DE102016101652A1 - Optoelektronisches Bauelement mit Seitenkontakten - Google Patents

Optoelektronisches Bauelement mit Seitenkontakten Download PDF

Info

Publication number
DE102016101652A1
DE102016101652A1 DE102016101652.7A DE102016101652A DE102016101652A1 DE 102016101652 A1 DE102016101652 A1 DE 102016101652A1 DE 102016101652 A DE102016101652 A DE 102016101652A DE 102016101652 A1 DE102016101652 A1 DE 102016101652A1
Authority
DE
Germany
Prior art keywords
electrically conductive
layer
optoelectronic component
insulating layer
semiconductor chip
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
DE102016101652.7A
Other languages
English (en)
Inventor
Dominik Scholz
Siegfried Herrmann
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ams Osram International GmbH
Original Assignee
Osram Opto Semiconductors GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Osram Opto Semiconductors GmbH filed Critical Osram Opto Semiconductors GmbH
Priority to DE102016101652.7A priority Critical patent/DE102016101652A1/de
Priority to US16/073,605 priority patent/US10811579B2/en
Priority to PCT/EP2017/051679 priority patent/WO2017129697A1/de
Publication of DE102016101652A1 publication Critical patent/DE102016101652A1/de
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/62Arrangements for conducting electric current to or from the semiconductor body, e.g. lead-frames, wire-bonds or solder balls
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/50Assembly of semiconductor devices using processes or apparatus not provided for in a single one of the subgroups H01L21/06 - H01L21/326, e.g. sealing of a cap to a base of a container
    • H01L21/56Encapsulations, e.g. encapsulation layers, coatings
    • H01L21/568Temporary substrate used as encapsulation process aid
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/02Bonding areas ; Manufacturing methods related thereto
    • H01L24/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/483Containers
    • H01L33/486Containers adapted for surface mounting
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/04105Bonding areas formed on an encapsulation of the semiconductor or solid-state body, e.g. bonding areas on chip-scale packages
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/18High density interconnect [HDI] connectors; Manufacturing methods related thereto
    • H01L2224/19Manufacturing methods of high density interconnect preforms
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/181Encapsulation
    • H01L2924/1815Shape
    • H01L2924/1816Exposing the passive side of the semiconductor or solid-state body
    • H01L2924/18162Exposing the passive side of the semiconductor or solid-state body of a chip with build-up interconnect
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2933/00Details relating to devices covered by the group H01L33/00 but not provided for in its subgroups
    • H01L2933/0008Processes
    • H01L2933/0033Processes relating to semiconductor body packages
    • H01L2933/0066Processes relating to semiconductor body packages relating to arrangements for conducting electric current to or from the semiconductor body

Abstract

Die Erfindung betrifft ein optoelektronisches Bauelement mit einem lichtemittierenden Halbleiterchip mit einer Emissions- und mit einer Unterseite. Das Bauelement ist ausgebildet, Licht über die Emissionsseite abzustrahlen. Das optoelektronische Bauelement weist eine isolierende Schicht auf, in die der Halbleiterchip eingebettet ist. Zwei elektrische Kontaktstellen des Halbleiterchips sind von der Emissionsseite abgewandt und jeweils mit einer Kontaktstelle des Halbleiterchips elektrisch leitfähig verbunden. Die elektrisch leitfähigen Kontaktschichten sind in der isolierenden Schicht angeordnet. Die erste elektrisch leitfähige Kontaktschicht grenzt an eine erste Seitenfläche des optoelektronischen Bauelements an, die zweite elektrisch leitfähige Kontaktschicht grenzt an eine zweite Seitenfläche des optoelektronischen Bauelements an. Außerdem betrifft die Erfindung ein Verfahren zum Herstellen eines optoelektronischen Bauelements mit den Schritten: – Einbetten eines Halbleiterchips in eine erste elektrisch isolierende Schicht; – Aufbringen von zwei elektrisch leitfähigen Kontaktschichten auf der ersten isolierenden Schicht derart, dass die elektrisch leitfähigen Kontaktschichten voneinander isoliert sind und jeweils mit einer elektrischen Kontaktstelle des Halbleiterchips verbunden sind; und – Aufbringen einer zweiten elektrisch isolierenden Schicht, welche die elektrisch leitfähigen Kontaktschichten bedeckt.

