DE102015121981A1 - Verfahren und Vorrichtung zum Betreiben einer Windkraftanlage - Google Patents

Verfahren und Vorrichtung zum Betreiben einer Windkraftanlage Download PDF

Info

Publication number
DE102015121981A1
DE102015121981A1 DE102015121981.6A DE102015121981A DE102015121981A1 DE 102015121981 A1 DE102015121981 A1 DE 102015121981A1 DE 102015121981 A DE102015121981 A DE 102015121981A DE 102015121981 A1 DE102015121981 A1 DE 102015121981A1
Authority
DE
Germany
Prior art keywords
point
torsion
rotor blade
angle
wind turbine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
DE102015121981.6A
Other languages
English (en)
Inventor
Mathias Müller
Matthias Schubert
Manuel Mai
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
fos4X GmbH
Original Assignee
fos4X GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by fos4X GmbH filed Critical fos4X GmbH
Priority to DE102015121981.6A priority Critical patent/DE102015121981A1/de
Priority to CN201680071567.5A priority patent/CN108368832A/zh
Priority to CA3005822A priority patent/CA3005822A1/en
Priority to US16/062,627 priority patent/US20190003454A1/en
Priority to EP16805473.2A priority patent/EP3390817B1/de
Priority to PCT/EP2016/079761 priority patent/WO2017102404A1/de
Publication of DE102015121981A1 publication Critical patent/DE102015121981A1/de
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D7/00Controlling wind motors 
    • F03D7/02Controlling wind motors  the wind motors having rotation axis substantially parallel to the air flow entering the rotor
    • F03D7/022Adjusting aerodynamic properties of the blades
    • F03D7/0224Adjusting blade pitch
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D1/00Wind motors with rotation axis substantially parallel to the air flow entering the rotor 
    • F03D1/06Rotors
    • F03D1/0608Rotors characterised by their aerodynamic shape
    • F03D1/0633Rotors characterised by their aerodynamic shape of the blades
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D17/00Monitoring or testing of wind motors, e.g. diagnostics
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D80/00Details, components or accessories not provided for in groups F03D1/00 - F03D17/00
    • F03D80/40Ice detection; De-icing means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D7/00Controlling wind motors 
    • F03D7/02Controlling wind motors  the wind motors having rotation axis substantially parallel to the air flow entering the rotor
    • F03D7/04Automatic control; Regulation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2220/00Application
    • F05B2220/30Application in turbines
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2240/00Components
    • F05B2240/20Rotors
    • F05B2240/21Rotors for wind turbines
    • F05B2240/221Rotors for wind turbines with horizontal axis
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2240/00Components
    • F05B2240/20Rotors
    • F05B2240/30Characteristics of rotor blades, i.e. of any element transforming dynamic fluid energy to or from rotational energy and being attached to a rotor
    • F05B2240/302Segmented or sectional blades
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2260/00Function
    • F05B2260/70Adjusting of angle of incidence or attack of rotating blades
    • F05B2260/74Adjusting of angle of incidence or attack of rotating blades by turning around an axis perpendicular the rotor centre line
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2260/00Function
    • F05B2260/70Adjusting of angle of incidence or attack of rotating blades
    • F05B2260/75Adjusting of angle of incidence or attack of rotating blades the adjusting mechanism not using auxiliary power sources, e.g. servos
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2260/00Function
    • F05B2260/80Diagnostics
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2270/00Control
    • F05B2270/30Control parameters, e.g. input parameters
    • F05B2270/305Tolerances
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2270/00Control
    • F05B2270/30Control parameters, e.g. input parameters
    • F05B2270/32Wind speeds
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2270/00Control
    • F05B2270/30Control parameters, e.g. input parameters
    • F05B2270/321Wind directions
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2270/00Control
    • F05B2270/30Control parameters, e.g. input parameters
    • F05B2270/328Blade pitch angle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2270/00Control
    • F05B2270/30Control parameters, e.g. input parameters
    • F05B2270/334Vibration measurements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2270/00Control
    • F05B2270/40Type of control system
    • F05B2270/402Type of control system passive or reactive, e.g. using large wind vanes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2270/00Control
    • F05B2270/80Devices generating input signals, e.g. transducers, sensors, cameras or strain gauges
    • F05B2270/804Optical devices
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • Y02E10/72Wind turbines with rotation axis in wind direction

Landscapes

  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Wind Motors (AREA)

Abstract

Die vorliegende Offenbarung betrifft ein Verfahren zum Betreiben einer Windkraftanlage. Das Verfahren umfasst ein Messen einer Torsion zwischen einem ersten Punkt (10) und einem davon beabstandeten zweiten Punkt (12) eines Rotorblattes (100) einer Windkraftanlage, und ein Bestimmen wenigstens eines Parameters, insbesondere eines Ist-Werts des wenigstens eines Parameters, der Windkraftanlage basierend auf der gemessenen Torsion, wobei der wenigstens eine Parameter aus der Gruppe ausgewählt ist, die einen Anstellwinkel des Rotorblattes (100), einen Pitchwinkel, eine Windgeschwindigkeit, einen Anströmwinkel und eine Anströmgeschwindigkeit umfasst.

