DE10336720A1 - Oscillator circuit with tapped resonant circuit, transistor amplifier element for coupling resonator to microwave transistor for broadband oscillator has transistor electrode fed out to 2 housing connections for coupling to resonant circuit - Google Patents

Oscillator circuit with tapped resonant circuit, transistor amplifier element for coupling resonator to microwave transistor for broadband oscillator has transistor electrode fed out to 2 housing connections for coupling to resonant circuit Download PDF

Info

Publication number
DE10336720A1
DE10336720A1 DE10336720A DE10336720A DE10336720A1 DE 10336720 A1 DE10336720 A1 DE 10336720A1 DE 10336720 A DE10336720 A DE 10336720A DE 10336720 A DE10336720 A DE 10336720A DE 10336720 A1 DE10336720 A1 DE 10336720A1
Authority
DE
Germany
Prior art keywords
transistor
circuit
resonant circuit
coupling
oscillator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
DE10336720A
Other languages
German (de)
Other versions
DE10336720B4 (en
Inventor
Andreas Gronefeld
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Rohde and Schwarz GmbH and Co KG
Original Assignee
Gronefeld Andreas Dipl-Ing
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Gronefeld Andreas Dipl-Ing filed Critical Gronefeld Andreas Dipl-Ing
Priority to DE10336720A priority Critical patent/DE10336720B4/en
Publication of DE10336720A1 publication Critical patent/DE10336720A1/en
Application granted granted Critical
Publication of DE10336720B4 publication Critical patent/DE10336720B4/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03BGENERATION OF OSCILLATIONS, DIRECTLY OR BY FREQUENCY-CHANGING, BY CIRCUITS EMPLOYING ACTIVE ELEMENTS WHICH OPERATE IN A NON-SWITCHING MANNER; GENERATION OF NOISE BY SUCH CIRCUITS
    • H03B5/00Generation of oscillations using amplifier with regenerative feedback from output to input
    • H03B5/08Generation of oscillations using amplifier with regenerative feedback from output to input with frequency-determining element comprising lumped inductance and capacitance
    • H03B5/12Generation of oscillations using amplifier with regenerative feedback from output to input with frequency-determining element comprising lumped inductance and capacitance active element in amplifier being semiconductor device
    • H03B5/1231Generation of oscillations using amplifier with regenerative feedback from output to input with frequency-determining element comprising lumped inductance and capacitance active element in amplifier being semiconductor device the amplifier comprising one or more bipolar transistors
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03BGENERATION OF OSCILLATIONS, DIRECTLY OR BY FREQUENCY-CHANGING, BY CIRCUITS EMPLOYING ACTIVE ELEMENTS WHICH OPERATE IN A NON-SWITCHING MANNER; GENERATION OF NOISE BY SUCH CIRCUITS
    • H03B5/00Generation of oscillations using amplifier with regenerative feedback from output to input
    • H03B5/08Generation of oscillations using amplifier with regenerative feedback from output to input with frequency-determining element comprising lumped inductance and capacitance
    • H03B5/12Generation of oscillations using amplifier with regenerative feedback from output to input with frequency-determining element comprising lumped inductance and capacitance active element in amplifier being semiconductor device
    • H03B5/1203Generation of oscillations using amplifier with regenerative feedback from output to input with frequency-determining element comprising lumped inductance and capacitance active element in amplifier being semiconductor device the amplifier being a single transistor
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03BGENERATION OF OSCILLATIONS, DIRECTLY OR BY FREQUENCY-CHANGING, BY CIRCUITS EMPLOYING ACTIVE ELEMENTS WHICH OPERATE IN A NON-SWITCHING MANNER; GENERATION OF NOISE BY SUCH CIRCUITS
    • H03B5/00Generation of oscillations using amplifier with regenerative feedback from output to input
    • H03B5/08Generation of oscillations using amplifier with regenerative feedback from output to input with frequency-determining element comprising lumped inductance and capacitance
    • H03B5/12Generation of oscillations using amplifier with regenerative feedback from output to input with frequency-determining element comprising lumped inductance and capacitance active element in amplifier being semiconductor device
    • H03B5/1237Generation of oscillations using amplifier with regenerative feedback from output to input with frequency-determining element comprising lumped inductance and capacitance active element in amplifier being semiconductor device comprising means for varying the frequency of the generator
    • H03B5/124Generation of oscillations using amplifier with regenerative feedback from output to input with frequency-determining element comprising lumped inductance and capacitance active element in amplifier being semiconductor device comprising means for varying the frequency of the generator the means comprising a voltage dependent capacitance
    • H03B5/1243Generation of oscillations using amplifier with regenerative feedback from output to input with frequency-determining element comprising lumped inductance and capacitance active element in amplifier being semiconductor device comprising means for varying the frequency of the generator the means comprising a voltage dependent capacitance the means comprising voltage variable capacitance diodes