Description

  • Die Erfindung betrifft ein optoelektronisches Bauelement mit einem lichtemittierenden Halbleiterchip. Der Halbleiterchip ist dabei ein Halbleiterchip mit zwei Rückkontakten, also beispielsweise ein FlipChip oder ein Oberflächenemitter mit zwei Rückkontakten.
  • Optoelektronische Bauelemente mit einem lichtemittierenden Halbleiterchip mit Rückkontakten können realisiert werden, indem der lichtemittierende Chip in ein isolierendes Material eingebracht wird, das isolierende Material anschließend im Bereich der Rückkontakte des Halbleiterchips wieder entfernt wird und Lötflächen auf der Bauelementrückseite erzeugt werden, die mit den Rückkontakten des Halbleiterchips elektrisch leitfähig verbunden sind. Die Position und Anordnung der Lötflächen ist dabei durch die Chipgeometrie begrenzt und muss auf sehr kleinem Raum ausgeführt werden.
  • Eine Aufgabe der Erfindung besteht darin, ein verbessertes optoelektronisches Bauelement bereitzustellen, bei dem die elektrische Kontaktierung der Rückkontakte des Halbleiterchips seitlich aus dem Bauelement herausgeführt wird. Dadurch können Lötflächen vorgesehen werden, deren Position nicht durch die Chipgeometrie auf der Bauelementrückseite begrenzt ist. Eine weitere Aufgabe der Erfindung ist es, ein Herstellungsverfahren für solch ein optoelektronisches Bauelement bereitzustellen.
  • Diese Aufgabe wird mit dem optoelektronischen Bauelement und dem Verfahren zum Herstellen eines optoelektronischen Bauelements der unabhängigen Patentansprüche gelöst. Vorteilhafte Ausgestaltungen sind in den abhängigen Patentansprüchen angegeben.
  • Ein optoelektronisches Bauelement mit einem lichtemittierenden Halbleiterchip weist eine Emissionsseite und eine Unterseite auf. Das Bauelement ist ausgebildet, Licht über die Emissionsseite abzustrahlen. Außerdem weist das optoelektronische Bauelement eine isolierende Schicht auf, in die der Halbleiterchip eingebettet ist. Der Halbleiterchip weist zwei elektrische Kontaktstellen auf, die von der Emissionsseite abgewandt sind. Innerhalb der isolierenden Schicht ist eine erste und eine zweite elektrisch leitfähige Kontaktschicht vorgesehen, die jeweils mit einer Kontaktstelle des Halbleiterchips elektrisch leitfähig verbunden sind. Die erste elektrisch leitfähige Kontaktschicht grenzt an eine erste Seitenfläche des optoelektronischen Bauelements an. Die zweite elektrisch leitfähige Kontaktschicht grenzt an eine zweite Seitenfläche des optoelektronischen Bauelements an. Die Seitenflächen, also die erste und die zweite Seitenfläche, sind dabei weder die Emissionsseite noch die Unterseite des optoelektronischen Bauelements. Dadurch, dass die elektrisch leitfähigen Kontaktschichten des optoelektronischen Bauelements an verschiedene Seitenflächen des optoelektronischen Bauelements angrenzen, wird eine Chipgeometrie erreicht, durch die Kurzschlüsse beim Verlöten des optoelektronischen Bauelements während eines Montageprozesses sehr unwahrscheinlich sind. Darüber hinaus kann mit dem angegebenen optoelektronischen Bauelement eine gute mechanische Stabilität desselben erreicht werden.
  • In einer Ausführungsform ist auf der ersten Seitenfläche eine erste elektrisch leitfähige Schicht angeordnet, die mit der ersten elektrisch leitfähigen Kontaktschicht verbunden ist. Auf der zweiten Seitenfläche ist eine zweite elektrisch leitfähige Schicht angeordnet, die mit der zweiten elektrisch leitfähigen Kontaktschicht verbunden ist. Die erste elektrisch leitfähige Schicht und die zweite elektrisch leitfähige Schicht können dabei aus Metall bestehen und somit die Lötstellen des optoelektronischen Halbleiterbauelements bilden.
  • In einer Ausführungsform weist das optoelektronische Bauelement eine Metallschicht auf der Unterseite auf, wobei die Metallschicht insbesondere eingerichtet ist, mit einem Träger verbunden zu werden. Die Metallschicht auf der Unterseite kann entweder von beiden elektrisch leitfähigen Kontaktschichten elektrisch isoliert oder mit einer der beiden elektrisch leitfähigen Kontaktschichten elektrisch leitfähig verbunden sein. Die Metallschicht dient dabei als weitere Lötfläche, mit der das Bauelement mechanisch und/oder elektrisch mit einem Träger verbunden werden kann. Wenn die Metallschicht nicht mit den elektrisch leitfähigen Kontaktschichten elektrisch verbunden ist, ermöglicht dies eine präzise Montage des optoelektronischen Bauelements, ohne dass dabei eine elektrische Kontaktierung stattfindet. Dies ist vorteilhaft bei der Montage des fertigen optoelektronischen Bauelements.
  • In einer Ausführungsform weist die isolierende Schicht eine erste und eine zweite Schicht auf. Die elektrisch leitfähigen Kontaktschichten sind zwischen der ersten und der zweiten Schicht der isolierenden Schicht angeordnet. Die erste und/oder die zweite Schicht weisen insbesondere ein Moldmaterial auf. Isolierende Schichten aus Moldmaterial sind besonders einfach herzustellen und deshalb vorteilhaft für die Erfindung. Durch die Aufteilung der isolierenden Schicht in zwei Schichten kann eine einfache Herstellung des optoelektronischen Bauelements ermöglicht werden, auf die im Verfahren zur Herstellung des optoelektronischen Bauelements näher eingegangen wird.
  • In einer Ausführungsform weist die Schicht ein Leiterplattenmaterial und/oder eine Folie auf. Auch diese Materialien eigenen sich gut für das Einbetten von Halbleiterchips in einem isolierenden Material innerhalb eines optoelektronischen Bauelements.
  • In einer Ausführungsform weist das optoelektronische Bauelement ein Konversionselement auf, wobei das Konversionselement an der Emissionsseite des Bauelements angeordnet ist. Das Konversionselement ist eingerichtet, Licht, das vom Halbleiterchip emittiert wird, in Licht mit einer anderen Wellenlänge umzuwandeln. Zusätzlich ist ein Rahmen vorgesehen, der das Koversionselement seitlich umgibt, wobei der Rahmen ein weiteres isolierendes Material aufweist. Das isolierende Material des Rahmens kann insbesondere ein vom Material der isolierenden Schicht abweichendes Material sein. Titandioxid kann beispielsweise als Material für den Rahmen verwendet werden, da Titandioxid aufgrund seiner weißen Farbe einen von den optischen Eigenschaften her vorteilhaften Rahmen für ein optoelektronisches Bauelement ermöglicht.
  • In einer Ausführungsform grenzen die erste und die zweite elektrisch leitfähige Schicht an den Rahmen an. Dadurch kann eine möglichst große Lötfläche an den Seitenflächen des optoelektronischen Bauelements erreicht werden.
  • In einer Ausführungsform sind die erste elektrisch leitfähige Kontaktschicht und die zweite elektrisch leitfähige Kontaktschicht über eine ESD-Diode miteinander verbunden. Die ESD-Diode und der Halbleiterchip sind dabei antiparallel geschaltet und die ESD-Diode ist in die elektrisch isolierende Schicht eingebettet. Die Antiparallelschaltung von Halbleiterchip und ESD-Diode führt zu einem widerstandsfähigeren optoelektronischen Bauelement, da eine entgegen der Durchlassrichtung des Halbleiterchips an das optoelektronische Bauelement angelegte Spannung über die ESD-Diode abfließen kann und so die Gefahr einer Beschädigung des Halbleiterchips reduziert wird.