Description

  • Die Offenbarung betrifft ein Verfahren und eine Vorrichtung zum Betreiben einer Windkraftanlage, und insbesondere ein Verfahren, das eine Torsionsmessung in einem Rotorblatt der Windkraftanlage verwendet, um Parameter, beispielsweise Betriebsparameter, der Windkraftanlage zum bestimmen und/oder einzustellen.
  • Stand der Technik
  • Betriebsparameter von Windkraftanlagen werden oftmals kontinuierlich oder in bestimmten Zeitintervallen überprüft und eingestellt. Viele mechanische Anlagenteile sind statischen oder dynamischen Belastungen unterworfen, so dass eine Soll-Einstellung beispielsweise eines Anstellwinkels eines Rotorblatts von einem tatsächlichen Anstellwinkel abweichen kann. Eine Regelung oder Steuerung solcher Betriebsparameter, beispielsweise des Anstellwinkels, kann somit nicht präzise erfolgen, da oftmals lediglich die Soll-Einstellung bekannt ist.
  • Daher ist es eine Bedürfnis, ein Verfahren und eine Vorrichtung zum Betreiben einer Windkraftanlage weiter zu verbessern. Insbesondere ist es ein Bedürfnis, eine Regelung oder Steuerung bestimmter Betriebsparameter von Windkraftanlagen weiter zu verbessern.
  • Offenbarung der Erfindung
  • Es ist die Aufgabe der vorliegenden Offenbarung, ein Verfahren und eine Vorrichtung zum Betreiben einer Windkraftanlage anzugeben, die eine präzise Regelung oder Steuerung von Betriebsparametern ermöglichen. Insbesondere ist eine Aufgabe der vorliegenden Offenbarung, Ist-Werte von Betriebsparametern zuverlässig zu bestimmen.
  • Diese Aufgabe wird durch den Gegenstand der unabhängigen Ansprüche gelöst.
  • Gemäß Ausführungsformen der vorliegenden Offenbarung ist ein Verfahren zum Betreiben einer Windkraftanlage angegeben. Das Verfahren umfasst ein Messen einer Torsion zwischen einem ersten Punkt und einem davon beabstandeten zweiten Punkt eines Rotorblattes einer Windkraftanlage, und ein Bestimmen wenigstens eines Parameters der Windkraftanlage basierend auf der gemessenen Torsion. Der Parameter ist aus der Gruppe ausgewählt, die einen Anstellwinkel des Rotorblattes, einen Pitchwinkel, eine Windgeschwindigkeit, einen Anströmwinkel, eine Anströmgeschwindigkeit, und jede Kombination davon umfasst.
  • Gemäß einem weiteren Aspekt der vorliegenden Offenbarung ist ein Verfahren zum Betreiben einer Windkraftanlage angegeben. Das Verfahren umfasst ein Messen einer Torsion zwischen einem ersten Punkt und einem davon beabstandeten zweiten Punkt eines Rotorblattes einer Windkraftanlage, und ein Durchführen einer Frequenzanalyse eines Messsignals, das die Torsion angibt
  • Gemäß einem anderen Aspekt der vorliegenden Offenbarung ist eine Vorrichtung zum Betreiben einer Windkraftanlage angegeben. Die Vorrichtung umfasst einen oder mehrere Torsionssensoren und eine Steuerungsvorrichtung, die eingerichtet ist, um das Verfahren gemäß den hier beschriebenen Ausführungsformen auszuführen.
  • Bevorzugte, optionale Ausführungsformen und besondere Aspekte der Offenbarung ergeben sich aus den abhängigen Ansprüchen, den Zeichnungen und der vorliegenden Beschreibung.
  • Gemäß den Ausführungsformen der vorliegenden Offenbarung wird eine Torsionsmessung in Rotorblättern von Windkraftanlagen durchgeführt. Beispielsweise können Torsionssensoren bereitgestellt sein, um Torsionen in Rotorblättern an mehreren Querschnitten und/oder Radien zu messen. Die gemessene Torsion erlaubt einen Rückschluss auf tatsächliche Einstellungen und Werte sowie auf Betriebszustände, wie beispielsweise Anstellwinkel, Anströmwinkel, Anströmgeschwindigkeiten und Flatterbewegungen des Rotorblatts. Eine präzise Einstellung von Betriebsparametern, wie beispielsweise des Anstellwinkels kann basierend auf den bestimmten tatsächlichen Einstellungen und Werten und/oder Betriebszuständen vorgenommen werden. Eine Effizienz der Windkraftanlage kann verbessert werden.
  • Kurze Beschreibung der Zeichnungen
  • Ausführungsbeispiele der Offenbarung sind in den Figuren dargestellt und werden im Folgenden näher beschrieben. Es zeigen:
  • 1 eine schematische Darstellung eines Rotorblatts mit zwei Punkten zum Messen einer Torsion gemäß Ausführungsformen der vorliegenden Offenbarung,
  • 2 eine schematische Darstellung eines Rotorblatts mit segmentweiser Messung einer Torsion gemäß Ausführungsformen der vorliegenden Offenbarung,
  • 3 eine schematische Darstellung eines Rotorblatts mit zwei Punkten zum Messen einer Torsion gemäß weiteren Ausführungsformen der vorliegenden Offenbarung, und
  • 4 eine schematische Darstellung eines Torsionssensors, der gemäß Ausführungsformen der vorliegenden Offenbarung zum Messen der Torsion verwendet werden kann.
  • Ausführungsformen der Offenbarung
  • Im Folgenden werden, sofern nicht anders vermerkt, für gleiche und gleichwirkende Elemente gleiche Bezugszeichen verwendet.
  • 1 zeigt schematische Darstellung eines Rotorblatts 100 mit zwei Punkten zum Messen einer Torsion gemäß Ausführungsformen der vorliegenden Offenbarung. Die Torsion kann unter Verwendung eines oder mehrerer Torsionssensoren 110 gemessen werden.
  • Der Torsionssensor 110 umfasst einen ersten Punkt 10 und einen zweiten Punkt 12, die durch eine Lichtleiter-Faser 11 miteinander verbunden sind. Eine Torsion des Rotorblatts 100 um eine Verwindungsachse bewirkt eine Änderung des Drehwinkels der Lichtleiter-Faser 11 von dem ersten Punkt 10 gegenüber dem zweiten Punkt 12. Die Veränderung des Drehwinkels bewirkt eine Polarisationsänderung von Licht, das durch die Lichtleiter-Faser 11 läuft. Aus der Polarisationsänderung können die Änderung des Drehwinkels und damit die Torsion des Rotorblatts 100 bestimmt werden. Gemäß Ausführungsformen verlaufen die Verwindungsachse und/oder die Lichtleiter-Faser 11 entlang einer Längsstreckung A des Rotorblatts 100, beispielsweise im Wesentlichen parallel dazu. Die Längserstreckung A kann gemäß Ausführungsformen einer Rotorblattachse entsprechen oder eine Rotorblattachse sein.
  • Gemäß Ausführungsformen, die mit anderen hier beschriebenen Ausführungsformen kombiniert werden können, ist der Torsionssensor 110 in das Rotorblatt 100 integriert oder auf einer Oberfläche des Rotorblatts 110 angeordnet. Insbesondere ist der Torsionssensor 110 mechanisch mit dem Rotorblatt 110 verbunden, so dass eine Verwindung des Rotorblatts 100 um die Verwindungsachse eine Änderung des Drehwinkels der Lichtleiter-Faser 11 von dem ersten Punkt 10 gegenüber dem zweiten Punkt 12 bewirkt.
