DE19510804A1 - Reduction of nitrogen oxide(s) in vehicle exhaust gas - Google Patents

Reduction of nitrogen oxide(s) in vehicle exhaust gas

Info

Publication number
DE19510804A1
DE19510804A1 DE19510804A DE19510804A DE19510804A1 DE 19510804 A1 DE19510804 A1 DE 19510804A1 DE 19510804 A DE19510804 A DE 19510804A DE 19510804 A DE19510804 A DE 19510804A DE 19510804 A1 DE19510804 A1 DE 19510804A1
Authority
DE
Germany
Prior art keywords
catalyst
indicates
reducing agent
contact
pressure plasma
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
DE19510804A
Other languages
German (de)
Inventor
Juergen Dr Rer Nat Steinwandel
Joerg Dr Rer Nat Hoeschele
Theodor Dipl Ing Staneff
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mercedes Benz Group AG
Original Assignee
Dornier GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dornier GmbH filed Critical Dornier GmbH
Priority to DE19510804A priority Critical patent/DE19510804A1/en
Publication of DE19510804A1 publication Critical patent/DE19510804A1/en
Withdrawn legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • F01N3/18Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control
    • F01N3/20Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control specially adapted for catalytic conversion ; Methods of operation or control of catalytic converters
    • F01N3/2066Selective catalytic reduction [SCR]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/32Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by electrical effects other than those provided for in group B01D61/00
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/92Chemical or biological purification of waste gases of engine exhaust gases
    • B01D53/94Chemical or biological purification of waste gases of engine exhaust gases by catalytic processes
    • B01D53/9404Removing only nitrogen compounds
    • B01D53/9409Nitrogen oxides
    • B01D53/9431Processes characterised by a specific device
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/92Chemical or biological purification of waste gases of engine exhaust gases
    • B01D53/94Chemical or biological purification of waste gases of engine exhaust gases by catalytic processes
    • B01D53/9495Controlling the catalytic process
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J19/08Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor
    • B01J19/087Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor employing electric or magnetic energy
    • B01J19/088Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor employing electric or magnetic energy giving rise to electric discharges
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J19/08Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor
    • B01J19/12Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor employing electromagnetic waves
    • B01J19/122Incoherent waves
    • B01J19/126Microwaves
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/08Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor
    • B01J2219/0894Processes carried out in the presence of a plasma
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/08Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor
    • B01J2219/12Processes employing electromagnetic waves
    • B01J2219/1203Incoherent waves
    • B01J2219/1206Microwaves
    • B01J2219/1209Features relating to the reactor or vessel
    • B01J2219/1221Features relating to the reactor or vessel the reactor per se
    • B01J2219/1224Form of the reactor
    • B01J2219/1227Reactors comprising tubes with open ends
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2240/00Combination or association of two or more different exhaust treating devices, or of at least one such device with an auxiliary device, not covered by indexing codes F01N2230/00 or F01N2250/00, one of the devices being
    • F01N2240/28Combination or association of two or more different exhaust treating devices, or of at least one such device with an auxiliary device, not covered by indexing codes F01N2230/00 or F01N2250/00, one of the devices being a plasma reactor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2610/00Adding substances to exhaust gases
    • F01N2610/02Adding substances to exhaust gases the substance being ammonia or urea
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2610/00Adding substances to exhaust gases
    • F01N2610/03Adding substances to exhaust gases the substance being hydrocarbons, e.g. engine fuel
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2610/00Adding substances to exhaust gases
    • F01N2610/04Adding substances to exhaust gases the substance being hydrogen
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B1/00Engines characterised by fuel-air mixture compression
    • F02B1/02Engines characterised by fuel-air mixture compression with positive ignition
    • F02B1/04Engines characterised by fuel-air mixture compression with positive ignition with fuel-air mixture admission into cylinder
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A50/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
    • Y02A50/20Air quality improvement or preservation, e.g. vehicle emission control or emission reduction by using catalytic converters
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Abstract

NOx present in the exhaust gases from combustion machines is reduced by introducing a selective gaseous reducing agent and bringing the mixture into contact with a catalyst. The reducing agent is converted to high pressure plasma with a marked formation of radicals before it comes into contact with the catalyst so that the contact reaction is accelerated. Also claimed is a device, in which the above process can be carried out, including a microwave source, a waveguide coupler and a cavity resonator.

Description

Die Erfindung betrifft ein Verfahren und eine Vorrichtung zur Stickoxidminde­ rung in Abgasen von Verbrennungsmaschinen, insbesondere zur Anwendung in einem Kraftfahrzeug.The invention relates to a method and a device for nitrogen oxide mining tion in exhaust gases from internal combustion engines, in particular for use in a motor vehicle.

Bei der nachmotorischen Stickoxidminderung für Dieselmotoren tritt das Pro­ blem auf, daß der bei Otto-Motoren bekannte - geregelte oder ungeregelte - Dreiwegkatalysator infolge des hohen Luft-(Sauerstoff-)Überschusses nicht eingesetzt werden kann.The pro comes with post-engine nitrogen oxide reduction for diesel engines blemished that the well-known - regulated or unregulated - with Otto engines Three-way catalyst not due to the high air (oxygen) excess can be used.

Aus der Kraftwerksentstickung (stationärer Anwendungsfall) ist die selektive katalytische Reduktion von Stickoxiden mit Ammoniak an speziellen Kontak­ ten (NH₃-SCR) bekannt, die auf mobile Belange z. B. in einer Variante, bei der Ammoniak aus der Hydrolyse von Aminen (z. B. Harnstoff) erhalten wird, über­ tragbar ist. Diese Amine haben gegenüber Ammoniak auch hinsichtlich des geringeren Gefährdungspotentials Vorteile.The power plant denitrification (stationary application) is the selective one Catalytic reduction of nitrogen oxides with ammonia on special contacts ten (NH₃-SCR) known for mobile matters such. B. in a variant in which Ammonia is obtained from the hydrolysis of amines (e.g. urea) is portable. These amines also have an lower risk potential advantages.

Darüberhinaus sind Verfahren bekannt, bei denen umweltverträgliche Reduk­ tionsmittel, z. B. Kohlenwasserstoffe, mittels geeigneter Kontakte zur selektiven Stickoxidreduktion eingesetzt werden (KW-SCR).In addition, methods are known in which environmentally friendly Reduk  tion means, e.g. B. hydrocarbons, by means of suitable contacts for selective Nitrogen oxide reduction can be used (KW-SCR).

Als Katalysatoren werden beispielsweise metalldotierte Zeolithe, insbeson­ dere kupferhaltige Materialien untersucht sowie Mischoxide der Typen Pe­ rowskite, Spinelle und Illmenite. Die Dotierung mit Kupfer scheint auch hier von gewisser Bedeutung zu sein.Metal-doped zeolites, in particular, are used as catalysts their copper-containing materials and mixed oxides of types Pe rowskite, spinels and illmenite. The doping with copper also seems here to be of some importance.

Die grundsätzliche Wirksamkeit der Verfahren konnte zwar in Laborversuchen demonstriert werden, wobei jedoch weder die in Dieselabgasen typischer­ weise verfügbaren Abgastemperaturen für ausreichende Konversionen ge­ geben noch spezifische Lastwechselbedingungen damit abdeckbar sind. Nicht gelöst ist auch das Problem der Kontaktdesaktivierung.The basic efficacy of the methods could be tested in laboratory tests be demonstrated, but neither is the more typical in diesel exhaust exhaust gas temperatures available for sufficient conversions give specific load change conditions so that they can be covered. The problem of contact deactivation is also not solved.

In jüngerer Zeit wurde der Versuch unternommen, die nicht ausreichende Aktivität bei Verfahren der KW-SCR durch die Verwendung von Wasserstoff als selektivem Reduktionsmittel zu verbessern (H₂-SCR). Allerdings spielt der Wasserstoff auch bei der NH₃-SCR und der KW-SCR (in Form oberflächen­ adsorbierter Radikale) eine bedeutende Rolle, was im folgenden noch näher dargelegt wird.More recently, attempts have been made to make the insufficient Activity in KW-SCR processes through the use of hydrogen to improve as a selective reducing agent (H₂-SCR). However, it does Hydrogen also in the NH₃-SCR and KW-SCR (in the form of surfaces adsorbed radicals) play an important role, which is explained in more detail below is set out.

Bei keinem der oben angegebenen SCR-Verfahren sind die Reaktionsschritte im Detail bekannt. Es ist jedoch ziemlich wahrscheinlich, daß oberflächen­ adsorbierte Radikale eine wesentliche Rollen spielen.The reaction steps are not in any of the above SCR processes known in detail. However, it is quite likely that surfaces adsorbed radicals play an essential role.

a) Die NH₃-SCR-Reaktionena) The NH₃-SCR reactions

Die Adsorption von Ammoniak erfolgt an einem geeigneten Kontakt dissozia­ tiv in Aminradikale und Wasserstoffatome:Ammonia is adsorbed at a suitable contact dissozia active in amine radicals and hydrogen atoms:

NH₃ → NH₂+ H (1)NH₃ → NH₂ + H (1)

Aminradikale reagieren mit ebenfalls am Kontakt adsorbierten NO-Molekülen (nicht dissoziativ) nach:Amine radicals react with NO molecules also adsorbed on the contact (not dissociative) after:

NH₂+NO → N₂+H₂O (2)NH₂ + NO → N₂ + H₂O (2)

Die chemische Triebkraft für (2) ist die Bildung des stabilen N₂-Moleküls mit seiner Dreifachbindung.The chemical driving force for (2) is the formation of the stable N₂ molecule its triple bond.

