DE102015119249B4 - Method for the targeted generation of NH3 during the regeneration process of a NOx storage catalyst - Google Patents

Method for the targeted generation of NH3 during the regeneration process of a NOx storage catalyst Download PDF

Info

Publication number
DE102015119249B4
DE102015119249B4 DE102015119249.7A DE102015119249A DE102015119249B4 DE 102015119249 B4 DE102015119249 B4 DE 102015119249B4 DE 102015119249 A DE102015119249 A DE 102015119249A DE 102015119249 B4 DE102015119249 B4 DE 102015119249B4
Authority
DE
Germany
Prior art keywords
lnt
downstream
determined
storage
exhaust gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
DE102015119249.7A
Other languages
German (de)
Other versions
DE102015119249A1 (en
Inventor
Albert Beichtbuchner
Bernhard Breitegger
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
AVL List GmbH
Original Assignee
AVL List GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by AVL List GmbH filed Critical AVL List GmbH
Publication of DE102015119249A1 publication Critical patent/DE102015119249A1/en
Application granted granted Critical
Publication of DE102015119249B4 publication Critical patent/DE102015119249B4/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • F01N3/18Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control
    • F01N3/20Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control specially adapted for catalytic conversion ; Methods of operation or control of catalytic converters
    • F01N3/2066Selective catalytic reduction [SCR]
    • F01N3/208Control of selective catalytic reduction [SCR], e.g. dosing of reducing agent
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • F01N3/18Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control
    • F01N3/20Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control specially adapted for catalytic conversion ; Methods of operation or control of catalytic converters
    • F01N3/2066Selective catalytic reduction [SCR]
    • F01N3/2073Selective catalytic reduction [SCR] with means for generating a reducing substance from the exhaust gases
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/92Chemical or biological purification of waste gases of engine exhaust gases
    • B01D53/94Chemical or biological purification of waste gases of engine exhaust gases by catalytic processes
    • B01D53/9404Removing only nitrogen compounds
    • B01D53/9409Nitrogen oxides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/92Chemical or biological purification of waste gases of engine exhaust gases
    • B01D53/94Chemical or biological purification of waste gases of engine exhaust gases by catalytic processes
    • B01D53/9459Removing one or more of nitrogen oxides, carbon monoxide, or hydrocarbons by multiple successive catalytic functions; systems with more than one different function, e.g. zone coated catalysts
    • B01D53/9477Removing one or more of nitrogen oxides, carbon monoxide, or hydrocarbons by multiple successive catalytic functions; systems with more than one different function, e.g. zone coated catalysts with catalysts positioned on separate bricks, e.g. exhaust systems
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/92Chemical or biological purification of waste gases of engine exhaust gases
    • B01D53/94Chemical or biological purification of waste gases of engine exhaust gases by catalytic processes
    • B01D53/9495Controlling the catalytic process
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N13/00Exhaust or silencing apparatus characterised by constructional features ; Exhaust or silencing apparatus, or parts thereof, having pertinent characteristics not provided for in, or of interest apart from, groups F01N1/00 - F01N5/00, F01N9/00, F01N11/00
    • F01N13/02Exhaust or silencing apparatus characterised by constructional features ; Exhaust or silencing apparatus, or parts thereof, having pertinent characteristics not provided for in, or of interest apart from, groups F01N1/00 - F01N5/00, F01N9/00, F01N11/00 having two or more separate silencers in series
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/0807Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by using absorbents or adsorbents
    • F01N3/0814Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by using absorbents or adsorbents combined with catalytic converters, e.g. NOx absorption/storage reduction catalysts
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • F01N3/18Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control
    • F01N3/20Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control specially adapted for catalytic conversion ; Methods of operation or control of catalytic converters
    • F01N3/2066Selective catalytic reduction [SCR]
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/021Introducing corrections for particular conditions exterior to the engine
    • F02D41/0235Introducing corrections for particular conditions exterior to the engine in relation with the state of the exhaust gas treating apparatus
    • F02D41/027Introducing corrections for particular conditions exterior to the engine in relation with the state of the exhaust gas treating apparatus to purge or regenerate the exhaust gas treating apparatus
    • F02D41/0275Introducing corrections for particular conditions exterior to the engine in relation with the state of the exhaust gas treating apparatus to purge or regenerate the exhaust gas treating apparatus the exhaust gas treating apparatus being a NOx trap or adsorbent
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2251/00Reactants
    • B01D2251/20Reductants
    • B01D2251/202Hydrogen
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2251/00Reactants
    • B01D2251/20Reductants
    • B01D2251/206Ammonium compounds
    • B01D2251/2062Ammonia
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/10Noble metals or compounds thereof
    • B01D2255/102Platinum group metals
    • B01D2255/1021Platinum
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/20Metals or compounds thereof
    • B01D2255/204Alkaline earth metals
    • B01D2255/2042Barium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/90Physical characteristics of catalysts
    • B01D2255/91NOx-storage component incorporated in the catalyst
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2430/00Influencing exhaust purification, e.g. starting of catalytic reaction, filter regeneration, or the like, by controlling engine operating characteristics
    • F01N2430/06Influencing exhaust purification, e.g. starting of catalytic reaction, filter regeneration, or the like, by controlling engine operating characteristics by varying fuel-air ratio, e.g. by enriching fuel-air mixture
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2560/00Exhaust systems with means for detecting or measuring exhaust gas components or characteristics
    • F01N2560/02Exhaust systems with means for detecting or measuring exhaust gas components or characteristics the means being an exhaust gas sensor
    • F01N2560/025Exhaust systems with means for detecting or measuring exhaust gas components or characteristics the means being an exhaust gas sensor for measuring or detecting O2, e.g. lambda sensors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2560/00Exhaust systems with means for detecting or measuring exhaust gas components or characteristics
    • F01N2560/14Exhaust systems with means for detecting or measuring exhaust gas components or characteristics having more than one sensor of one kind
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2610/00Adding substances to exhaust gases
    • F01N2610/02Adding substances to exhaust gases the substance being ammonia or urea
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2900/00Details of electrical control or of the monitoring of the exhaust gas treating apparatus
    • F01N2900/04Methods of control or diagnosing
    • F01N2900/0416Methods of control or diagnosing using the state of a sensor, e.g. of an exhaust gas sensor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2900/00Details of electrical control or of the monitoring of the exhaust gas treating apparatus
    • F01N2900/06Parameters used for exhaust control or diagnosing
    • F01N2900/16Parameters used for exhaust control or diagnosing said parameters being related to the exhaust apparatus, e.g. particulate filter or catalyst
    • F01N2900/1614NOx amount trapped in catalyst
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2900/00Details of electrical control or of the monitoring of the exhaust gas treating apparatus
    • F01N2900/06Parameters used for exhaust control or diagnosing
    • F01N2900/16Parameters used for exhaust control or diagnosing said parameters being related to the exhaust apparatus, e.g. particulate filter or catalyst
    • F01N2900/1616NH3-slip from catalyst
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Biomedical Technology (AREA)
  • Analytical Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Environmental & Geological Engineering (AREA)
  • Toxicology (AREA)
  • Exhaust Gas After Treatment (AREA)
  • Exhaust Gas Treatment By Means Of Catalyst (AREA)

