DE19822942A1 - Granulation von Aniontensidsäuren - Google Patents

Granulation von Aniontensidsäuren

Info

Publication number
DE19822942A1
DE19822942A1 DE1998122942 DE19822942A DE19822942A1 DE 19822942 A1 DE19822942 A1 DE 19822942A1 DE 1998122942 DE1998122942 DE 1998122942 DE 19822942 A DE19822942 A DE 19822942A DE 19822942 A1 DE19822942 A1 DE 19822942A1
Authority
DE
Germany
Prior art keywords
zeolite
anionic surfactant
weight
granules
acid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
DE1998122942
Other languages
English (en)
Inventor
Gonzalez Rene-Andres Artiga
Christian Block
Heinke Jebens
Hans-Friedrich Kruse
Andreas Lietzmann
Markus Semrau
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Henkel AG and Co KGaA
Original Assignee
Henkel AG and Co KGaA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Henkel AG and Co KGaA filed Critical Henkel AG and Co KGaA
Priority to DE1998122942 priority Critical patent/DE19822942A1/de
Priority to EP99109605A priority patent/EP0959124A1/de
Publication of DE19822942A1 publication Critical patent/DE19822942A1/de
Withdrawn legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D3/00Other compounding ingredients of detergent compositions covered in group C11D1/00
    • C11D3/02Inorganic compounds ; Elemental compounds
    • C11D3/12Water-insoluble compounds
    • C11D3/124Silicon containing, e.g. silica, silex, quartz or glass beads
    • C11D3/1246Silicates, e.g. diatomaceous earth
    • C11D3/128Aluminium silicates, e.g. zeolites
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D11/00Special methods for preparing compositions containing mixtures of detergents
    • C11D11/04Special methods for preparing compositions containing mixtures of detergents by chemical means, e.g. by sulfonating in the presence of other compounding ingredients followed by neutralising
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D1/00Detergent compositions based essentially on surface-active compounds; Use of these compounds as a detergent
    • C11D1/02Anionic compounds
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D1/00Detergent compositions based essentially on surface-active compounds; Use of these compounds as a detergent
    • C11D1/02Anionic compounds
    • C11D1/12Sulfonic acids or sulfuric acid esters; Salts thereof
    • C11D1/22Sulfonic acids or sulfuric acid esters; Salts thereof derived from aromatic compounds

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Wood Science & Technology (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Detergent Compositions (AREA)

Abstract

Gegenstand der Erfindung ist ein Verfahren zur Herstellung zeolith- und aniontensidhaltiger Granulate, gekennzeichnet durch die Schritte DOLLAR A a) Vermischen von Zeolith und wäßriger Natronlauge in einem Mischer, DOLLAR A b) Granulation unter Zugabe von Aniontensidsäure(n), DOLLAR A c) optionale Trocknung der in Schritt b) gebildeten Granulate, DOLLAR A wobei der Anionentensidgehalt der entstehenden Granulate auf Werte >= 50 Gew.-% eingestellt wird.