  • Gemäß einem Aspekt der Offenbarung umfasst ein Verfahren zum Betreiben einer Windkraftanlage ein Messen einer Torsion zwischen dem ersten Punkt 10 und dem davon beabstandeten zweiten Punkt 12 des Rotorblattes 100 der Windkraftanlage, und ein Bestimmen wenigstens eines Parameters, insbesondere eines Ist-Werts des wenigstens eines Parameters, der Windkraftanlage basierend auf der gemessenen Torsion. Der wenigstens eine Parameter ist aus der Gruppe ausgewählt, die aus einem Anstellwinkel des Rotorblattes, einem Pitchwinkel, einer Windgeschwindigkeit, einem Anströmwinkel und einer Anströmgeschwindigkeit besteht.
  • Parameter der Windanlage sind variable Größen mit Bezug auf einen Betrieb der Windkraftanlage. Beispielsweise können die Parameter Betriebsparameter der Windkraftanlage sein oder Betriebsparameter umfassen. Betriebsparameter können beispielsweise der Anstellwinkel des Rotorblattes und der Pitchwinkel sein. Typischerweise wird der Anstellwinkel bezüglich einer Referenzebene definiert. Der Pitchwinkel kann eine Winkeleinstellung des Rotorblatts 100 bezüglich einer Nabe, an dem das Rotorblatts 100 drehbar gelagert ist, angegeben. Der Anströmwinkel kann einen Winkel zwischen einer durch das Rotorblatt 100 definierten Ebene und einer Windrichtung angeben. Die Anströmgeschwindigkeit kann eine relative Geschwindigkeit oder relative mittlere Geschwindigkeit angeben, mit der die Luft auf das Rotorblatt trifft. Die Windgeschwindigkeit kann eine absolute Windgeschwindigkeit angeben.
  • Die Parameter der Windkraftanlage können aus der gemessenen Torsion beispielsweise durch ein Vergleichen mit vorbestimmten Werten bestimmt werden. Beispielsweise können vorbestimmte Werte gespeichert sein, die aus Simulationen und/oder Tests und/oder Erfahrungswerten aus dem Betrieb der Windkraftanlage stammen können. Zusätzlich oder alternativ können Algorithmen verwendet werden, um die Messwerte der Torsion in die Parameter umzurechnen.
  • Gemäß einem Aspekt wird die Torsion bzw. ein Messsignal, das die Torsion angibt, in einem Steuerungs- oder Regelungsvorgang der Windkraftanlage verwendet. Gemäß einem Aspekt wird die Torsion fortlaufend gemessen und fortlaufend in dem Steuerungs- oder Regelungsvorgang verwendet. Fortlaufend bezeichnet sowohl eine kontinuierliche Messung, beispielsweise in einem analogen Regelungsverfahren, als auch ein kontinuierliches Sampling der Messgröße, beispielsweise bei einem digitalen Regelungsverfahren. Die Messung der Torsion des Rotorblatts mit Hilfe der hierin beschriebenen Verfahren und Vorrichtungen ist auf einfache Weise möglich, was es erlaubt, den Steuerungs- oder Regelungsvorgang zuverlässig auszuführen.
  • Insbesondere erlaubt die gemessene Torsion einen Rückschluss auf tatsächliche Einstellungen und Werte sowie auf Betriebszustände, wie beispielsweise Anstellwinkel, Anströmwinkel, Windgeschwindigkeit, Pitchwinkel, Anströmgeschwindigkeiten und Flatterbewegungen des Rotorblatts 100. Eine präzise Einstellung von Betriebsparametern, wie beispielsweise des Anstellwinkels und/oder des Pitchwinkels, kann basierend auf den bestimmten tatsächlichen (Ist-)Einstellungen und Werten und/oder Betriebszuständen vorgenommen werden. Eine Effizienz der Windkraftanlage kann verbessert werden.
  • In einigen Ausführungsformen umfasst das Verfahren weiter ein Vergleichen des wenigstens einen Parameters mit wenigstens einem Soll-Wert des wenigstens einen Parameters. Beispielweise kann der aus der Torsion bestimmte Ist-Wert des wenigstens eines Parameters, der einen tatsächlichen Wert des wenigstens eines Parameters angibt, von einem Soll-Wert abweichen. Eine Abweichung, wie beispielsweise eine Differenz, zwischen dem Ist-Wert und dem Soll-Wert kann bestimmt werden. In typischen Ausführungsformen kann das Verfahren weiter ein Einstellen des Anstellwinkels und/oder des Pitchwinkels des Rotorblatts 100 basierend auf der gemessenen Torsion, insbesondere basierend auf dem Vergleich mit dem wenigstens einen Soll-Wert, umfassen. Betriebsparameter der Windkraftanlage können mit verbesserter Präzision bestimmt und optional eingestellt werden.
  • Gemäß einem weiteren Aspekt der vorliegenden Offenbarung, der optional mit dem oben erläuterten Verfahren kombiniert werden kann, ist ein Verfahren zum Betreiben einer Windkraftanlage angegeben, das ein Messen einer Torsion zwischen einem ersten Punkt und einem davon beabstandeten zweiten Punkt eines Rotorblattes einer Windkraftanlage und ein Durchführen einer Frequenzanalyse eines Messsignals, das die Torsion angibt, umfasst. Insbesondere kann die Torsion kontinuierlich oder in vorbestimmten Zeitintervallen über einen Zeitraum gemessen werden, um das Messsignal zu erhalten. Die Frequenzanalyse des Messsignals kann Aufschluss über eine zeitliche Veränderung der Torsion geben. Beispielsweise kann durch die Frequenzanalyse eine zeitliche Veränderung des wenigstens einen Parameters bestimmt werden. Typischerweise umfasst die Frequenzanalyse eine Fourieranalyse.
  • In manchen Ausführungsformen kann das Verfahren weiter ein Bestimmen einer Flatterbewegung des Rotorblatts basierend auf der Frequenzanalyse umfassen. Die Flatterbewegung kann eine periodische oder nichtperiodische Schwingung des Rotorblatts 100 sein. Beim Vorhandensein einer Oszillation im Messsignal und/oder im zeitlichen Verlauf des bestimmten Parameters, beispielsweise des Anstellwinkels, kann auf eine Flatterbewegung des Rotorblatts 100 geschlossen werden. Das Vorhandensein einer Flatterbewegung kann bestimmt werden, wenn die Oszillation einem vorbestimmten Muster entspricht. Beispielsweise kann die Oszillation einen oder mehrere vorbestimmte Frequenzen (Frequenzanteile) und/oder Amplituden aufweisen, die das Vorhandensein einer Flatterbewegung angeben. Gemäß Ausführungsformen können ein oder mehrere Betriebsparameter, wie beispielsweise ein Anstellwinkel und/oder ein Pitchwinkel des Rotorblatts 100 eingestellt bzw. verändert werden, um die Flatterbewegung zu reduzieren oder abzustellen.
  • Gemäß Ausführungsformen, die mit anderen hier beschriebenen Ausführungsformen kombiniert werden können, kann das Durchführen der Frequenzanalyse ein Bestimmen einer Eigenfrequenz, insbesondere einer Torsionseigenfrequenz, umfassen. Das Verfahren kann ein Bestimmen einer Beaufschlagung des Rotorblatts 100 mit Fremdmaterial basierend auf der Torsionseigenfrequenz umfassen. Beispielsweise kann eine Beaufschlagung des Rotorblatts 100 mit Fremdmaterial bestimmt werden, wenn die Eigenfrequenz innerhalb eines vorbestimmten Frequenzbereichs liegt oder einer vorbestimmten Frequenz entspricht. Wenn die Eigenfrequenz außerhalb das vorbestimmten Frequenzbereichs liegt kann bestimmt werden, dass keine Beaufschlagung des Rotorblatts 100 mit Fremdmaterial vorliegt.