  • In einer Ausführungsform ist die erste elektrisch leitfähige Schicht und/oder die zweite elektrisch leitfähige Schicht und/oder die Metallschicht über eine Kante des optoelektronischen Bauelements auf zwei Seiten des optoelektronischen Bauelements angeordnet. Eine solche Anordnung führt bei der ersten und/oder der zweiten elektrisch leitfähigen Schicht dazu, dass das Bauelement sowohl von den Seitenflächen als auch von der Unterseite aus kontaktiert werden kann. Wird hingegen die Metallschicht über eine Kante des optoelektronischen Bauelements auf zwei Seiten angeordnet, wird die Montage des optoelektronischen Bauelementes derart, dass verschiedene Abstrahlrichtungen möglich werden, vereinfacht.
  • In einer Ausführungsform weist der Halbleiterchip zwischen den Kontaktstellen einen Bereich ohne Metallisierung auf. Die erste elektrisch leitfähige Kontaktschicht erstreckt sich innerhalb der isolierenden Schicht senkrecht unter den Bereich ohne Metallisierung des Halbleiterchips. Dadurch kann die mechanische Stabilität des optoelektronischen Bauelements weiter erhöht werden, da der Bereich ohne Metallisierung des Halbleiterchips durch das Metall der ersten elektrisch leitfähigen Kontaktschicht mechanisch unterstützt wird, ohne die elektrische Kontaktierbarkeit des Halbleiterchips zu beeinträchtigen.
  • Ein Verfahren zum Herstellen eines optoelektronischen Bauelements umfasst die Schritte:
    • – Bereitstellen eines Halbleiterchips, insbesondere eines FlipChips oder eines Oberflächenemitters mit Rückkontakten;
    • – Einbetten des Halbleiterchips in eine erste elektrisch isolierende Schicht;
    • – Aufbringen von zwei elektrisch leitfähigen Kontaktschichten auf der ersten isolierenden Schicht derart, dass die elektrisch leitfähigen Kontaktschichten voneinander isoliert sind und jeweils mit einer elektrischen Kontaktstelle des Halbleiterchips verbunden sind; und
    • – Aufbringen einer zweiten elektrisch isolierenden Schicht, welche die elektrisch leitfähigen Kontaktschichten bedeckt.
  • Ein mit diesem Verfahren hergestelltes optoelektronisches Bauelement weist elektrisch leitfähige Kontaktschichten auf, die nicht mit einer Unterseite des optoelektronischen Bauelements verbunden sind, wodurch die beschriebenen Vorteile des optoelektronischen Bauelements realisiert werden können.
  • In einer Ausführungsform werden nach dem Einbetten des Halbleiterchips in die erste elektrisch isolierende Schicht die elektrischen Kontaktstellen des Chips durch Abtragen von Material der ersten isolierenden Schicht freigelegt. Dies ist insbesondere vorteilhaft, wenn die erste elektrisch isolierende Schicht nicht nur als Rahmen um den Halbleiterchip ausgebildet sein soll, sondern sich auch über einen Bereich unterhalb des Halbleiterchips erstrecken soll. In diesem Fall wird durch das Aufbringen der ersten elektrisch isolierenden Schicht eine direkte Kontaktierung der Kontaktstellen des Halbleiterchips verhindert, da diese von der ersten elektrisch isolierenden Schicht bedeckt sind. Durch das Abtragen von Material können die Kontaktstellen des Halbleiterchips freigelegt werden, wodurch die Kontaktierung ermöglicht wird.
  • In einer Ausführungsform umfasst das Verfahren die weiteren Schritte:
    • – Freilegen der elektrisch leitfähigen Bereiche in Randbereichen des optoelektronischen Bauelements; und
    • – Aufbringen einer Metallisierung der freigelegten elektrisch leitfähigen Bereiche.
  • Dadurch können Lötflächen auf den Seitenbereichen des optoelektronischen Bauelements erzeugt werden, wodurch eine einfache Kontaktierung des optoelektronischen Bauelements ermöglicht wird.
  • In einer Ausführungsform erfolgt das Freilegen der elektrisch leitfähigen Bereiche in den Randbereichen des optoelektronischen Bauelements mittels eines Sägeschnitts. Der Sägeschnitt wird dabei so ausgeführt, dass das Sägeblatt die elektrisch leitfähigen Kontaktschichten durchtrennt und somit an dieser Stelle freilegt. Die anschließende Metallisierung ermöglicht eine direkte Kontaktierung dieser freigelegten Stellen der elektrisch leitfähigen Kontaktschicht.
  • In einer Ausführungsform wird vor dem Aufbringen der zweiten elektrisch isolierenden Schicht eine ESD-Diode auf der ersten isolierenden Schicht aufgebracht, wobei jeweils ein Anschluss der ESD-Diode mit jeweils einer elektrisch leitfähigen Kontaktschicht verbunden wird. Dadurch kann ein optoelektronisches Bauelement erzeugt werden, bei dem die ESD-Diode in das Bauelement eingebettet und folglich von außen nicht mehr sichtbar ist.
  • In einer Ausführungsform wird die erste isolierende Schicht vor dem Aufbringen der zweiten isolierenden Schicht aufgeraut. Dies ist vorteilhaft, da dadurch die zweite elektrisch isolierende Schicht besser an der ersten elektrisch isolierenden Schicht haftet und somit das Bauelement mechanisch stabiler wird.
  • In einer Ausführungsform ist der Halbleiterchip auf einem Substrat angeordnet. Ein weiterer Verfahrensschritt besteht darin, das Substrat nach dem Einbetten des Halbleiterchips in die erste elektrisch isolierende Schicht zu entfernen, insbesondere durch einen Ätzprozess. Dies ist vorteilhaft, wenn der Halbleiterchip durch das Substrat einfacher verarbeitbar ist, insbesondere einfacher gegriffen werden kann und dadurch einfacher platziert werden kann. Außerdem kann vorgesehen sein, dass durch das Entfernen des Substrats eine Ausnehmung innerhalb des optoelektronischen Bauelements entsteht, die dann mit einem Konversionsmaterial verfüllt werden kann, um ein optoelektronisches Bauelement mit einem Konversionselement zu erhalten.
  • Die oben beschriebenen Eigenschaften, Merkmale und Vorteile dieser Erfindung sowie die Art und Weise, wie diese erreicht werden, werden klarer und deutlicher verständlich im Zusammenhang mit der folgenden Beschreibung der Ausführungsbeispiele, die im Zusammenhang mit den Zeichnungen näher erläutert werden. Dabei zeigen in jeweils schematisierter Darstellung
  • 1 einen Querschnitt durch ein optoelektronisches Bauelement;
  • 2 einen Querschnitt durch ein optoelektronisches Bauelement mit metallisierten Seitenflächen;
  • 3 einen Querschnitt durch ein optoelektronisches Bauelement mit einer Metallschicht an der Unterseite;
  • 4 eine Seitenansicht eines optoelektronischen Bauelements mit einer Metallschicht an der Unterseite;
  • 5 einen Querschnitt durch ein optoelektronisches Bauelement, bei dem die isolierende Schicht aus zwei Schichten aufgebaut ist;
  • 6 ein optoelektronisches Bauelement mit einem Koversionselement und einer Metallisierung auf den gesamten Seitenflächen;
  • 7 einen Querschnitt durch ein optoelektronisches Bauelement mit einer ESD-Diode;
  • 8 einen weiteren Querschnitt durch ein optoelektronisches Bauelement mit einer ESD-Diode;
  • 9 einen Querschnitt durch ein optoelektronisches Bauelement, bei dem die elektrisch leitfähigen Schichten über eine Kante des optoelektronischen Bauelements auf zwei Seiten angeordnet sind;
  • 10 eine Seitenansicht eines optoelektronischen Bauelements, bei dem die Metallschicht über eine Kante auf zwei Seiten angeordnet ist;
  • 11 eine weitere Seitenansicht eines optoelektronischen Bauelements, bei dem die Metallschicht über eine Kante auf zwei Seiten angeordnet ist;