Abstract

The circuit has a tapped oscillator circuit and a transistor as an amplifier element. One of the transistor electrodes is fed out to two housing connections and the resonant circuit is divided at the tapping position for coupling to the transistor and connected to the dual fed transistor electrode via the resulting connections so that the otherwise parasitic bond wire inductances of the dual fed electrodes are part of the resonant circuit.

Description

Moderne Mikrowellentransistoren weisen in der Regel zwei Emitter-/Sourceanschlüsse auf, die sich bei Betrieb in der am meisten verwendeten Emitter-/Sourceschaltung vorteilhaft auf die erreichbare Bandbreite/Verstärkung eines Verstärkers auswirken. Die mit dem Emitter verbundene Emitterinduktivität (Bonddraht vom Anschlussblech zum Transistorkristall) bewirkt eine mit steigender Frequenz zunehmende Gegenkopplung, die die in einer Verstärkeranwendung erreichbare Verstärkung des gehäusten Transistors absinken lässt. Bei Verwendung von zwei Emitteranschlüssen, wie bei vielen Gehäusen für Mikrowellentransistoren inzwischen üblich (SOT143, SOT343, TSFP4), liegen bei geerdeten Emittern (Emitterschaltung) beide Emitterinduktivitäten LE1 und LE2 parallel und halbieren sich bei LE1 ≅ LE2 näherungsweise, wodurch der in der Regel unerwünschte Effekt der Gegenkopplung bei hohen Frequenzen verringert wird (Bild 1b). Bild 1 zeigt auch eine Klasse weiterer parasitärer Reaktanzen, die im Mikrowellenbereich dadurch auftreten können, dass der Transistor auf Lötflächen der Leiterplatte befestigt wird und diese Lötflächen eine, wenn auch kleine, Kapazität zu der in der Regel vorhandenen Massefläche der Leiterplattenunterseite aufweisen (CBm, CCm, CE1m und CE2m).Modern microwave transistors typically have two emitter / source terminals which, when operating in the most commonly used emitter / source circuit, advantageously affect the achievable bandwidth / gain of an amplifier. The emitter inductance (bonding wire from the terminal plate to the transistor crystal) connected to the emitter causes an increasing negative feedback, which decreases the gain of the housed transistor achievable in an amplifier application. When two emitter terminals are used, as is customary in the meantime for many casings for microwave transistors (SOT143, SOT343, TSFP4), both emitter inductors L E1 and L E2 are parallel in the case of grounded emitters (emitter circuit) and approximately halve at L E1 ≅ L E2 , as a result usually unwanted effect of negative feedback at high frequencies is reduced (Figure 1b). Figure 1 also shows a class of other parasitic reactances that may occur in the microwave region by mounting the transistor on printed circuit board pads and these pads have a capacitance, albeit small, to the ground plane of the PCB bottom (C Bm , C Cm , C E1m and C E2m ).

Problematisch kann die Existenz von zwei Emitteranschlüssen dann werden, wenn der Transistor nicht in Emitterschaltung betrieben werden soll. Die durch die Lötflächen der Emitter entstehende Kapazität ist bei Erdung der Emitter nicht existent, wohl aber wenn der Transistor in Basis- oder Kollektorschaltung betrieben werden soll. In diesem Fall wirken bei Transistoren mit zwei Emitteranschlüssen zwei Lötflächen.Problematic can be the existence of two emitter terminals then, if the Transistor should not be operated in emitter circuit. The through the soldering surfaces of the Emitter resulting capacity is not existent when grounding the emitter, but if the transistor to be operated in basic or collector circuit. In this Case act on transistors with two emitter terminals two Soldering surfaces.

