl, CO2H, CO2-Alkyl, CH2OH, CH2O-Alkyl, CH2O-Acyl, CN, CH2NH2, CH2N(Alkyl, Acyl)1,2, CH2Hal
R6, R7 je ein Wasserstoffatom, gemeinsam eine zusätzliche Bindung oder ein Sauerstoffatom,
R8 ein Halogenatom,
X ein Sauerstoffatom, zwei Alkoxygruppen OR23, eine C2-C10-Alkylen-α,ω- dioxygruppe, die geradkettig oder verzweigt sein kann, H/OR9 oder eine Gruppierung CR10R11,
wobei
R23 für einen C1-C20-Alkylrest,
R9 für Wasserstoff oder eine Schutzgruppe PGX,
R10, R11 gleich oder verschieden sind und für Wasserstoff, einen C1-C20-Alkyl-, Aryl-, C7-C20-Aralkylrest oder
R10 und R11 zusammen mit dem Methylenkohlenstoffatom gemeinsam für einen 5- bis 7gliedrigen carbocyclischen Ring
stehen,
Y ein Sauerstoffatom oder zwei Wasserstoffatome,
Z ein Sauerstoffatom oder H/OR12,
wobei
R12 Wasserstoff oder eine Schutzgruppe PGZ
ist,
bedeuten.
2. Verbindungen nach Anspruch 1, worin R8 ein Fluoratom ist.
3. Verbindungen nach Anspruch 1, worin R8 ein Chloratom ist.
4. Verbindungen nach Anspruch 1, worin R2a eine Methyl-, Ethyl- oder Propylgruppe bedeuten.
5. Verbindungen nach Anspruch 2, worin R2a eine Methyl-, Ethyl- oder Propylgruppe bedeuten.
6. Verbindungen nach Anspruch 3, worin R2a eine Methyl-, Ethyl- oder Propylgruppe bedeuten
7. Verbindungen nach Anspruch 1, worin R1a und R1b gemeinsam eine Trimethylengruppe bedeuten.
8. Verbindungen nach Anspruch 2, worin R1a und R1b gemeinsam eine Trimethylengruppe bedeuten.
9. Verbindungen nach Anspruch 3, worin R1a und R1b gemeinsam eine Trimethylengruppe bedeuten.
10. Verbindungen nach Anspruch 1, worin R1a und R1b je eine Methylgruppe bedeuten.
11. Verbindungen nach Anspruch 2, worin R1a und R1b je eine Methylgruppe bedeuten.
12. Verbindungen nach Anspruch 3, worin R1a und R1b je eine Methylgruppe bedeuten.
13. Verbindungen nach Anspruch 1, worin R10/R11 für 2-Pyridylrest/Wasserstoff stehen.
14. Verbindungen nach Anspruch 2, worin R10/R11 für 2-Pyridylrest/Wasserstoff stehen.
15. Verbindungen nach Anspruch 3, worin R10/R11 für 2-Pyridylrest/Wasserstoff stehen.
16. Verbindungen nach Anspruch 1, worin R10/R11 für 2-Methyl-4- thiazolylrest/Wasserstoff stehen.
17. Verbindungen nach Anspruch 2, worin R10/R11 für 2-Methyl-4- thiazolylrest/Wasserstoff stehen.
18. Verbindungen nach Anspruch 3, worin R10/R11 für 2-Methyl-4- thiazolylrest/Wasserstoff stehen.
19. Verbindungen nach Anspruch 1, worin Y ein Sauerstoffatom ist.
20. Verbindungen nach Anspruch 2, worin Y ein Sauerstoffatom ist.