  • 12 einen Querschnitt durch ein optoelektronisches Bauelement, bei dem eine elektrisch leitfähige Kontaktschicht zusätzlich zu der mechanischen Stabilisierung des optoelektronischen Bauelements dient;
  • 13 den Ablauf des Verfahrens zur Herstellung des optoelektronischen Bauelements;
  • 14 ebenfalls den Ablauf des Verfahrens zur Herstellung des optoelektronischen Bauelements;
  • 15 den Ablauf eines weiteren Verfahrens zur Herstellung des optoelektronischen Bauelements mit weiteren Schritten; und
  • 16 ein Verfahren zur Herstellung eines optoelektronischen Bauelements, bei dem der Halbleiterchip auf einem Substrat angeordnet war.
  • 1 zeigt einen Querschnitt durch ein optoelektronisches Bauelement 100 mit einer Emissionsseite 101 und einer Unterseite 102. Die Emissionsseite 101 ist dabei gegenüber der Unterseite 102 angeordnet. Ein lichtemittierender Halbleiterchip 110 ist an die Emissionsseite 101 angrenzend angeordnet, sodass Licht des lichtemittierenden Halbleiterchips 110 des optoelektronischen Bauelements 100 über die Emissionsseite 101 abgestrahlt werden kann. Außerdem umfasst das optoelektronische Bauelement 100 eine isolierende Schicht 120, in die der lichtemittierende Halbleiterchip 110 eingebettet ist. Der lichtemittierende Halbleiterchip 110 weist zwei elektrische Kontaktstellen auf, eine erste elektrische Kontaktstelle 111 und eine zweite elektrische Kontaktstelle 112. Die elektrischen Kontaktstellen 111, 112 sind dabei auf der der Emissionsseite 101 abgewandten Seite des Halbleiterchips 110 angeordnet. Ebenso ist es denkbar, dass die Kontaktstellen 111, 112 seitlich an dem lichtemittierenden Halbleiterchip 110 angeordnet sind. Eine erste elektrisch leitfähige Kontaktschicht 131 ist innerhalb der isolierenden Schicht 120 angeordnet und mit der ersten Kontaktstelle 111 des lichtemittierenden Halbleiterchips 110 verbunden. Eine zweite elektrisch leitfähige Kontaktschicht 132 ist mit der zweiten Kontaktstelle 112 des lichtemittierenden Halbleiterchips 110 elektrisch leitfähig verbunden und ebenfalls innerhalb der isolierenden Schicht 120 angeordnet. Die erste elektrisch leitfähige Kontaktschicht 131 ist dabei an eine erste Seitenfläche 103 des optoelektronischen Bauelements 100 geführt, die zweite elektrisch leitfähige Kontaktschicht 132 ist dabei an eine zweite Seitenfläche 104 des optoelektronischen Bauelements 100 geführt. Dadurch kann die erste elektrisch leitfähige Kontaktschicht 131 an der ersten Seitenfläche 103 elektrisch kontaktiert werden, die zweite elektrisch leitfähige Kontaktschicht 132 kann an der zweiten Seitenfläche 104 elektrisch kontaktiert werden. Dadurch kann auch der Halbleiterchip 110 elektrisch kontaktiert werden, wobei dadurch das optoelektronische Bauelement 100 in die Lage versetzt wird, Licht abzugeben.
  • 2 zeigt einen weiteren Querschnitt durch ein optoelektronisches Bauelement 100 mit den Merkmalen des optoelektronischen Bauelements 100 der 1. Darüber hinaus weist das optoelektronische Bauelement 100 an der ersten Seitenfläche 103 eine erste elektrisch leitfähige Schicht 141 auf. Die erste elektrisch leitfähige Schicht 141 ist mit der ersten elektrisch leitfähigen Kontaktschicht 131 elektrisch leitend verbunden und vergrößert den Kontaktbereich an der ersten Seitenfläche 103. Die erste elektrisch leitfähige Schicht 141 ist dabei nicht über die gesamte erste Seitenfläche 103 ausgebildet, sondern nur über einen Teilbereich. Auf der zweiten Seitenfläche 104 ist eine zweite elektrisch leitfähige Schicht 142 angeordnet, die mit der zweiten elektrisch leitfähigen Kontaktschicht 132 elektrisch leitend verbunden ist. Die zweite elektrisch leitfähige Schicht 142 ist dabei über die gesamte zweite Seitenfläche 104 angeordnet, sodass an der zweiten Seitenfläche 104 eine größtmögliche Kontaktierungsschicht entsteht, die der zweiten elektrisch leitfähigen Schicht 142 entspricht. Es ist ebenso denkbar, auf der ersten Seitenfläche 103 eine erste elektrisch leitfähige Schicht 141 vorzusehen, die genauso ausgestaltet ist wie die zweite elektrisch leitfähige Schicht 142 der 2. Ebenso ist es denkbar, dass auf der zweiten Seitenfläche 104 die zweite elektrisch leitfähige Schicht 142 so ausgestaltet ist wie die erste elektrisch leitfähige Schicht 141 der 2. Auch andere Kombinationen oder Anordnungen der elektrisch leitfähigen Schichten 141, 142 können vorgesehen sein.
  • 3 zeigt einen Querschnitt durch ein optoelektronisches Bauelement 100, das im Wesentlichen dem optoelektronischen Bauelement der 1 entspricht. Zusätzlich ist auf der Unterseite 102 eine Metallschicht 150 angeordnet. Die Metallschicht 150 ist weder mit der ersten elektrisch leitfähigen Kontaktschicht 131 noch mit der zweiten elektrisch leitfähigen Kontaktschicht 132 elektrisch leitend verbunden, sondern von den Kontaktschichten 131, 132 isoliert. Die Metallschicht 150 ist z. B. eingerichtet, mit einem Träger verbunden zu werden. Dies kann beispielsweise über einen Lötprozess erfolgen, wobei in diesem Fall die Metallschicht 150 gut geeignet ist, das Bauelement auf einem Untergrund, beispielsweise einer Leiterplatte oder einem anderen Träger zu verlöten.
  • 4 zeigt eine Seitenansicht des optoelektronischen Bauelements 100 der 3. Das optoelektronische Bauelement 100 ist in die elektrisch isolierende Schicht 120 eingebettet, sodass nur die Vorderseite 107 des optoelektronischen Bauelements 100 sichtbar ist. Die Vorderseite 107 besteht homogen aus dem Material der elektrisch isolierenden Schicht 120. An der Unterseite 102 ist die Metallschicht 150 angeordnet.
  • 5 zeigt einen weiteren Querschnitt durch ein optoelektronisches Bauelement 100. Dieses optoelektronische Bauelement 100 entspricht im Wesentlichen dem Bauelement der 1. Im Unterschied zu 1 ist in diesem Ausführungsbeispiel die elektrisch isolierende Schicht 120 aus einer ersten Schicht 121 und einer zweiten Schicht 122 aufgebaut. Der Halbleiterchip 110 ist in die erste Schicht 121 eingebettet. Die erste und die zweite elektrisch leitfähige Kontaktschicht 131, 132 grenzen an die erste Schicht 121 an. Die zweite Schicht 122 grenzt an die erste Schicht 121 sowie an die elektrisch leitfähigen Kontaktschichten 131, 132 an. Die elektrisch leitfähigen Kontaktschichten 131, 132 sind zwischen der ersten Schicht 121 und der zweiten Schicht 122 angeordnet. Als Materialien für die elektrisch isolierende Schicht 120, die erste Schicht 121 und die zweite Schicht 122 kommen Moldmaterialien, also Kunststoffe, Leiterplattenmaterial oder Folien infrage. Dabei wird das zu verwendende Material beliebig nach den Anforderungen ausgewählt und es werden auch Materialkombinationen verwendt.
  • 6 zeigt einen Querschnitt durch ein weiteres optoelektronisches Bauelement 100, das die Merkmale der 1 aufweist. Auf der Emissionsseite 101 ist zusätzlich ein Konversionselement 160 angeordnet, welches einen äußeren Rahmen 161 aufweist. Das Konversionselement 160 grenzt dabei mit einer Unterseite an den lichtemittierenden Halbleiterchip 110 an. Der Rahmen 161 ist auf der elektrisch isolierenden Schicht 120 angeordnet. Die erste elektrisch leitfähige Schicht 141 erstreckt sich über die gesamte erste Seitenfläche 103, also auch über den Rahmen 161 an der ersten Seitenfläche 103. Die zweite elektrisch leitfähige Schicht 142 erstreckt sich über die gesamte zweite Seitenfläche 104, also auch über den Rahmen 161 an der zweiten Seitenfläche 104.