  • Das Fremdmaterial kann beispielsweise Eis oder ein Eisansatz sein. Gemäß Ausführungsformen können einer oder mehrere Betriebsparameter, wie beispielsweise ein Anstellwinkel und/oder ein Pitchwinkel des Rotorblatts eingestellt bzw. verändert werden, wenn eine Beaufschlagung mit Fremdmaterial vorliegt. Damit kann effektiv auf eine Beaufschlagung mit Fremdmaterial reagiert werden, beispielsweise um eine Leistungsfähigkeit der Windkraftanlage aufrecht zu erhalten und/oder um eine Beschädigung der Windkraftanlage zu vermeiden.
  • 2 zeigt eine schematische Darstellung eines Rotorblatts 200 mit segmentweiser Messung einer Torsion gemäß Ausführungsformen der vorliegenden Offenbarung.
  • Gemäß einigen Ausführungsformen, die mit anderen hier beschriebenen Ausrufungen kombiniert werden können, erfolgt die Torsionsmessung unter Verwendung wenigstens eines weiteren Punkts auf dem Rotorblatt 200. Beispielsweise kann wenigstens ein dritter Punkt vorhanden sein. Eine erste Torsionsmessung kann zwischen dem ersten Punkt 10 und den zweiten Punkt 12 erfolgen. Eine zweite Torsionsmessung kann zwischen dem zweiten Punkt 12 und dem dritten Punkt erfolgen.
  • In einigen Ausführungsformen kann das Rotorblatt 200 in zwei oder mehr Segmente unterteilt sein. Die Torsionsmessung kann in wenigstens zwei Segmenten der zwei oder mehr Segmente des Rotorblatts 200 erfolgen. Beispielsweise können sich der erste Punkt 10 und der zweite Punkt 12 in einem ersten Segment 210 des Rotorblatts 200 befinden. Zumindest ein weiterer Punkt, und vorzugsweise zumindest zwei weitere Punkte können in einem zweiten Segment 220 des Rotorblatts 200 angeordnet sein.
  • Typischerweise kann die Torsionsmessung zwischen wenigstens zwei weiteren Punkten auf dem Rotorblatt 200 erfolgen. Beispielsweise kann das erste Segment 210 der zwei oder mehr Segmente den ersten Punkt 10 und den zweiten Punkt 12 umfassen. Das zweite Segment 220 der zwei oder mehr Segmente kann einen dritten Punkt 14 und einen vierten Punkt 16 umfassen. Ein drittes Segment 230 der zwei oder mehr Segmente kann einen fünften Punkt 18 und einen sechsten Punkt 20 umfassen. Typischerweise können im ersten Segment 210 ein erster Torsionssensor, im zweiten Segment 220 ein zweiter Torsionssensor und im dritten Segment 230 ein dritter Torsionssensor vorhanden sein.
  • In einigen Ausführungsformen kann jedes Segment der zwei oder mehr Segmente einen eigenen Torsionssensor aufweisen, wie er beispielsweise unter Bezugnahme auf die 4 beschrieben ist. In anderen Ausführungsformen kann ein einziger Torsionssensor vorhanden sein, der sich über die zwei oder mehr Segmente erstreckt.
  • Gemäß Ausführungsformen kann das Verfahren ein segmentweises Bestimmen der Anströmgeschwindigkeit umfassen. Beispielsweise kann für jedes Segment der zwei oder mehr Segmente eine jeweilige Anströmgeschwindigkeit bestimmt werden. In manchen Ausführungsformen können der Anstellwinkel und/oder der Pitchwinkel des Rotorblatts 200 segmentweise eingestellt werden. Beispielsweise können der Anstellwinkel und/oder der Pitchwinkel für wenigstens einige Segmente der zwei oder mehr Segment unabhängig voneinander eingestellt werden, insbesondere auf Basis der für das jeweilige Segment bestimmten (lokalen) Anströmgeschwindigkeit. Das segmentweise Einstellen des Anstellwinkels kann durch lokale Aktoren (z.B. Elektromotoren und/oder pneumatische Vorrichtungen) erfolgen, die den einzelnen Segmenten zugeordnet sind.
  • Durch das segmentweise Bestimmen der Torsion können beispielsweise ein Anstellwinkel und/oder ein Pitchwinkel des Rotorblatts effizienter eingestellt bzw. verändert werden. Damit kann eine Leistungsfähigkeit der Windkraftanlage verbessert werden.
  • 3 zeigt eine schematische Darstellung eines Rotorblatts 300 mit zwei Punkten zum Messen einer Torsion gemäß weiteren Ausführungsformen der vorliegenden Offenbarung.
  • In den in den 1 und 2 gezeigten Ausführungsformen ist die Lichtleiter-Faser 11, und insbesondere eine Längserstreckung der Lichtleiter-Faser 11 des Torsionssensors entlang einer Längserstreckung A des Rotorblatts angeordnet. Beispielweise kann die Lichtleiter-Faser 11 des Torsionssensors im Wesentlichen parallel zur Längserstreckung des Rotorblatts angeordnet sein.
  • Im Beispiel der 3 ist die Lichtleiter-Faser 11, und insbesondere eine Längserstreckung der Lichtleiter-Faser 11 des Torsionssensors im Wesentlichen senkrecht zur Längserstreckung A des Rotorblatts 300 angeordnet.
  • Die vorliegende Offenbarung ist jedoch nicht drauf beschränkt, und die Lichtleiter-Faser 11 des Torsionssensors kann jede Orientierung bezüglich der Längserstreckung A des Rotorblatts aufweisen. Beispielsweise können die Lichtleiter-Faser 11 und die Längsstreckung A des Rotorblatts jeden Winkel in einem Bereich von 0° (parallel) bis 90° (senkrecht) einschließen.
  • Gemäß Ausführungsformen, die mit anderen hier beschriebenen Ausführungsformen korrigiert werden können, ist eine Vorrichtung zum Betreiben einer Windkraftanlage angegeben. Die Vorrichtung umfasst einen oder mehrere Torsionssensoren und eine Steuerungsvorrichtung, die eingerichtet ist, um das Verfahren nach einem der hier beschriebenen Ausführungsformen auszuführen. Beispielweise kann die Windkraftanlage oder eine Steuerungsvorrichtung der Windkraftanlage die Vorrichtung umfassen.
  • 4 zeigt eine schematische Darstellung eines Torsionssensors 400, der gemäß Ausführungsformen der vorliegenden Offenbarung zum Messen der Torsion verwendet werden kann.
  • Der Torsionssensor 400 umfasst eine Quelle 410 polarisierten Lichts, umfassend eine polarisierende Lichtquelle, die polarisiertes Licht emittiert, oder einen mit einer Lichtquelle optisch verbundenen Polarisator. Der Torsionssensor 400 umfasst eine erste Lichtleiter-Faser 430 (in den 1 bis 3 mit dem Bezugszeichen „11“ angegeben), die mit dem Ausgang der Quelle 410 optisch verbunden ist und an dem Rotorblatt 1 (auch als „Messobjekt“ bezeichnet) an dem ersten Punkt 10 und an dem zweiten Punkt 12 derart befestigt ist, dass eine Torsion des Rotorblatts 1 um eine Verwindungsachse B eine Änderung des Drehwinkels der ersten Lichtleiter-Faser 430 von dem ersten Punkt 10 gegenüber dem zweiten Punkt 12 bewirkt.
  • Der Torsionssensor 400 umfasst eine zweiten Lichtleiter-Faser 440, die im zweiten Punkt 12 oder in Bezug auf den Lichtpfad von der Quelle hinter dem zweiten Punkt 12 mit der ersten Lichtleiter-Faser 430 verbunden ist, zum Zuführen des Lichts zu einer Auswertungseinrichtung (nicht gezeigt). Die Auswerteeinrichtung kann die Vorrichtung sein, die zum Ausführen der Verfahren gemäß den hier beschriebenen Ausführungsformen eingerichtet ist. Die erste Lichtleiter-Faser 430 weist zumindest bereichsweise eine nicht polarisationserhaltende Faser auf. Die zweite Lichtleiter-Faser 440 ist eine polarisationserhaltende Faser. In 4 ist der Abstand zwischen dem ersten Punkt 10 und dem zweiten Punkt 12 mit dem Bezugszeichen „w“ bezeichnet.