21. Verbindungen nach Anspruch 3, worin Y ein Sauerstoffatom ist.
22. Verbindungen nach Anspruch 1, worin Z ein Sauerstoffatom ist.
23. Verbindungen nach Anspruch 2, worin Z ein Sauerstoffatom ist.
24. Verbindungen nach Anspruch 3, worin Z ein Sauerstoffatom ist.
25. Verbindungen nach Anspruch 1, worin -D-E- für eine Ethylengruppe steht.
26. Verbindungen nach Anspruch 2, worin -D-E- für eine Ethylengruppe steht.
27. Verbindungen nach Anspruch 3, worin -D-E- für eine Ethylengruppe steht.
28. Verbindungen nach Anspruch 1, worin R3 für ein Wasserstoffatom steht.
29. Verbindungen nach Anspruch 2, worin R3 für ein Wasserstoffatom steht.
30. Verbindungen nach Anspruch 3, worin R3 für ein Wasserstoffatom steht.
31. Verbindungen nach Anspruch 1, worin R4a/R4b für H/CH3 stehen.
32. Verbindungen nach Anspruch 2, worin R4a/R4b für H/CH3 stehen.
33. Verbindungen nach Anspruch 3, worin R4a/R4b für H/CH3 stehen.
34. Verbindungen nach Anspruch 2, worin R1a + R1b gemeinsam eine Trimethylengruppe bedeuten.
35. Verbindungen nach Anspruch 2, worin R10/R11 für 2-Pyridylrest/Wasserstoff stehen.
36. Verbindungen nach Anspruch 2, worin R2a/R2b für Ethyl/Wasserstoff stehen.
37. Verbindungen nach Anspruch 34, worin R2a/R2b für Ethyl/Wasserstoff stehen.
38. Verbindungen nach Anspruch 36, worin R10/R11 für 2-Pyridylrest/Wasserstoff stehen.
39. Verbindungen der allgemeinen Formel I, nämlich
(4S,7R,8S,9S,13(E oderZ),16S(Z))-4,8-Dihydroxy-16-(1-fluor-2-(2-methyl-4- thiazolyl)ethenyl)-1-oxa-5,5,7,9,13-pentamethyl-cyclohexadec-13-en-2,6-dion
(1(S oder R),3S(Z),7S,10R,11S,12S,16R)-7,11-Dihydroxy-3-(1-fluor-2-(2-methyl-4-thiazolyl) ethenyl)-8,8,10,12,16-pentamethyl-4,17-dioxabicyclo[14.1.0]heptadec-5,9-dion
(1(R oder S),3S(Z),7S,10R,11S,12S,16S)-7,11-Dihydroxy-3-(1-fluor-2-(2-methyl-4- thiazolyl)ethenyl)-8,8,10,12,16-pentamethyl-4,17-dioxabicyclo[14.1.0]heptadec-5,9-dion
(4S,7R,8S,9S,13(E oder Z),16S(Z))-4,8-Dihydroxy-7-ethyl-16-(1-fluor-2-(2-methyl-4- thiazolyl)ethenyl)-1-oxa-5,5,9,13-tetramethyl-cyclohexadec-13-en-2,6-dion
(1(S oder R),3S(Z),7S,10R,11S,12S,16R)-7,11-Dihydroxy-10-ethyl-3-(1-fluor-2-(2-methyl-4- thiazolyl)ethenyl)-8,8,12,16-tetramethyl-4,17-dioxabicyclo[14.1.0]heptadeca-5,9-dion
(1(R oder S),3S(Z),7S,10R,11S,12S,16S)-7,11-Dihydroxy-10-ethyl-3-(1-fluor-2-(2-methyl-4- thiazolyl)ethenyl)-8,8,12,16-tetramethyl-4,17-dioxabicyclo[14.1.0]heptadeca-5,9-dion