Insbesondere hat sich der zweite Emitteranschluß beim Bau oktavbreiter Oszillatoren im Frequenzbereich oberhalb von 4GHz als nachteilig erwiesen. Bild 2 zeigt eine für solche Oszillatoren häufig verwendete Topologie, die Basis-/Gateschaltung mit serieller Rückkopplung [1] [2]. Hier wird der Resonator LS1, LS2, CS am Emitter angekoppelt, wobei man versucht, den Transistor über die Rückkopplungsimpedanzen LR und CR, sowie die Lastimpedanz ZL, so einzustellen, dass die in den Emitter hineingesehene Impedanz einen negativen Realteil und einen möglichst kleinen Imaginärteil aufweist. Dies ist im o.a. Frequenzbereich nicht trivial, da sich schon sehr kleine Induktivitäten und Leitungslängen störend auswirken. Bild 3 zeigt, dass der zweite Emitteranschluß jetzt störend wirkt, da er mit seiner Bonddrahtinduktivität LE2 und der Lötflächenkapazität CE2m einen parasitären Resonanzkreis an den Resonator koppelt. Nur quantitativ anders verhält es sich, wenn beide Emitteranschlüsse miteinander verbunden werden. Diese unerwünschte, durch den zweiten Emitteranschluß verursachte Reaktanz führt dazu, dass

  • – der Resonator verstimmt wird,
  • – die Abstimmbarkeit des Resonators eingeschränkt wird,
  • – der Schwingbereich des Oszillators eingeschränkt wird,
  • – u.U. sogar parasitäre Schwingungen auftreten können.
In particular, the second emitter connection has proved disadvantageous in the construction of octave-wide oscillators in the frequency range above 4 GHz. Figure 2 shows a topology commonly used for such oscillators, the basic / gate circuit with serial feedback [1] [2]. Here, the resonator L S1 , L S2 , C S is coupled to the emitter, trying to set the transistor via the feedback impedances L R and C R , and the load impedance Z L , so that the impedance seen in the emitter has a negative real part and has the smallest possible imaginary part. This is not trivial in the above-mentioned frequency range, since even very small inductances and line lengths have a disturbing effect. Figure 3 shows that the second emitter terminal now has a disturbing effect, since it couples a parasitic resonance circuit to the resonator with its bonding wire inductance L E2 and the pad capacitance C E2m . Only quantitatively different it behaves when both emitter terminals are connected together. This undesirable reactance caused by the second emitter terminal causes
  • - the resonator is detuned,
  • The tunability of the resonator is restricted,
  • The oscillation range of the oscillator is restricted,
  • - may even occur parasitic vibrations.

Darüber hinaus ist der Transistor über nur einen Bonddraht (LE1 oder LE2) mit dem Resonator verbunden, so dass ein größerer als der minimal mögliche Imaginärteil in den Emitter hinein gesehen wird.In addition, the transistor is connected to the resonator via only one bonding wire (L E1 or L E2 ), so that a greater than the minimum possible imaginary part is seen in the emitter.