Diese Reaktion ist selektiv. Sie ist thermodynamisch begünstigt und kinetisch in einem einfachen Elementarschritt führbar.This reaction is selective. It is thermodynamically favored and kinetic feasible in a simple elementary step.

Aufgrund der thermodynamisch/kinetischen Randbedingungen für diese Re­ aktion ist zu vermuten, daß Folgereaktionen mit H-Atomen hier nur eine unter­ geordnete Rolle spielen, da diese wesentlich komplexer formuliert werden müssen:Due to the thermodynamic / kinetic boundary conditions for this Re action is to be assumed that subsequent reactions with H atoms here only one under orderly role, since they are formulated much more complex have to:

NO + H → N + OH (3)NO + H → N + OH (3)

NO + N → N₂ + O (4)NO + N → N₂ + O (4)

NO + O → N + O₂ (5)NO + O → N + O₂ (5)

NO + OH → O₂ + NH (6)NO + OH → O₂ + NH (6)

O₂ + N + H (7)O₂ + N + H (7)

Im Gegensatz zur Reaktion (2) ist hier mindestens ein zusätzlicher Schritt (3) erforderlich, bevor wieder mittels Reaktion (4) die Möglichkeit zur Bildung des stabilen N₂-Moleküls führt. Die NH₃-SCR-Reaktion wird technisch bei der Kraftwerksentstickung geführt, wobei vor allem Mischoxidkatalysatoren (WO₃, Cr₂O₃, V₂O₅) auf TiO₂-Träger eingesetzt werden. Es ist möglich, die Reaktion auch an metalldotierten Zeolithkatalysatoren zu führen.In contrast to reaction (2), at least one additional step (3) is required before the possibility of forming the leads stable N₂ molecule. The NH₃-SCR reaction is technically in the Power plant denitrification, especially mixed oxide catalysts (WO₃, Cr₂O₃, V₂O₅) are used on a TiO₂ support. It is possible the reaction  to lead also on metal-doped zeolite catalysts.

b) Die KW-SCR-Reaktionenb) The KW-SCR reactions

Kohlenwasserstoffe können an Kontaktoberflächen entweder radikalisch-dis­ soziativ adsorbiert werden, oder es kann eine Dehydrierung unter Olefinbil­ dung sowie oberflächenadsorbiertem Wasserstoff erfolgen:Hydrocarbons can be either radical-dis sociologically adsorbed, or there may be dehydration under olefinbil and surface-adsorbed hydrogen:

R-H → R (8)RH → R (8)

R-C₂H₅ → R-C₂H₃ + H₂ (9)R-C₂H₅ → R-C₂H₃ + H₂ (9)

H₂ → 2 H (10)H₂ → 2 H (10)

Für Folgereaktionen mit NO und H-Atomen gelten die Reaktionen (3) bis (7).Reactions (3) to (7) apply to subsequent reactions with NO and H atoms.

Mögliche Folgereaktionen von NO mit Alkylradikalen (R) und Olefinen (aus der Alkandehydrierung (9) sind komplex und nicht unbedingt NO-selektiv.Possible subsequent reactions of NO with alkyl radicals (R ) and olefins (from alkane dehydrogenation (9) are complex and not necessarily NO-selective.

Neben dem erwünschten oxidativen Abbau der Kohlenwasserstoffe durch NO (KW + NO → CO₂ + H₂O + N₂) ist, vor allem bei relativ niedrigen Reaktions­ temperaturen, mit der Bildung organischer Stickstoffverbindungen (z. B. Nitro- und Nitrosoverbindungen) sowie Aldehyden, Ketonen und Carbonsäuren auf­ grund thermodynamischer Stabilitätskriterien und reaktionsmechanistischer Gegebenheiten zu rechnen, was sich in der Praxis auch bestätigt.In addition to the desired oxidative degradation of the hydrocarbons by NO (KW + NO → CO₂ + H₂O + N₂) is, especially with a relatively low response temperatures, with the formation of organic nitrogen compounds (e.g. nitro and nitroso compounds) and aldehydes, ketones and carboxylic acids due to thermodynamic stability criteria and reaction mechanistic To calculate the circumstances, which is also confirmed in practice.

Als Katalysatoren kommen beispielweise edelmetalldotierte Zeolithe zum Ein­ satz sowie konventionelle Trägerkatalysatoren auf Edelmetall/Al₂O₃-Basis.For example, noble metal-doped zeolites are used as catalysts set and conventional supported catalysts based on noble metal / Al₂O₃.

c) Die H₂-SCR-Reaktionenc) The H₂-SCR reactions

Die dissoziative Adsorption von Wasserstoff erfolgt bevorzugt an edelmetall­ haltigen Kontakten. Die möglichen radikalischen Folgereaktionen mit NO sind analog (3) bis (7) formulierbar.The dissociative adsorption of hydrogen is preferably carried out on noble metal  contacts. The possible radical follow-up reactions with NO are can be formulated analogously (3) to (7).

Wie bereits bemerkt, stellt die H₂-SCR-Methode aus chemisch-physikalischer Sicht nichts grundsätzlich Neues dar, weil die relevanten H-atomgetragenen Reaktionen sowohl bei der NH₃-SCR als auch bei der KW-SCR-Methode auf­ treten.As already noted, the H₂-SCR method represents chemical-physical Nothing fundamentally new, because the relevant hydrogen atom-borne Reactions to both the NH₃-SCR and the KW-SCR method to step.

Da eine Versorgung mit Wasserstoff aus Druckgasbehältern für den mobilen Einsatz kaum in Betracht gezogen werden kann, muß dieser vor Ort aus was­ serstoffhaltigen Verbindungen erzeugt werden. Neben der Wasserelektrolyse kommen dazu noch Reformierungs- und Dehydrierungsreaktionen in Betracht (z. B. KW/H₂O-Reformierung, Alkandehydrierung, Ammoniakzerfall).Because a supply of hydrogen from pressurized gas containers for the mobile Deployment can hardly be considered, this must be done on site compounds containing hydrogen are generated. In addition to water electrolysis reforming and dehydration reactions are also possible (e.g. KW / H₂O reforming, alkane dehydrogenation, ammonia decomposition).

Aufgabetask

Bei kontaktinduzierten Gasreaktionen, wie z. B. den obengenannten SCR-Re­ aktionen, erfolgt die Reaktionsaktivierung über die Festkörperphase. Üblicher­ weise sind die Prozesse zur Reaktionsaktivierung an Festkörperoberflächen thermischer Natur. Hinreichend schnelle Reaktionszeiten erfordern deshalb Temperaturen, wie sie normalerweise in Abgasen von Dieselmotoren nicht zur Verfügung stehen. Da insbesondere bei der mobilen Anwendung eine Re­ aktorverlängerung nur begrenzt möglich ist, bleiben auch die Konversionsra­ ten gering.In contact-induced gas reactions, such as. B. the above SCR-Re actions, the reaction is activated via the solid phase. More common the processes for reaction activation on solid surfaces are wise thermal nature. Sufficiently fast response times therefore require Temperatures that are not normally found in exhaust gases from diesel engines be available. Since a Re Actuator extension is only possible to a limited extent, the conversion rate also remains low.

Es ist deshalb Aufgabe der Erfindung, ein Verfahren zur Stickoxidminderung in Abgasen von Verbrennungsmaschinen, insbesondere in einem Kfz, zu schaffen, mit dem die Stickoxid-Reduktion an der Kontaktoberfläche beschleu­ nigt werden kann, so daß selbst bei moderater Kontakttemperatur höhere Konversionsraten erreicht werden können.It is therefore an object of the invention to provide a method for reducing nitrogen oxide in exhaust gases from internal combustion engines, especially in a motor vehicle create with which the nitrogen oxide reduction accelerates on the contact surface  can be nigt, so that even at moderate contact temperature higher Conversion rates can be achieved.

Diese Aufgabe wird mit dem Verfahren nach Anspruch 1 gelöst. Vorteilhafte Ausgestaltungen des Verfahrens sowie eine Vorrichtung zur Durchführung des Verfahrens sind Gegenstände weiterer Ansprüche.This object is achieved with the method according to claim 1. Beneficial Refinements of the method and a device for carrying it out the procedure are the subject of further claims.

Nach dem erfindungsgemäßen Verfahren wird das Reduktionsmittel vor Ein­ tritt in den Kontakt am Katalysator in den Hochdruckplasmazustand überge­ führt. Durch den Plasmaprozeß wird eine Aktivierung der Moleküle in der Gas­ phase erreicht. Von Bedeutung ist hier die plasmainduzierte Bildung von Ra­ dikalen, weniger von Ionen/Elektronen oder vibronisch/elektronisch angereg­ ten Molekülen.In the process according to the invention, the reducing agent is added before enters into contact with the catalyst in the high-pressure plasma state leads. The plasma process activates the molecules in the gas phase reached. The plasma-induced formation of Ra is important here dical, less excited by ions / electrons or vibronic / electronic molecules.