(4S,7R,8S, 9S,13(E oder Z),16S(Z))-4,8-Dihydroxy-16-(1-fluor-2-(2-methyl-4- thiazolyl)ethenyl)-1-oxa-5,5-(1,3-trimethylen)-7,9,13-trimethyl-cyclohexadec-13-en-2,6-dion
(1(S oder R),3S(Z),7S,10R,11S,12S,16R)-7,11-Dihydroxy-3-(1-fluor-2-(2-methyl-4- thiazolyl)ethenyl)-8,8-(1,3-trimethylen)-10,12,16-trimethyl-4,17- dioxabicyclo[14.1.0]heptadeca-5,9-dion
(1(R oder S),3S(Z),7S,10R,11S,12S,16S)-7,11-Dihydroxy-3-(1-fluor-2-(2-methyl-4- thiazolyl)ethenyl)-8,8-(1,3-trimethylen)-10,12,16-trimethyl-4,17- dioxabicyclo[14.1.0]heptadeca-5,9-dion
(4S,7R,8S,9S,13(E oder Z),16S(Z))-4,8-Dihydroxy-16-(1-fluor-2-(2-pyridyl)ethenyl)-1-oxa- 5,5,7,9,13-pentamethyl-cyclohexadec-13-en-2,6-dion
(1(S oder R),3S(E),7S,10R,11S,12S,16R)-7,11-Dihydroxy-3-(1-fluor-2-(2-pvridyl)ethenyl)- 8,8,10,12,16-pentamethyl-4,17-dioxabicyclo[14.1.0]heptadec-5,9-dion
(1(R oder S),3S(Z),7S,10R,11S,12S,16S)-7,11-Dihydroxy-3-(1-fluor-2-(2-pyridyl)ethenyl)- 8,8,10,12,16-pentamethyl-4,17-dioxabicyclo[14.1.0]heptadec-5,9-dion
(4S,7R,8S,9S,13(E oder Z),16S(Z))-4,8-Dihydroxy-7-ethyl-16-(1-fluor-2-(2-methyl-4- thiazolyl)ethenyl)-1-oxa-5,5-(1,3-trimethylen)-9,13-dimethyl-cyclohexadec-13-en-2,6-dion
(1(S oderR),3S(Z),7S,10R,11S,12S,16R)-7,11-Dihydroxy-10-ethyl-3-(1-fluor-2-(2-methyl-4- thiazolyl)ethenyl)-8,8-(1.3-trimethylen)-12,16-dimethyl-4,17-dioxabicyclo[14.1.0]heptadeca- 5,9-dion
(1(R oder S),3S(Z),7S,10R,11S,12S,16S)-7,11-Dihydroxy-10-ethyl-3-(1-fluor-2-(2-methyl-4- thiazolyl)ethenyl)-8,8-(1,3-trimethylen)-12,16-dimethyl-4,17-dioxabicyclo[14.1.0]heptadeca- 5,9-dion
(4S,7R,8S,9S,13(E oderZ),16S(Z))-4,8-Dihydroxy-7-ethyl-16-(1-fluor-2-(2-pyridyl)ethenyl)- 1-oxa-5,5,9,13-tetramethyl-cyclohexadec-13-en-2,6-dion
(1(S oder R),3S(Z),7S,10R,11S,12S,16R)-7,11-Dihydroxy-10-ethyl-3-(1-fluor-2-(2- pyridyl)ethenyl)-8,8,12,16-tetramethyl-4,17-dioxabicyclo[14.1.0]heptadeca-5,9-dion
(1(R oder S),3S(Z),7S,10R,11S,12S,16S)-7,11-Dihydroxy-10-ethyl-3-(1-fluor-2-(2- pyridyl)ethenyl)-8,8,12,16-tetramethyl-4,17-dioxabicyclo[14.1.0]heptadeca-5,9-dion
(4S,7R,8S,9S,13(E oder Z),16S(Z))-4,8-Dihydroxy-7-ethyl-16-(fluor-2-(2-pyridyl)ethenyl- 1-oxa-5,5-(1,3-trimethylen)-9,13-dimethyl-cyclohexadec-13-en-2,6-dion
(1(S oderR),3S(Z),7S,10R,11S,12S,16R)-7,11-Dihydroxy-10-ethyl-3-(1-fluor-2-(2-pyridyl)­ ethenyl)-8,8-(1,3-trimethylen)-12,16-dimethyl-4,17-dioxabicyclo[14.1.0]heptadeca-5,9-dion
(1(R oder S),3S(Z),7S,10R,11S,12S,16S)-7,11-Dihydroxy-10-ethyl-3-(1-fluor-2-(2-pyridyl)­ ethenyl)-8,8-(1,3-trimethylen)-12,16-dimethyl-4,17-dioxabicyclo[14.1.0]heptadeca-5,9-dion