Description

Die Erfindung betrifft ein Verfahren zur Herstellung konzentrierter, rieselfähiger anionten­ sidhaltiger Granulate mit Aktivsubstanzgehalten oberhalb 50 Gew.-% aus den entspre­ chenden Aniontensidsäuren.
Obwohl die wirtschaftliche Synthese von hellfarbigen Anionentensiden heute gesicherter Stand des technischen Wissens ist, treten bei der Herstellung und der Verarbeitung solcher Tenside anwendungstechnische Probleme auf. So fallen die Aniontenside im Verlaufe des Herstellungsverfahrens in ihrer Säureform an und müssen mit geeigneten Neutralisations­ mitteln in ihre Alkali- oder Erdalkalimetallsalze überführt werden.
Dieser Neutralisationsschritt kann mit Lösungen von Alkalihydroxiden oder aber mit festen alkalischen Substanzen, insbesondere Natriumcarbonat, durchgeführt werden. Bei der Neutralisation mit wäßrigen Alkalien fallen die Tensidsalze in Form wäßriger Zuberei­ tungsformen an, wobei Wassergehalte im Bereich von etwa 10 bis 80 Gew.-% und insbe­ sondere im Bereich von etwa 35 bis 60 Gew.-% einstellbar sind. Produkte dieser Art haben bei Raumtemperatur pastenförmige bis schneidfähige Beschaffenheit, wobei die Fließ- und Pumpfähigkeit solcher Pasten schon im Bereich von etwa 50 Gew.-% Aktivsubstanz einge­ schränkt ist oder gar verlorengeht, so daß bei der Weiterverarbeitung solcher Pasten, insbe­ sondere bei ihrer Einarbeitung in Feststoffmischungen, beispielsweise in feste Wasch- und Reinigungsmittel, beträchtliche Probleme entstehen. Es ist dementsprechend ein altes Be­ dürfnis, anionische Waschmitteltenside in trockener, insbesondere rieselfähiger Form zur Verfügung stellen zu können. Tatsächlich gelingt es auch, nach herkömmlicher Trocknungstechnik, zum Beispiel im Sprühturm, rieselfähige Aniontensidpulver oder -Granulate zu bekommen. Hier zeigen sich jedoch gravierende Einschränkungen, da die erhaltenen Zubereitungen oft hygroskopisch sind, unter Wasseraufnahme aus der Luft bei der Lagerung verklumpen und auch im Waschmittel-Fertigprodukt zur Verklumpung nei­ gen. Rieselfähige, nicht hygroskopische und verklumpende Aniontensidgranulate können mit geeigneten Trägermaterialien, beispielsweise Zeolithen und/oder Silikaten und/oder Alkalicarbonaten oder durch Oberflächenbehandlung, beispielsweise mit feinteiligen Fest­ stoffen, erhalten werden. Bei der Verwendung von Zeolithen als Trägermaterialien ergeben sich aber weitere anwendungstechnische Probleme, da Zeolithe säureempfindlich sind und sich unter Kieselsäurebildung zersetzen, wenn sie direkt mit der Aniontensidsäure in Kon­ takt kommen. Üblicherweise erfolgt daher vor der Einarbeitung von Zeolith eine vollstän­ dige Neutralisation der Aniontensidsäuren.
Die europäische Patentanmeldung EP-A-0 678 573 (Procter & Gamble) beschreibt ein Verfahren zur Herstellung rieselfähiger Tensidgranulate mit Schüttgewichten oberhalb 600 g/l, in dem Anionentensidsäuren mit einem Überschuß an Neutralisationsmittel zu einer Paste mit mindestens 40 Gew.-% Tensid umgesetzt werden und diese Paste mit einem oder mehreren Pulver(n), von denen mindestens eines sprühgetrocknet sein muß und das anioni­ sches Polymer und kationisches Tensid enthält, vermischt wird, wobei das entstehende Granulat optional getrocknet werden kann.
Die europäische Patentanmeldung EP-A-0 438 320 (Unilever) offenbart ein batchweise ausgeführtes Verfahren zur Herstellung von Tensidgranulaten mit Schüttgewichten ober­ halb von 650 g/l. Hierbei wird eine Lösung eines alkalischen anorganischen Stoffes in Wasser unter eventuellem Zusatz anderer Feststoffe mit der Anionentensidsäure versetzt und in einem Hochgeschwindigkeitsmischer/Granulator mit einem flüssigen Binder granu­ liert. Neutralisation und Granulation erfolgen zwar in den gleichen Apparatur, aber in von­ einander getrennten Verfahrensschritten, so daß das Verfahren nur chargenweise betrieben werden kann.
Die Verwendung eines festen Neutralisationsmittels zur Neutralisation von Anionensten­ sidsäuren wird auch in der EP-A-0 555 622 (Procter & Gamble) beschrieben, wo dieses Mittel, vorzugsweise ein Carbonat, mit einer mittleren Teilchengröße von unter 5 µm im stöchiometrischen Überschuß in einem Hochgeschwindigkeitsmischer mit der Anionen­ stensidsäure versetzt und eventuell unter Zugabe anderer Zuschlagstoffe granuliert wird.
Aus der europäischen Patentanmeldung EP-A-0 402 112 (Procter & Gamble) ist ein konti­ nuierliches Neutralisations-/Granulationsverfahren zur Herstellung von FAS- und/oder ABS-Granulaten aus der Säure bekannt, in dem die ABS-Säure mit mindestens 62%iger NaOH neutralisiert und dann unter Zusatz von Hilfsstoffen, zum Beispiel ethoxylierten Alkoholen oder Alkylphenolen oder eines oberhalb von 48,9°C schmelzenden Polyethy­ lenglykols mit einer Molmasse zwischen 4000 und 50000 granuliert wird. Der Zusatz von Zeolith und/oder Natriumcarbonat wird in dieser Schrift nicht beschrieben.
Die europäische Patentanmeldung EP-A-0 508 543 (Procter & Gamble) nennt ein Verfah­ ren, in dem eine Tensidsäure mit einem Überschuß an Alkali zu einer mindestens 40-gew.- %igen Tensidpaste neutralisiert wird, die anschließend konditioniert und granuliert wird. Ein kontinuierliches Verfahren, das die Zersetzung säurelabiler Inhaltsstoffe beim Einsatz von ABS-Säure vermeidet, wird hier nicht offenbart.