Radikale sind in der Gasphase länger existent als alle anderen Plasmaspe­ zies, da ihre Rekombination in der Gasphase gehemmt ist, im Vergleich zur Ion/Elektron-Rekombination (Elementarprozeß unter Photonenemission) oder zur Deaktivierung vibronisch/elektronisch angeregter Moleküle (Elementar­ prozeß durch Photonenemission oder Stoßdesaktivierung).Radicals exist longer in the gas phase than any other plasma spar zies, since their recombination is inhibited in the gas phase compared to the Ion / electron recombination (elementary process under photon emission) or for deactivating vibronically / electronically excited molecules (elementary process by photon emission or shock deactivation).

Somit besteht die Möglichkeit, bei entsprechender Plasmaanregung Radikale des Typs zu erzeugen, wie diese ansonsten durch die oben angegebenen adsorptiv-dissoziativen Prozesse am Kontakt entstehen.There is thus the possibility of radicals with appropriate plasma excitation of the type to generate, as otherwise specified by the above Adsorptive-dissociative processes arise at the contact.

Das Resultat ist eine Beschleunigung der Stickoxid-Reduktion an der Kontakt­ oberfläche und somit höhere Konversionsraten selbst bei moderater Kontakt­ temperatur. The result is an acceleration of the nitrogen oxide reduction at the contact surface and thus higher conversion rates even with moderate contact temperature.  

Das erfindungsgemäße Verfahren ist sowohl für KW-SCR- Reaktionen wie auch für NH₃-SR-Reaktionen und KW-SCR-Reaktionen geeignet.The inventive method is for both KW-SCR reactions also suitable for NH₃-SR reactions and KW-SCR reactions.

Das erfindungsgemäße Verfahren erfordert die Plasmaerzeugung bei minde­ stens Atmosphärendruck und nur unwesentlicher Erwärmung des Prozeßga­ ses (Nichtgleichgewichtsplasmen). Hierfür sind die Methoden der sogenann­ ten stillen Entladungen (Corona Discharge, Dielectric Barrier Discharge) so­ wie spezielle mikrowellengekoppelte Plasmen (Schlitz/Lochkopplung) ge­ eignet.The method according to the invention requires plasma generation at least least atmospheric pressure and only insignificant heating of the process gas ses (non-equilibrium plasmas). For this, the methods of the so-called silent discharges (Corona Discharge, Dielectric Barrier Discharge) such as special microwave-coupled plasmas (slot / hole coupling) is suitable.

Dabei sind im Hinblick auf die Erreichung maximaler Radikalproduktion die mikrowellengekoppelten Plasmen besonders vorteilhaft. Dieses stellt jedoch kein Ausschlußkriterium für die anderen Plasmaverfahren dar. Der Frequenz­ bereich der Mikrowellen liegt zwischen 0,95 GHz und 25 GHz, bevorzugt bei der Frequenz 2,45 GHz. Der besondere Vorteil bei der Plasmaerzeugung durch elektromagnetische Hochfrequenzstrahlung ist die Tatsache, daß hier eine Plasmaerzeugung ohne den Einsatz von Elektroden erreicht werden kann. Dadurch können charakteristische Nachteile beim Einsatz von Elektro­ den, insbesondere Elektrodenabbrand und kurze Standzeiten, vermieden werden.With regard to the achievement of maximum radical production, these are microwave-coupled plasmas are particularly advantageous. However, this poses is not an exclusion criterion for the other plasma processes. The frequency The range of microwaves is between 0.95 GHz and 25 GHz, preferably the frequency 2.45 GHz. The particular advantage in plasma generation by high frequency electromagnetic radiation is the fact that here plasma generation can be achieved without the use of electrodes can. This can cause characteristic disadvantages when using electrical equipment that, especially electrode erosion and short downtimes, are avoided will.

Das erfindungsgemäße Verfahren als Kombination von Plasmaprozessen mit heterogenen Kontakten kann unter Einhaltung folgenden Bedingungen be­ sonders effektiv durchgeführt werden:The inventive method as a combination of plasma processes with Heterogeneous contacts can be in compliance with the following conditions be carried out particularly effectively:

  • - Der Plasmaprozeß ist im wesentlichen nichtthermischer Natur (Nicht­ gleichgewichtsplasmen) und bevorzugt radikalbildend. - The plasma process is essentially non-thermal in nature (not equilibrium plasmas) and preferably radical-forming.  
  • - Die jeweiligen selektiven Reduktionsmittel (Ammoniak bzw. Harnstoff, Kohlenwasserstoffe/Wasserstoff) werden dem Plasma gasförmig zu­ geführt.- The respective selective reducing agents (ammonia or urea, Hydrocarbons / hydrogen) become gaseous in the plasma guided.
  • - Die Plasmaerzeugung erfolgt unmittelbar vor dem Einlauf in den Ka­ talysator (Vermeidung übermäßiger Radikalrekombination).- The plasma is generated immediately before entering the Ka talysator (avoidance of excessive radical recombination).
  • - Der Katalysator besteht aus mit aktivem Material beschichteten Wa­ benstrukturen, wobei der Katalysatorträger sowohl keramischer als auch metallischer Natur sein kann.- The catalyst consists of Wa coated with active material ben structures, the catalyst support being both ceramic and can also be metallic in nature.

Das Plasma/Katalysatorensystem kann in einer vorteilhaften Ausbildung be­ züglich unterschiedlicher Betriebs-(Last-)Zustände regelbar sein, sowohl hin­ sichtlich der momentan erforderlichen Menge an Reduktionsmittel als auch der daran gekoppelten momentan erforderlichen Plasmaleistung. Eine einfa­ che Erfassung der volumetrischen Stickoxidkonzentration, z. B. über Senso­ ren, ist dazu nicht ausreichend. Zusätzlich zu erfassen ist der momentane Gas-Massenfluß. Bei Dieselmotoren ist dazu eine gleichzeitige Erfassung der momentanen Drehzahl sowie der momentan eingespritzten Kraftstoffmenge erforderlich, beispielsweise über eine elektronische Kennfeldsteuerung. Da­ bei wird der momentane Betriebspunkt der Maschine erfaßt und die optimalen Betriebsbedingungen danach annähernd eingestellt.The plasma / catalyst system can be in an advantageous embodiment be controllable with respect to different operating (load) states, both down visibly the amount of reducing agent currently required as well the currently required plasma power. A simple che detection of the volumetric nitrogen oxide concentration, e.g. B. via Senso ren is not sufficient. The current one must also be recorded Mass gas flow. In the case of diesel engines, this includes simultaneous detection of the current speed and the currently injected fuel quantity required, for example via an electronic map control. There at the current operating point of the machine is recorded and the optimum Operating conditions then approximately set.

Bei den stillen Entladungen (AC/DC-Corona Dielectric Barrier) wird die Leistungsregelung über die Stromstärke der Entladung vorgenommen.In the case of silent discharges (AC / DC Corona Dielectric Barrier), the Power regulation made via the current intensity of the discharge.

Bei mikrowellengekoppelten Plasmen kann die Leistungsregelung direkt über die HF-Abstrahlung durch entsprechende Regelung des Kathoden-Emit­ ter-Stroms eines MW-Magnetrons oder durch Verstimmung des Schwingkrei­ ses durch elektromechanische Stub Tuner in einem Hohlleiter (kapazitive Maßnahme) erfolgen.With microwave-coupled plasmas, the power control can be done directly via the RF radiation by appropriate regulation of the cathode emit ter current of a MW magnetron or by detuning the resonant circuit  through electromechanical stub tuners in a waveguide (capacitive Measure).

Als Reduktionsmittel werden vorteilhaft Stickstoff oder Stickstoffverbindung wie z. B. Ammoniak, Hydrazin oder Cyanursäure verwendet. Es können aber auch aliphatische oder olefinische Kohlenwasserstoffe oder Wasserstoff verwendet werden.Nitrogen or nitrogen compound such as e.g. B. ammonia, hydrazine or cyanuric acid is used. But it can also aliphatic or olefinic hydrocarbons or hydrogen used will.

Bevorzugte Katalysatormaterialien sind:Preferred catalyst materials are:

  • - mit Elementen der Platingruppe, der Kupfergruppe oder der Eisengruppe dotierte Zeolithe- with elements of the platinum group, the copper group or the iron group doped zeolites
  • - mit Elementen der Platingruppe dotierte Oxide des Aluminiums, Titans oder der Lanthaniden bzw. Mischungen daraus- Oxides of aluminum, titanium or doped with elements of the platinum group the lanthanides or mixtures thereof
  • - Mischoxide des Wolframs, Chroms oder Vanadiums.- Mixed oxides of tungsten, chromium or vanadium.