(4S, 7R,8S,9S,13(Z),16S(Z))-4,8-Dihydroxy-16-(1-chlor-2-(2-methyl-4-thiazolyl)ethenyl)-1- oxa-5,5,7,9,13-pentamethyl-cyclohexadec-13-en-2,6-dion
(4S,7R,8S,9S,13(E),16S(Z))-4,8-Dihydroxy-16-(1-chlor-2-(2-methyl-4-thiazolyl)ethenyl)-1- oxa-5,5,7,9,13-pentamethyl-cyclohexadec-13-en-2,6-dion
(1S,3S(Z),7S,10R,11S,12S,16R)-7,11-Dihydroxy-3-(1-chlor-2-(2-methyl-4- thiazolyl)ethenyl)-8,8,10,12,16-pentamethyl-4,17-dioxabicyclo[14.1.0]heptadecan-5,9-dion
(1R,3S(Z),7S,10R,11S,12S,16S)-7,11-Dihydroxy-3-(1-chlor-2-(2-methyl-4- thiazolyl)ethenyl)-8,8,10,12,16-pentamethyl-4,17-dioxabicyclo[14.1.0]heptadecan-5,9-dion
(1S,3S(Z),7S,10R,11S,12S,16S)-7,11-Dihydroxy-3-(1-chlor-2-(2-methyl-4-thiazolyl)ethenyl)- 8,8,10,12,16-pentamethyl-4,17-dioxabicyclo[14.1.0]heptadecan-5,9-dion
(1R,3S(Z),7S,10R,11S,12S,16R)-7,11-Dihydroxy-3-(1-chlor-2-(2-methyl-4- thiazolyl)ethenyl)-8,8,10,12,16-pentamethyl-4,17-dioxabicyclo[14.1.0]heptadecan-5,9-dion.
40. Pharmazeutische Präparate, enthaltend mindestens eine Verbindung der allgemeinen Formel I gemäß einem der vorstehenden Ansprüche 1 bis 39 sowie einen pharmazeutisch verträglichen Träger.
41. Verwendung der Verbindungen der allgemeinen Formel I gemäß den vorstehenden Ansprüchen 1 bis 39 zur Herstellung von Arzneimitteln.
42. Zwischenprodukte der allgemeinen Formel C
worin
R8' die in der allgemeinen Formel 1 für R8 genannte Bedeutung (Halogen) hat und
R7' ein Wasserstoffatom,
R20 ein Wasserstoffatom oder eine Schutzgruppe PG2
R21 eine Hydroxygruppe, Halogen, eine geschützte Hydroxygruppe OPG3, ein Phosphoniumhalogenidrest PPh3 +Hal- (Ph = Phenyl; Hal = F, Cl, Br, I), ein Phosphonatrest P(O)(OQ)2 (Q = C1-C10-Alkyl oder Phenyl) oder ein Phosphinoxidrest P(O)Ph2 (Ph = Phenyl),
U ein Sauerstoffatom, zwei Alkoxygruppen OR23, eine C2-C10-Alkylen-α,ω- dioxygruppe, die geradkettig oder verzweigt sein kann, H/OR9 oder eine Gruppierung CR10R11,
wobei
R23 für einen C1-C20-Alkylrest,
R9 für Wasserstoff oder eine Schutzgruppe PG3,
R10, R11 gleich oder verschieden sind und für Wasserstoff, einen C1-C20-Alkyl-, Aryl-, C7-C20-Aralkylrest oder R10 und R11 zusammen mit dem Methylenkohlen­ stoffatom gemeinsam für einen 5- bis 7gliedrigen carbocyclischen Ring
stehen,
bedeuten.
DE19954230A 1999-02-18 1999-11-04 16-Halogen-Epothilon-Derivate, Verfahren zu deren Herstellung und ihre pharmazeutische Verwendung Withdrawn DE19954230A1 (de)