Die deutsche Offenlegungsschrift DE-A- 42 32 874 (Henkel KGaA) offenbart ein Verfah­ ren zur Herstellung wasch- und reinigungsaktiver Anionentensidgranulate durch Neutrali­ sation von Anionentensiden in ihrer Säureform. Als Neutralisationsmittel werden aller­ dings nur feste, pulverförmige Stoffe offenbart. Die erhaltenen Granulate haben Tensidge­ halte um 30 Gew.-% und Schüttgewichte von unter 550 g/l.
Alle beschriebenen Verfahren des Standes der Technik stellen sich nicht zur Aufgabe, in einem kontinuierlichen Verfahren Anionentensidsäuren in einer Apparatur unter Zusatz säurelabiler Granulationshilfsmittel und flüssiger beziehungsweise fester Neutralisations­ mittel zu neutralisieren/granulieren. Es wurde nun gefunden, daß die Zersetzung säurela­ biler Inhaltsstoffe, beispielsweise Zeolith, in einem Neutralisations/Granulationsprozeß durch geeignete Prozeßführung vermieden werden kann.
Die Aufgabe der Erfindung war es, ein einfaches und vergleichsweise kostengünstiges Ver­ fahren zur Herstellung konzentrierter Aniontensidgranulate, ausgehend von der Säureform des Tensids und unter Zusatz von granulationsfördernden Feststoffen, beispielsweise Zeo­ lith zu entwickeln, wobei die erhaltenen Granulate Aktivsubstanzgehalte von mindestens 50 Gew.-% aufweisen.
Gegenstand der Erfindung ist dementsprechend in einer ersten Ausführungsform ein Ver­ fahren zur Herstellung zeolith- und aniontensidhaltiger Granulate, gekennzeichnet durch die Schritte
  • a) Vermischen von Zeolith und wäßriger Natronlauge in einem Mischer
  • b) Granulation unter Zugabe von Aniontensidsäure(n)
  • c) optionale Trocknung der in Schritt b) gebildeten Granulate,
wobei der Aniontensidgehalt der entstehenden Granulate auf Werte ≧ 50 Gew.-% einge­ stellt wird.
Durch die erfindungsgemäße Verfahrensweise wird sichergestellt, daß genügend Alkalität vorhanden ist, um eine saure Zersetzung der Zeolithe zu vermeiden. Gegenüber einer ver­ änderten Verfahrensweise, bei der die Aniontensidsäure erst neutralisiert und nachfolgend auf den Zeolith gegeben wird, weist das erfindungemäße Verfahren den Vorteil einer ver­ einfachten apparativen Ausstattung (nur ein Mischer erforderlich) und der bequemeren Verfahrensdurchführung auf, da einerseits Probleme, die üblicherweise bei der Neutralisa­ tion auftreten (saure Nester) vermieden werden und andererseits das Bewegen bzw. Um­ pumpen hochviskoser Aniontensidpasten entfällt. Gleichzeitig wird sichergestellt, daß die Neutralisationswärme durch die Wärmekapazität des vorgelegten Pulvers abgefangen wird. Lokale Überhitzung und Verfärbung des Aniontensids wird auf diese Weise drastisch redu­ ziert bzw. völlig verhindert. Weiterhin wird durch die Neutralisation auf dem Pulver die eingebrachte Wassermenge reduziert, wodurch Granulate mit erhöhtem Aniontensidgehalt hergestellt werden können.
Als Zeolithe können im erfindungsgemäßen Verfahren sämtliche Vertreter dieser Sub­ stanzklasse eingesetzt werden. Der eingesetzte feinkristalline, synthetische und gebundenes Wasser enthaltende Zeolith kann beispielsweise A und/oder P sein. Als Zeolith P wird Zeolith MAP® (Handelsprodukt der Firma Crosfield) besonders bevorzugt. Geeignet und im Rahmen der vorliegenden Erfindung bevorzugt sind jedoch auch Zeolith X sowie Mi­ schungen aus A, X und/oder P. Der Zeolith kann als sprühgetrocknetes Pulver oder auch als ungetrocknete, von ihrer Herstellung noch feuchte, stabilisierte Suspension zum Einsatz kommen.
Die in Schritt a) mit der Natronlauge zu vermischenden Zeolithe weisen die allgemeine Formel M2/nO.Al2O3.x SiO2.y H2O auf, in der M ein Kation der Wertigkeit n ist, x für Werte steht, die größer oder gleich 2 sind und y Werte zwischen 0 und 20 annehmen kann. Die Zeolithstrukturen bilden sich durch Verknüpfung von AlO2-Tetraedern mit SiO4- Tetraedern, wobei dieses Netzwerk von Kationen und Wassermolekülen besetzt ist. Die Kationen in diesen Strukturen sind relativ mobil und können in unterschiedlichen Graden durch andere Kationen ausgetauscht sein. Das interkristalline "zeolithische" Wasser kann je nach Zeolithtyp kontinuierlich und reversibel abgegeben werden, während bei einigen Zeolithtypen auch strukturelle Änderungen mit der Wasserabgabe bzw. -aufnahme einher­ gehen.
In den strukturellen Untereinheiten bilden die "primären Bindungseinheiten" (AlO4- Tetraeder und SiO4-Tetraeder) sogenannte "sekundäre Bindungseinheiten", die die Form ein- oder mehrfacher Ringe besitzen. So treten in verschiedenen Zeolithen beispielsweise 4-, 6- und 8-gliedrige Ringe auf (als S4R, S6R und S8R bezeichnet), andere Typen werden über vier- und sechsgliedrige Doppelringprismen verbunden (häufigste Typen: D4R als viereckiges bzw. D6R als sechseckiges Prisma). Diese "sekundären Untereinheiten" ver­ binden unterschiedliche Polyhedra, die mit griechischen Buchstaben bezeichnet werden. Am verbreitetsten ist hierbei ein Vielflächner, der aus sechs Quadraten und acht gleichsei­ tigen Sechsecken aufgebaut ist und der als "β" bezeichnet wird. Mit diesen Baueinheiten lassen sich mannigfaltige unterschiedliche Zeolithe realisieren. Bislang sind 34 natürliche Zeolith-Mineralien sowie ungefähr 100 synthetische Zeolithe bekannt.