Die Bilder 4 bis 7 zeigen, wie die oben genannten Probleme erfindungsgemäß gelöst werden: Der bisher als diskret aufgebaut angenommene Resonator wird an seinem Ankoppelpunkt (3) aufgeteilt und jeder Teil mit einem der beiden Emitteranschlüsse verbunden, z.B. (1) mit (4) und (2) mit (5) in Bild 4. Nun handelt es sich bei den Resonatorelementen LS1, und LS2 eines Mikrowellenoszillators stets um Leitungsstrukturen mit Wellenwiderständen ZS1 und ZS2 und den elektrischen Längen φS1 und φS1 (Bild 5). Aus der Leitungstheorie ist bekannt [3], daß diese äquivalent als periodische Abfolge (Bild 6) von Kapazitätsbelägen C' und Induktivitätsbelägen L' dargestellt werden können. Setzt man diese Darstellung formal in die Struktur von Bild 4 ein, so erkennt man in Bild 7, dass sich die parasitären Elemente LE1, LE2, CE1m, CE2m (Bonddrahtinduktivitäten und Kapazitäten der Emitterlötflächen) jetzt in die Resonatorstruktur einfügen, was die Gefahr parasitärer Resonanzen deutlich reduziert. Der Resonator wird durch die zusätzliche Induktivität der beiden Bonddrähte zwar elektrisch verlängert, jedoch hat dies für die Praxis keine Nachteile, da der Resonator durch mechanisches Verkürzen leicht wieder auf die richtige Frequenz gebracht werden kann.FIGS. 4 to 7 show how the above-mentioned problems are solved according to the invention: The resonator previously assumed to be discretely constructed is connected at its coupling point (FIG. 3 ) and each part is connected to one of the two emitter terminals, eg 1 ) With ( 4 ) and ( 2 ) With ( 5 ) in Figure 4. The resonator elements L S1 and L S2 of a microwave oscillator are now always line structures with characteristic impedances Z S1 and Z S2 and the electrical lengths φ S1 and φ S1 (Figure 5). From the theory of conduction is known [3] that they can be represented as equivalent periodic sequence (Figure 6) of capacitance C 'and Induktivitätsbelägen L'. Inserting this representation formally in the structure of Figure 4, it can be seen in Figure 7, that the parasitic elements L E1 , L E2 , C E1m , C E2m (bonding wire inductances and capacitances of the emitter solder) now in the resonator structure, what significantly reduces the risk of parasitic resonances. Although the resonator is electrically extended by the additional inductance of the two bonding wires, but this has no disadvantages in practice, since the resonator can be easily brought back to the correct frequency by mechanical shortening.

Das Einbringen der zunächst parasitären Elemente der Bonddrahtinduktivitäten und der Lötflächenkapazitäten als reguläre Bestandteile der Resonatorstruktur sorgt für eine optimale Ankopplung des Transistors, der jetzt direkt mit seinem „inneren" Emitter (Ek in Bild 5) den Resonator speist.The introduction of the initially parasitic elements of the bonding wire inductances and the Lötflächenkapazitäten as regular components of the resonator structure provides for optimal coupling of the transistor, which now feeds directly with its "inner" emitter (E k in Figure 5) the resonator.

  • [1] Papp, J.C., „YIG-Tuned FET Oscillator Design 8-18GHz", Watkins-Johnson Company Tech Notes, Vol.6, Sep./Oct. 1979[1] Papp, J.C., "YIG-Tuned FET Oscillator Design 8-18GHz ", Watkins-Johnson Company Tech Notes, Vol.6, Sep./Oct. 1979
  • [2] Kitchen, John, „Octave Bandwidth Varactor-Tuned Oscillators", Microwave Journal, May 1987[2] Kitchen, John, "Octave Bandwidth Varactor-Tuned Oscillators ", Microwave Journal, May 1987
  • [3] Zinke, O., Brunswig, H., „Hochfrequenztechnik", Bd.1, Springer Verlag[3] Zinke, O., Brunswig, H., "High Frequency Engineering", Vol.1, Springer publishing company

Claims (6)