Abstract

Verfahren zur gezielten Generierung von NHwährend des Regenerationsvorgangs eines in einem Abgassystem einer Brennkraftmaschine (1) angeordneten NO-Speicherkatalysators (LNT), wobei die Regeneration durch Einstellen einer reduzierend wirkenden Abgasatmosphäre vor dem NO-Speicherkatalysator (LNT) ausgelöst wird und der zeitliche Verlauf von zumindest während der Regenerationsphase stromaufwärts und stromabwärts des NO-Speicherkatalysators (LNT) ermittelten Lambdawerten (λ, λ) im Abgas stromauf- und stromabwärts des NO-Speicherkatalysators (LNT) bestimmt wird, dadurch gekennzeichnet, dass folgende Schritte durchgeführt werden:a) Aufsuchen eines Kreuzungszeitpunktes (K), an welchem die ermittelten Lambdawerte (λ, λ) stromaufwärts und stromabwärts des NO-Speicherkatalysators (LNT) den gleichen Wert aufweisen;b) Ermitteln einer ab dem Kreuzungszeitpunkt (K) bis zu einem Bezugszeitpunkt (T) durch die zeitlichen Verläufe der Lambdawerte (λ, λ) stromaufwärts und stromabwärts des NO-Speicherkatalysators (LNT) aufgespannten Differenzfläche (D);c) Ermitteln einer NH-Menge im Abgas stromabwärts des NO-Speicherkatalysators (LNT) auf der Basis der Differenzfläche (D);d) Beendigung des Regenerationsvorganges, wenn die ermittelte NH-Menge im Abgas stromabwärts des NO-Speicherkatalysators (LNT) einen definierten Grenzwert überschreitet.Method for the specific generation of NH during the regeneration process of an in an exhaust system of an internal combustion engine (1) arranged NO storage catalytic converter (LNT), wherein the regeneration by setting a reducing exhaust gas atmosphere before the NO storage catalyst (LNT) is triggered and the time course of at least during the regeneration phase, lambda values (λ, λ) determined upstream and downstream of the NO storage catalytic converter (LNT) in the exhaust gas are determined upstream and downstream of the NO storage catalytic converter (LNT), characterized in that the following steps are carried out: a) locating a crossover time (K), at which the determined lambda values (λ, λ) have the same value upstream and downstream of the NO storage catalytic converter (LNT) b) Determining one from the crossing time (K) to a reference time (T) through the time profiles the lambda values (λ, λ) upstream and downstream c) determining an amount of NH in the exhaust gas downstream of the NO storage catalyst (LNT) on the basis of the differential area (D); d) terminating the regeneration process if the determined NH3 Quantity in the exhaust gas downstream of the NO storage catalyst (LNT) exceeds a defined limit.

Description

Die Erfindung betrifft ein Verfahren zur gezielten Generierung von NH3 während des Regenerationsvorgangs eines in einem Abgassystem einer Brennkraftmaschine angeordneten NOx-Speicherkatalysators, wobei die Regeneration durch Einstellen einer reduzierend wirkenden Abgasatmosphäre vor dem NOx-Speicherkatalysator ausgelöst wird und der zeitliche Verlauf von zumindest während der Regenerationsphase stromaufwärts und stromabwärts des NOx-Speicherkatalysators ermittelten Lambdawerten im Abgas stromauf- und stromabwärts des NOx-Speicherkatalysators bestimmt wird.The invention relates to a method for the targeted generation of NH 3 during the regeneration process of an arranged in an exhaust system of an internal combustion engine NO x storage catalytic converter, wherein the regeneration is triggered by setting a reducing exhaust gas atmosphere in front of the NO x storage catalytic converter and the time course of at least during the regeneration phase upstream and downstream of the NO x storage catalytic converter determined lambda values in the exhaust gas upstream and downstream of the NO x storage catalyst is determined.

Zur Erfüllung aktueller und zukünftiger Emissionsgrenzwerte gibt es beim Betrieb eingangs erwähnter Brennkraftmaschinen verschiedene Möglichkeiten. Ein NOx-Speicherkatalysator, welcher auch als LNT („Lean-NOx-Trap“) bekannt ist, kann mit einem SCR-Katalysator kombiniert sein, zu dessen Betrieb NH3 notwendig ist, welches im LNT durch verlängerten Fettbetrieb gebildet werden kann. Diese interne NH3 Generierung während der verlängerten LNT-Regeneration in Kombination mit einem nachgeschalteten SCR wird als passives SCR bezeichnet. Alternativ oder zusätzlich kann eine aktive NH3-Dosierung von außen vorgesehen sein.For the fulfillment of current and future emission limit values, there are various possibilities in the operation of the initially mentioned internal combustion engines. A NO x storage catalyst, which is also known as LNT ( "Lean-NO x -Trap"), may be combined with an SCR catalyst for its operation is necessary NH 3, which can be formed by prolonged rich operation in the LNT. This internal NH 3 generation during prolonged LNT regeneration in combination with a downstream SCR is referred to as a passive SCR. Alternatively or additionally, an active NH 3 dosage can be provided from the outside.

Üblicherweise wird das Ende der Regeneration eines NOx-Speicherkatalysators, wecher auch als LNT (Lean NOx Trap) bekannt ist, anhand eines charakteristischen Abfalls des Lambdawertes einer nach dem NOx-Speicherkatalysator angeordneten Lambdasonde erkannt, siehe WO 00/19075 A1 . Alternativ wird zum Erkennen des Endes der Regeneration auch der Schnittpunkt (Lambdakreuzung) der zeitlichen Verläufe der Lambdawerte stromauf- und stromabwärts des NOx-Speicherkatalysators verwendet ( DE 10 2010 001 202 A1 ). Des Weiteren ist es aus der DE 10 355 037 B4 bekannt, einen charakteristischer Anstieg und nachfolgenden Abfall eines NOx-Wertes einers NOx-Sensors, welcher stromabwärts des NOx-Speicherkatalysators angeordnet ist, zu verwenden.Typically, the end of the regeneration of a NO x storage catalytic converter, wecher as LNT (Lean NOx Trap) is known, recognized on the basis of a characteristic decrease of the lambda value of an arranged downstream of the NO x storage catalytic converter lambda probe, see WO 00/19075 A1 , Alternatively, the point of intersection (lambda crossing) of the temporal courses of the lambda values upstream and downstream of the NO x storage catalytic converter is used to detect the end of the regeneration ( DE 10 2010 001 202 A1 ). Furthermore, it is from the DE 10 355 037 B4 It is known to use a characteristic increase and subsequent decrease in an NO x value of an NO x sensor disposed downstream of the NO x storage catalyst.

Bekannte Verfahren haben allerdings den Nachteil, dass sie relativ ungenau sind und/oder dass für die Messung zusätzliche und aufwändige Messsensorik (z.B. zumindest eine NOx-Sonde, die aktuell ca. das Dreifache von einfachen Lambdasonden kosten) erforderlich ist.However, known methods have the disadvantage that they are relatively inaccurate and / or that for the measurement additional and expensive measuring sensors (eg at least one NO x probe, currently costing about three times the value of simple lambda probes) is required.

Es ist die Aufgabe der Erfindung, diese Nachteile zu vermeiden und ein Verfahren vorzuschlagen, welches ohne zusätzliche teure Sensoren auskommt und qualitativ hochwertige Aussagen ermöglicht.It is the object of the invention to avoid these disadvantages and to propose a method which requires no additional expensive sensors and enables high-quality statements.