  • Der Schritt zum Messen der Torsion im Verfahren gemäß den hier beschriebenen Ausführungsformen verwendet den oben beschriebenen Torsionssensor 400 und umfasst ein Bereitstellen der ersten Lichtleiter-Faser 430 zwischen dem ersten Punkt 10 und dem zweiten Punkt 12 des Rotorblatts 1 derart, dass eine Torsion des Rotorblatts 1 um die Verwindungsachse B eine Änderung des Drehwinkels der ersten Lichtleiter-Faser 430 von dem ersten Punkt 12 gegenüber dem zweiten Punkt 12 bewirkt, wobei die erste Lichtleiter-Faser 430 zumindest bereichsweise eine nicht polarisationserhaltende Faser aufweist. Das Verfahren umfasst ein Bereitstellen der zweiten Lichtleiter-Faser 440, die mit der ersten Lichtleiter-Faser 430 im zweiten Punkt 12 oder in Bezug auf einen Lichtpfad von dem ersten Punkt 10 zu dem zweiten Punkt 12 hinter dem zweiten Punkt 12 verbunden ist, und die von dem zweiten Punkt 12 wegführt, insbesondere wobei die zweite Lichtleiter-Faser 440 eine polarisationserhaltende Faser ist.
  • Das Verfahren umfasst weiter ein Einstrahlen von polarisiertem Licht mit einer bekannten Eintritts-Polarisationsausrichtung in die erste Lichtleiter-Faser 430, ein Erfassen einer Austritts-Polarisationsausrichtung des aus der zweiten Lichtleiter-Faser 440 austretenden Lichts, und ein Auswerten der Austritts-Polarisationsausrichtung in Bezug auf die Eintritts-Polarisationsausrichtung zum Bestimmen der Torsion.
  • In der dargestellten Ausführungsform ist die Quelle 410 selbst auf dem Rotorblatt 1 angeordnet. Die Offenbarung ist darauf jedoch nicht beschränkt. Insbesondere ist es auch möglich, die Quelle 410 abseits des Rotorblatts 1 anzuordnen und der ersten Lichtleiter-Faser 430 das polarisierte Licht mit einer Hilfs-Lichtleiter-Faser zuzuleiten.
  • Die erste Lichtleiter-Faser 430 ist mit der Quelle 410 optisch verbunden. Die erste Lichtleiter-Faser 430 ist mit polarisiertem Licht, das aus der Quelle 410 austritt, optisch beaufschlagbar. Die erste Lichtleiter-Faser 430 ist an dem Rotorblatt 1 am ersten Punkt 10 und am zweiten Punkt 12 derart befestigt, dass eine Torsion des Rotorblatts 1 um die Verwindungsachse B eine Änderung des Drehwinkels der ersten Lichtleiter-Faser 430 von dem ersten Punkt 10 gegenüber dem zweiten Punkt 12 bewirkt. Die Verwindungsachse B fällt nicht zwingend mit einer tatsächlichen geometrischen Achse des Rotorblatts 1 oder dergleichen zusammen, wie beispielsweise der Längserstreckung (in den 1 bis 3 mit dem Bezugszeichen „A“ angegeben) des Rotorblatts. Vielmehr ist die Verwindungsachse B eine gedachte Linie durch das Rotorblatt 1 bzw. an der Oberfläche des Rotorblatts 1, um welche eine zu messende Torsion des Rotorblatts 1 stattfindet, wobei sich die zu messende Torsion in einer Änderung des Drehwinkels zwischen dem ersten Punkt 10 der ersten Lichtleiter-Faser 430 und dem zweiten Punkt 12 niederschlägt.
  • Ein erstes Ende der zweiten Lichtleiter-Faser 440 ist in der dargestellten Ausführungsform hinter dem zweiten Punkt 12 mittels einer Mess-Verbindungseinrichtung 420 mit einem Ende der ersten Lichtleiter-Faser 430 verbunden. Üblicherweise ist die Mess-Verbindungseinrichtung 420 ein Lichtwellenleiter-Spleiß, aber nicht darauf beschränkt. Denkbar ist beispielsweise auch eine Verbindung mittels geeigneter Lichtwellenleiter-Stecker oder dergleichen, sofern gewährleistet ist, dass durch diese keine unbekannte Veränderung der Polarisationsausrichtung erfolgt. Die zweite Lichtleiter-Faser 440 ist dazu ausgebildet, das Licht der Auswertungseinrichtung zuzuführen.
  • Im Betrieb des Torsionssensors 400 wird der ersten Lichtleiter-Faser 430 an ihrem ersten Ende polarisiertes Licht zugeführt. Eine Torsion des Rotorblatts 1 wird durch die Befestigung zwischen dem ersten Punkt 10 und dem zweiten Punkt 12 in eine Torsion der ersten Lichtleiter-Faser 430 umgesetzt. Der Torsionswinkel wird als Winkel zwischen Faser und der Polarisationsebene abgebildet. Infolge der nicht polarisationserhaltenden Eigenschaften der ersten Lichtleiter-Faser 430 ergibt sich bei einer Torsion des Rotorblatts 1 um die Verwindungsachse B eine Drehung der Polarisationsebene zwischen dem ersten Ende der ersten Lichtleiter-Faser 430 und dem zweiten Ende der ersten Lichtleiter-Faser 430. Die erste Lichtleiter-Faser 430 fungiert so als faseroptischer Sensor.
  • Gemäß einem Aspekt ist der Torsionssensor 400 zumindest teilweise auf einer Oberfläche des Rotorblatts 1 angeordnet. Insbesondere sind gemäß einem Aspekt der erste Punkt 10 und/oder der zweite Punkt 120 auf einer Oberfläche des Rotorblatts 1 angeordnet. Hierdurch können sich eine einfache Montage und eine einfache Austauschbarkeit des Torsionssensors 400 ergeben, beispielsweise zu Wartungszwecken. Gemäß weiteren Ausführungsformen ist der Torsionssensor 400 im Rotorblatt integriert. Beispielsweise ist der Torsionssensor 400 im Rotorblatt eingebettet.
  • Der Torsionssensor 400 kann eine Auswertungseinrichtung umfassen, beispielsweise die Vorrichtung gemäß den hier beschriebenen Ausführungsformen, die zum Ausführen des hier beschriebenen Verfahrens eingerichtet ist. Die Auswertungseinrichtung ist dazu ausgebildet, in Abhängigkeit eines detektierten Polarisationszustands ein entsprechendes Signal auszugeben. Das Signal ist geeignet codiert. Beispielsweise wird ein analoges oder ein digitales Steuerungssignal ausgegeben, welches Informationen über den detektierten Polarisationszustand enthält. Die Auswertungseinrichtung hat ebenfalls Informationen über den Polarisationszustand des Lichts, das in den ersten Punkt 10 der ersten Lichtleiter-Faser 430 eingestrahlt wird. Durch Vergleich des Polarisationszustands des Lichts, das in den ersten Punkt 10 der ersten Lichtleiter-Faser 430 eingestrahlt wird, mit dem Polarisationszustands des Lichts, das in dem Signal codiert ist, kann ein Rückschluss auf die Torsion des Rotorblatts 1 gezogen werden.
  • Gemäß den Ausführungsformen der vorliegenden Offenbarung wird eine Torsionsmessung in Rotorblättern von Windkraftanlagen durchgeführt. Beispielsweise können Torsionssensoren bereitgestellt sein, um Torsionen in Rotorblättern an mehreren Querschnitten und/oder Radien zu messen. Die gemessene Torsion erlaubt einen Rückschluss auf tatsächliche Einstellungen und Werte sowie auf Betriebszustände, wie beispielsweise Anstellwinkel, Anströmwinkel, Anströmgeschwindigkeiten und Flatterbewegungen des Rotorblatts. Eine präzise Einstellung von Betriebsparametern, wie beispielsweise des Anstellwinkels kann basierend auf den bestimmten tatsächlichen Einstellungen und Werten und/oder Betriebszuständen vorgenommen werden. Eine Effizienz der Windkraftanlage kann verbessert werden.