Die Erfindung ist anhand von Figuren näher erläutert. Es zeigenThe invention is explained in more detail with reference to figures. Show it

Fig. 1 eine Vorrichtung zur Durchführung des erfindungsgemäßen Verfah­ rens, Fig. 1 shows a device for carrying out the procedural invention Rens,

Fig. 2 eine Vorrichtung zur Erzeugung eines Hochdruckplasmas nach der Methode AC/DC-Corona, Fig. 2 shows a device for generating a high pressure plasma by the method AC / DC Corona,

Fig. 3 eine Vorrichtung zur Erzeugung eines Hochdruckplasmas nach der Methode AC-Dielectric Barrier, Fig. 3 shows a device for generating a high pressure plasma by the method AC Dielectric Barrier,

Fig. 4 eine Vorrichtung zur Erzeugung eines Hochdruckplasmas durch Mikro­ wellen. Fig. 4 shows a device for generating a high pressure plasma by micro waves.

Fig. 1 zeigt den prinzipiellen Aufbau einer Vorrichtung zur Durchführung des erfindungsgemäßen Verfahrens. Die den Motor verlassenden Abgase werden über die Abgasleitung zu dem Katalysatorblock geführt, der die selektiven Re­ duktionskontakte enthält. In diese Abgasleitung wird das Reduktionsmittel in gasförmigem Zustand über eine Düse eingeleitet. Unmittelbar von dem Ein­ lauf in den Katalysatorblock, innerhalb der Abgasleitung, ist die Plasmazone angeordnet, in der das Reduktionsmittel in den Plasmazustand überführt wird. Fig. 1 shows the basic structure of an apparatus for performing the method according to the invention. The exhaust gases leaving the engine are led via the exhaust line to the catalytic converter block, which contains the selective reduction contacts. The reducing agent in gaseous state is introduced into this exhaust line via a nozzle. Immediately from the inlet into the catalyst block, within the exhaust pipe, the plasma zone is arranged, in which the reducing agent is converted into the plasma state.

Von der Vorrichtung zur Erzeugung des Plasmas ist in dieser schematischen Zeichnung nur der Leistungsteil eingezeichnet. Sowohl die Steuerung der Plasmaleistung als auch der Massedurchfluß des Reduktionsmittels wird über das motorische Kennfeld gesteuert.The device for generating the plasma is schematic in this Drawing of the power section only. Both the control of the Plasma power as well as the mass flow of the reducing agent is about controlled the engine map.

Fig. 2 zeigt eine Vorrichtung zur Erzeugung eines Hochdruckplasmas nach der AC/DC-Corona-Methode. Innerhalb der Abgasleitung, deren Wandung 20 als Elektrode dient, ist eine Zentralelektrode 22 angeordnet. Der Leistungsteil (Spannungsversorgung) ist mit elektrisch leitfähigen Wandung 20 der Abgas­ leitung und mit der Zentralelektrode 22 verbunden. An der Zentralelektrode 22 sind Sprühspitzen 24 zur Erhöhung der elektrischen Feldstärke an der Elek­ trodenoberfläche angeordnet, um die Herauslösung der Elektronen aus der Zentralelektrode 22 zu erleichtern. Fig. 2 shows an apparatus for generating a high pressure plasma by the AC / DC corona method. A central electrode 22 is arranged within the exhaust pipe, the wall 20 of which serves as an electrode. The power section (power supply) is connected to the electrically conductive wall 20 of the exhaust gas line and to the central electrode 22 . At the central electrode 22 , spray tips 24 are arranged to increase the electric field strength on the electrode surface in order to facilitate the removal of the electrons from the central electrode 22 .

Das Plasma bildet sich im Ringspalt zwischen Zentralelektrode 22 und der Wand 20 der Abgasleitung.The plasma forms in the annular gap between the central electrode 22 and the wall 20 of the exhaust pipe.

Für AC-Corona-Betrieb und DC-Corona-Betrieb werden im folgenden bei­ spielhafte Verfahrensparameter angegeben:
DC-Coronabetrieb:
Gleichspannungsversorgung
negative Polung der Zentralelektrode
positive Polung der Wandung
Spannung: 6 kV bis 10 kV
Strom: einige milli-Ampere
AC-Coronabetrieb:
hochfrequente Wechselspannung
Frequenz: 10 bis 100 kHz
Anstiegsflanke: einige nano-Sekunden.
For AC corona operation and DC corona operation, exemplary process parameters are given below:
DC corona operation:
DC power supply
negative polarity of the central electrode
positive polarity of the wall
Voltage: 6 kV to 10 kV
Current: a few milliamps
AC corona operation:
high frequency AC voltage
Frequency: 10 to 100 kHz
Rising edge: a few nano-seconds.

Fig. 3 zeigt eine Vorrichtung zur Erzeugung eines Hochdruckplasmas nach der AC Dielectric Barrier-Methode. Der Leistungsteil liefert hierbei eine hoch­ frequente Wechselspannung ähnlich der AC-Corona-Methode. Die die Zen­ tralelektrode 32 umgebende Wandung 30 des Abgasrohres ist hier jedoch aus einem dielektrischen Material, z. B. Glas, Quarz, Keramik. Die Außenober­ fläche der Wandung ist umgeben von einem metallischen Leiter 34, z. B. in der Art eines Netzes oder als zusätzliche Beschichtung (nicht abgebildet), welcher die Gegenelektrode zur Zentralelektrode 32 bildet. Durch die dielektrischen Wandung 30 zwischen den beiden Elektroden 32, 34 ist ein Plasmadurch­ bruch ausgeschlossen, was den Vorteil hat, daß auch höhere Spannungen angelegt werden können. Ansonsten erfolgt die Plasmaerzeugung analog zur der AC-Corona-Methode. Ebenso sind an der Zentralelektrode 32 Sprühspit­ zen 36 vorhanden. Fig. 3 shows an apparatus for generating a high pressure plasma according to the Dielectric Barrier AC method. The power section delivers a high-frequency AC voltage similar to the AC-Corona method. However, the wall 30 of the exhaust pipe surrounding the central electrode 32 is here made of a dielectric material, e.g. B. glass, quartz, ceramics. The outer surface of the wall is surrounded by a metallic conductor 34 , for. B. in the manner of a network or as an additional coating (not shown), which forms the counter electrode to the central electrode 32 . Due to the dielectric wall 30 between the two electrodes 32, 34 , a plasma breakthrough is excluded, which has the advantage that higher voltages can also be applied. Otherwise, the plasma is generated analogously to the AC corona method. Likewise, 32 spray tips 36 are present on the central electrode.

Fig. 4 zeigt eine Vorrichtung zur Erzeugung eines Hochdruckplasmas durch Mikrowellen. Wesentliches Element der Vorrichtung ist ein Zylinderresonator 10, innerhalb dessen auch das Plasma erzeugt wird. An den beiden Stirnflä­ chen des Zylinderresonators 10 ist jeweils eine zentrale Kreislochblende 6, 8 angeordnet. Durch diese sich gegenüberliegende Öffnungen 6, 8 verläuft das Abgasrohr 14, in dem die Motorabgase und das Reduktionsmittel geführt wer­ den. Es besteht aus einem dielektrischen Material. Fig. 4 shows a device for generating a high pressure plasma by microwaves. An essential element of the device is a cylinder resonator 10 , within which the plasma is also generated. A central circular aperture 6, 8 is arranged on each of the two end faces of the cylindrical resonator 10 . Through these opposing openings 6, 8 , the exhaust pipe 14 extends, in which the engine exhaust gases and the reducing agent who led the. It is made of a dielectric material.

Parallel zur Stirnfläche des Zylinderresonators 10 verläuft ein Hohlleiter 12, in den die von einem Magnetron erzeugten Mikrowellen eingekoppelt sind. A waveguide 12 , into which the microwaves generated by a magnetron are coupled, runs parallel to the end face of the cylindrical resonator 10 .

Durch diese Mikrowellenstrahlung wird der Zylinderresonator 10 angeregt, wobei die Koppelung hier über die beiden Kreislochblenden 6, 8 an den Stirn­ seiten des Zylinderresonators 10 geschieht. Diese Kreislochblenden 6, 8 die­ nen hier also sowohl als Koppellöcher für die Anregung des Zylinderresona­ tors 10 wie auch zur Abgasführung und Reduktionsmittelführung. Das Plasma selbst entsteht innerhalb des Abgasrohres 14 im Bereich des Zylinderresona­ tors 10. Nachdem die Plasmazündung aufgrund der vom Hohlraumresonator 10 aufgenommenen Mikrowellenenergie erfolgt ist, nimmt der Hohlraumreso­ nator 10 keine weitere Energie aus dem Hohlleiter 12 auf. Die Mikrowellen­ strahlung in dem Hohlleiter 12 wird nun direkt in das Plasmagas eingekoppelt.The cylinder resonator 10 is excited by this microwave radiation, the coupling here via the two circular hole diaphragms 6, 8 at the front sides of the cylinder resonator 10 . This circular aperture 6, 8 the NEN here both as coupling holes for the excitation of the Zylinderresona gate 10 as well as exhaust gas and reducing agent guidance. The plasma itself arises within the exhaust pipe 14 in the area of the cylinder resonator 10 . After the plasma has been ignited due to the microwave energy absorbed by the cavity 10 , the cavity resonator 10 does not absorb any further energy from the waveguide 12 . The microwave radiation in the waveguide 12 is now coupled directly into the plasma gas.