Erfindungsgemäß wird dies dadurch erreicht, dass folgende Schritte durchgeführt werden:

  1. a) Aufsuchen eines Kreuzungszeitpunktes, an welchem die ermittelten Lambdawerte stromaufwärts und stromabwärts des NOx-Speicherkatalysators den gleichen Wert aufweisen,
  2. b) Ermitteln einer ab dem Kreuzungszeitpunkt bis zu einem Bezugszeitpunkt durch die zeitlichen Verläufe der Lambdawerte stromaufwärts und stromabwärts des NOx-Speicherkatalysators aufgespannten Differenzfläche;
  3. c) Ermitteln einer NH3-Menge im Abgas stromabwärts des NOx-Speicherkatalysators auf der Basis der Differenzfläche;
  4. d) Beendigen des Regenerationsvorganges, wenn die ermittelte NH3-Menge im Abgas stromabwärts des NOx-Speicherkatalysators einen definierten Grenzwert überschreitet.
According to the invention, this is achieved by carrying out the following steps:
  1. a) looking for a crossover point at which the determined lambda values have the same value upstream and downstream of the NO x storage catalytic converter,
  2. b) determining a differential area spanned from the time of intersection to a reference time by the temporal profiles of the lambda values upstream and downstream of the NO x storage catalytic converter;
  3. c) determining an amount of NH 3 in the exhaust gas downstream of the NO x storage catalyst based on the differential area;
  4. d) terminating the regeneration process when the determined amount of NH 3 in the exhaust gas downstream of the NO x storage catalyst exceeds a defined limit.

Das erfindungsgemäße Verfahren erlaubt eine bewusste NH3-Generierung durch definierte Verlängerung des Regenerationsvorganges. Das NH3 kann dann im Abgasnachbehandlungssystem, z.B. einem nachgelagerten SCR-Katalysator, eingespeichert werden. Die Ermittlung der Lambdawerte lässt sich mit beliebigen Sonden umsetzen, die Lambdawerte messen können - beispielsweise dezidierten Lambdasonden bzw. Sonden, die O2-Werte messen, aber auch Sonden, die den Lambdawert als Zwischenwert ermitteln. Für die NH3-Bestimmung sind damit keine teuren NOx-Sonden mit der entsprechenden NH3 Querempfindlichkeit notwendig.The inventive method allows a deliberate NH 3 generation by defined extension of the regeneration process. The NH 3 can then be stored in the exhaust aftertreatment system, for example a downstream SCR catalyst. The determination of the lambda values can be implemented with any probes that can measure lambda values - for example, dedicated lambda probes or probes that measure O 2 values, but also probes that determine the lambda value as an intermediate value. For NH 3 determination, therefore, no expensive NO x probes with the corresponding NH 3 cross-sensitivity are necessary.

Bei dem Kreuzungszeitpunkt in a) handelt es sich um denjenigen Zeitpunkt, ab bzw. nach dem der Lambdawert stromabwärts des NOx-Speicherkatalysators kleiner ist als der stromaufwärtige Lambdawert. Vor diesem Kreuzungszeitpunkt ist der stromabwärtige Lambdawert größer als stromaufwärts.The crossing time in a) is the time from or after which the lambda value downstream of the NO x storage catalytic converter is lower than the upstream lambda value. Before this crossing time, the downstream lambda value is greater than upstream.

Der Bezugszeitpunkt in b) ist der Zeitpunkt des Regenerationsendes, wo der stromabwärtige Lambdawert wieder ansteigt, insbesondere über den Wert im Kreuzungszeitpunkt bzw. darüber. Dieser Bezugszeitpunkt ist auch gekennzeichnet durch die Veränderung des stromaufwärtigen Lambdawerts zurück auf den Normalbetriebswert außerhalb des Regenerationsbetriebs.The reference time in b) is the time of the end of regeneration, where the downstream lambda value increases again, in particular over the value at the time of crossing or above. This reference time is also characterized by the change of the upstream lambda value back to the normal operating value outside the regeneration mode.

Der Grenzwert in d) ist insbesondere durch die NH3-Menge definiert, die im nachgelagerten Abgassystem benötigt wird, insbesondere in einem nachgelagerten SCR-Katalysator eingespeichert werden soll.The limit in d) is defined in particular by the amount of NH 3 required in the downstream exhaust system, in particular to be stored in a downstream SCR catalyst.

In einer ersten Variante der Erfindung wird in c) die NH3-Menge anhand eines empirisch ermittelten Zusammenhangs zwischen der Differenzfläche und der NH3-Menge bestimmt. Der Zusammenhang wird dabei in bekannter Weise durch eine empirische Formel oder ein entsprechendes Kennfeld hergestellt. Dabei können unter anderem folgende Parameter berücksichtigt werden: Temperatur des Abgases und des Katalysators (bzw. LNT); Abgasmassenstrom; Motorbetriebspunkte wie Motordrehzahl und - last. Dabei werden die jeweiligen Differenzen der stromauf- und -abwärtigen Lambdawerte mit empirisch ermittelten Faktoren gewichtet und die gewichteten Differenzen werden zur Differenzfläche aufintegriert. Damit wird zu jedem Zeitpunkt mittels Lambdadifferenzwert über den empirisch ermittelten Zusammenhang und den Abgasmassenstrom auf eine NH3-Menge rückgeschlossen, die zu einer Gesamt-NH3-Menge aufintegriert wird. In Schritt d) wird die Regeneration gestoppt, wenn eine gewisse NH3-Menge erreicht ist.In a first variant of the invention, the NH 3 amount determined 3 amount in c) with reference to an empirically determined relationship between the difference of surface and NH. The relationship is in a known manner by an empirical formula or a corresponding map produced. Among others, the following parameters can be considered: temperature of the exhaust gas and the catalyst (or LNT); Exhaust gas mass flow; Engine operating points such as engine speed and load. The respective differences of the upstream and downstream lambda values are weighted with empirically determined factors and the weighted differences are integrated into the differential area. Thus, at any time by means of lambda difference value on the empirically determined relationship and the exhaust gas mass flow to an NH 3 amount inferred, which is integrated into a total NH 3 amount. In step d), the regeneration is stopped when a certain amount of NH 3 is reached.

Damit sorgt eine übergeordnete SCR-Koordination dafür, dass ausreichend NH3 im Abgassystem vorhanden bzw. in einem SCR-Katalysator eingelagert ist, um eine gewünschte NOx-Konvertierung sicherzustellen.Thus, a higher-level SCR coordination ensures that sufficient NH 3 is present in the exhaust system or stored in an SCR catalytic converter in order to ensure a desired NO x conversion.

Gemäß einer zweiten Variante ergibt sich in c) eine besonders einfache Bestimmung der NH3-Menge im Abgas, wenn eine H2-Konzentration im Abgas stromabwärts des NOx-Speicherkatalysators auf der Basis der Differenzfläche ermittelt und die NH3-Menge im Abgas stromabwärts des NOx-Speicherkatalysators auf der Basis der ermittelten H2-Konzentration bestimmt wird. Nach dem Kreuzungszeitpunkt ist gespeichertes O2 verbraucht und es kommt zu H2-Bildung, die entsprechend detektiert werden kann. Das bedeutet, dass die Lambdawerte stromauf- und stromabwärts gleich sein sollten, wenn alles O2 verbraucht ist. Die H2-Bildung erfolgt beispielsweise durch Aufspaltung von Wassermolekülen in H2 und ½ O2 im SCR-Katalysator. Wegen der größeren Querempfindlichkeit des Sensors, mit dem Lambdawerte ermittelte werden - insbesondere z.B. einer Lambdasonde - für H2 als für O2 ist das Verhältnis der Konzentrationen von H2 zu O2 in der Sonde größer als im Abgas im Katalysator und daher der Lambdawert kleiner.According to a second variant, a particularly simple determination of the amount of NH 3 in the exhaust gas results in c) if an H 2 concentration in the exhaust gas downstream of the NO x storage catalyst is determined on the basis of the differential area and the NH 3 amount in the exhaust downstream of the NO x storage catalyst is determined on the basis of the determined H 2 concentration. After the crossing point, stored O 2 is consumed and H 2 formation occurs, which can be detected accordingly. This means that lambda values should be the same upstream and downstream when all O 2 is consumed. The formation of H 2 takes place, for example, by splitting up water molecules in H 2 and ½ O 2 in the SCR catalyst. Because of the greater cross sensitivity of the sensor, are determined with the lambda values - especially for example a lambda probe - for H 2 as for O 2 , the ratio of concentrations of H 2 to O 2 in the probe is greater than in the exhaust gas in the catalyst and therefore the lambda value smaller ,