Priority Applications (32)

Application Number Priority Date Filing Date Title
DE19954230A DE19954230A1 (de) 1999-11-04 1999-11-04 16-Halogen-Epothilon-Derivate, Verfahren zu deren Herstellung und ihre pharmazeutische Verwendung
IL14451900A IL144519A0 (en) 1999-02-18 2000-02-18 16-halogen-epothilone derivatives, method for producing them and their pharmaceutical use
SK1185-2001A SK11852001A3 (sk) 1999-02-18 2000-02-18 Deriváty epotiólonu, spôsoby ich výroby a ich farmaceutické použitie
AU31567/00A AU3156700A (en) 1999-02-18 2000-02-18 16-halogen-epothilone derivatives, method for producing them and their pharmaceutical use
JP2000599760A JP2002537301A (ja) 1999-02-18 2000-02-18 16−ハロゲン−エポチロン誘導体類、それらの生成方法、及びそれらの医薬的使用
EEP200100431A EE200100431A (et) 1999-02-18 2000-02-18 16-halogenoepotilooni derivaadid, nende valmistamismeetod ja farmatseutiline kasutamine
MXPA01008328A MXPA01008328A (es) 1999-02-18 2000-02-18 Derivados de 18 -haluro epotilona, metodo para su produccion y su uso farmaceutico.
PCT/EP2000/001333 WO2000049021A2 (de) 1999-02-18 2000-02-18 16-halogen-epothilon-derivate, verfahren zu deren herstellung und ihre pharmazeutische verwendung
KR1020017010455A KR100718616B1 (ko) 1999-02-18 2000-02-18 16-할로겐-에포틸론 유도체, 그 제조 방법 및 제약학적 용도
CA002361278A CA2361278A1 (en) 1999-02-18 2000-02-18 16-halogen-epothilone derivatives, method for producing them and their pharmaceutical use
DE50014587T DE50014587D1 (de) 1999-02-18 2000-02-18 16-halogen-epothilon-derivate, verfahren zu deren herstellung und ihre pharmazeutische verwendung
US09/913,495 US6610736B1 (en) 1999-02-18 2000-02-18 16-Halogen-epothilone derivatives, method for producing them and their pharmaceutical use
BR0008331-3A BR0008331A (pt) 1999-02-18 2000-02-18 Derivados de 16-halogeno-epotilon, processos para a sua preparação e seu emprego farmacêutico
CNB008039763A CN1209360C (zh) 1999-02-18 2000-02-18 16-卤-依泊昔酮衍生物、其制备方法及其医药用途
EA200100826A EA009206B1 (ru) 1999-02-18 2000-02-18 Производные 16-галогенэпотилона и их фармацевтическое использование
AT00909205T ATE370946T1 (de) 1999-02-18 2000-02-18 16-halogen-epothilon-derivate, verfahren zu deren herstellung und ihre pharmazeutische verwendung
EP00909205A EP1150980B1 (de) 1999-02-18 2000-02-18 16-halogen-epothilon-derivate, verfahren zu deren herstellung und ihre pharmazeutische verwendung
HU0105478A HUP0105478A3 (en) 1999-02-18 2000-02-18 16-halogen-epothilone derivatives, method for producing them and their pharmaceutical use
YU59001A YU59001A (sh) 1999-02-18 2000-02-18 16-halogen-epotilon-derivati, postupak za njihovo dobijanje i njihova farmaceutska primena
ES00909205T ES2291194T3 (es) 1999-02-18 2000-02-18 Derivados de 16-halogeno-epotilones, procedimiento acerca de su preparacion y su utilizacion farmaceutica.
PL00349863A PL349863A1 (en) 1999-02-18 2000-02-18 16-halogen-epothilone derivatives, method for producing them and their pharmaceutical use
NZ513268A NZ513268A (en) 1999-02-18 2000-02-18 16-halogen-epothilone derivatives, method for producing them and their pharmaceutical use
UA2001096380A UA74542C2 (en) 1999-11-04 2000-02-18 Epothilone 16-halogen derivatives, a pharmaceutical agent based thereon, intermediary compounds (variants)
CZ20012951A CZ20012951A3 (cs) 1999-02-18 2000-02-18 16-Halogensubstituované deriváty epothilonu, způsoby jejich výroby a jejich farmaceutické pouľití
ARP000100714A AR022636A1 (es) 1999-02-18 2000-02-21 Derivados de la 16-halo-epotilona, los procedimientos para prepararlos y el empleo farmaceutico de los mismos
TW089102834A TWI285645B (en) 1999-02-18 2000-04-19 16-Halogen-epothilone derivatives, method for producing them and their pharmaceutical use
BG105802A BG105802A (bg) 1999-02-18 2001-08-09 16-халоген-епотилонови производни, метод за тяхното получаване и фармацевтичното им използване
NO20014013A NO20014013L (no) 1999-02-18 2001-08-17 16-halogen-epotilonderivater, fremgangsmåter for fremstilling av disse og farmasöytisk anvendelse av dem
HR20010677A HRP20010677A2 (en) 1999-02-18 2001-09-14 16-halogen-epothilone derivatives, method for prod
HK02106485A HK1044945A1 (en) 1999-02-18 2002-09-03 16-Halogen-epothilone derivatives, method for producing them and their pharmaceutical use.
US10/364,337 US6930102B2 (en) 1999-02-18 2003-02-12 16-halogen-epothilone derivatives, process for their production, and their pharmaceutical use
US11/090,841 US20050187270A1 (en) 1999-02-18 2005-03-25 16-Halogen-epothilone derivatives, method for producing them and their pharmaceutical use