  • 7 zeigt einen weiteren Querschnitt durch ein optoelektronisches Bauelement 100 mit den Merkmalen der 1. Zusätzlich ist eine ESD-Diode 170 zwischen der ersten leitfähigen Kontaktschicht 131 und der zweiten elektrisch leitfähigen Kontaktschicht 132 angeordnet. Die ESD-Diode 170 ist antiparallel zum lichtemittierenden Halbleiterchip 110 geschaltet. Dadurch kann bei einer versehentlichen oder absichtlichen Verpolung der Spannungsversorgung des optoelektronischen Bauelements 100 der Strom über die ESD-Diode 170 abfließen, ohne den lichtemittierenden Halbleiterchip 110 zu beschädigen. In diesem Ausführungsbeispiel wird ein optoelektronisches Bauelement 100 dargestellt, welches eine flächenmäßig kompakte Bauweise ermöglicht, dies jedoch zu Lasten der Dicke des Bauelements 100.
  • 8 zeigt einen weiteren Querschnitt durch ein optpelektronisches Bauelement 100 mit den Merkmalen der 7. Die ESD-Diode ist in diesem Ausführungsbeispiel jedoch nicht unterhalb des lichtemittierenden Halbleiterchips 110 in der isolierenden Schicht 120 angeordnet, sondern neben dem lichtemittierenden Halbleiterchip 110. Durch die Anordnung der ESD-Diode 170 neben dem Halbleiterchip 110 kann die Dicke des Bauelements 100 verringert werden, dafür ist das Bauelement 100 flächenmäßig größer als das Bauelement 100 der 7.
  • 9 zeigt ein optoelektronisches Bauelement 100 mit den Merkmalen der 2. Die Unterseite 102 und die erste Seitenfläche 103 des optoelektronischen Bauelements 100 gehen an einer ersten Kante 105 ineinander über. Die Unterseite 102 und die zweite Seitenfläche 104 gehen an einer zweiten Kante 106 ineinander über. Die erste elektrisch leitfähige Schicht 141 erstreckt sich von der ersten Seitenfläche 103 über die erste Kante 105 auf die Unterseite 102. Die zweite elektrisch leitfähige Schicht 142 erstreckt sich von der zweiten Seitenfläche 104 über die zweite Kante 106 auf die Unterseite 102. Dadurch kann das optoelektronische Bauelement 100 sowohl über die erste und zweite Seitenfläche 103, 104 als auch über die Unterseite 102 kontaktiert werden.
  • 10 zeigt eine Seitenansicht auf die Vorderseite 107 eines optoelektronischen Bauelements 100, bei dem sich die Metallschicht 150 von der Unterseite 102 über eine Kante auf die Vorderseite 107 des optoelektronischen Bauelements 100 erstreckt. Dadurch kann das optoelektronische Bauelement 100 auch mit der Vorderseite 107 nach unten auf einem Träger angeordnet werden, wodurch eine Abstrahlrichtung des optoelektronischen Bauelements 100 parallel zum Träger ermöglicht wird.
  • 11 zeigt eine Seitenansicht auf die erste Seitenfläche 103 des optoelektronischen Bauelements 100 der 10. Die Metallschicht 150 erstreckt sich von der Vorderseite 107 über eine weitere Kante 109 auf die Unterseite 102 und von dort über eine weitere Kante 109 auf die Rückseite 108 des optoelektronischen Bauelements 100. Wird nun das optoelektronische Bauelement 100 nicht mit der Unterseite 102 nach unten, sondern um 90° gedreht mit der Vorderseite 107 nach unten auf einem Träger angeordnet, so zeigt die Emissionsseite 101 nicht nach oben, sondern nach links, wodurch das Licht des optoelektronischen Bauelements 100 parallel zum Träger abgestrahlt wird. Ebenso ist es denkbar, das optoelektronische Bauelement 100 mit der Rückseite 108 nach unten auf einen Träger zu montieren. Durch das Anordnen der Metallschicht 150 auf der Unterseite 102, der Vorderseite 107 und der Rückseite 108 entsteht ein optoelektronisches Bauelement, das sehr flexibel mit verschiedenen Abstrahlrichtungen auf einem Träger montierbar ist. Dadurch, dass die Metallschicht 150 nicht mit dem Halbleiterchip 110 elektrisch leitfähig verbunden ist, muss dabei wenig Rücksicht auf die elektrische Kontaktierung des optoelektronischen Bauelements 100 genommen werden.
  • 12 zeigt einen weiteren Querschnitt durch ein optoelektronisches Bauelement 100 mit den Merkmalen der 1. Der lichtemittierende Halbleiterchip 110 weist einen Zwischenbereich 113 ohne Metallisierung auf, der zwischen der ersten Kontaktstelle 111 und der zweiten Kontaktstelle 112 angeordnet ist. Im Zwischenbereich 113 kann der Halbleiterchip 110 mechanisch weniger stabil sein. Um die mechanische Stabilität des optoelektronischen Bauelements 100 zu erhöhen, erstreckt sich die erste elektrisch leitfähige Kontaktschicht 131 in der isolierenden Schicht 120 senkrecht unter den Zwischenbereich 113 des Halbleiterchips 110. Zusätzlich ist eine Metallschicht 150 an der Unterseite 102 des optoelektronischen Bauelements 100 angeordnet. Durch die Anordnung der ersten Kontaktschicht 131 und der Metallschicht 150 unterhalb des Zwischenbereichs 113 des Halbleiterchips 110 wird die mechanische Stabilität des optoelektronischen Bauelements 100 erhöht, da sowohl die erste elektrisch leitfähige Kontaktschicht 131 als auch die Metallschicht 150 den Zwischenbereich 113 mechanisch unterstützen.
  • Die Merkmale der Ausführungsbeispiele der 1 bis 12 können vom Fachmann beliebig miteinander kombiniert werden, um eine weitere Ausgestaltung des optoelektronischen Bauelements 100 zu erhalten.
  • 13 zeigt einen Ablauf eines Verfahrens zum Herstellen eines optoelektronischen Bauelements mit mehreren Verfahrensschritten. Die Verfahrensschritte sind dabei mit Pfeilen gekennzeichnet und der Ablauf des Verfahrens erfolgt von oben nach unten. Es sind jeweils Querschnitte der Zwischenprodukte dargestellt. Zunächst wird ein Halbleiterchip 110 mit einer ersten Kontaktstelle 111 und einer zweiten Kontaktstelle 112 bereitgestellt. Der Halbleiterchip 110 ist dabei insbesondere ein FlipChip oder ein Oberflächenemitter mit Rückkontakten, was bedeutet, dass sich die erste und zweite Kontaktstelle 111, 112 auf der der Lichtemission abgewandten Seite des Halbleiterchips 110 befindet. In einem nächsten Verfahrensschritt wird der Halbleiterchip 110 seitlich in eine erste elektrisch isolierende Schicht 121 eingebettet. Die erste elektrisch isolierende Schicht 121 bedeckt nicht die Unterseite des Halbleiterchips 110. In einem nächsten Verfahrensschritt wird eine erste elektrisch leitfähige Kontaktschicht 131 so auf die erste elektrisch isolierende Schicht 121 und den Halbleiterchip 110 aufgebracht, dass die erste Kontaktschicht 131 an die erste Kontaktstelle 111 des Halbleiterchips 110 angrenzt. Eine zweite elektrisch leitfähige Kontaktschicht 132 wird so auf die erste elektrisch isolierende Schicht 121 und den Halbleiterchip 110 aufgebracht, dass die zweite Kontaktschicht 132 an die zweite Kontaktstelle 112 des Halbleiterchips 110 angrenzt. Die Kontaktschichten 131, 132 erstrecken sich bis zu den Seitenflächen 103, 104 des Bauelements 100. In einem letzten Verfahrensschritt wird eine zweite elektrisch isolierende Schicht 122 aufgebracht, die die erste elektrisch leitfähige Kontaktschicht 131 und die zweite elektrisch leitfähige Kontaktschicht 132 bedeckt.