Die ermittelte NH3-Menge kann als Eingangsgröße einem NH3-Beladungsmodell für einen stromabwärts des NOx-Speicherkatalysators vom Abgas durchströmten SCR-Katalysator (SCR = Selective Catalytic Reduction) zugeführt werden.The NH 3 quantity determined can be fed as input variable to a NH 3 -Beladungsmodell for a downstream of the NO x storage catalyst by the exhaust gas flows SCR catalyst (SCR = Selective Catalytic Reduction).

Gemäß der Erfindung wird das NH3 anhand der, für den Zeitraum nach Regenerationsende, aufgespannten Fläche der Lambdawerte vor und nach dem NOx-Speicherkatalysator bilanziert und in einem NH3 Beladungsmodell für einen nachfolgenden SCR Katalysator verwendet.According to the invention, the NH 3 is balanced on the basis of the, for the period after regeneration end, spanned surface of the lambda values before and after the NO x storage catalyst and used in a NH 3 loading model for a subsequent SCR catalyst.

Die Erfindung basiert auf der Eigenschaft des „leeren“ NOx-Speicherkatalysators, bei fortgesetztem unterstöchiemetrischen Motorbetrieb (Fettbetrieb, Lambdawert <1) Ammoniak (NH3) zu produzieren. An einem NOx-Speicherkatalysator wird zunächst vorwiegend durch die sogenannte „Wassergas-Shift“ Reaktion H2 aus CO aber auch mittels „steam reforming“ aus HC hergestellt. Dieses H2 wird zur Reduktion der von den Speicherplätzen des NOx-Speicherkatalysator desorbierten NOx verwendet. Sobald kein NOx mehr gespeichert ist, bzw. teilweise auch schon zuvor, wird aus H2 und NO NH3 gebildet.The invention is based on the property of the "empty" NO x storage catalytic converter to produce ammonia (NH 3) with continued under-engine operation (rich operation, lambda value <1). At a NO x storage catalyst, H 2 from CO is initially produced predominantly by the so-called "water gas shift" reaction but also by "steam reforming" from HC. This H 2 is used for the reduction of of the storage locations of the NO x storage catalyst desorbed NO x. As soon as NO x more is stored, or in some cases before, NH 2 and NO 3 are formed.

Die Erfindung beruht darauf, dass nach dem Ende der Regeneration des NOx-Speicherkatalysators - welche mittels der sogenannten Lambdakreuzung festgestellt wird - die Lambdasonde stromabwärts des NOx-Speicherkatalysators quasi als H2-Sensor verwendet wird, indem auf der Basis der aufgespannten Differenzfläche der Lambdawerte bzw. O2-Signale der Lambdasonden stromauf- und stromabwärts des NOx-Speicherkatalysators die H2-Konzentration berechnet wird.The invention is based on the fact that after the end of the regeneration of the NO x storage catalytic converter - which is detected by means of the so-called lambda crossing - the lambda probe downstream of the NO x storage quasi used as H 2 sensor by on the basis of the spanned differential area of the Lambda values or O 2 signals of the lambda probes upstream and downstream of the NO x storage catalyst, the H 2 concentration is calculated.

Die Erfindung macht sich dabei unter anderem die Beobachtung zu nutze, dass die H2-Konzentration proportional zu der durch die zeitlichen Verläufe der Lambdawerte stromaufwärts und stromabwärts des NOx-Speicherkatalysators aufgespannten Differenzfläche D ist: D = K 1 H 2 .

Figure DE102015119249B4_0001
Among other things, the invention makes use of the observation that the H 2 concentration is proportional to the differential area D spanned by the temporal courses of the lambda values upstream and downstream of the NO x storage catalytic converter: D = K 1 H 2 ,
Figure DE102015119249B4_0001

Die gebildete NH3 Menge ist wiederum proportional zur vorliegenden H2 Menge: H 2 = K2 NH 3 .

Figure DE102015119249B4_0002
The amount of NH 3 formed is in turn proportional to the amount of H 2 present: H 2 = K2 NH 3 ,
Figure DE102015119249B4_0002

K1 und K2 sind dabei jeweils Proportionalitätsfaktoren. Zusätzlich wird berücksichtigt, dass die O2-Signale der Lambdasonden hinsichtlich H2 eine höhere Sensitivität aufweisen als zu CO und HC und O2.K1 and K2 are each proportionality factors. In addition, it is considered that the O 2 signals of the lambda probes have a higher sensitivity with respect to H 2 than to CO and HC and O 2 .

Die Erfindung wird anhand eines nicht einschränkenden Ausführungsbeispiels in den Figuren näher erläutert. Es zeigen:

  • 1 eine schematische Anordnung einer Brennkraftmaschine zur Durchführung des erfindungsgemäßen Verfahrens;
  • 2 die zeitlichen Verläufe des Lambdawertes, der H2-Konzentration und der NH3-Menge im Abgas stromabwärts des NOx-Speicherkatalysators.
The invention will be explained in more detail with reference to a non-limiting embodiment in the figures. Show it:
  • 1 a schematic arrangement of an internal combustion engine for carrying out the method according to the invention;
  • 2 the time courses of the lambda value, the H 2 concentration and the amount of NH 3 in the exhaust gas downstream of the NO x storage catalytic converter.

1 zeigt schematisch eine Brennkraftmaschine 1 mit einem Auslasssystem 2, in welchem zur Einhaltung der gesetzlichen Emissionsbestimmungen ein NOx-Speicherkatalysator LNT (LNT = Lean NOx Trap), ein Partikelfilter cDPF und ein SCR-Katalysator SCR angeordnet sind. Im Ausführungsbeipiel sind der NOX-Speicherkatalysator und der Partikelfilter cDPF als Baueinheit ausgeführt. Mit Bezugszeichen 3 ist der Einlasstrang und mit Bezugszeichen 4 ein zwischen dem Partikelfilter cDPF und dem SCR-Katalysator vom Abgassystem 2 abzweigendes und in das Einlasssystem 3 einmündendes Abgasrückführsystem bezeichnet. Die Erfindung lässt sich aber nicht nur bei der dargestellten Niederdruckabgasrückführung (Entnahme des Abgases stromaufwärts eines Abgasturbioladers), sondern auch bei Hochdruckabgasrückführungen (Entnahme des Abgases stromaufwärts eines Abgasturboladers) anwenden. 1 schematically shows an internal combustion engine 1 with an exhaust system 2 in which a NO x storage catalytic converter LNT (LNN = Lean NO x Trap), a particulate filter cDPF and an SCR Catalyst SCR are arranged. In the exemplary embodiment, the NOX storage catalytic converter and the particulate filter cDPF are designed as a structural unit. With reference number 3 is the inlet line and with reference numerals 4 a between the particulate filter cDPF and the SCR catalyst from the exhaust system 2 branching and into the intake system 3 opening exhaust gas recirculation system called. However, the invention can be applied not only in the illustrated low-pressure exhaust gas recirculation (removal of the exhaust gas upstream of an exhaust gas turbocharger), but also in high-pressure exhaust gas recirculation (removal of the exhaust gas upstream of an exhaust gas turbocharger).