Der bekannteste Zeolith, Zeolith 4 A, stellt eine kubische Zusammenstelling von β-Käfigen dar, die durch D4R-Untereinheiten verknüpft sind. Er gehört der Zeolith-Strukturgruppe 3 an und sein dreidimensionales Netzwerk weist Poren von 2,2 Å und 4,2 Å Größe auf, die Formeleinheit in der Elementarzelle läßt sich mit Na12[(AlO2)12(SiO2)12].27 H2O beschrei­ ben.
Erfindungsgemäß besonders bevorzugt eingesetzt werden im erfindungsgemäßen Verfah­ ren Zeolithe vom Faujasit-Typ. Zusammen mit den Zeolithen X und Y gehört das Mineral Faujasit zu den Faujasit-Typen innerhalb der Zeolith-Strukturgruppe 4, die durch die Dop­ pelsechsring-Untereinheit D6R gekennzeichnet ist (Vergleiche Donald W. Breck: "Zeolite Molecular Sieves", John Wiley & Sons, New York, London, Sydney, Toronto, 1974, Seite 92). Zur Zeolith-Strukturgruppe 4 zählen neben den genannten Faujasit-Typen noch die Mineralien Chabazit und Gmelinit sowie die synthetischen Zeolithe R (Chabazit-Typ), S (Gmelinit-Typ), L und ZK-5. Die beiden letztgenannten synthetischen Zeolithe haben kei­ ne mineralischen Analoga.
Zeolithe vom Faujasit-Typ sind aus β-Käfigen aufgebaut, die tetrahedral über D6R- Untereinheiten verknüpft sind, wobei die β-Käfige ähnlich den Kohlenstoffatomen im Diamanten angeordnet sind. Das dreidimensionale Netzwerk der im erfindungsgemäßen Verfahren eingesetzten Zeolithe vom Faujasit-Typ weist Poren von 2,2 und 7,4 Å auf, die Elementarzelle enthält darüberhinaus 8 Kavitäten mit ca. 13 Å Durchmesser und läßt sich durch die Formel Na86[(AlO2)86(SiO2)106].264 H2O beschreiben. Das Netzwerk des Zeolith X enthält dabei ein Hohlraumvolumen von ungefähr 50%, bezogen auf den dehydratisier­ ten Kristall, was den größten Leerraum aller bekannten Zeolithe darstellt (Zeolith Y: ca. 48% Hohlraumvolumen, Faujasit: ca. 47% Hohlraumvolumen). (Alle Daten aus: Donald W. Breck: "Zeolite Molecular Sieves", John Wiley & Sons, New York, London, Sydney, Toronto, 1974, Seiten 145, 176, 177).
Im Rahmen der vorliegenden Erfindung kennzeichnet der Begriff "Zeolith vom Faujasit- Typ" alle drei Zeolithe, die die Faujasit-Untergruppe der Zeolith-Strukturgruppe 4 bilden. Neben dem Zeolith X sind erfindungsgemäß also auch Zeolith Y und Faujasit sowie Mi­ schungen dieser Verbindungen erfindungsgemäß einsetzbar, wobei der reine Zeolith X bevorzugt ist.
Auch Mischungen oder Cokristallisate von Zeolithen des Faujasit-Typs mit anderen Zeo­ lithen, die nicht zwingend der Zeolith-Strukturgruppe 4 angehören müssen, sind erfin­ dungsgemäß einsetzbar, wobei es vorteilhaft ist, wenn mindestens 50 Gew.-% des Zeoliths aus einem Zeolithen vom Faujasit-Typ bestehen.
Die Aluminiumsilikate, die im erfindungsgemäßen Verfahren eingesetzt werden, sind kommerziell erhältlich, und die Methoden zu ihrer Darstellung sind in Standardmonogra­ phien beschrieben.
Beispiele für kommerziell erhältliche Zeolithe vom X-Typ können durch die folgenden Formeln beschrieben werden:
Na86[(AlO2)86(SiO2)106].x H2O,
K86[(AlO2)86(SiO2)106].x H2O,
Ca40Na6[(AlO2)86(SiO2)106].x H2O,
Sr21Ba22[(AlO2)86(SiO2)106].x H2O,
in denen x Werte zwischen 0 und 276 annehmen kann und die Porengrößen von 8,0 bis 8,4 Å aufweisen.
Kommerziell erhältlich und im Rahmen des erfindungsgemäßen Verfahrens bevorzugt ein­ setzbar ist beispielsweise auch ein Co-Kristallisat aus Zeolith X und Zeolith A (ca. 80 Gew.-% Zeolith X), das von der Firma CONDEA Augusta S.p.A. unter dem Markennamen VEGOBOND AX® vertrieben wird und durch die Formel
nNa2O.(1-n)K2O.Al2O3.(2-2,5)SiO2.(3,5-5, 5) H2O
beschrieben werden kann.
Auch Zeolithe vom Y-Typ sind kommerziell erhältlich und lassen sich beispielsweise durch die Formeln
Na56[(AlO2)56(SiO2)136].x H2O,
K56[(AlO2)56(SiO2)136].x H2O,
in denen x für Zahlen zwischen 0 und 276 steht und die Porengrößen von 8,0 Å aufweisen, beschreiben.
Die Teilchengrößen der im erfindungsgemäßen Verfahren eingesetzten Zeolithe vom Fau­ jasit-Typ liegt dabei im Bereich von 0,1 bis zu 100 µm, vorzugsweise zwischen 0,5 und 50 µm und insbesondere zwischen 1 und 30 µm, jeweils mit Standard- Teilchengrößebestimmungsmethoden gemessen. Die Menge des Zeoliths, der in das erfin­ dungsgemäße Verfahren eingebracht wird, beträgt üblicherweise 5 bis 50 Gew.-%, vor­ zugsweise 10 bis 45 Gew.-% und insbesondere 15 bis 40 Gew.-%, bezogen auf fertiges Granulat.
Die zur Neutralisation der ABSS zur Verwendung kommende Natronlauge kann beliebiger Konzentration sein, wobei höhere Konzentrationen wegen des dementsprechend niedrige­ ren Wassergehaltes und erniedrigter Wasserverdampfung bevorzugt sind. Insbesondere ist es im erfindungsgemäßen Verfahren bevorzugt, wenn die eingesetzte Natronlauge minde­ stens 30 Gew.-%, vorzugsweise mindestens 40 Gew.-% und insbesondere mindestens 50 Gew.-% NaOH enthält.
Als Aniontensidsäuren kommen im Rahmen der vorliegenden Erfindung hauptsächlich Alkylbenzolsulfonsäuren (ABSS), Alkylsulfonsäuren oder Alkylschwefelsäuren in Be­ tracht. Bezogen auf das entstehende Granulat, wird die Menge an Aniontensidsäure, die im erfindungsgemäßen Verfahren eingesetzt wird, so gewählt, daß das entstehende Granulat ≧ 50 Gew.-% Aniontensid(e) enthält. Üblicherweise beträgt die Menge an Aniontensidsäure, die in den Mischer eingetragen wird, 35 bis 75 Gew.-%, vorzugsweise 45 bis 65 Gew.-% und insbesondere 50 bis 60 Gew.-%, bezogen auf die Gesamtmenge der im Mischer vorlie­ genden Stoffe.