  • 14 zeigt ebenfalls den Ablauf des Verfahrens zum Herstellen eines optoelektronischen Bauelements mit mehreren Verfahrensschritten der 13. Es sind jeweils Draufsichten von unten auf die Zwischenprodukte dargestellt. Die Verfahrensschritte sind dabei mit Pfeilen gekennzeichnet und der Ablauf des Verfahrens erfolgt von oben nach unten. Ein Halbleiterchip 110 mit den Kontaktstellen 111, 112 wird in eine erste elektrisch isolierende Schicht 121 eingebettet. Anschließend wird die erste elektrisch leitfähige Kontaktschicht 131 und eine zweite elektrisch leitfähige Kontaktschicht 132 auf die erste isolierende Schicht 121 und den Halbleiterchip 110 aufgebracht. Die erste Kontaktschicht 131 grenzt an die erste Kontaktstelle 111 des Halbleiterchips 110 an. Die erste Kontaktschicht 131 erstreckt sich nur über einen Teilbereich der ersten isolierenden Schicht 121 und nicht über die gesamte Breite der isolierenden Schicht 121. Die zweite Kontaktschicht 132 grenzt an die zweite Kontaktstelle 112 des Halbleiterchips 110 an. Die zweite Kontaktschicht 132 erstreckt sich ebenfalls nur über einen Teilbereich der ersten isolierenden Schicht 121. In einem Abschließenden Verfahrensschritt wird die zweite isolierende Schicht 120 aufgebracht und verdeckt in der Draufsicht von unten die weiteren Merkmale des Bauteils 100. Die Kontaktschichten 131, 132 können in den Ausführungsbeispielen der 1 bis 12 wie in 14 beschrieben ausgestaltet sein. Es sind aber auch andere Formen der Kontaktschichten 131, 132 denkbar.
  • 15 zeigt ein weiteres Ausführungsbeispiel des Verfahrens zur Herstellung eines optoelektronischen Bauelements 100, wobei wiederum Querschnitte der Zwischenprodukte dargestellt sind. Zunächst wird ebenfalls ein lichtemittierender Halbleiterchip 110 mit zwei Kontaktstellen 111, 112 auf der Unterseite bereitgestellt. Die erste isolierende Schicht 121 bedeckt in diesem Ausführungsbeispiel die Unterseite des Halbleiterchips 110, sodass die erste Kontaktstelle 111 und die zweite Kontaktstelle 112 vom Material der ersten isolierenden Schicht 121 bedeckt sind. In einem nächsten Verfahrensschritt wird eine erste Ausnehmung 123 der ersten isolierenden Schicht 121 im Bereich der ersten Kontaktstelle 111 und eine zweite Ausnehmung 124 im Bereich der zweiten Kontaktstelle 112 erzeugt. Die Erzeugung der ersten Ausnehmung 123 und der zweiten Ausnehmung 124 erfolgt durch Abtragen der ersten isolierenden Schicht 121, beispielsweise durch Bohren, Ätzen oder durch Aufschmelzen des Materials der ersten isolierenden Schicht 121. Nun wird wiederum die erste elektrisch leitfähige Kontaktschicht 131 und die zweite elektrisch leitfähige Kontaktschicht 132 aufgebracht, die jeweils die elektrischen Kontaktstellen 111, 112 des Halbleiterchips 110 berühren. Die Kontaktschichten 131, 132 sind wiederum seitlich aus dem Bauelement 100 herausgeführt. Anschließend wird eine zweite elektrisch isolierende Schicht 122 aufgebracht, die wiederum die elektrisch leitfähigen Kontaktschichten 131, 132 bedeckt.
  • In einem Ausführungsbeispiel wird eine Metallisierung auf die elektrisch leitfähigen Kontaktschichten 131, 132 in Randbereichen des optoelektronischen Bauelements aufgebracht. Dabei entsteht insbesondere das in 2 gezeigte Ausführungsbeispiel des optoelektronischen Bauelements 100, die aufgebrachte Metallisierung entspricht dabei den elektrisch leitfähigen Schichten 141, 142 der 2. In einem Ausführungsbeispiel ist ein Sägeschnitt und/oder ein Schleifprozess vor dem Aufbringen der Metallisierung vorgesehen, mit dem eine definierte Oberfläche der elektrisch leitfähigen Kontaktstellen 131, 132 erzielt werden kann.
  • In einem Ausführungsbeispiel wird vor dem Aufbringen der zweiten elektrisch isolierenden Schicht 122 eine ESD-Diode 170 auf der ersten isolierenden Schicht 121 aufgebracht. Jeweils ein Anschluss der ESD-Diode 170 wird mit einer elektrisch leitfähigen Kontaktschicht 131, 132 verbunden. Dabei soll die Polarisierung der ESD-Diode 170 antiparallel zur Polarisierung des lichtemittierenden Halbleiterchips 110 sein.
  • In einem Ausführungsbeispiel wird die erste isolierende Schicht 121 vor dem Aufbringen der zweiten isolierenden Schicht 122 aufgeraut, um die Haftung der zweiten isolierenden Schicht 122 an der ersten isolierenden Schicht 121 zu verbessern. Das Aufrauen kann dabei mittels eines Schleifprozesses ober aber auch einem anderen Prozess erfolgen.
  • 16 zeigt ein weiteres Ausführungsbeispiel des Verfahrens zum Herstellen eines optoelektronischen Bauelements 100, wobei wiederum Querschnitte von Zwischenprodukten dargestellt sind. Der lichtemittierende Halbleiterchip 110 ist dabei mit seiner Emissionsseite 101 auf einem Substrat 114 angeordnet, die erste Kontaktstelle 111 und die zweite Kontaktstelle 112 sind dem Substrat 114 abgewandt. Zunächst erfolgt der Aufbau der ersten elektrisch isolierenden Schicht 121, der ersten elektrisch leitfähigen Kontaktschicht 131, der zweiten elektrisch leitfähigen Kontaktschicht 132 und der zweiten elektrisch isolierenden Schicht 122 analog zur 15. Das Substrat 114 ragt dabei aus der ersten elektrisch isolierenden Schicht 121 hervor. In einem nächsten Verfahrensschritt wird ein Rahmen 161 um das Substrat 114 erzeugt, wobei der Rahmen 161 an die erste elektrisch isolierende Schicht 121 angrenzt. Die Dicke des Rahmens 161 entspricht dabei der Dicke des Substrats 114. Der Rahmen 161 kann beispielsweise in einem Mold-Prozess erzeugt werden. In einem weiteren Verfahrensschritt wird das Substrat 114 entfernt, sodass eine Ausnehmung 162 innerhalb des Rahmens 161 übrig bleibt. Dieser Verfahrensschritt kann, anders als in der 16 dargestellt, auch schon nach dem Aufbringen der ersten isolierenden Schicht 121 oder nach weiteren Zwischenschritten durchgeführt werden. Mit einer gestrichelten Linie ist im Bereich der Ausnehmung 162 die vorherige Abmessung des Substrats 114 angedeutet. Die nun entstandene Ausnehmung 162 kann in einem nächsten Verfahrensschritt nun mit einem Konversionselement 160 gefüllt werden, um zum Ausführungsbeispiel der 6 zu gelangen.
  • Obwohl die Erfindung im Detail durch die bevorzugten Ausführungsbeispiele näher illustriert und beschrieben wurde, ist die Erfindung nicht durch die offenbarten Beispiele eingeschränkt und andere Variationen können vom Fachmann hieraus abgeleitet werden, ohne den Schutzumfang der Erfindung zu verlassen.
  • Bezugszeichenliste
  • 100
    Optoelektronisches Bauelement
    101
    Emissionsseite
    102
    Unterseite
    103
    erste Seitenfläche
    104
    zweite Seitenfläche
    105
    erste Kante
    106
    zweite Kante
    107
    Vorderseite
    108
    Rückseite
    109
    weitere Kanten
    110
    lichtemittierender Halbleiterchip
    111
    erste Kontaktstelle
    112
    zweite Kontaktstelle
    113
    Zwischenbereich
    114
    Substrat
    120
    isolierende Schicht
    121
    erste Schicht
    122
    zweite Schicht
    123
    erste Ausnehmung
    124
    zweite Ausnehmung
    131
    erste leitfähige Kontaktschicht
    132
    zweite leitfähige Kontaktschicht
    141
    erste elektrisch leitfähige Schicht
    142
    zweite elektrisch leitfähige Schicht
    150
    Metallschicht
    160
    Konversionselement
    161
    Rahmen
    162
    Ausnehmung
    170
    ESD-Diode