Stromaufwärts des NOx-Speicherkatalysators LNT ist ein erster Lambdasensor L1 und stromabwärts des NOx-Speicherkatalysators LNT ein zweiter Lambdasensor L2 angeordnet. Grundsätzlich können beliebige Sensoren verwendet werden, mit denen ein Lambdawert ermittelbar ist - Lambdasonden gemäß dem beschriebenen Ausführungsbeispiel sind dabei eine von mehreren Möglichkeiten. Die Lambdasensoren (Lambdasonden) L1, L2 messen den Restsauerstoffgehalt O2 im Abgas, welcher sich nach Verbrennung aller bis dahin unverbrannten Kraftstoffanteile (z.B. HC, CO) ergibt, um daraus das Verhältnis (Lambdawert) A von Verbrennungsluft zu Kraftstoff einstellen zu können. Ist für diese Oxidation zu wenig Sauerstoff vorhanden, wird dieser über eine in der Lambdasonde integrierte Sauerstoffpumpe in umgekehrter Richtung aus dem Abgas gepumpt. Dieser negative Sauerstoffpumpstrom wird als negative Sauerstoffkonzentration und in weiterer Folge als Lambda kleiner als 1 berechnet. Der Lambdawert dient als Regelfühler für einen nicht weiter dargestellten Lambdaregelkreis.Upstream of the NO x storage LNT a first lambda sensor L1 and downstream of the NO x storage LNT a second lambda sensor L2 is arranged. Basically, any sensors can be used with which a lambda value can be determined - lambda probes according to the described embodiment are one of several possibilities. The lambda sensors (lambda sensors) L1, L2 measure the residual oxygen content O 2 in the exhaust gas, which results after combustion of all previously unburned fuel components (eg HC, CO), in order to be able to set the ratio (lambda value) A from combustion air to fuel. If there is too little oxygen for this oxidation, it is pumped out of the exhaust gas in the reverse direction via an oxygen pump integrated in the lambda probe. This negative oxygen pumping current is calculated as negative oxygen concentration and subsequently as lambda smaller than 1. The lambda value serves as a control sensor for a lambda control circuit (not shown).

Der NOx-Speicherkatalysator LNT dient zur Zwischenspeicherung von im Abgas enthaltenen Stickoxiden (NOx). Zur Zwischenspeicherung der Stickstoffoxide weist der NOx-Speicherkatalysator LNT auf geeigneten Trägern einen Edelmetallkatalysator wie Platin und eine NOx-Speicherkomponente, beispielsweise Barium, auf. In der mageren, das heißt sauerstoffreichen, Atmosphäre werden die Stickstoffoxide unter der Wirkung des Edelmetallkatalysators aufoxidiert, unter Ausbildung von Nitraten wie beispielsweise Bariumnitrat im Katalysator absorbiert und somit aus dem Abgasstrom entfernt. Durch ein regelmäßiges kurzzeitiges „Anfetten“ des Abgasgemisches, also Senken des Lambdawertes λ- laufen diese Reaktionen in der entgegengesetzten Richtung ab, wodurch die NOx-Moleküle wieder in den Abgasstrom abgegeben und durch die in der fetten Atmosphäre vorhandenen reduzierenden Komponenten wie CmHn -unvollständig verbrannte Kohlenwasserstoffe - und/oder CO weiter reduziert werden.The NO x storage catalyst LNT is used for temporary storage of nitrogen oxides contained in the exhaust gas (NO x ). For intermediate storage of the nitrogen oxides, the NO x storage catalyst LNT on suitable carriers on a noble metal catalyst such as platinum and a NO x storage component, for example, barium on. In the lean, that is oxygen-rich, atmosphere, the nitrogen oxides are oxidized under the action of the noble metal catalyst, absorbed to form nitrates such as barium nitrate in the catalyst and thus removed from the exhaust gas stream. By a regular brief "enrichment" of the exhaust gas mixture, ie lowering the lambda value λ- run these reactions in the opposite direction, whereby the NO x molecules are released back into the exhaust stream and by existing in the rich atmosphere reducing components such as C m H n -Incompletely burned hydrocarbons - and / or CO are further reduced.

Ist die Aufnahmekapazität des NOx-Speicherkatalysators LNT erschöpft, so wird seitens der Motorelektronik kurzzeitig ein fettes, reduzierendes Abgasgemisch für einige Sekunden eingestellt (etwa zwei bis zehn Sekunden). In diesem kurzen, fetten Zyklus werden die im Katalysator zwischengespeicherten Stickoxide NOx zu Stickstoff N2 reduziert und damit der NOx-Speicherkatalysator für den nächsten Speicherzyklus vorbereitet. Um den Motorbetrieb im fetten Zyklus möglichst kurz zu halten, ist es im klassischen LNT-Betrieb wesentlich, dass das Reduktionsende möglichst exakt erkannt wird.If the absorption capacity of the NO x storage catalytic converter LNT is exhausted, the engine electronics temporarily set a rich, reducing exhaust gas mixture for a few seconds (about two to ten seconds). In this short, fat cycle, the nitrogen oxides NO x temporarily stored in the catalyst are reduced to nitrogen N 2 and thus the NO x storage catalyst is prepared for the next storage cycle. In order to keep the engine operation as short as possible in the rich cycle, it is essential in classic LNT operation that the reduction end be recognized as accurately as possible.

Im nachgeschalteten SCR-Katalysator werden bei passiver SCR zur weiteren Stickoxidverminderung NOx-Moleküle durch NH3 zu N2 reduziert. Über ein SCR-Katalysatormodell wird dabei die bereitzustellende NH3-Menge ermittelt.In the downstream SCR catalytic converter, with passive SCR, NO x molecules are reduced by NH 3 to N 2 for further nitrogen oxide reduction. An SCR catalyst model is used to determine the amount of NH 3 to be supplied.

2 zeigt die Verläufe des Lambdawertes λ1 stromaufwärts des NOx-Speicherkatalysators LNT, des Lambdawertes λ2 stromabwärts des NOx-Speicherkatalysators LNT, den Verlauf der Anteile an Stickoxid NOx stromabwärts des NOx-Speicherkatalysators LNT, den Verlauf der Anteile an Wasserstoff H2 stromabwärts des NOx-Speicherkatalysators, den Verlauf der Anteile an Ammoniak NH3 stromabwärts des NOx-Speicherkatalysators LNT, den Verlauf der Anteile an Kohlenmonoxid CO stromabwärts des NOx-Speicherkatalysators LNT und den Verlauf der Anteile an unverbrannten Kohlenwasserstoffen HC stromabwärts des NOx-Speicherkatalysators LNT, inbesondere während einer Regenerationsphase REG des NOx-Speicherkatalysators LNT über der Zeit t aufgetragen. 2 shows the curves of the lambda value λ 1 upstream of the NO x storage LNT, the lambda value λ 2 downstream of the NO x storage LNT, the course of the shares of nitrogen oxide NO x downstream of the NO x storage LNT, the course of the proportions of hydrogen H. 2 downstream of the NO x storage, the course of the proportions of ammonia NH 3 downstream of the NO x storage LNT, the course of the proportions of carbon monoxide CO downstream of the NO x storage LNT and the course of the shares of unburned hydrocarbons HC downstream of the NO x storage catalyst LNT, in particular during a regeneration phase REG of the NO x storage LNT over the time t applied.