Als ABSS kommen im erfindungsgemäßen Verfahren vorzugsweise C9-13- Alkylbenzolsulfonsäuren, Olefinsulfonsäuren, das heißt Gemische aus Alken- und Hy­ droxyalkansulfonsäuren sowie Disulfonsäuren, wie man sie beispielsweise aus C12-18- Monoolefinen mit end- oder innenständiger Doppelbindung durch Sulfonieren mit gasför­ migem oder flüssigem Schwefeltrioxid erhält, in Betracht. Geeignet sind auch die Alkan­ sulfonsäuren, die aus C12-C18-Alkanen durch Sulfochlorierung und Sulfoxidation und durch eine anschließende Hydrolyse bzw. durch Bisulfitaddition an Olefine erhältlich sind. Auch die Alkylschwefelsäuren, die beispielsweise durch Umsetzung von Fettalkoholen mit H2SO4 gewonnen werden, sind als Aniontensidsäure einsetzbar. Geeignete Alkylschwefel­ säuren sind beispielsweise die Schwefelsäuremonoester aus primären Alkoholen natürli­ chen und synthetischen Ursprungs, insbesondere aus Fettalkoholen, z. B. Kokosfettalko­ holen, Talgfettalkoholen, Oleylalkohol, Lauryl-, Myristyl-, Palmityl- oder Stearylalkohol, oder den C10-C20-Oxoalkoholen, und diejenigen sekundärer Alkohole dieser Kettenlänge. Auch die Schwefelsäuremonoester der mit 1 bis 6 Mol Ethylenoxid ethoxylierten Alkoho­ le, wie 2-Methyl-verzweigte C9-C11-Alkohole mit im Durchschnitt 3,5 Mol Ethylenoxid sind geeignet. An der Stelle von reiner ABSS kann im erfindungsgemäßen Verfahren auch ein Gemisch aus ABSS und Niotensid verwendet werden, wobei der Gehalt an Niotensid im Bereich von 1 bis 10 Gew.-%, vorzugsweise von 3 bis 8 Gew.-%, bezogen auf das ferti­ ge Granulat, betragen kann.
Auch der Einsatz von gesättigten und ungesättigten Fettsäuren mit C8-C18-Kettenlängen in Form ihrer Gemische und/oder der α-Sulfofettsäuren gesättigter C8-C18-Fettsäuren ist im erfindungsgemäßen Verfahren möglich. Mit besonderem Vorteil können auch Mischungen der genannten Fettsäuren und α-Sulfofettsäuren mit weiteren Sulfonsäuren und Alkyl­ schwefelsäuren, beispielsweise Alkylbenzolsulfonsäuren und Fettalkylschwefelsäuren, eingesetzt werden.
In bevorzugten Verfahrensvarianten des erfindungsgemäßen Verfahrens wird als Anionten­ sidsäure eine Alkylbenzolsulfonsäure (ABSS) eingesetzt.
Die Aniontensidsäuren können in ihrer Konzentration herstellungsbedingt variieren. Neben den Tensidsäuren enthalten die Verfahrensendprodukte der Sulfonierung, Sulfierung oder Sulfoxidation in der Regel Wasser und untergeordnete Mengen an Verunreinigungen wie Salzen, beispielsweise Natriumsulfat. Es ist im Rahmen der vorliegenden Erfindung bevor­ zugt, daß die die Aniontensidsäure einen Aktivsubstanzgehalt von mindestens 60 Gew.-%, vorzugsweise von mindestens 75 Gew.-% und insbesondere von mindestens 85 Gew.-%, aufweist.
Wie oben bereits erwähnt, lassen sich die Aniontensidsäuren auch in Mischung mit ande­ ren Stoffen, beispielsweise nichtionischen Tensiden, einsetzen. Es ist erfindungsgemäß aber auch möglich, andere nichttensidische Bestandteile mit der Aniontensidsäure zu mi­ schen und in das Verfahren einzubringen. Hier ist es insbesondere bevorzugt, wäßrige Lö­ sungen von Polycarboxylaten einzusetzen.
In einer geeigneten Misch- und Granuliervorrichtung, beispielsweise in entsprechenden Anlagen vom Typ eines Eirich-Mischers, eines Lödige-Mischers, beispielsweise eines Pflugscharmischers der Firma Lödige, oder eines Mischers der Firma Schugi, werden bei Umfangsgeschwindigkeiten der Mischorgane vorzugsweise zwischen 1 und 6 m/s (Pflug­ scharmischer) beziehungsweise 3 bis 50 m/s (Eirich, Schugi), insbesondere zwischen 5 und 20 m/s der Zeolith und die Natronlauge vorgelegt und nachfolgend unter Zusatz der Aniontensidsäure granuliert. Dabei kann gleichzeitig in an sich bekannter Weise eine vor­ bestimmte Korngröße des Granulats eingestellt werden. Der Neutralisations- und Misch­ prozeß benötigt nur einen sehr kurzen Zeitraum von beispielsweise etwa 0,5 bis 10 Minu­ ten, insbesondere etwa 0,5 bis 5 Minuten (Eirich-Mischer, Lödige-Mischer) zur Homoge­ nisierung des Gemisches unter Ausbildung des rieselfähigen Granulates. Im Schugi- Mischer hingegen reicht normalerweise eine Verweilzeit von 0,5 bis 10 Sekunden aus, um ein rieselfähiges Granulat zu erhalten. Die Mischungsverhältnisse der Komponenten und insbesondere die Anteile des vorgelegten Feststoffes sind dabei derart auf den über die ABSS und die NaOH eingetragenen Wasseranteil abzustimmen, daß ein rieselfähiges Gra­ nulat ausgebildet werden kann. Dabei ist üblicherweise umso mehr Feststoff erforderlich, je höher der Wasseranteil der ABSS und NaOH ist. In einer bevorzugten Ausführungsform des erfindungsgemäßen Verfahrens wird das Granulat unmittelbar nach der Granulation in einer Wirbelschicht getrocknet und die Oberfläche mit geringen Mengen feinteiligen Zeo­ liths behandelt, da auf diese Weise Tensidgehalt und Schüttgewicht weiter erhöht werden können.