Oszillatorschaltung mit einem angezapften Schwingkreis und einem Transistor (T) als Verstärkerelement, dadurch gekennzeichnet, dass eine der Elektroden des Transistors auf zwei Gehäuseanschlüssen (1) (2) herausgeführt und der Schwingkreis am Ort der Anzapfung (3) zur Ankopplung an den Transistor aufgetrennt ist und mit jeweils einem der beiden so entstehenden Anschlüsse (4) (5) mit der doppelt herausgeführten Transistorelektrode verbunden ist (z.B. (1) mit (4) und (2) mit (5)), so dass die ansonsten parasitären Bonddrahtinduktivitäten (6) (7) der doppelt herausgeführten Elektrode zu Bestandteilen des Schwingkreises werden.Oscillator circuit with a tapped Oscillating circuit and a transistor (T) as an amplifier element, characterized in that one of the electrodes of the transistor on two housing terminals ( 1 ) ( 2 ) and the resonant circuit at the point of tapping ( 3 ) is separated for coupling to the transistor and with one of the two thus resulting connections ( 4 ) ( 5 ) is connected to the doubly led out transistor electrode (eg 1 ) With ( 4 ) and ( 2 ) With ( 5 )), so that the otherwise parasitic bonding wire inductances ( 6 ) ( 7 ) of the electrode led out twice become components of the resonant circuit. Schaltung nach Anspruch 1, dadurch gekennzeichnet, dass der Schwingkreis aus einer variablen Kapazität (8) und zwei Streifenleitungen (9) (10) besteht, so dass die parasitären Bonddrahtinduktivitäten (6) (7) und die parasitären Kapazitäten der Lötflächen (11) (12) der doppelt herausgeführten Elektrode zu Bestandteilen des Schwingkreises werden.Circuit according to Claim 1, characterized in that the resonant circuit consists of a variable capacitance ( 8th ) and two strip lines ( 9 ) ( 10 ), so that the parasitic bonding wire inductances ( 6 ) ( 7 ) and the parasitic capacitances of the solder pads ( 11 ) ( 12 ) of the electrode led out twice become components of the resonant circuit. Schaltung nach Anspruch 2, dadurch gekennzeichnet, dass die variable Kapazität (8) durch eine oder mehrere Varaktordioden realisiert ist.Circuit according to Claim 2, characterized in that the variable capacitance ( 8th ) is realized by one or more varactor diodes. Schaltung nach Anspruch 1, dadurch gekennzeichnet, dass ein Transistor mit zwei Emitter- oder Sourceanschlüssen verwendet wird.Circuit according to Claim 1, characterized that uses a transistor with two emitter or source terminals becomes. Schaltung nach Anspruch 4, dadurch gekennzeichnet, dass der Schwingkreis aus einer variablen Kapazität (8) und zwei Streifenleitungen (9) (10) besteht.Circuit according to claim 4, characterized in that the resonant circuit consists of a variable capacitance ( 8th ) and two strip lines ( 9 ) ( 10 ) consists. Schaltung nach Anspruch 5, dadurch gekennzeichnet, dass die variable Kapazität (8) durch eine oder mehrere Varaktordioden realisiert ist.Circuit according to Claim 5, characterized in that the variable capacitance ( 8th ) is realized by one or more varactor diodes.
DE10336720A 2003-08-11 2003-08-11 Optimal resonator coupling to microwave transistors in broadband oscillators Expired - Lifetime DE10336720B4 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
DE10336720A DE10336720B4 (en) 2003-08-11 2003-08-11 Optimal resonator coupling to microwave transistors in broadband oscillators

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE10336720A DE10336720B4 (en) 2003-08-11 2003-08-11 Optimal resonator coupling to microwave transistors in broadband oscillators

Publications (2)

Publication Number Publication Date
DE10336720A1 true DE10336720A1 (en) 2005-04-07
DE10336720B4 DE10336720B4 (en) 2007-07-12

Family

ID=34258151

Family Applications (1)

Application Number Title Priority Date Filing Date
DE10336720A Expired - Lifetime DE10336720B4 (en) 2003-08-11 2003-08-11 Optimal resonator coupling to microwave transistors in broadband oscillators

Country Status (1)

Country Link
DE (1) DE10336720B4 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2637360A1 (en) * 1976-08-19 1978-02-23 Siemens Ag GHZ RF transistor oscillator for carrier waves - has common collector transistor with emitter feedback and coaxial resonator
US4990865A (en) * 1989-03-15 1991-02-05 Alcatel N.V. Transistor microwave oscillator having adjustable zone of potential instability
DE3781090T2 (en) * 1986-10-27 1992-12-24 Thomson Csf VOLTAGE CONTROLLED MICROWAVE TRANSISTOROSCILLATOR AND WIDE-BAND MICROWAVE GENERATOR CONTAINING SUCH OSCILLATORS.
DE69231115T2 (en) * 1991-07-23 2001-02-15 Nec Corp Field effect transistor and high frequency circuits containing this transistor
DE10056943C1 (en) * 2000-11-17 2002-04-11 Infineon Technologies Ag Oscillator circuit has inductances in form of bonded wires connected to contact points connected to circuit nodes and to bearer to which rear surface of circuit board is attached
DE10246103A1 (en) * 2001-10-03 2003-07-10 Murata Manufacturing Co High frequency oscillation circuit, high frequency module and communication device