Claims (17)

  1. Optoelektronisches Bauelement (100) mit einem lichtemittierenden Halbleiterchip (110), mit einer Emissionsseite (101) und mit einer Unterseite (102), wobei das optoelektronische Bauelement (100) ausgebildet ist, Licht über die Emissionsseite (101) abzustrahlen, wobei das optoelektronische Bauelement (100) eine isolierende Schicht (120) aufweist, wobei der lichtemittierende Halbleiterchip (110) in die isolierende Schicht (120) eingebettet ist, wobei der lichtemittierende Halbleiterchip (110) zwei elektrische Kontaktstellen (111, 112) aufweist, wobei die Kontaktstellen (111, 112) von der Emissionsseite (101) abgewandt sind, wobei eine erste und eine zweite elektrisch leitfähige Kontaktschicht (131, 132) vorgesehen ist, wobei jeweils eine elektrisch leitfähige Kontaktschicht (131, 132) mit einer Kontaktstelle (111, 112) des Halbleiterchips (110) elektrisch leitfähig verbunden ist, wobei die elektrisch leitfähigen Kontaktschichten (131, 132) in der isolierenden Schicht (120) angeordnet sind, wobei die erste elektrisch leitfähige Kontaktschicht (131) an eine erste Seitenfläche (103) des optoelektronischen Bauelements (100) angrenzt, und wobei die zweite elektrisch leitfähige Kontaktschicht (132) an eine zweite Seitenfläche (104) des optoelektronischen Bauelements (100) angrenzt.
  2. Optoelektronisches Bauelement (100) nach Anspruch 1, wobei auf der ersten Seitenfläche (103) eine erste elektrisch leitfähige Schicht (141) angeordnet ist, die mit der ersten elektrisch leitfähigen Kontaktschicht (131) verbunden ist, und wobei auf der zweiten Seitenfläche (104) eine zweite elektrisch leitfähige Schicht (142) angeordnet ist, die mit der zweiten elektrisch leitfähigen Kontaktschicht (132) verbunden ist.
  3. Optoelektronisches Bauelement (100) nach einem der vorhergehenden Ansprüche mit einer Metallschicht (150) auf der Unterseite (102), wobei die Metallschicht (150) insbesondere eingerichtet ist, mit einem Träger verbunden zu werden.
  4. Optoelektronisches Bauelement (100) nach einem der vorhergehenden Ansprüche, wobei die isolierende Schicht (120) eine erste und eine zweite Schicht (121, 122) aufweist und die elektrisch leitfähigen Kontaktschichten (131, 132) zwischen der ersten und der zweiten Schicht (121, 122) angeordnet sind und wobei die erste und/oder die zweite Schicht (121, 122) insbesondere ein Moldmaterial aufweist.
  5. Optoelektronisches Bauelement (100) nach einem der vorhergehenden Ansprüche, wobei die isolierende Schicht (120) Leiterplattenmaterial und/oder eine Folie aufweist.
  6. Optoelektronisches Bauelement (100) nach einem der vorhergehenden Ansprüche, wobei das optoelektronische Bauelement (100) ein Konversionselement (160) aufweist, wobei das Konversionselement (160) an der Emissionsseite (101) des Bauelements (100) angeordnet ist, wobei ein Rahmen (161) vorgesehen ist, der das Konversionselement (160) seitlich umgibt, wobei der Rahmen (161) ein weiteres isolierendes Material aufweist.
  7. Optoelektronisches Bauelement (100) nach Anspruch 6, rückbezogen auf einen der Ansprüche 2 bis 5, wobei die erste elektrisch leitfähige Schicht (141) und die zweite elektrisch leitfähige Schicht (142) an den Rahmen (161) angrenzen.
  8. Optoelektronisches Bauelement (100) nach einem der vorhergehenden Ansprüche, wobei die erste elektrisch leitfähige Kontaktschicht (131) und die zweite elektrisch leitfähige Kontaktschicht (132) über eine ESD-Diode (170) miteinander verbunden sind, wobei die ESD-Diode (170) und der lichtemittierende Halbleiterchip (110) antiparallel geschaltet sind und wobei die ESD-Diode (170) in die elektrisch isolierende Schicht (120) eingebettet ist.
  9. Optoelektronisches Bauelement (100) nach einem der Ansprüche 2 bis 8, wobei die erste elektrisch leitfähige Schicht (141) und/oder die zweite elektrisch leitfähige Schicht (142) und/oder die Metallschicht (150) über eine Kante (105, 106, 109) des optoelektronischen Bauelements (100) auf zwei Seiten (102, 103, 104, 107, 108) des optoelektronischen Bauelements (100) angeordnet ist.
  10. Optoelektronisches Bauelement (100) nach einem der vorhergehenden Ansprüche, wobei der lichtemittierende Halbleiterchip (100) zwischen den Kontaktstellen (111, 112) einen Zwischenbereich (113) ohne Metallisierung aufweist und wobei die erste elektrisch leitfähige Kontaktschicht (131) sich in der isolierenden Schicht (120) senkrecht unter den Zwischenbereich (113) ohne Metallisierung erstreckt.
  11. Verfahren zum Herstellen eines optoelektronischen Bauelements mit den folgenden Schritten: – Bereitstellen eines Halbleiterchips, insbesondere eines FlipChips oder eines Oberflächenemitters mit Rückkontakten; – Einbetten des Halbleiterchips in eine erste elektrisch isolierende Schicht; – Aufbringen von zwei elektrisch leitfähigen Kontaktschichten auf der ersten isolierenden Schicht derart, dass die elektrisch leitfähigen Kontaktschichten voneinander isoliert sind und jeweils mit einer elektrischen Kontaktstelle des Halbleiterchips verbunden sind; und – Aufbringen einer zweiten elektrisch isolierenden Schicht, welche die elektrisch leitfähigen Kontaktschichten bedeckt.
  12. Verfahren nach Anspruch 11, wobei nach dem Einbetten des Halbleiterchips in die erste elektrisch isolierende Schicht die elektrischen Kontaktstellen des Chips durch Abtragen von Material der ersten isolierenden Schicht freigelegt werden.
  13. Verfahren nach einem der Ansprüche 11 oder 12, weiter umfassend die Schritte: – Freilegen der elektrisch leitfähigen Kontaktschichten in Randbereichen des optoelektronischen Bauelements; und – Aufbringen einer Metallisierung der freigelegten elektrisch leitfähigen Kontaktstellen.
  14. Verfahren nach Anspruch 13, wobei das Freilegen der elektrisch leitfähigen Kontaktstellen in den Randbereichen des optoelektronischen Bauelements mittels eines Sägeschnitts erfolgt.
  15. Verfahren nach einem der Ansprüche 11 bis 14, wobei vor dem Aufbringen der zweiten elektrisch isolierenden Schicht eine ESD-Diode auf der ersten isolierenden Schicht aufgebracht wird, wobei jeweils ein Anschluss der ESD-Diode mit jeweils einer elektrisch leitfähigen Kontaktschicht verbunden wird.
  16. Verfahren nach einem der Ansprüche 11 bis 15, wobei die erste isolierende Schicht vor dem Aufbringen der zweiten isolierenden Schicht aufgeraut wird.
  17. Verfahren nach einem der Ansprüche 11 bis 16, wobei der Halbleiterchip auf einem Substrat angeordnet ist, wobei ein weiterer Verfahrensschritt darin besteht, das Substrat nach dem Einbetten des Halbleiterchips in die erste elektrisch isolierende Schicht zu entfernen, insbesondere durch einen Ätzprozess.
DE102016101652.7A 2016-01-29 2016-01-29 Optoelektronisches Bauelement mit Seitenkontakten Pending DE102016101652A1 (de)