Claims (14)

  1. Verfahren zum Betreiben einer Windkraftanlage, umfassend: Messen einer Torsion zwischen einem ersten Punkt und einem davon beabstandeten zweiten Punkt eines Rotorblattes einer Windkraftanlage; und Bestimmen wenigstens eines Parameters, insbesondere eines Ist-Werts des wenigstens eines Parameters, der Windkraftanlage basierend auf der gemessenen Torsion, wobei der wenigstens eine Parameter aus der Gruppe ausgewählt ist, die einen Anstellwinkel des Rotorblattes, einen Pitchwinkel, eine Windgeschwindigkeit, einen Anströmwinkel und eine Anströmgeschwindigkeit umfasst.
  2. Das Verfahren nach Anspruch 1, weiter umfassend: Vergleichen des wenigstens einen Parameters mit wenigstens einem Soll-Wert des wenigstens einen Parameters.
  3. Das Verfahren nach Anspruch 1 oder 2, weiter umfassend: Einstellen des Anstellwinkels und/oder des Pitchwinkels des Rotorblatts basierend auf der gemessenen Torsion, insbesondere basierend auf dem Vergleich mit dem wenigstens einen Soll-Wert.
  4. Verfahren zum Betreiben einer Windkraftanlage, umfassend: Messen einer Torsion zwischen einem ersten Punkt und einem davon beabstandeten zweiten Punkt eines Rotorblattes einer Windkraftanlage; und Durchführen einer Frequenzanalyse eines Messsignals, das die Torsion angibt.
  5. Das Verfahren nach Anspruch 4, umfassend: Bestimmen einer Flatterbewegung des Rotorblattes basierend auf der Frequenzanalyse.
  6. Das Verfahren nach Anspruch 4 oder 5, wobei das Durchführen der Frequenzanalyse umfasst: Bestimmen einer Torsionseigenfrequenz.
  7. Das Verfahren nach Anspruch 6, weiter umfassend: Bestimmen einer Beaufschlagung des Rotorblatts mit Fremdmaterial basierend auf der Torsionseigenfrequenz.
  8. Das Verfahren nach einem der Ansprüche 1 bis 7, wobei die Torsionsmessung unter Verwendung wenigstens eines weiteren Punkts auf dem Rotorblatt erfolgt, insbesondere wobei die Torsionsmessung zwischen wenigstens zwei weiteren Punkten auf dem Rotorblatt erfolgt.
  9. Das Verfahren nach Anspruch 8, wobei die Torsionsmessung in wenigstens zwei Segmenten des Rotorblatts erfolgt, wobei sich der erste Punkt und der zweite Punkt in einem ersten Segment des Rotorblatts befinden, und wobei sich zumindest ein weiterer Punkt in einem zweiten Segment des Rotorblatts befindet.
  10. Das Verfahren nach Anspruch 9, weiter umfassend: segmentweises Bestimmen einer Anströmgeschwindigkeit.
  11. Das Verfahren nach Anspruch 9 oder 10, weiter umfassend: segmentweises Einstellen eines Anstellwinkel und/oder Pitchwinkels des Rotorblatts.
  12. Das Verfahren nach Anspruch 11, wobei das segmentweise Einstellen des Anstellwinkels durch lokale Aktoren erfolgt, die den einzelnen Segmenten zugeordnet sind.
  13. Das Verfahren nach einem der Ansprüche 1 bis 12, wobei das Messen der Torsion umfasst: Bereitstellen einer ersten Lichtleiter-Faser zwischen dem ersten Punkt und dem zweiten Punkt des Rotorblatts derart, dass eine Torsion des Rotorblatts um eine Verwindungsachse eine Änderung des Drehwinkels der ersten Lichtleiter-Faser von dem ersten Punkt gegenüber dem zweiten Punkt bewirkt, insbesondere wobei die erste Lichtleiter-Faser zumindest bereichsweise eine nicht polarisationserhaltende Faser aufweist; Bereitstellen einer zweiten Lichtleiter-Faser, die mit der ersten Lichtleiter-Faser im zweiten Punkt oder in Bezug auf einen Lichtpfad von dem ersten Punkt zu dem zweiten Punkt hinter dem zweiten Punkt verbunden ist, und die von dem zweiten Punkt wegführt, insbesondere wobei die zweite Lichtleiter-Faser eine polarisationserhaltende Faser ist; Einstrahlen von polarisiertem Licht mit einer bekannten Eintritts-Polarisationsausrichtung in die erste Lichtleiter-Faser; Erfassen einer Austritts-Polarisationsausrichtung des aus der zweiten Lichtleiter-Faser austretenden Lichts; und Auswerten der Austritts-Polarisationsausrichtung in Bezug auf die Eintritts-Polarisationsausrichtung zum Bestimmen der Torsion.
  14. Vorrichtung zum Betreiben einer Windkraftanlage, umfassend: einen oder mehrere Torsionssensoren; und eine Steuerungsvorrichtung, die eingerichtet ist, um das Verfahren nach einem der Ansprüche 1–13 auszuführen.
DE102015121981.6A 2015-12-16 2015-12-16 Verfahren und Vorrichtung zum Betreiben einer Windkraftanlage Withdrawn DE102015121981A1 (de)