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2637360A1 (en) * 1976-08-19 1978-02-23 Siemens Ag GHZ RF transistor oscillator for carrier waves - has common collector transistor with emitter feedback and coaxial resonator
DE3781090T2 (en) * 1986-10-27 1992-12-24 Thomson Csf VOLTAGE CONTROLLED MICROWAVE TRANSISTOROSCILLATOR AND WIDE-BAND MICROWAVE GENERATOR CONTAINING SUCH OSCILLATORS.
US4990865A (en) * 1989-03-15 1991-02-05 Alcatel N.V. Transistor microwave oscillator having adjustable zone of potential instability
DE69231115T2 (en) * 1991-07-23 2001-02-15 Nec Corp Field effect transistor and high frequency circuits containing this transistor
DE10056943C1 (en) * 2000-11-17 2002-04-11 Infineon Technologies Ag Oscillator circuit has inductances in form of bonded wires connected to contact points connected to circuit nodes and to bearer to which rear surface of circuit board is attached
DE10246103A1 (en) * 2001-10-03 2003-07-10 Murata Manufacturing Co High frequency oscillation circuit, high frequency module and communication device

Also Published As

Publication number Publication date
DE10336720B4 (en) 2007-07-12

Similar Documents

Publication Publication Date Title
DE102017104382B4 (en) LC network for a power amplifier with selectable impedance
DE102005048409B4 (en) Amplifier arrangement for ultra-wideband applications and methods
DE102008051630B9 (en) RF power amplifiers
DE102007027047B4 (en) RF power amplifiers
DE102008014930A1 (en) Output circuit and power component
DE102017130292A1 (en) Compact class F chip and wire-matching polo
DE2334570B1 (en) Tunable radio frequency input circuitry for a television receiver
DE102006033457A1 (en) RF power amplifiers
DE102016201244B4 (en) INDUCTIVE COUPLING TRANSFORMER WITH TUNABLE IMPEDANCE MATCHING NETWORK
EP1696487B1 (en) High frequency arrangement
DE102011087116A1 (en) frequency
DE60125365T2 (en) RF CIRCUIT
DE102018201492B4 (en) Embedded harmonic termination on a high power RF transistor
DE2166898C2 (en) Active Unipol receiving antenna for reception in two frequency ranges separated by a frequency gap
DE4331499C2 (en) Voltage controlled oscillator
DE10336720A1 (en) Oscillator circuit with tapped resonant circuit, transistor amplifier element for coupling resonator to microwave transistor for broadband oscillator has transistor electrode fed out to 2 housing connections for coupling to resonant circuit
DE112011103767T5 (en) Semiconductor unit
WO2011079899A1 (en) Amplifier component comprising a compensation element
DE102017200255B4 (en) power amplifier
DE60007714T2 (en) Voltage controlled oscillator and electronic device therefor
DE112019007905T5 (en) Doherty amplifier
DE112019007087B4 (en) High frequency semiconductor amplifier
DE102006027983A1 (en) Butterfly antenna with amplifier for digital video broadcast reception by mobile devices, includes conductive bridging strips making electrical connection between wings
DE10246103A1 (en) High frequency oscillation circuit, high frequency module and communication device
DE2512314A1 (en) MICROWAVE COMPONENT

Legal Events

Date Code Title Description
OP8 Request for examination as to paragraph 44 patent law
8122 Nonbinding interest in granting licences declared
8120 Willingness to grant licences paragraph 23
8364 No opposition during term of opposition
8327 Change in the person/name/address of the patent owner

Owner name: ROHDE & SCHWARZ GMBH & CO. KG, 81671 MUENCHEN, DE

8381 Inventor (new situation)

Inventor name: GRONEFELD, ANDREAS, DIPL.-ING., 45701 HERTEN, DE

8381 Inventor (new situation)

Inventor name: GRONEFELD, ANDREAS, DR.-ING., 45701 HERTEN, DE

R071 Expiry of right