Priority Applications (3)

Application Number Priority Date Filing Date Title
DE102016101652.7A DE102016101652A1 (de) 2016-01-29 2016-01-29 Optoelektronisches Bauelement mit Seitenkontakten
US16/073,605 US10811579B2 (en) 2016-01-29 2017-01-26 Optoelectronic component having side contacts
PCT/EP2017/051679 WO2017129697A1 (de) 2016-01-29 2017-01-26 Optoelektronisches bauelement mit seitenkontakten

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE102016101652.7A DE102016101652A1 (de) 2016-01-29 2016-01-29 Optoelektronisches Bauelement mit Seitenkontakten

Publications (1)

Publication Number Publication Date
DE102016101652A1 true DE102016101652A1 (de) 2017-08-03

Family

ID=57963181

Family Applications (1)

Application Number Title Priority Date Filing Date
DE102016101652.7A Pending DE102016101652A1 (de) 2016-01-29 2016-01-29 Optoelektronisches Bauelement mit Seitenkontakten

Country Status (3)

Country Link
US (1) US10811579B2 (de)
DE (1) DE102016101652A1 (de)
WO (1) WO2017129697A1 (de)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020053226A1 (de) * 2018-09-11 2020-03-19 Osram Oled Gmbh Optoelektronische halbleitervorrichtung mit einem trägerelement und einem elektrischen kontaktelement, optoelektronisches bauelement sowie verfahren zur herstellung der optoelektronischen halbleitervorrichtung
WO2020234163A1 (de) * 2019-05-17 2020-11-26 Osram Opto Semiconductors Gmbh Optoelektronischer halbleiterchip und verfahren zur herstellung eines optoelektronischen halbleiterchips

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102012217533A1 (de) * 2012-09-27 2014-03-27 Osram Opto Semiconductors Gmbh Verfahren zur Herstellung eines optoelektronischen Bauelements
DE102013207611A1 (de) * 2013-04-25 2014-10-30 Osram Gmbh Beleuchtungsvorrichtung mit optoelektronischem Bauelement
DE102013110733A1 (de) * 2013-09-27 2015-04-02 Osram Opto Semiconductors Gmbh Optoelektronisches Halbleiterbauelement und Verfahren zur Herstellung eines optoelektronischen Halbleiterbauelements
DE102013110114A1 (de) * 2013-09-13 2015-04-02 Osram Opto Semiconductors Gmbh Optoelektronisches Halbleiterbauteil und Verfahren zur Herstellung eines optoelektronischen Halbleiterbauteils

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060208364A1 (en) 2005-03-19 2006-09-21 Chien-Jen Wang LED device with flip chip structure
TW200820463A (en) * 2006-10-25 2008-05-01 Lighthouse Technology Co Ltd Light-improving SMD diode holder and package thereof
US8337029B2 (en) 2008-01-17 2012-12-25 Intematix Corporation Light emitting device with phosphor wavelength conversion
TW200947650A (en) * 2008-05-14 2009-11-16 Harvatek Corp Semiconductor chip package structure for achieving negative face electrical connection without using a wire-bonding process
CN201918389U (zh) 2010-12-22 2011-08-03 晶科电子(广州)有限公司 具有静电损伤保护功能的发光二极管器件
JP5698633B2 (ja) * 2011-09-21 2015-04-08 株式会社東芝 半導体発光装置、発光モジュール、および半導体発光装置の製造方法
KR20130124856A (ko) * 2012-05-07 2013-11-15 삼성전자주식회사 반도체 소자 리드프레임 및 이를 이용한 반도체 소자 패키지
KR20140102563A (ko) * 2013-02-14 2014-08-22 삼성전자주식회사 발광 소자 패키지
JP6104832B2 (ja) 2013-03-25 2017-03-29 ソニーセミコンダクタソリューションズ株式会社 発光素子組立体及びその製造方法、並びに、表示装置
US9287472B2 (en) * 2013-06-27 2016-03-15 Nichia Corporation Light emitting device and method of manufacturing the same
CN104900608B (zh) 2015-05-20 2017-11-07 通富微电子股份有限公司 晶圆级封装结构

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102012217533A1 (de) * 2012-09-27 2014-03-27 Osram Opto Semiconductors Gmbh Verfahren zur Herstellung eines optoelektronischen Bauelements
DE102013207611A1 (de) * 2013-04-25 2014-10-30 Osram Gmbh Beleuchtungsvorrichtung mit optoelektronischem Bauelement
DE102013110114A1 (de) * 2013-09-13 2015-04-02 Osram Opto Semiconductors Gmbh Optoelektronisches Halbleiterbauteil und Verfahren zur Herstellung eines optoelektronischen Halbleiterbauteils
DE102013110733A1 (de) * 2013-09-27 2015-04-02 Osram Opto Semiconductors Gmbh Optoelektronisches Halbleiterbauelement und Verfahren zur Herstellung eines optoelektronischen Halbleiterbauelements

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020053226A1 (de) * 2018-09-11 2020-03-19 Osram Oled Gmbh Optoelektronische halbleitervorrichtung mit einem trägerelement und einem elektrischen kontaktelement, optoelektronisches bauelement sowie verfahren zur herstellung der optoelektronischen halbleitervorrichtung
WO2020234163A1 (de) * 2019-05-17 2020-11-26 Osram Opto Semiconductors Gmbh Optoelektronischer halbleiterchip und verfahren zur herstellung eines optoelektronischen halbleiterchips
US11935989B2 (en) 2019-05-17 2024-03-19 Osram Opto Semiconductors Gmbh Optoelectronic semiconductor chip and method for producing an optoelectronic semiconductor chip

Also Published As

Publication number Publication date
US10811579B2 (en) 2020-10-20
US20190027666A1 (en) 2019-01-24
WO2017129697A1 (de) 2017-08-03

Similar Documents

Publication Publication Date Title
EP1929847B1 (de) Leiterplatte
DE102011079708B4 (de) Trägervorrichtung, elektrische vorrichtung mit einer trägervorrichtung und verfahren zur herstellung dieser
DE102007046337A1 (de) Optoelektronischer Halbleiterchip, optoelektronisches Bauelement und Verfahren zum Herstellen eines optoelektronischen Bauelements
WO2019145350A1 (de) Optoelektronisches halbleiterbauteil und verfahren zur herstellung von optoelektronischen halbleiterbauteilen
WO2012034752A1 (de) Trägersubstrat für ein optoelektronisches bauelement, verfahren zu dessen herstellung und optoelektronisches bauelement
DE102014116935A1 (de) Bauelement und Verfahren zur Herstellung eines Bauelements
DE102016208431A1 (de) Anordnung mit einem elektrischen Bauteil
DE102015111492B4 (de) Bauelemente und Verfahren zur Herstellung von Bauelementen
DE112015002379B4 (de) Verfahren zur Herstellung eines optoelektronischen Halbleiterchips sowie optoelektronischer Halbleiterchip
DE102014116133A1 (de) Optoelektronisches Bauelement, Verfahren zum Herstellen eines optoelektronischen Bauelements und Verfahren zum Herstellen einer optoelektronischen Anordnung
DE10351028B4 (de) Halbleiter-Bauteil sowie dafür geeignetes Herstellungs-/Montageverfahren
WO2016173841A1 (de) Optoelektronische bauelementanordnung und verfahren zur herstellung einer vielzahl von optoelektronischen bauelementanordnungen
DE102014113844B4 (de) Verfahren zum Herstellen eines optoelektronischen Bauelements und optoelektronisches Bauelement
DE102016101526A1 (de) Herstellung eines Multichip-Bauelements
DE102016101652A1 (de) Optoelektronisches Bauelement mit Seitenkontakten
DE102015105470A1 (de) Lichtemittierendes Bauelement und Verfahren zur Herstellung eines lichtemittierenden Bauelements
DE102014116080A1 (de) Optoelektronisches Bauelement und Verfahren zu seiner Herstellung
DE10223203B4 (de) Elektronisches Bauelement-Modul und Verfahren zu dessen Herstellung
DE102019220215A1 (de) Verfahren zur Herstellung von Halbleiterbauelementen und Halbleiterbauelement
DE102004047061B4 (de) Optoelektronisches Bauelement und Verfahren zum Herstellen eines optoelektronischen Bauelements
EP1153792A1 (de) Leuchtenanordnung mit mehreren LED's
DE102018217607A1 (de) Halbleiterbauelement-Anordnung, Verfahren zu deren Herstellung sowie Entwärmungseinrichtung
DE10146854B4 (de) Elektronisches Bauteil mit wenigstens einem Halbleiterchip und Verfahren zur Herstellung eines elektronischen Bauteils mit wenigstens einem Halbleiterchip
DE102011112659A1 (de) Oberflächenmontierbares elektronisches Bauelement
DE102016114478A1 (de) Verfahren zum herstellen eines trägers für ein optoelektronisches bauelement

Legal Events

Date Code Title Description
R163 Identified publications notified
R012 Request for examination validly filed
R016 Response to examination communication