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE19954230A DE19954230A1 (de) 1999-11-04 1999-11-04 16-Halogen-Epothilon-Derivate, Verfahren zu deren Herstellung und ihre pharmazeutische Verwendung

Publications (1)

Publication Number Publication Date
DE19954230A1 true DE19954230A1 (de) 2001-11-15

Family

ID=7928664

Family Applications (1)

Application Number Title Priority Date Filing Date
DE19954230A Withdrawn DE19954230A1 (de) 1999-02-18 1999-11-04 16-Halogen-Epothilon-Derivate, Verfahren zu deren Herstellung und ihre pharmazeutische Verwendung

Country Status (2)

Country Link
DE (1) DE19954230A1 (de)
UA (1) UA74542C2 (de)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7649006B2 (en) 2002-08-23 2010-01-19 Sloan-Kettering Institute For Cancer Research Synthesis of epothilones, intermediates thereto and analogues thereof
US7750164B2 (en) 1996-12-03 2010-07-06 Sloan-Kettering Institute For Cancer Research Synthesis of epothilones, intermediates thereto, analogues and uses thereof
US7875638B2 (en) 2002-08-23 2011-01-25 Sloan-Kettering Institute For Cancer Research Synthesis of epothilones, intermediates thereto, analogues and uses thereof

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7750164B2 (en) 1996-12-03 2010-07-06 Sloan-Kettering Institute For Cancer Research Synthesis of epothilones, intermediates thereto, analogues and uses thereof
USRE41990E1 (en) 1996-12-03 2010-12-07 Sloan-Kettering Institute For Cancer Research Synthesis of epothilones, intermediates thereto, analogues and uses thereof
US8481575B2 (en) 1996-12-03 2013-07-09 Sloan-Kettering Institute For Cancer Research Synthesis of epothilones, intermediates thereto, analogues and uses thereof
US7649006B2 (en) 2002-08-23 2010-01-19 Sloan-Kettering Institute For Cancer Research Synthesis of epothilones, intermediates thereto and analogues thereof
US7759374B2 (en) 2002-08-23 2010-07-20 Sloan-Kettering Institute For Cancer Research Synthesis of epothilones, intermediates thereto and analogues thereof
US7875638B2 (en) 2002-08-23 2011-01-25 Sloan-Kettering Institute For Cancer Research Synthesis of epothilones, intermediates thereto, analogues and uses thereof
US8110590B2 (en) 2002-08-23 2012-02-07 Sloan-Kettering Institute For Cancer Research Synthesis of epothilones, intermediates thereto and analogues thereof
US8513429B2 (en) 2002-08-23 2013-08-20 Sloan-Kettering Insitute For Cancer Research Synthesis of epothilones, intermediates thereto and analogues thereof