Priority Applications (6)

Application Number Priority Date Filing Date Title
DE102015121981.6A DE102015121981A1 (de) 2015-12-16 2015-12-16 Verfahren und Vorrichtung zum Betreiben einer Windkraftanlage
CN201680071567.5A CN108368832A (zh) 2015-12-16 2016-12-05 用于操作风力涡轮机的方法和装置
CA3005822A CA3005822A1 (en) 2015-12-16 2016-12-05 Method and device for operating a wind turbine
US16/062,627 US20190003454A1 (en) 2015-12-16 2016-12-05 Method and device for operating a wind turbine
EP16805473.2A EP3390817B1 (de) 2015-12-16 2016-12-05 Verfahren und vorrichtung zum betreiben einer windkraftanlage
PCT/EP2016/079761 WO2017102404A1 (de) 2015-12-16 2016-12-05 Verfahren und vorrichtung zum betreiben einer windkraftanlage

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE102015121981.6A DE102015121981A1 (de) 2015-12-16 2015-12-16 Verfahren und Vorrichtung zum Betreiben einer Windkraftanlage

Publications (1)

Publication Number Publication Date
DE102015121981A1 true DE102015121981A1 (de) 2017-06-22

Family

ID=57471908

Family Applications (1)

Application Number Title Priority Date Filing Date
DE102015121981.6A Withdrawn DE102015121981A1 (de) 2015-12-16 2015-12-16 Verfahren und Vorrichtung zum Betreiben einer Windkraftanlage

Country Status (6)

Country Link
US (1) US20190003454A1 (de)
EP (1) EP3390817B1 (de)
CN (1) CN108368832A (de)
CA (1) CA3005822A1 (de)
DE (1) DE102015121981A1 (de)
WO (1) WO2017102404A1 (de)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019129373A1 (de) * 2017-12-29 2019-07-04 Windcomp Gmbh Verfahren zur vermessung von unwuchten von windkraftanlagenrotoren

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102020105053A1 (de) * 2020-02-26 2021-08-26 fos4X GmbH Verfahren zur Zustandsüberwachung eines Antriebsstrangs oder Turms einer Windenergieanlage und Windenergieanlage
CN111441920B (zh) * 2020-04-21 2021-10-29 三一重能有限公司 风力发电机组叶片除冰装置和风力发电机组
CN114704439B (zh) * 2022-06-07 2022-08-19 东方电气风电股份有限公司 一种风力发电机组叶片扭转变形在线监测方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102010024532A1 (de) * 2010-06-21 2011-12-22 Windcomp Gmbh Messverfahren zur Kontrolle und/oder Optimierung von Windenergieanlagen mit einem berührungslosen Abstandsmesssystem
US8511177B1 (en) * 2011-12-15 2013-08-20 Shaw Shahriar Makaremi Blade condition monitoring system
DE102014117918A1 (de) * 2014-12-04 2016-06-09 fos4X GmbH Verfahren zur individuellen Pitchregelung von Rotorblättern einer Windkraftanlage, Beschleunigungssensor für ein Rotorblatt, Rotorblatt mit Beschleunigungssensor, ein Rotor einer Windkraftanlage und Windkraftanlagen

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7086834B2 (en) * 2004-06-10 2006-08-08 General Electric Company Methods and apparatus for rotor blade ice detection
CN101589229B (zh) * 2006-12-08 2011-11-16 维斯塔斯风力系统有限公司 减弱风轮机的一个或多个叶片中的边沿振荡的方法,主动失速控制式风轮机及其使用
US8408871B2 (en) * 2008-06-13 2013-04-02 General Electric Company Method and apparatus for measuring air flow condition at a wind turbine blade
US8002524B2 (en) * 2009-07-10 2011-08-23 General Electric Company Wind turbine aerodynamic separation control
EP2317327A1 (de) * 2009-10-28 2011-05-04 SSB Wind Systems GmbH & Co. KG Windsensorsystem mit Hilfe von Rotorblattsignalen
US9567869B2 (en) * 2010-06-30 2017-02-14 Vestas Wind Systems A/S Wind turbine system for detection of blade icing
DE102010032120A1 (de) * 2010-07-24 2012-01-26 Robert Bosch Gmbh Verfahren und Vorrichtung zur Bestimmung eines Biegewinkels eines Rotorblattes einer Windkraftanlage
TW201309906A (zh) * 2011-03-07 2013-03-01 Mcpherson Performance Blade Llc 具改善效能的風力渦輪轉子葉片
US20120053851A1 (en) * 2011-06-01 2012-03-01 General Electric Company System and method for monitoring turbine blade
DE102011077129A1 (de) * 2011-06-07 2012-12-13 Aloys Wobben Verfahren zum Betreiben einer Windenergieanlage
US8757003B1 (en) * 2011-12-15 2014-06-24 Shaw Shahriar Makaremi Multi-frequency-band blade condition monitoring system
DK201270417A (en) * 2012-07-09 2014-01-10 Envision Energy Denmark Aps Method and System to Actively Pitch to Reduce Extreme Loads on Wind Turbine
EP2848805B1 (de) * 2013-09-17 2019-01-02 Alstom Renovables España, S.L. Verfahren zum Betrieb einer Windturbine
CN203704884U (zh) * 2014-01-07 2014-07-09 中国计量学院 一种基于偏振测定的内嵌式光纤扭曲传感器