Die Plasmazone innerhalb des Reaktionsrohrs 14 befindet sich dann nicht mehr im Bereich des Zylinderresonators 10, sondern im Bereich des Hohllei­ ters 12.The plasma zone within the reaction tube 14 is then no longer in the region of the cylindrical resonator 10 , but in the region of the hollow conductor 12 .

Zum Feinabgleich können elektromechanische Stub Tuner (Abstimmstifte) in definierten Abständen im Hohlleiter angeordnet werden (nicht dargestellt).Electromechanical stub tuners (tuning pins) can be used for fine adjustment defined distances are arranged in the waveguide (not shown).

Vorteilhafte Parameter bei der Versuchsdurchführung sind:
Schwingungsmode Zylinderresonators: E₀₁₀
Schwingungsmode Hohlleiter: H₁₀
Hohlleiter: Rechteckhohlleiter R-26
Frequenz: 2,45 GHz
Advantageous parameters when carrying out the tests are:
Vibration mode cylinder resonator: E₀₁₀
Vibration mode waveguide: H₁₀
Waveguide: Rectangular waveguide R-26
Frequency: 2.45 GHz

Claims (20)

1. Verfahren zur Stickoxidminderung in Abgasen von Verbrennungsma­ schinen mit Sauerstoffüberschuß, wobei die Abgase unter Zuführung eines selektiv wirkenden gasförmigen Reduktionsmittels mit einem Ka­ talysator in Kontakt gebracht werden, dadurch gekennzeichnet, daß das Reduktionsmittel vor Eintritt in den Kontakt am Katalysator in den Hochdruckplasmazustand unter überwiegender Radikalbildung über­ geführt wird, so daß eine Beschleunigung der Kontaktreaktion erzielt wird.1. A process for nitrogen oxide reduction in exhaust gases from combustion machines with an excess of oxygen, the exhaust gases being brought into contact with a catalyst by supplying a selectively acting gaseous reducing agent, characterized in that the reducing agent predominantly before entering into contact with the catalyst in the high-pressure plasma state Radical formation is performed so that an acceleration of the contact reaction is achieved. 2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß das Hochdruckplasma durch stille Hochdruckentladungen des Typs AC/DC-Corona oder AC Dielectric Barrier erzeugt wird.2. The method according to claim 1, characterized in that the High pressure plasma through silent high pressure discharges of the type AC / DC corona or AC dielectric barrier is generated. 3. Verfahren nach einem der vorangehenden Ansprüche, dadurch ge­ kennzeichnet, daß das Hochdruckplasma durch hochfrequente elek­ tromagnetische Felder erzeugt wird.3. The method according to any one of the preceding claims, characterized ge indicates that the high-pressure plasma by high-frequency elec tromagnetic fields is generated. 4. Verfahren nach Anspruch 3, dadurch gekennzeichnet, daß die hochfrequenten elektromagnetischen Felder Mikrowellen in einem Fre­ quenzbereich zwischen 0,95 GHz und 24 GHz, bevorzugt 2,45 GHz sind.4. The method according to claim 3, characterized in that the high-frequency electromagnetic fields microwaves in a fre frequency range between 0.95 GHz and 24 GHz, preferably 2.45 GHz are. 5. Verfahren nach einem der vorangehenden Ansprüche, dadurch ge­ kennzeichnet, daß das Plasma mit einem Hohlraumresonator (10) erzeugt wird, wobei der Hohlraumresonator (10) über Loch- oder Schlitzkopplung mit Mikrowellen aus einem Hohlleiter (12) angeregt wird.5. The method according to any one of the preceding claims, characterized in that the plasma is generated with a cavity resonator ( 10 ), the cavity resonator ( 10 ) via hole or slot coupling with microwaves from a waveguide ( 12 ) is excited. 6. Verfahren nach einem der vorangehenden Ansprüche, dadurch ge­ kennzeichnet, daß das Reduktionsmittel Stickstoff oder eine Stick­ stoffverbindung wie z. B. Ammoniak, Hydrazin oder Cyanursäure ist.6. The method according to any one of the preceding claims, characterized ge indicates that the reducing agent is nitrogen or a stick material connection such as B. is ammonia, hydrazine or cyanuric acid. 7. Verfahren nach einem der vorangehenden Ansprüche, dadurch ge­ kennzeichnet, daß das Reduktionsmittel ein aliphatischer oder olefi­ nischer Kohlenwasserstoff oder Wasserstoff ist.7. The method according to any one of the preceding claims, characterized ge indicates that the reducing agent is an aliphatic or olefi is hydrocarbon or hydrogen. 8. Verfahren nach einem der vorangehenden Ansprüche, dadurch ge­ kennzeichnet, daß der Katalysator auf einer keramischen oder metal­ lischen Wabenstruktur angeordnet wird.8. The method according to any one of the preceding claims, characterized ge indicates that the catalyst is on a ceramic or metal is arranged honeycomb structure. 9. Verfahren nach einem der vorangehenden Ansprüche, dadurch ge­ kennzeichnet, daß der Katalysator aus mit Elementen der Platingrup­ pe, der Kupfergruppe oder der Eisengruppe dotierten Zeolithen be­ steht.9. The method according to any one of the preceding claims, characterized ge indicates that the catalyst is made with elements of platinum pe, the copper group or the iron group doped zeolites stands. 10. Verfahren nach einem der vorangehenden Ansprüche, dadurch ge­ kennzeichnet, daß der Katalysator aus mit Elementen der Platingrup­ pe dotierten Oxiden des Aluminiums, Titans oder der Lanthaniden bzw. Mischungen daraus besteht.10. The method according to any one of the preceding claims, characterized ge indicates that the catalyst is made with elements of platinum pe doped oxides of aluminum, titanium or lanthanides or Mixtures of these consist. 11. Verfahren nach einem der vorangehenden Ansprüche, dadurch gekennzeichnet, daß der Katalysator aus Mischoxiden des Wolframs, Chroms oder Vanadiums besteht.11. The method according to any one of the preceding claims, characterized characterized in that the catalyst from mixed oxides of tungsten,  Chromium or vanadium. 12. Verfahren nach einem der vorangehenden Ansprüche, dadurch ge­ kennzeichnet, daß der Prozeßablauf kennfeldgesteuert erfolgt.12. The method according to any one of the preceding claims, characterized ge indicates that the process is map-controlled. 13. Vorrichtung zur Stickoxidminderung in Abgasen von Verbrennungsma­ schinen mit Sauerstoffüberschuß, enthaltend einen Katalysator, mit dem die Abgase unter Zuführung eines selektiv wirkenden gasförmigen Reduktionsmittels in Kontakt gebracht werden, dadurch gekenn­ zeichnet, daß eine Vorrichtung vorhanden ist, mit der das Reduktions­ mittel vor dem Eintritt in den Kontakt am Katalysator in den Hochdruck­ plasmazustand unter überwiegender Radikalbildung übergeführt wird, so daß eine Beschleunigung der Kontaktreaktion erzielt wird.13. Device for reducing nitrogen oxides in exhaust gases from combustion ma machines with excess oxygen containing a catalyst with which the exhaust gases with the supply of a selectively acting gaseous Reducing agent are brought into contact, characterized records that there is a device with which the reduction medium before entering into contact with the catalyst in high pressure plasma state is transferred with predominantly radical formation, so that an acceleration of the contact reaction is achieved. 14. Vorrichtung nach Anspruch 13, dadurch gekennzeichnet, daß die Vorrichtung zur Erzeugung des Hochdruckplasmas eine Vorrichtung zur Erzeugung stiller Hochdruckentladungen des Typs AC/DC-Corona oder AC Dielectric Barrier ist.14. The apparatus according to claim 13, characterized in that the Device for generating the high pressure plasma a device for the generation of silent high-pressure discharges of the type AC / DC-Corona or AC Dielectric Barrier. 15. Vorrichtung nach einem der vorangehenden Ansprüche, dadurch ge­ kennzeichnet, daß die Vorrichtung zur Erzeugung des Hochdruck­ plasmas folgende Elemente umfaßt:
  • - eine Mikrowellenquelle
  • - einen Mikrowellenhohlleiter (12), in die die von der Mikrowellenquel­ le erzeugten Mikrowellen eingekoppelt werden
  • - einen Hohlraumresonator (10), der über Loch- oder Schlitzkopplung von der im Mikrowellenhohlleiter (12) geführten Mikrowellenstrah­ lung angeregt wird.
15. Device according to one of the preceding claims, characterized in that the device for generating the high pressure plasma comprises the following elements:
  • - a microwave source
  • - A microwave waveguide ( 12 ) into which the microwaves generated by the microwave sources are coupled
  • - A cavity resonator ( 10 ) which is excited via hole or slot coupling from the guided in the microwave waveguide ( 12 ) microwave radiation.
16. Vorrichtung nach Anspruch 15, dadurch gekennzeichnet, daß der Hohl­ raumresonator ein Zylinderresonator (10) ist, wobei an den Stirnflächen jeweils Durchbrechungen (6, 8) angeordnet sind, welche als Koppellö­ cher für die Resonatoranregung dienen und durch welche das Reduk­ tionsmittel und die Abgase geführt werden.16. The apparatus according to claim 15, characterized in that the cavity resonator is a cylindrical resonator ( 10 ), with openings ( 6 , 8 ) being arranged on the end faces, which serve as coupling holes for the resonator excitation and through which the reducing agent and the exhaust gases are led. 17. Verfahren nach einem der vorangehenden Ansprüche, dadurch ge­ kennzeichnet, daß der Katalysator auf einer keramischen oder metal­ lischen Wabenstruktur angeordnet ist.17. The method according to any one of the preceding claims, characterized ge indicates that the catalyst is on a ceramic or metal is arranged honeycomb structure. 18. Vorrichtung nach einem der vorangehenden Ansprüche, dadurch ge­ kennzeichnet, daß der Katalysator aus mit Elementen der Platingrup­ pe, der Kupfergruppe oder der Eisengruppe dotierten Zeolithen be­ steht.18. Device according to one of the preceding claims, characterized ge indicates that the catalyst is made with elements of platinum pe, the copper group or the iron group doped zeolites stands. 19. Vorrichtung nach einem der vorangehenden Ansprüche, dadurch gekennzeichnet, daß der Katalysator aus mit Elementen der Platin­ gruppe dotierten Oxiden des Aluminiums, Titan oder der Lanthaniden bzw. Mischungen daraus besteht.19. Device according to one of the preceding claims, characterized characterized in that the catalyst is made with elements of platinum group-doped oxides of aluminum, titanium or lanthanides or mixtures thereof. 20. Vorrichtung nach einem der vorangehenden Ansprüche, dadurch gekennzeichnet, daß der Katalysator aus Mischoxiden des Wolframs, Chroms oder Vanadiums besteht.20. Device according to one of the preceding claims, characterized characterized in that the catalyst from mixed oxides of tungsten, Chromium or vanadium.
DE19510804A 1995-03-24 1995-03-24 Reduction of nitrogen oxide(s) in vehicle exhaust gas Withdrawn DE19510804A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
DE19510804A DE19510804A1 (en) 1995-03-24 1995-03-24 Reduction of nitrogen oxide(s) in vehicle exhaust gas