Also Published As

Publication number Publication date
UA74542C2 (en) 2006-01-16

Similar Documents

Publication Publication Date Title
US7407975B2 (en) Epothilone derivatives, method for producing same and their pharmaceutical use
EP1150980B1 (de) 16-halogen-epothilon-derivate, verfahren zu deren herstellung und ihre pharmazeutische verwendung
WO2000000485A1 (de) Epothilon-derivate, verfahren zu deren herstellung, zwischenprodukte und ihre pharmazeutische verwendung
US20060040990A1 (en) Epothilone derivatives, process for their production, and their pharmaceutical use
EP1276740A2 (de) Neue epothilon-derivate, verfahren zu deren herstellung und ihre pharmazeutische verwendung
DE19908760A1 (de) Neue Epothilon-Derivate, Verfahren zu deren Herstellung und ihre pharmazeutische Verwendung
WO2000049020A2 (de) Neue epothilon-derivate, verfahren zu deren herstellung und ihre pharmazeutische verwendung
DE19908767A1 (de) Neue Epothilon-Derivate, Verfahren zu deren Herstellung und ihre pharmazeutische Verwendung
DE19908765A1 (de) 16-Halogen-Epothilon-Derivate, Verfahren zu deren Herstellung und ihre pharmazeutische Verwendung
DE10020899A1 (de) 9-Oxa-Epothilon-Derivate, Verfahren zu deren Herstellung sowie ihre Verwendung in pharmazeutischen Präparaten
DE19751200A1 (de) Neue Epothilon-Derivate, Verfahren zu deren Herstellung und ihre pharmazeutische Verwendung
DE19954230A1 (de) 16-Halogen-Epothilon-Derivate, Verfahren zu deren Herstellung und ihre pharmazeutische Verwendung
DE19830060A1 (de) Epothilon-Derivate, Verfahren zu deren Herstellung, Zwischenprodukte und ihre pharmazeutische Verwendung
DE19954229A1 (de) Epothilon-Derivate, Verfahren zu deren Herstellung und ihre pharmazeutische Verwendung
DE19923001A1 (de) Epothilon-Derivate, Verfahren zu deren Herstellung, Zwischenprodukte und ihre pharmazeutische Verwendung
DE19907480A1 (de) Epothilon-Derivate, Verfahren zu deren Herstellung und ihre pharmazeutische Verwendung
DE10041470A1 (de) 12,13-Cyclopropyl-Epothilon-Derivate, Verfahren zu deren Herstellung sowie ihre Verwendung in pharmazeutischen Präparaten
DE10015836A1 (de) 6-Alkenyl- und 6-Alkinyl-Epothilon-Derivate, Verfahren zu deren Herstellung sowie ihre Verwendung in pharmazeutischen Präparaten
DE19954228A1 (de) 6-Alkenyl-und 6-Alkinyl-Epothilon-Derivate, Verfahren zu deren Herstellung sowie ihre Verwendung in pharmazeutischen Präparaten
DE19749717A1 (de) Neue C1-C6-Bausteine zur Totalsynthese neuer Epothilon-Derivate sowie Verfahren zur Herstellung dieser Bausteine
DE19921086A1 (de) 6-Alkenyl- und 6-Alkinyl-Epothilon Derivate, Verfahren zu deren Herstellung sowie ihre Verwendung in pharmazeutischen Präparaten
AU2004200948A1 (en) Epothilon derivatives, method for the production and the use thereof as pharmaceuticals
AU4438602A (en) New epothilone derivatives, process for their production, and their pharmaceutical use

Legal Events

Date Code Title Description
8110 Request for examination paragraph 44
8127 New person/name/address of the applicant

Owner name: BAYER SCHERING PHARMA AG, 13353 BERLIN, DE

8127 New person/name/address of the applicant

Owner name: BAYER SCHERING PHARMA AKIENGESELLSCHAFT, 13353, DE

8139 Disposal/non-payment of the annual fee