Während der Regenrationsphase REG wird die Brennkraftmaschine 1 unterstöchiometrisch betrieben, wie aus der den Betriebsmodus andeutenden Linie M hervorgeht. Dabei steht „1“ für fetten Betrieb und „2“ für mageren Betrieb. Im mit Bezugszeichen R1 markierten Punkt erfolgt der Wechsel vom mageren auf fetten Motorbetrieb.During the regeneration phase REG, the internal combustion engine 1 operated stoichiometrically, as can be seen from the operating mode indicative line M. Here, "1" stands for rich operation and "2" for lean operation. In the point marked with reference number R1, the change takes place from lean to rich engine operation.

Die Regenerationsphase REG teilt sich in zwei Zeitabschnitte auf. Der erste Zeitabschnitt A ist dabei dadurch gekennzeichnet, das der Lambdawert λ1 stromaufwärts des NOx-Speicherkatalysators LNT kleiner ist, als der Lambdawert λ2 stromabwärts des NOx-Speicherkatalysators LNT. Im zweiten Zeitabschnitt ist der Lambdawert λ1 stromaufwärts des NOx-Speicherkatalysators LNT dagegen größer, als der Lambdawert λ2 stromabwärts des NOx-Speicherkatalysators LNT. Im Kreuzungszeitpunkt K der Verläufe der beiden Lambdawerte λ1, λ2 weisen die mittels der Lambdasensoren L1, L2 ermittelten Lambdawerte λ1, λ2 stromaufwärts und stromabwärts des NOx-Katalysators den gleichen Wert auf.The regeneration phase REG is divided into two time periods. The first time period A is characterized in that the lambda value λ 1 upstream of the NO x storage catalytic converter LNT is smaller than the lambda value λ 2 downstream of the NO x storage catalytic converter LNT. In the second period of time, however, the lambda value λ 1 upstream of the NO x storage catalytic converter LNT is greater than the lambda value λ 2 downstream of the NO x storage catalytic converter LNT. At the crossing time K of the curves of the two lambda values λ 1 , λ 2 , the lambda values λ 1 , λ 2 determined by means of the lambda sensors L1, L2 have the same value upstream and downstream of the NO x catalyst.

Überraschenderweise wurde festgestellt, dass sich ein Zusammenhang zwischen der Differenzfläche D zwischen den Verläufen der Lambdawerte λ1, λ2, beginnend mit dem Kreuzungszeitpunkt K und endend mit dem Bezugszeitpunkt TB, und dem während des Regenerationsvorgangs generierten NH3 ergibt. In einer ersten Variante der Erfindung kommt daher ein empirisch ermittelter Zusammenhang zur Anwendung, der durch eine empirische Formel oder ein entsprechendes Kennfeld hergestellt wird. Dabei können unter anderem folgende Parameter berücksichtigt werden: Temperatur von Abgas und/oder Katalysator (z.B. LNT); Abgasmassenstrom; Motorbetriebsparameter wie Motordrehzahl und -last.Surprisingly, it was found that there is a relationship between the differential area D between the curves of the lambda values λ 1 , λ 2 , starting with the crossing point K and ending with the reference time point T B , and the generated during the regeneration process NH 3 . In a first variant of the invention, therefore, an empirically determined relationship is used, which is produced by an empirical formula or a corresponding characteristic field. Among other things, the following parameters can be taken into account: temperature of exhaust gas and / or catalyst (eg LNT); Exhaust gas mass flow; Engine operating parameters such as engine speed and load.

Die Lambdadifferenzen werden mit empirisch ermittelten Faktoren gewichtet und die gewichteten Differenzen werden zur Differenzfläche D aufintegriert. Nach Erreichen einer gewünschten NH3-Menge stromabwärts wird die Regeneration gestoppt.The lambda differences are weighted with empirically determined factors and the weighted differences are integrated into the differential area D. After reaching a desired amount of NH 3 downstream, the regeneration is stopped.

Eine weitere Variante der Erfindung lautet wie folgt: Sobald alle zwischengespeicherten Stickoxide NOx zu Sticksstoff N2 reduziert und der NOx-Speicherkatalysator LNT also „leer“ ist, wird in diesem Wasserstoff H2 produziert, angedeutet mit Bezugszeichen R2. Der Anteil des Wasserstoffes H2 ist dabei üblicherweise mehr als zehnmal so groß wie der Anteil an Kohlenmonoxid CO, welcher wieder mehr als zehmals so groß ist wie der Anteil an unverbrannten Wasserstoffen HC (Vergleich R3 und R4). Stromaufwärts des NOx-Speicherkatalysators LNT ist kaum H2 festzustellen (bzw. wird mit dem Restsauerstoff oder dem im LNT gespeicherten O2 umgehend oxidiert). Untersuchungen haben gezeigt, dass die im zweiten Zeitabschnitt B der Regenerationsphase REG erzeugte Wasserstoffkonzentration H2 proportional zur Differenzfläche D zwischen den Verläufen der beiden Lambdawerte λ1, λ2 - beginnend mit dem Kreuzungszeitpunkt K und endend mit dem Bezugszeitpunkt TB - ist.A further variant of the invention is as follows: As soon as all cached nitrogen oxides NO x reduced to nitrogen N 2 and the NO x storage LNT is thus "empty", H 2 is produced in this hydrogen, indicated by reference numeral R2. The proportion of hydrogen H 2 is usually more than ten times as large as the proportion of carbon monoxide CO, which is again more than zehmals as large as the proportion of unburned hydrogen HC (Comparison R3 and R4). Upstream of the NO x storage catalyst LNT hardly H 2 is observed (or is oxidized with the residual oxygen or the O 2 stored in the LNT immediately). Investigations have shown that the hydrogen concentration H 2 generated in the second period B of the regeneration phase REG is proportional to the differential area D between the profiles of the two lambda values λ 1 , λ 2 - starting at the point of intersection K and ending with the reference point T B.

Da der die Differenzen der Lambdawerte somit primär vom Wasserstoff H2 bestimmt wird, kann der Lambdasensor L1, L2 als Wasserstoffsensor eingesetzt werden. Weiters sind zusätzlich unterschiedliche Empfindlichkeiten der Lambdasonde auf Kohlenmonoxid CO und Kohlenwasserstoffe HC bekannt.Since the differences of the lambda values are thus determined primarily by the hydrogen H 2 , the lambda sensor L1, L2 can be used as a hydrogen sensor. In addition, different sensitivities of the lambda probe to carbon monoxide CO and hydrocarbons HC are also known.

Die Konzentration an Wasserstoff H2 kann somit als proportional zur Differenzfläche D angesetzt werden: D = K 1 H 2 ,

Figure DE102015119249B4_0003
wobei K1 einen ersten Proportionalitätsfaktor darstellt.The concentration of hydrogen H 2 can thus be set as proportional to the differential area D: D = K 1 H 2 .
Figure DE102015119249B4_0003
where K1 represents a first proportionality factor.

Die Produzierung des Wasserstoffes ist vorwiegend auf die sogenannte „Wassergas-Shift“ Reaktion H2 aus CO H2O + CO ↔ CO2 + H2 aber auch auf „steam reforming“ aus HC zurückzuführen: 3H2O + C3H6 ↔ 3CO + 6H2. The production of hydrogen is mainly due to the so-called "water gas shift" reaction H 2 from CO H 2 O + CO ↔ CO 2 + H 2 but also due to "steam reforming" from HC: 3H 2 O + C 3 H 6 ↔ 3CO + 6H 2 .