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE19510804A DE19510804A1 (en) 1995-03-24 1995-03-24 Reduction of nitrogen oxide(s) in vehicle exhaust gas

Publications (1)

Publication Number Publication Date
DE19510804A1 true DE19510804A1 (en) 1996-09-26

Family

ID=7757626

Family Applications (1)

Application Number Title Priority Date Filing Date
DE19510804A Withdrawn DE19510804A1 (en) 1995-03-24 1995-03-24 Reduction of nitrogen oxide(s) in vehicle exhaust gas

Country Status (1)

Country Link
DE (1) DE19510804A1 (en)

Cited By (48)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1998002233A1 (en) * 1996-07-15 1998-01-22 Battelle Memorial Institute Method and apparatus for processing exhaust gas with corona discharge
WO1998025132A1 (en) * 1996-12-04 1998-06-11 Oxy L'eau Inc. Catalytic resonance simulator
EP0848985A1 (en) * 1996-12-10 1998-06-24 Robert Bosch Gmbh Process and apparatus for reduction of nitrogen oxydes in gaseous mixtures
WO1998052679A1 (en) * 1997-05-16 1998-11-26 Siemens Aktiengesellschaft Method and device for eliminating oxide pollutants in an exhaust gas containing oxygen and engine operating thereby
WO1999012638A1 (en) * 1997-09-09 1999-03-18 Aea Technology Plc Treatment of gaseous emissions
DE19819372A1 (en) * 1998-04-30 1999-11-04 Degussa Process for reducing the nitrogen oxide content of the exhaust gases of an internal combustion engine
WO2000007695A2 (en) * 1998-08-03 2000-02-17 Siemens Aktiengesellschaft Method for converting urea into ammonia
WO2000029727A1 (en) * 1998-11-13 2000-05-25 Engelhard Corporation PLASMA FUEL PROCESSING FOR NOx CONTROL OF LEAN BURN ENGINES
EP1023935A1 (en) * 1999-01-29 2000-08-02 Degussa-Hüls Aktiengesellschaft Process for selective catalytic reduction of nitrogen oxides in oxygen-containing exhaust gases
WO2000062904A1 (en) * 1999-04-16 2000-10-26 Swinburne Limited Ioniser for effluent gas
EP1054139A1 (en) * 1999-05-19 2000-11-22 DaimlerChrysler AG Exhaust gas purification arrangement with NOx reduction and addition of reduction agent
DE19922961A1 (en) * 1999-05-19 2000-11-23 Daimler Chrysler Ag Device for purifying I.C. engine exhaust gas contains a nitrogen monoxide production unit to enrich the exhaust gas fed to the ammonia production catalyst with nitrogen monoxide during ammonia production operating phases
WO2000071868A1 (en) * 1999-05-19 2000-11-30 Daimlerchrysler Ag Exhaust gas cleaning system having internal ammonia production for reducing nitrogen oxides
DE19948150A1 (en) * 1999-10-07 2001-04-12 Volkswagen Ag Arrangement and method for controlling a photochemical exhaust gas purification system of internal combustion engines
EP1101018A2 (en) * 1998-07-24 2001-05-23 Litex, Inc. Method and apparatus for enhancing the rate and efficiency of gas phase reactions
EP1136668A1 (en) * 2000-03-02 2001-09-26 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Method and device for purifying exhaust gas
EP1033479A3 (en) * 1999-03-03 2001-12-05 Toyota Jidosha Kabushiki Kaisha A method for purifying combustion exhaust gas
DE10027802A1 (en) * 2000-06-08 2001-12-13 Juergen Markert Process and device for cleaning exhaust air
WO2002064954A1 (en) * 2001-02-13 2002-08-22 Robert Bosch Gmbh Device and method for post-engine introduction of an auxiliary agent in an exhaust gas stream
WO2003027005A1 (en) * 2001-09-21 2003-04-03 Massachusetts Institute Of Technology Plasmatron-catalyst system
US6651597B2 (en) 2002-04-23 2003-11-25 Arvin Technologies, Inc. Plasmatron having an air jacket and method for operating the same
US6702991B1 (en) 2002-11-12 2004-03-09 Arvin Technologies, Inc. Apparatus and method for reducing power consumption of a plasma fuel reformer
US6715452B1 (en) 2002-11-13 2004-04-06 Arvin Technologies, Inc. Method and apparatus for shutting down a fuel reformer
WO2004029424A1 (en) * 2002-09-18 2004-04-08 Robert Bosch Gmbh Method for the post-treatment of exhaust gases and device for the same
US6758035B2 (en) 2002-09-18 2004-07-06 Arvin Technologies, Inc. Method and apparatus for purging SOX from a NOX trap
US6761868B2 (en) 2001-05-16 2004-07-13 The Chemithon Corporation Process for quantitatively converting urea to ammonia on demand
WO2004071646A3 (en) * 2003-02-12 2004-09-23 Delphi Tech Inc SYSTEM AND METHOD OF NOx ABATEMENT
DE10326424A1 (en) * 2003-06-10 2004-12-30 Solar Dynamics Gmbh Thermodynamic energy conversion facility employs microprocessor for the targeted influence of heat transmission
US6843054B2 (en) 2003-01-16 2005-01-18 Arvin Technologies, Inc. Method and apparatus for removing NOx and soot from engine exhaust gas
US6851398B2 (en) 2003-02-13 2005-02-08 Arvin Technologies, Inc. Method and apparatus for controlling a fuel reformer by use of existing vehicle control signals
DE10337901A1 (en) * 2003-08-18 2005-03-24 Audi Ag Ammonia synthesis from hydrocarbons and air, especially for use in purifying combustion engine exhaust gases, by conversion to reformate gas followed by plasma-catalyzed reaction
US6887449B2 (en) 2002-11-21 2005-05-03 The Chemithon Corporation Method of quantitatively producing ammonia from urea
US6903259B2 (en) 2002-12-06 2005-06-07 Arvin Technologies, Inc. Thermoelectric device for use with fuel reformer and associated method
US6976353B2 (en) 2002-01-25 2005-12-20 Arvin Technologies, Inc. Apparatus and method for operating a fuel reformer to provide reformate gas to both a fuel cell and an emission abatement device
EP1607133A1 (en) * 2001-06-12 2005-12-21 DaimlerChrysler AG Exhaust gas system with reducing agent supply
WO2006001404A1 (en) * 2004-06-25 2006-01-05 Toyota Jidosha Kabushiki Kaisha Device and method for supplying fuel or reducing agent, and plasma torch
US7014930B2 (en) 2002-01-25 2006-03-21 Arvin Technologies, Inc. Apparatus and method for operating a fuel reformer to generate multiple reformate gases
US7021048B2 (en) 2002-01-25 2006-04-04 Arvin Technologies, Inc. Combination emission abatement assembly and method of operating the same
JP2006161697A (en) * 2004-12-08 2006-06-22 Hino Motors Ltd Exhaust emission control device
EP1705346A1 (en) * 2003-12-18 2006-09-27 Toyota Jidosha Kabushiki Kaisha Plasma injector, exhaust gas purifying system, and method for injecting reducing agent
EP1835137A1 (en) * 2004-12-08 2007-09-19 Hino Motors, Ltd. Exhaust emission device
US7354558B2 (en) 2003-09-24 2008-04-08 Toyota Jidosha Kabushiki Kaisha Exhaust gas purification system
US7402292B2 (en) 2005-09-19 2008-07-22 Delphi Technologies, Inc. Device and methods of ammonia generation for NOx abatement
US7776280B2 (en) 2005-05-10 2010-08-17 Emcon Technologies Llc Method and apparatus for selective catalytic reduction of NOx
ITRA20090021A1 (en) * 2009-07-10 2011-01-11 Diemme Spa POST - MICROWAVE PLASMA COMBUSTOR
GB2478714A (en) * 2010-03-15 2011-09-21 Gm Global Tech Operations Inc Vehicle that heats reducing agent tank using microwaves
US20160017777A1 (en) * 2013-03-22 2016-01-21 Ngk Insulators, Ltd. Reducing agent injection device, exhaust gas treatment device and exhaust gas treatment method
CN105833718A (en) * 2016-04-14 2016-08-10 中国石油大学(北京) Denitration system and denitration processing method of plasma synergistic catalyst