Das erfindungsgemäße Verfahren arbeitet vorteilhaft kontinuierlich, wobei Zeolith sowie NaOH über Dosiervorrichtungen in den Eingangsbereich des Mischers dosiert werden. Die Aniontensidsäure kann anschließend eingedüst werden, wobei die Verdüsung auch über eine Mehrstoffdüse erfolgen kann, wobei als weiterer Stoff Luft durch den Neutralisa­ tor/Mischer/Granulator geblasen wird, die die Neutralisationswärme zur Wasserverdamp­ fung nutzbar macht. In einem Schugi-Mischer kann als Pulver der reine Zeolith dosiert werden. Nachfolgend wird unter Beachtung der Rotationsrichtung zuerst die Natronlauge eingedüst und anschließend unter Zusatz der Aniontensidsäure granuliert. Ein Lödige- Pflugscharmischer läßt sich kontinuierlich betreiben, indem der Mischer durch verstellbare Wehre in verschiedene Kammern aufgeteilt wird. In der ersten Kammer wird der Zeolith mit der Natronlauge beaufschlagt, in der zweiten Kammer wird unter Zusatz der Anionten­ sidsäure granuliert. In einer optional abteilbaren dritten Kammer kann das Granulat mit pulverförmigen Stoffen abgepudert werden.
Es besteht aber weiterhin die Möglichkeit, das erfindungsgemäße Verfahren batchweise zu betreiben, indem man Zeolith und NaOH im Mischer vorlegt und vermischt und nachträg­ lich unter Zusatz der Aniontensidsäure granuliert.
Die folgenden Anwendungsbeispiele, die das erfindungsgemäße Verfahren verdeutlichen und Vorteile gegenüber herkömmlichen Verfahren zeigen, sind lediglich ausgewählte Bei­ spiele, die nicht einschränkend verstanden werden sollen.
Beispiele
In einem 50-Liter-Labormischer (Lödige Pflugscharmischer) wurden 4,4 kg Zeolith X (Wessalith® XD, Degussa) vorgelegt und mit 1,26 kg 50%-iger Natronlauge versetzt. Die­ se Mischung wurde 30 Sekunden vermischt, anschließend wurden 5,2 kg einer 97%-igen C9-13-Alkylbenzolsulfonsäurelösung zugegeben und die Mischung granuliert. Nach dem Austragen aus dem Mischer wurden die erhaltenen Granulate einer Wirbelschichttrocknung unterworfen. Die durch diese erfindungsgemäße Vorgehensweise erhaltenen Granulate E1 wurden mit den Vergleichsbeispielen V1 und V2 verglichen. V1 wurde dabei hergestellt, indem man Natronlauge und Alkylbenzolsulfonsäure zeitgleich auf den im Mischer vorge­ legten Zeolith gab, bei der Herstellung von V2 wurde die Alkylbenzolsulfonsäure auf den vorgelegten Zeolith gegeben und erst danach die Natronlauge aufgedüst.
Vergleichsbeispiel V3 wurde durch Granulation einer 75%-igen ABS-Paste (erhalten aus Alkylbenzolsulfonsäure und NaOH) mit Zeolith erhalten.
Die Bestimmung des Calcium-Komplexiervermögens erfolgte potentiometrisch mit einer Ca-sensitiven Elektrode der Firma Orion. Hierzu wurden zunächst in einem auf 30°C thermostatierten Glasgefäß 1 Liter Wasser von 30°d (entsprechend 30 mg CaO/l) vorge­ legt, diese Lösung mit Natronlauge auf pH 10 und mit Kaliumchlorid zur Simulierung ei­ nes für ein Waschmittel üblichen Elektrolytgehalts auf eine 0,08 molare KCl-Lösung ein­ gestellt. Je 1 g der Granulate E1, V1 und V2 wurden unter Rühren zu der jeweils vorberei­ teten Lösung hinzugegeben. Die Abnahme der Ca-Härte wurde mittels eines Computers als Funktion der Zeit bestimmt und der Wert der Resthärte 10 Minuten nach der Zugabe der Substanz zur vorgelegten Lösung ausgewertet. Aus der Differenz zwischen Ausgangshärte und Resthärte ergab sich die gebundene Härte pro g Substanz.
Der Test auf Rückstände wurde mit einem Wäscheposten aus 4 schwarzen Turnanzügen aus texturierten Polyamid mit einem Gewicht von ca. 320 g durchgeführt. Als Geräte wur­ den verwendet:
Waschflügel-Bottichwaschmaschine Typ Arcelik ohne Schleudergang
Zentrifuge mit einer Geschwindigkeit von 1400 U/min
Polyethylen-Schüsseln
In die Bottichwaschmachine wurden 30 l Stadtwasser (16°dH) eingelassen, anschließend wurden 80 g Pulver durch Rühren aufgelöst. Der Wäscheposten wurde hinzugegeben und die Maschine auf 30°C aufgeheizt. Nach Erreichen dieser Temperatur wurde die Wäsche 10 Minuten durch Betätigen des Bewegers gewaschen, im Anschluß daran die Waschflotte abgelassen und dreimal gespült. Beim Spülen wurden jeweils 30 l Wasser zugelassen, 30 sec geschlagen und dann das vorhandene Spülwasser abgelassen. Nach dem Spülen wurde die Wäsche 15 sec geschleudert, in eine Polyethylenschüssel gelegt und über Nacht ge­ trocknet.
Anschließend wurden die Rückstände auf den Textilien durch mindestens 5 Prüfer visuell beurteilt. Dabei wurden folgende Noten vergeben:
Note 1: einwandfrei, keine störenden Rückstände
Note 2: tolerierbare, vereinzelte, noch nicht besonders auffallende Rückstände
Note 3: erkennbare, bei kritischer Betrachtung bereits störende Rückstände
Note 4: deutlich erkennbare, störende Rückstände
Note 5: störende, in Vielzahl auftretende, jedem Betrachter auffallende Rückstände
Note 6: sehr große Mengen störender, gut sichtbarer Rückstände
Die Noten der einzelnen Prüfer wurden zu einem Mittelwert zusammengefaßt, wobei die Prüfer auch Zwischennoten vergeben können.
Die physikalischen Daten der Granulate zeigt Tabelle 1.
Tabelle 1: ABS-Granulate
Aus den Rückstandsnoten und dem Ca-Bindevermögen läßt sich ersehen, daß sich der Zeolith bei erfindungsgemäßer Vorgehensweise nur in geringen Mengen zersetzt und sich die Granulate problemlos in Waschmittelformulierungen einsetzen lassen. Bei den Ver­ gleichsbeispielen V1 und V2 wurde zwar ein Granulat mit über 50 Gew.-% Aktivsubstanz erhalten, die Rückstandswerte verbieten aber einen Einsatz der Proukte in Waschmitteln. Bei der Granulation von ABS-Pasten (V3) läßt sich zwar ein Produkt mit akzeptablen Rückstandswerten erhalten, der Aktivsubstanzgehalt hegt aber deutlich unter 50 Gew.-%.