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102010024532A1 (de) * 2010-06-21 2011-12-22 Windcomp Gmbh Messverfahren zur Kontrolle und/oder Optimierung von Windenergieanlagen mit einem berührungslosen Abstandsmesssystem
US8511177B1 (en) * 2011-12-15 2013-08-20 Shaw Shahriar Makaremi Blade condition monitoring system
DE102014117918A1 (de) * 2014-12-04 2016-06-09 fos4X GmbH Verfahren zur individuellen Pitchregelung von Rotorblättern einer Windkraftanlage, Beschleunigungssensor für ein Rotorblatt, Rotorblatt mit Beschleunigungssensor, ein Rotor einer Windkraftanlage und Windkraftanlagen

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019129373A1 (de) * 2017-12-29 2019-07-04 Windcomp Gmbh Verfahren zur vermessung von unwuchten von windkraftanlagenrotoren
US11448194B2 (en) 2017-12-29 2022-09-20 Windcomp Gmbh Method for measuring imbalances in wind turbine rotors
EP4191058A1 (de) * 2017-12-29 2023-06-07 Windcomp GmbH Verfahren zur vermessung von unwuchten und anstellwinkeln und halbprofilen

Also Published As

Publication number Publication date
EP3390817B1 (de) 2022-02-23
WO2017102404A1 (de) 2017-06-22
CN108368832A (zh) 2018-08-03
US20190003454A1 (en) 2019-01-03
EP3390817A1 (de) 2018-10-24
CA3005822A1 (en) 2017-06-22

Similar Documents

Publication Publication Date Title
EP3227690B1 (de) Verfahren zur überwachung einer windkraftanlage, verfahren zur eiserkennung an einer windkraftanlage, beschleunigungssensor für ein rotorblatt, rotorblatt mit beschleunigungssensor, und profil für ein rotorblatt
EP3390817B1 (de) Verfahren und vorrichtung zum betreiben einer windkraftanlage
EP3227552B1 (de) Verfahren zur individuellen pitchregelung von rotorblättern einer windkraftanlage und windkraftanlagen
EP2956661B1 (de) Verfahren zum überprüfen des betriebs einer windenergieanlage und windenergieanlage
DE102011083749B4 (de) Rotorblatt einer Windkraftanlage mit einer Vorrichtung zum Erfassen eines Abstandswertes und Verfahren zum Erfassen eines Abstandswertes
EP3513069B1 (de) Verfahren und vorrichtung zur ermittlung von belastungen auf einen turm einer windenergieanlage
EP3913215B1 (de) Verfahren zum ausmessen eines rotorblattwinkels
WO2012110188A1 (de) Optische messeinrichtung für die verformung eines rotorblattes einer windkraftanlage
EP3555466B1 (de) Vorrichtung und verfahren zum erkennen der anlagerung von eis an einer struktur eines bauwerks
DE102017125457B4 (de) Verfahren zum Bestimmen einer Wahrscheinlichkeit zu einem Drosseln und/oder einem Abschalten zumindest einer Windkraftanlage aufgrund von Eisansatz
DE10219664A1 (de) Windenergieanlage, Regelanordnung für eine Windenergieanlage und Verfahren zum Betreiben einer Windenergieanlage
DE102014117914A1 (de) Verfahren zur Erfassung einer Torsionsinstabilität eines Rotorblatts einer Windkraftanlage und Profil für ein Rotorblatt
DE102011016868B4 (de) Messvorrichtung zum Messen von Verformungen elastisch verformbarer Objekte
DE102014014386A1 (de) Verfahren und Vorrichtung zum Bestimmen von Betriebsparametern einer Windkraftanlage
AT15428U1 (de) Verfahren zur Bestimmung der Windgeschwindigkeit sowie Anlage zur Durchführung desselben
EP2598835B1 (de) Verfahren zur behandlung von turbinenschaufeln sowie vorrichtung dafür
DE102008013392B4 (de) Verfahren zum Erfassen des Spurlaufes der Rotorblätter einer Windkraftanlage
WO2018122195A1 (de) Vorrichtung und verfahren zum messen der torsion eines messobjekts
WO2019197680A1 (de) Windenergieanlage, windpark sowie verfahren zum regeln einer windenergieanlage und eines windparks
DE102013208084B3 (de) Verfahren und System zum Überwachen einer Windenergieanlage sowie Windenergieanlage
DE102017131241B4 (de) Überwachungsverfahren für eine Windkraftanlage, zugehörige Überwachungsvorrichtung sowie Windkraftanlage mit Überwachungsvorrichtung
DE102018119733B4 (de) Bestimmung des Torsionswinkels und Pitchwinkelbestimmung mittels mindestens zwei Beschleunigungssensoren
WO2019129849A1 (de) Verfahren zum kalibrieren von nominalfrequenzen
WO2020182790A1 (de) Verfahren zum steuern des betriebs eines windenergieanlagen-rotorblattes und windenergieanlage
AT14997U1 (de) Verfahren zur Ermittlung einer Blattverstellung bei einer Windkraftanlage

Legal Events

Date Code Title Description
R012 Request for examination validly filed
R016 Response to examination communication
R082 Change of representative

Representative=s name: ZACCO LEGAL RECHTSANWALTSGESELLSCHAFT MBH, DE

Representative=s name: MEISSNER BOLTE PATENTANWAELTE RECHTSANWAELTE P, DE

R082 Change of representative

Representative=s name: ZACCO LEGAL RECHTSANWALTSGESELLSCHAFT MBH, DE

R082 Change of representative

Representative=s name: ZACCO LEGAL RECHTSANWALTSGESELLSCHAFT MBH, DE

R120 Application withdrawn or ip right abandoned