Dieses H2 wird zur Reduktion der von den Speicherplätzen des NOx-Speicherkatalysator desorbierten NOx verwendet. Sobald kein NOx mehr gespeichert ist, bzw. teilweise auch schon zuvor, wird aus H2 und NO NH3 gebildet: 8H2 + Ba(NO3)2 → 5H2O + BaO + 2NH3. This H 2 is used for the reduction of of the storage locations of the NO x storage catalyst desorbed NO x. As soon as NO x more is stored, or in some cases before, NH 2 and NO 3 are formed: 8H 2 + Ba (NO 3 ) 2 → 5H 2 O + BaO + 2NH 3 .

Die gebildete NH3 Menge ist wiederum proportional zur vorliegenden H2 Menge: H 2 = K2 NH 3 ,

Figure DE102015119249B4_0004
wobei K2 einen zweiten Proportionalitätsfaktor darstellt.The amount of NH 3 formed is in turn proportional to the amount of H 2 present: H 2 = K2 NH 3 .
Figure DE102015119249B4_0004
where K2 represents a second proportionality factor.

Die solcherart ermittelte NH3-Menge kann als Eingangsgröße einem bekannten NH3-Beladungsmodell für einen stromabwärts des NOx-Speicherkatalysators vom Abgas durchströmten SCR-Katalysator SCR zugeführt werden.The amount of NH 3 determined in this way can be supplied as an input variable to a known NH 3 charge model for a SCR catalytic converter SCR through which exhaust gas flows downstream of the NO x storage catalytic converter.

Claims (6)

Verfahren zur gezielten Generierung von NH3 während des Regenerationsvorgangs eines in einem Abgassystem einer Brennkraftmaschine (1) angeordneten NOx-Speicherkatalysators (LNT), wobei die Regeneration durch Einstellen einer reduzierend wirkenden Abgasatmosphäre vor dem NOx-Speicherkatalysator (LNT) ausgelöst wird und der zeitliche Verlauf von zumindest während der Regenerationsphase stromaufwärts und stromabwärts des NOx-Speicherkatalysators (LNT) ermittelten Lambdawerten (λ1, λ2) im Abgas stromauf- und stromabwärts des NOx-Speicherkatalysators (LNT) bestimmt wird, dadurch gekennzeichnet, dass folgende Schritte durchgeführt werden: a) Aufsuchen eines Kreuzungszeitpunktes (K), an welchem die ermittelten Lambdawerte (λ1, λ2) stromaufwärts und stromabwärts des NOx-Speicherkatalysators (LNT) den gleichen Wert aufweisen; b) Ermitteln einer ab dem Kreuzungszeitpunkt (K) bis zu einem Bezugszeitpunkt (TB) durch die zeitlichen Verläufe der Lambdawerte (λ1, λ2) stromaufwärts und stromabwärts des NOx-Speicherkatalysators (LNT) aufgespannten Differenzfläche (D); c) Ermitteln einer NH3-Menge im Abgas stromabwärts des NOx-Speicherkatalysators (LNT) auf der Basis der Differenzfläche (D); d) Beendigung des Regenerationsvorganges, wenn die ermittelte NH3-Menge im Abgas stromabwärts des NOx-Speicherkatalysators (LNT) einen definierten Grenzwert überschreitet.A method for the targeted generation of NH 3 during the regeneration process of a in an exhaust system of an internal combustion engine (1) arranged NO x storage catalyst (LNT), wherein the regeneration is triggered by setting a reducing exhaust gas atmosphere in front of the NO x storage catalytic converter (LNT) and the Timing of at least during the regeneration phase upstream and downstream of the NO x storage catalytic converter (LNT) determined lambda values (λ 1 , λ 2 ) in the exhaust upstream and downstream of the NO x storage catalyst (LNT) is determined, characterized in that the following steps performing: a) finding a crossing time point (K) at which the determined lambda values (λ 1 , λ 2 ) have the same value upstream and downstream of the NO x storage catalytic converter (LNT); b) determining a differential area (D) spanned by the temporal courses of the lambda values (λ 1 , λ 2 ) from the point of intersection (K) up to a reference time (T B ) upstream and downstream of the NO x storage catalytic converter (LNT); c) determining an amount of NH 3 in the exhaust gas downstream of the NO x storage catalyst (LNT) based on the differential area (D); d) termination of the regeneration process, when the determined NH 3 amount in the exhaust downstream of the NO x storage catalyst (LNT) exceeds a defined limit. Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass in Schritt c) die NH3-Menge anhand eines empirisch ermittelten Zusammenhangs zwischen der Differenzfläche (D) und der NH3-Menge bestimmt wird.Method according to Claim 1 , characterized in that in step c) the NH 3 amount is determined on the basis of an empirically determined relationship between the differential area (D) and the NH 3 amount. Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass in Schritt c) eine H2-Konzentration im Abgas stromabwärts des NOx-Speicherkatalysators (LNT) auf der Basis der Differenzfläche (D) ermittelt und die NH3-Menge im Abgas stromabwärts des NOx-Speicherkatalysators (LNT) auf der Basis der ermittelten H2-Konzentration bestimmt wird.Method according to Claim 1 characterized in that in step c) an H 2 concentration in the exhaust downstream of the NO x storage catalyst (LNT) based on the differential area (D) determined and the NH 3 amount in the exhaust downstream of the NO x storage catalyst (LNT ) is determined on the basis of the determined H 2 concentration. Verfahren nach Anspruch 3, dadurch gekennzeichnet, dass die H2-Konzentration im Abgas stromabwärts des NOx-Speicherkatalysators (LNT) proportional zur Differenzfläche (D) angenommen wird: D = K 1 H 2 ,
Figure DE102015119249B4_0005
wobei K1 ein erster Proportionalitätsfaktor ist.
Method according to Claim 3 , characterized in that the H 2 concentration in the exhaust gas downstream of the NO x storage catalyst (LNT) is assumed to be proportional to the differential area (D): D = K 1 H 2 .
Figure DE102015119249B4_0005
where K1 is a first proportionality factor.
Verfahren nach Anspruch 3 oder 4, dadurch gekennzeichnet, dass die NH3-Menge im Abgas stromabwärts des NOx-Speicherkatalysators (LNT) proportional zur Wasserstoffkonzentration H2 angenommen wird: H 2 = K2 NH 3 ,
Figure DE102015119249B4_0006
wobei K2 ein zweiter Proportionalitätsfaktor ist.
Method according to Claim 3 or 4 , characterized in that the amount of NH 3 in the exhaust gas downstream of the NO x storage catalyst (LNT) is assumed to be proportional to the hydrogen concentration H 2 : H 2 = K2 NH 3 .
Figure DE102015119249B4_0006
where K2 is a second proportionality factor.
Verfahren nach einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, dass die ermittelte NH3-Menge als Eingangsgröße einem NH3-Beladungsmodell für einen stromabwärts des NOx-Speicherkatalysators (LNT) vom Abgas durchströmten SCR-Katalysator (SCR) zugeführt wird.Method according to one of Claims 1 to 5 Characterized in that the NH 3 determined -Beladungsmodell of the NO x storage catalyst for a downstream (LNT) flowed through by the exhaust gas SCR catalyst (SCR) is fed as input variable to a 3 amount NH.
DE102015119249.7A 2014-11-07 2015-11-09 Method for the targeted generation of NH3 during the regeneration process of a NOx storage catalyst Active DE102015119249B4 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
ATA50814/2014 2014-11-07
ATA50814/2014A AT516469B1 (en) 2014-11-07 2014-11-07 METHOD FOR TARGETED GENERATION OF NH3 DURING THE REGENERATION PROCESS OF NOX MEMORY CATALYST