Claims (8)

1. Verfahren zur Herstellung zeolith- und aniontensidhaltiger Granulate, gekennzeichnet durch die Schritte
  • a) Vermischen von Zeolith und wäßriger Natronlauge in einem Mischer
  • b) Granulation unter Zugabe von Aniontensidsäure(n)
  • c) optionale Trocknung der in Schritt b) gebildeten Granulate,
wobei der Aniontensidgehalt der entstehenden Granulate auf Werte ≧ 50 Gew.-% ein­ gestellt wird.
2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß als Zeolith ein Zeolith vom Faujasit-Typ, vorzugsweise Zeolith X, eingesetzt wird.
3. Verfahren nach einem der Ansprüche 1 oder 2, dadurch gekennzeichnet, daß die einge­ setzte Natronlauge mindestens 30 Gew.-%, vorzugsweise mindestens 40 Gew.-% und insbesondere mindestens 50 Gew.-% NaOH enthält.
4. Verfahren nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, daß als Anion­ tensidsäure eine Alkylbenzolsulfonsäure (ABSS) eingesetzt wird.
5. Verfahren nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, daß die Anion­ tensidsäure einen Aktivsubstanzgehalt von mindestens 60 Gew.-%, vorzugsweise von mindestens 75 Gew.-% und insbesondere von mindestens 85 Gew.-%, aufweist.
6. Verfahren nach einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, daß die Granu­ lation unter Zugabe von Aniontensidsäure und weiteren wäßrigen Lösungen, insbeson­ dere Lösungen von Polycarboxylaten, erfolgt.
7. Verfahren nach einem der Ansprüche 1 bis 6, dadurch gekennzeichnet, daß 5 bis 50 Gew.-%, vorzugsweise 10 bis 45 Gew.-% und insbesondere 15 bis 40 Gew.-% Zeolith, bezogen auf das fertige Granulat, eingesetzt werden.
8. Verfahren nach einem der Ansprüche 1 bis 7, dadurch gekennzeichnet, daß die Menge an Aniontensidsäure, die in den Mischer eingetragen wird, 35 bis 75 Gew.-%, vor­ zugsweise 45 bis 65 Gew.-% und insbesondere 50 bis 60 Gew.-%, bezogen auf die Ge­ samtmenge der im Mischer vorliegenden Stoffe, beträgt.
DE1998122942 1998-05-22 1998-05-22 Granulation von Aniontensidsäuren Withdrawn DE19822942A1 (de)