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3983021A (en) * 1971-06-09 1976-09-28 Monsanto Company Nitrogen oxide decomposition process
DE2802194A1 (en) * 1977-01-21 1978-07-27 Kureha Chemical Ind Co Ltd PROCEDURE FOR REMOVING NITROGEN OXIDES FROM GASES CONTAINING NITROGEN
EP0585047A2 (en) * 1992-08-27 1994-03-02 United Kingdom Atomic Energy Authority The purification of internal combustion engine exhaust emissions
DE4423397A1 (en) * 1993-12-23 1995-07-13 Fraunhofer Ges Forschung Process and device for exhaust gas purification

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3983021A (en) * 1971-06-09 1976-09-28 Monsanto Company Nitrogen oxide decomposition process
DE2802194A1 (en) * 1977-01-21 1978-07-27 Kureha Chemical Ind Co Ltd PROCEDURE FOR REMOVING NITROGEN OXIDES FROM GASES CONTAINING NITROGEN
EP0585047A2 (en) * 1992-08-27 1994-03-02 United Kingdom Atomic Energy Authority The purification of internal combustion engine exhaust emissions
DE4423397A1 (en) * 1993-12-23 1995-07-13 Fraunhofer Ges Forschung Process and device for exhaust gas purification

Cited By (78)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5914015A (en) * 1996-07-15 1999-06-22 Battelle Memorial Institute Method and apparatus for processing exhaust gas with corona discharge
WO1998002233A1 (en) * 1996-07-15 1998-01-22 Battelle Memorial Institute Method and apparatus for processing exhaust gas with corona discharge
WO1998025132A1 (en) * 1996-12-04 1998-06-11 Oxy L'eau Inc. Catalytic resonance simulator
EP0848985A1 (en) * 1996-12-10 1998-06-24 Robert Bosch Gmbh Process and apparatus for reduction of nitrogen oxydes in gaseous mixtures
WO1998052679A1 (en) * 1997-05-16 1998-11-26 Siemens Aktiengesellschaft Method and device for eliminating oxide pollutants in an exhaust gas containing oxygen and engine operating thereby
WO1999012638A1 (en) * 1997-09-09 1999-03-18 Aea Technology Plc Treatment of gaseous emissions
US7067092B2 (en) 1997-09-09 2006-06-27 Accentus Plc Treatment of gaseous emissions
DE19819372A1 (en) * 1998-04-30 1999-11-04 Degussa Process for reducing the nitrogen oxide content of the exhaust gases of an internal combustion engine
DE19819372C2 (en) * 1998-04-30 2000-03-02 Degussa Process for reducing the nitrogen oxide content of the exhaust gases of an internal combustion engine
US6238525B1 (en) 1998-04-30 2001-05-29 Degussa-Hüls Aktiengesellschaft Process for reducing the nitrogen oxides content of exhaust gas from an internal combustion engine
EP1101018A2 (en) * 1998-07-24 2001-05-23 Litex, Inc. Method and apparatus for enhancing the rate and efficiency of gas phase reactions
EP1101018A4 (en) * 1998-07-24 2003-06-04 Litex Inc Method and apparatus for enhancing the rate and efficiency of gas phase reactions
WO2000007695A3 (en) * 1998-08-03 2000-03-30 Siemens Ag Method for converting urea into ammonia
WO2000007695A2 (en) * 1998-08-03 2000-02-17 Siemens Aktiengesellschaft Method for converting urea into ammonia
US6471927B2 (en) 1998-08-03 2002-10-29 Siemens Aktiengesellschaft Process for converting urea into ammonia
US6793899B2 (en) 1998-10-29 2004-09-21 Massachusetts Institute Of Technology Plasmatron-catalyst system
EP1365119A2 (en) * 1998-11-13 2003-11-26 Engelhard Corporation Plasma fuel processing for NOx control of lean burn engines
US6176078B1 (en) 1998-11-13 2001-01-23 Engelhard Corporation Plasma fuel processing for NOx control of lean burn engines
EP1365119A3 (en) * 1998-11-13 2003-12-10 Engelhard Corporation Plasma fuel processing for NOx control of lean burn engines
WO2000029727A1 (en) * 1998-11-13 2000-05-25 Engelhard Corporation PLASMA FUEL PROCESSING FOR NOx CONTROL OF LEAN BURN ENGINES
US6334986B2 (en) 1999-01-29 2002-01-01 Degussa Ag Process for the selective catalytic reduction of the nitrogen oxides contained in a lean exhaust gas
EP1023935A1 (en) * 1999-01-29 2000-08-02 Degussa-Hüls Aktiengesellschaft Process for selective catalytic reduction of nitrogen oxides in oxygen-containing exhaust gases
EP1033479A3 (en) * 1999-03-03 2001-12-05 Toyota Jidosha Kabushiki Kaisha A method for purifying combustion exhaust gas
WO2000062904A1 (en) * 1999-04-16 2000-10-26 Swinburne Limited Ioniser for effluent gas
EP1054139A1 (en) * 1999-05-19 2000-11-22 DaimlerChrysler AG Exhaust gas purification arrangement with NOx reduction and addition of reduction agent
US6872365B1 (en) 1999-05-19 2005-03-29 Daimlerchrysler Ag Exhaust gas cleaning system having internal ammonia production for reducing nitrogen oxides
DE19922960A1 (en) * 1999-05-19 2000-12-07 Daimler Chrysler Ag Emission control system with internal ammonia generation for nitrogen oxide reduction
EP1411217A1 (en) * 1999-05-19 2004-04-21 DaimlerChrysler AG Exhaust gas purification arrangement with NOx reduction and addition of reduction agent
WO2000071868A1 (en) * 1999-05-19 2000-11-30 Daimlerchrysler Ag Exhaust gas cleaning system having internal ammonia production for reducing nitrogen oxides
DE19922960C2 (en) * 1999-05-19 2003-07-17 Daimler Chrysler Ag Emission control system with internal ammonia production for nitrogen oxide reduction
DE19922961C2 (en) * 1999-05-19 2003-07-17 Daimler Chrysler Ag Emission control system with internal ammonia production for nitrogen oxide reduction
US6969492B1 (en) 1999-05-19 2005-11-29 Daimlerchrysler Ag Exhaust-gas cleaning system with nitrogen oxide reduction and with the addition of reducing agent
DE19922961A1 (en) * 1999-05-19 2000-11-23 Daimler Chrysler Ag Device for purifying I.C. engine exhaust gas contains a nitrogen monoxide production unit to enrich the exhaust gas fed to the ammonia production catalyst with nitrogen monoxide during ammonia production operating phases
DE19948150A1 (en) * 1999-10-07 2001-04-12 Volkswagen Ag Arrangement and method for controlling a photochemical exhaust gas purification system of internal combustion engines
EP1136668A1 (en) * 2000-03-02 2001-09-26 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Method and device for purifying exhaust gas
DE10027802A1 (en) * 2000-06-08 2001-12-13 Juergen Markert Process and device for cleaning exhaust air
US7062903B2 (en) 2001-02-13 2006-06-20 Robert Bosch Gmbh Device and method for post-engine introduction of an auxiliary agent in an exhaust gas stream
WO2002064954A1 (en) * 2001-02-13 2002-08-22 Robert Bosch Gmbh Device and method for post-engine introduction of an auxiliary agent in an exhaust gas stream
US6761868B2 (en) 2001-05-16 2004-07-13 The Chemithon Corporation Process for quantitatively converting urea to ammonia on demand
US7008603B2 (en) 2001-05-16 2006-03-07 The Chemithon Corporation Process and apparatus for quantitatively converting urea to ammonia on demand
US7361320B2 (en) * 2001-06-12 2008-04-22 Daimlerchrysler Ag Exhaust gas purification unit with reducing agent supply
US7550125B2 (en) 2001-06-12 2009-06-23 Daimler Ag Exhaust gas purification system
US7254939B2 (en) 2001-06-12 2007-08-14 Daimlerchrysler Ag Exhaust gas purification unit with reducing agent supply
EP1607133A1 (en) * 2001-06-12 2005-12-21 DaimlerChrysler AG Exhaust gas system with reducing agent supply
WO2003027005A1 (en) * 2001-09-21 2003-04-03 Massachusetts Institute Of Technology Plasmatron-catalyst system
US6976353B2 (en) 2002-01-25 2005-12-20 Arvin Technologies, Inc. Apparatus and method for operating a fuel reformer to provide reformate gas to both a fuel cell and an emission abatement device
US7021048B2 (en) 2002-01-25 2006-04-04 Arvin Technologies, Inc. Combination emission abatement assembly and method of operating the same
US7014930B2 (en) 2002-01-25 2006-03-21 Arvin Technologies, Inc. Apparatus and method for operating a fuel reformer to generate multiple reformate gases
US6651597B2 (en) 2002-04-23 2003-11-25 Arvin Technologies, Inc. Plasmatron having an air jacket and method for operating the same
WO2004029424A1 (en) * 2002-09-18 2004-04-08 Robert Bosch Gmbh Method for the post-treatment of exhaust gases and device for the same
US6758035B2 (en) 2002-09-18 2004-07-06 Arvin Technologies, Inc. Method and apparatus for purging SOX from a NOX trap
US6702991B1 (en) 2002-11-12 2004-03-09 Arvin Technologies, Inc. Apparatus and method for reducing power consumption of a plasma fuel reformer
US6715452B1 (en) 2002-11-13 2004-04-06 Arvin Technologies, Inc. Method and apparatus for shutting down a fuel reformer
US6887449B2 (en) 2002-11-21 2005-05-03 The Chemithon Corporation Method of quantitatively producing ammonia from urea
US6903259B2 (en) 2002-12-06 2005-06-07 Arvin Technologies, Inc. Thermoelectric device for use with fuel reformer and associated method
US6843054B2 (en) 2003-01-16 2005-01-18 Arvin Technologies, Inc. Method and apparatus for removing NOx and soot from engine exhaust gas
US8037674B2 (en) 2003-02-12 2011-10-18 Delphi Technologies, Inc. System and method of NOx abatement
WO2004071646A3 (en) * 2003-02-12 2004-09-23 Delphi Tech Inc SYSTEM AND METHOD OF NOx ABATEMENT
US6851398B2 (en) 2003-02-13 2005-02-08 Arvin Technologies, Inc. Method and apparatus for controlling a fuel reformer by use of existing vehicle control signals
DE10326424A1 (en) * 2003-06-10 2004-12-30 Solar Dynamics Gmbh Thermodynamic energy conversion facility employs microprocessor for the targeted influence of heat transmission
DE10337901A1 (en) * 2003-08-18 2005-03-24 Audi Ag Ammonia synthesis from hydrocarbons and air, especially for use in purifying combustion engine exhaust gases, by conversion to reformate gas followed by plasma-catalyzed reaction
US7354558B2 (en) 2003-09-24 2008-04-08 Toyota Jidosha Kabushiki Kaisha Exhaust gas purification system
DE102004044731B4 (en) * 2003-09-24 2013-10-02 Toyota Jidosha Kabushiki Kaisha emission Control system
EP1705346A4 (en) * 2003-12-18 2009-08-26 Toyota Motor Co Ltd Plasma injector, exhaust gas purifying system, and method for injecting reducing agent
EP1705346A1 (en) * 2003-12-18 2006-09-27 Toyota Jidosha Kabushiki Kaisha Plasma injector, exhaust gas purifying system, and method for injecting reducing agent
CN101094975B (en) * 2004-06-25 2012-01-25 丰田自动车株式会社 Device and method for supplying fuel or reducing agent, and plasma torch
WO2006001404A1 (en) * 2004-06-25 2006-01-05 Toyota Jidosha Kabushiki Kaisha Device and method for supplying fuel or reducing agent, and plasma torch
EP1835137A1 (en) * 2004-12-08 2007-09-19 Hino Motors, Ltd. Exhaust emission device
US7913486B2 (en) 2004-12-08 2011-03-29 Hino Motors, Ltd. Exhaust emission control device
JP2006161697A (en) * 2004-12-08 2006-06-22 Hino Motors Ltd Exhaust emission control device
EP1835137A4 (en) * 2004-12-08 2008-01-23 Hino Motors Ltd Exhaust emission device
US7776280B2 (en) 2005-05-10 2010-08-17 Emcon Technologies Llc Method and apparatus for selective catalytic reduction of NOx
US7402292B2 (en) 2005-09-19 2008-07-22 Delphi Technologies, Inc. Device and methods of ammonia generation for NOx abatement
ITRA20090021A1 (en) * 2009-07-10 2011-01-11 Diemme Spa POST - MICROWAVE PLASMA COMBUSTOR
GB2478714A (en) * 2010-03-15 2011-09-21 Gm Global Tech Operations Inc Vehicle that heats reducing agent tank using microwaves
US20160017777A1 (en) * 2013-03-22 2016-01-21 Ngk Insulators, Ltd. Reducing agent injection device, exhaust gas treatment device and exhaust gas treatment method
US9759106B2 (en) * 2013-03-22 2017-09-12 Ngk Insulators, Ltd. Reducing agent injection device, exhaust gas treatment device and exhaust gas treatment method
CN105833718A (en) * 2016-04-14 2016-08-10 中国石油大学(北京) Denitration system and denitration processing method of plasma synergistic catalyst