Publications (2)

Publication Number Publication Date
DE102015119249A1 DE102015119249A1 (en) 2016-05-12
DE102015119249B4 true DE102015119249B4 (en) 2018-09-06

Family

ID=55803073

Family Applications (1)

Application Number Title Priority Date Filing Date
DE102015119249.7A Active DE102015119249B4 (en) 2014-11-07 2015-11-09 Method for the targeted generation of NH3 during the regeneration process of a NOx storage catalyst

Country Status (2)

Country Link
AT (1) AT516469B1 (en)
DE (1) DE102015119249B4 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9631565B2 (en) 2015-09-15 2017-04-25 Hyundai Motor Company Control method for improving nitrogen oxide purification performance
DE102017213594B4 (en) * 2017-08-04 2020-06-25 Continental Automotive Gmbh Method for determining the loading state of an SCR catalytic converter and SCR catalytic converter device

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5446249A (en) 1993-07-13 1995-08-29 Digisonix, Inc. Dry acoustic system preventing condensation
WO2000019075A1 (en) 1998-09-25 2000-04-06 Siemens Aktiengesellschaft METHOD FOR REGENERATING AN NOx STORAGE CATALYTIC CONVERTER
DE102008025520A1 (en) 2008-05-28 2009-12-24 Ford Global Technologies, LLC, Dearborn Exhaust gas after-treatment device operating method, involves triggering regeneration stage by selectively considering standard state variable based on aging state of nitrogen oxide storage catalytic converter
DE102010001202A1 (en) 2010-01-26 2011-07-28 Robert Bosch GmbH, 70469 Method for controlling regeneration of storage catalyst, involves triggering regeneration by setting reduced effective exhaust gas atmosphere before storage catalyst
DE102008043706B4 (en) 2008-11-13 2013-09-05 Ford Global Technologies, Llc Process for the reduction of nitrogen oxides in exhaust gases
DE10355037B4 (en) 2003-11-25 2013-10-10 Robert Bosch Gmbh Method for optimizing the exhaust gas values of an internal combustion engine
DE102014119504A1 (en) 2014-04-24 2015-10-29 Hyundai Motor Company Method and system for controlling an exhaust aftertreatment device for a vehicle

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4304539B2 (en) * 2007-05-17 2009-07-29 いすゞ自動車株式会社 NOx purification system control method and NOx purification system
US9180408B2 (en) * 2008-05-02 2015-11-10 GM Global Technology Operations LLC Fuel efficient ammonia generation strategy for lean-burn engines utilizing passive NH3-SCR for the control of NOx
US20130019589A1 (en) * 2011-07-19 2013-01-24 GM Global Technology Operations LLC Exhaust aftertreatment system for compression-ignition engines

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5446249A (en) 1993-07-13 1995-08-29 Digisonix, Inc. Dry acoustic system preventing condensation
WO2000019075A1 (en) 1998-09-25 2000-04-06 Siemens Aktiengesellschaft METHOD FOR REGENERATING AN NOx STORAGE CATALYTIC CONVERTER
DE10355037B4 (en) 2003-11-25 2013-10-10 Robert Bosch Gmbh Method for optimizing the exhaust gas values of an internal combustion engine
DE102008025520A1 (en) 2008-05-28 2009-12-24 Ford Global Technologies, LLC, Dearborn Exhaust gas after-treatment device operating method, involves triggering regeneration stage by selectively considering standard state variable based on aging state of nitrogen oxide storage catalytic converter
DE102008043706B4 (en) 2008-11-13 2013-09-05 Ford Global Technologies, Llc Process for the reduction of nitrogen oxides in exhaust gases
DE102010001202A1 (en) 2010-01-26 2011-07-28 Robert Bosch GmbH, 70469 Method for controlling regeneration of storage catalyst, involves triggering regeneration by setting reduced effective exhaust gas atmosphere before storage catalyst
DE102014119504A1 (en) 2014-04-24 2015-10-29 Hyundai Motor Company Method and system for controlling an exhaust aftertreatment device for a vehicle

Also Published As

Publication number Publication date
AT516469A1 (en) 2016-05-15
AT516469B1 (en) 2018-06-15
DE102015119249A1 (en) 2016-05-12

Similar Documents

Publication Publication Date Title
DE602005000930T2 (en) EXHAUST CONTROL DEVICE AND EXHAUST CONTROL PROCEDURE FOR INTERNAL COMBUSTION ENGINE
DE102016223247B4 (en) FAULT DIAGNOSTIC DEVICE FOR EXHAUST GAS PURIFICATION SYSTEM
DE102015103547B4 (en) EMISSION TREATMENT SYSTEM AND ELECTRONIC CONTROL MODULE
EP2832965B1 (en) Method and device for determining the efficiency of an exhaust gas purifying device
DE102013209487B4 (en) Method for operating a drive device and corresponding drive device
DE102017124312B4 (en) AMMONIA CONCENTRATION CALCULATION APPARATUS, AMMONIA CONCENTRATION CALCULATION SYSTEM AND AMMONIA CONCENTRATION CALCULATION METHOD
DE102016006828A1 (en) CONCENTRATION DETERMINATION DEVICE AND METHOD
DE102009039929B4 (en) Method for determining the oxygen storage capacity
DE102005062120A1 (en) Method and device for monitoring an exhaust aftertreatment system
DE102013215891B4 (en) Method and device for monitoring a reducing agent solution composition in the exhaust system of an internal combustion engine
WO2019068851A1 (en) Method for operating an exhaust gas post treatment system of a diesel engine and exhaust gas post treatment system
DE102015119249B4 (en) Method for the targeted generation of NH3 during the regeneration process of a NOx storage catalyst
DE102016222010A1 (en) Method for controlling an internal combustion engine with a low-pressure exhaust gas recirculation system
DE102016200158A1 (en) Method for monitoring an exhaust aftertreatment system of an internal combustion engine and control device for an exhaust aftertreatment system
DE102006035311B4 (en) Emission control system for an internal combustion engine
DE102018133185A1 (en) EXHAUST GAS CLEANING DEVICE FOR A COMBUSTION ENGINE
DE112007003166T5 (en) Exhaust emission control apparatus for internal combustion engine
DE102014202491A1 (en) Diagnosis of a lean NOx trap catalyst by measuring a hydrogen concentration
DE102014019483A1 (en) Method for determining ammonia slip of a catalytic converter of an internal combustion engine
DE102012211684A1 (en) Method and device for cleaning the exhaust gas of an internal combustion engine
WO2012052461A1 (en) Method for determining the mass flow of gases, in particular the exhaust gas of internal combustion engines
DE102018213380A1 (en) Method for monitoring an SCR catalytic converter
DE10355037B4 (en) Method for optimizing the exhaust gas values of an internal combustion engine
DE102019105445B4 (en) Exhaust gas purification device for an internal combustion engine
DE102013200623A1 (en) Method for monitoring particulate filter in exhaust gas purification system in internal combustion engine of motor car, involves closing emission control component in comparison to oxide concentration in flow direction of exhaust gas

Legal Events

Date Code Title Description
R163 Identified publications notified
R012 Request for examination validly filed
R018 Grant decision by examination section/examining division
R020 Patent grant now final