Priority Applications (2)

Application Number Priority Date Filing Date Title
DE1998122942 DE19822942A1 (de) 1998-05-22 1998-05-22 Granulation von Aniontensidsäuren
EP99109605A EP0959124A1 (de) 1998-05-22 1999-05-14 Granulation von Aniontensidsäuren

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE1998122942 DE19822942A1 (de) 1998-05-22 1998-05-22 Granulation von Aniontensidsäuren

Publications (1)

Publication Number Publication Date
DE19822942A1 true DE19822942A1 (de) 1999-11-25

Family

ID=7868617

Family Applications (1)

Application Number Title Priority Date Filing Date
DE1998122942 Withdrawn DE19822942A1 (de) 1998-05-22 1998-05-22 Granulation von Aniontensidsäuren

Country Status (2)

Country Link
EP (1) EP0959124A1 (de)
DE (1) DE19822942A1 (de)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1347037A1 (de) 2002-03-19 2003-09-24 Süd-Chemie Ag Waschmittelzusatz mit hohem Gehalt an nichtionischen Tensiden und schnellem Auflösevermögen

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4415489A (en) * 1979-04-06 1983-11-15 Colgate Palmolive Company Process for making high solids content zeolite A-alkylbenzene sulfonate compositions suitable for use in making spray dried detergent compositions
DE69221357T2 (de) * 1991-04-12 1998-03-12 Procter & Gamble Chemische Strukturierung von oberflächenaktiven Pasten zwecks Herstellung hochwirksamer Tensidgranulate
DE4314885A1 (de) * 1993-05-05 1994-11-10 Sued Chemie Ag Verfahren zur Neutralisation der Säureform von anionischen Tensiden, danach erhaltene Agglomerate und Waschmittel
GB9313878D0 (en) * 1993-07-05 1993-08-18 Unilever Plc Detergent composition or component containing anionic surfactant and process for its preparation

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1347037A1 (de) 2002-03-19 2003-09-24 Süd-Chemie Ag Waschmittelzusatz mit hohem Gehalt an nichtionischen Tensiden und schnellem Auflösevermögen
DE10212169A1 (de) * 2002-03-19 2003-10-02 Sued Chemie Ag Waschmittelzusatz mit hohem Gehalt an nichtionischen Tensiden und schnellem Auflösevermögen

Also Published As

Publication number Publication date
EP0959124A1 (de) 1999-11-24

Similar Documents

Publication Publication Date Title
EP0595946B1 (de) Verfahren zur herstellung von waschmitteln mit hohem schüttgewicht und verbesserter lösegeschwindigkeit
DE68927745T2 (de) Waschmittelzusammensetzungen und Verfahren zu deren Herstellung
DE69226029T2 (de) Waschmittel und Verfahren zu ihrer Herstellung
DE2753026C2 (de)
DE69225679T2 (de) Teilchenförmige Waschmittelzusammensetzungen
DE2545190C3 (de) Pulverförmige Wasch- und Reinigungsmittel mit einem Gehalt an wasserunlöslichen Silikaten, sowie Verfahren zu deren Herstellung
WO1993015180A1 (de) Verfahren zur herstellung fester wasch- und reinigungsmittel mit hohem schüttgewicht und verbesserter lösegeschwindigkeit
DE69225702T2 (de) Verfahren zur Herstellung von kompakten Reinigungsmitteln
DE4021476A1 (de) Verfahren zur ueberfuehrung waessriger zubereitungsformen wasch- und reinigungsaktiver tensidverbindungen in lagerstabile trockengranulate
DE68907438T2 (de) Verfahren zur Herstellung von Waschmittelzusammensetzungen.
EP0641380B1 (de) Verfahren zur herstellung aniontensidhaltiger wasch- und reinigungsmittel
CH617959A5 (en) Detergent composition in the form of free-flowing hollow beads and process for the production thereof
DE3702111A1 (de) Poroeses schichtsilikat/natriumsulfat-agglomerat
DE2327956A1 (de) Verfahren zur herstellung von wasserloesliche hydratisierte salze enthaltenden granulaten, insbesondere wasch- und reinigungsmittelgranulaten
DE60213399T3 (de) Körnige zusammensetzung
WO1993004154A1 (de) Verfahren zur herstellung carbonathaltiger granulate
DE2538233B2 (de) Flüssiges bis pastenförmiges Wasch- und Reinigungsmittelkonzentrat
CH630044A5 (en) Process for preparing aqueous suspensions of finely particulate, water-insoluble silicates capable of cation exchange
DE2538217A1 (de) Fluessiges bis pastenfoermiges wasch- und reinigungsmittelkonzentrat
DE69016945T2 (de) Verfahren zur Herstellung von Ton enthaltenden Reinigungspulvern hoher Dichte.
CH619488A5 (en) Process for the production of a detergent, and product produced by the process
DE19822942A1 (de) Granulation von Aniontensidsäuren
EP0804535B1 (de) Bleichendes wasch- und reinigungsmittel in granulatform
WO1993005133A1 (de) Wasch- und/oder reinigungsverfahren
DE2533633B2 (de)

Legal Events

Date Code Title Description
8110 Request for examination paragraph 44
8127 New person/name/address of the applicant

Owner name: HENKEL AG & CO. KGAA, 40589 DUESSELDORF, DE

R120 Application withdrawn or ip right abandoned

Effective date: 20130702