Similar Documents

Publication Publication Date Title
DE19510804A1 (en) Reduction of nitrogen oxide(s) in vehicle exhaust gas
DE112013004853B4 (en) Hydrogen generating device and fuel cell system with hydrogen generating device
DE60020590T2 (en) COMPACT PLASMA FUEL TRANSFER UNIT WITH LOW ENERGY LEVEL
DE69926356T2 (en) THE METHOD FOR GENERATING A PHYSICALLY AND CHEMICALLY ACTIVE ENVIRONMENT THROUGH A PLASMASTRAY AND PLASMASTRAY
DE19513250C2 (en) Method and device for the continuous removal of nitrogen oxides in exhaust gases from internal combustion engines
EP1095907B1 (en) Process for the plasma-catalytic preparation of ammonia
EP0036191B1 (en) Plasma coating the insides of tubular glass blanks
Helfritch Pulsed corona discharge for hydrogen sulfide decomposition
EP0988104A1 (en) Method and device for eliminating oxide pollutants in an exhaust gas containing oxygen and engine operating thereby
DE4231581A1 (en) Process for the plasma-chemical decomposition and / or destruction of pollutants, in particular for the exhaust gas purification of internal combustion engines or other machines operated with fossil fuel, and associated device
WO1996037690A1 (en) Process and device for treating exhaust gas
EP1121522B1 (en) Method and device for plasma-chemical reduction of gaseous and/or solid pollutants in exhaust gases of internal combustion engines
EP3430864B1 (en) Plasma nozzle and method of using the plasma nozzle
DE10124548A1 (en) Reduction of nitrogen oxides in vehicle exhaust gases involves selective catalytic reduction with ammonia produced by reducing nitric oxide in rich fuel/air mixture
EP1390124B1 (en) Method for the selective catalytic reduction of nitrogen oxides using ammonia in the poor exhaust gas from a combustion process
EP0840838B1 (en) Process and device for decompositing nitrogen oxides in internal combustion engine exhaust gases
WO2006134123A2 (en) Method and device for producing large atmospheric pressure plasmas
EP0602354B1 (en) Device for simultaneous removal of SO2 and NOx from flue gases by high frequency discharge
DE19816377C2 (en) Method for exciting discharges between at least two main electrodes and device for carrying out such a method
DE19616197A1 (en) Device with cooled areas for the electrical aftertreatment of exhaust gas
DE102006061692A1 (en) Nitrogen oxide generator for use in production of ammonia as reducing agent in selective reduction of car exhaust gas, comprises a plasma reactor with a modified sparking plug as high-voltage electrode
DE2512719A1 (en) PROCESS FOR GAS HEATING AND PLASMACHEMICAL ARC REACTOR FOR THE PERFORMANCE
EP1456118B1 (en) Method and device for converting a fuel
DE10353313B4 (en) Device and method for the selective catalytic reduction of nitrogen oxides contained in an exhaust gas of an internal combustion engine
DE19917510B4 (en) Reactor and method for plasma-chemically induced reactions

Legal Events

Date Code Title Description
OP8 Request for examination as to paragraph 44 patent law
8127 New person/name/address of the applicant

Owner name: DAIMLERCHRYSLER AG, 70567 STUTTGART, DE

8139 Disposal/non-payment of the annual fee