DE102014105888A1 - Andockmodul für einen Stromwandler und Stromwandler mit einem Andockmodul - Google Patents

Andockmodul für einen Stromwandler und Stromwandler mit einem Andockmodul Download PDF

Info

Publication number
DE102014105888A1
DE102014105888A1 DE102014105888.7A DE102014105888A DE102014105888A1 DE 102014105888 A1 DE102014105888 A1 DE 102014105888A1 DE 102014105888 A DE102014105888 A DE 102014105888A DE 102014105888 A1 DE102014105888 A1 DE 102014105888A1
Authority
DE
Germany
Prior art keywords
circuit
current transformer
docking module
voltage
input
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
DE102014105888.7A
Other languages
English (en)
Inventor
Martin Jankowski
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Phoenix Contact GmbH and Co KG
Original Assignee
Phoenix Contact GmbH and Co KG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Phoenix Contact GmbH and Co KG filed Critical Phoenix Contact GmbH and Co KG
Priority to DE102014105888.7A priority Critical patent/DE102014105888A1/de
Priority to US15/306,199 priority patent/US10574050B2/en
Priority to PCT/EP2015/058903 priority patent/WO2015162253A1/de
Priority to CN201580021948.8A priority patent/CN106233554A/zh
Publication of DE102014105888A1 publication Critical patent/DE102014105888A1/de
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02HEMERGENCY PROTECTIVE CIRCUIT ARRANGEMENTS
    • H02H9/00Emergency protective circuit arrangements for limiting excess current or voltage without disconnection
    • H02H9/04Emergency protective circuit arrangements for limiting excess current or voltage without disconnection responsive to excess voltage
    • H02H9/041Emergency protective circuit arrangements for limiting excess current or voltage without disconnection responsive to excess voltage using a short-circuiting device
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R1/00Details of instruments or arrangements of the types included in groups G01R5/00 - G01R13/00 and G01R31/00
    • G01R1/36Overload-protection arrangements or circuits for electric measuring instruments
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R19/00Arrangements for measuring currents or voltages or for indicating presence or sign thereof
    • G01R19/165Indicating that current or voltage is either above or below a predetermined value or within or outside a predetermined range of values
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R19/00Arrangements for measuring currents or voltages or for indicating presence or sign thereof
    • G01R19/165Indicating that current or voltage is either above or below a predetermined value or within or outside a predetermined range of values
    • G01R19/16533Indicating that current or voltage is either above or below a predetermined value or within or outside a predetermined range of values characterised by the application
    • G01R19/16538Indicating that current or voltage is either above or below a predetermined value or within or outside a predetermined range of values characterised by the application in AC or DC supplies
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F27/00Details of transformers or inductances, in general
    • H01F27/02Casings
    • H01F27/027Casings specially adapted for combination of signal type inductors or transformers with electronic circuits, e.g. mounting on printed circuit boards
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F27/00Details of transformers or inductances, in general
    • H01F27/34Special means for preventing or reducing unwanted electric or magnetic effects, e.g. no-load losses, reactive currents, harmonics, oscillations, leakage fields
    • H01F27/343Preventing or reducing surge voltages; oscillations
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F27/00Details of transformers or inductances, in general
    • H01F27/40Structural association with built-in electric component, e.g. fuse
    • H01F27/402Association of measuring or protective means
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F27/00Details of transformers or inductances, in general
    • H01F27/42Circuits specially adapted for the purpose of modifying, or compensating for, electric characteristics of transformers, reactors, or choke coils
    • H01F27/422Circuits specially adapted for the purpose of modifying, or compensating for, electric characteristics of transformers, reactors, or choke coils for instrument transformers
    • H01F27/427Circuits specially adapted for the purpose of modifying, or compensating for, electric characteristics of transformers, reactors, or choke coils for instrument transformers for current transformers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F38/00Adaptations of transformers or inductances for specific applications or functions
    • H01F38/20Instruments transformers
    • H01F38/22Instruments transformers for single phase ac
    • H01F38/28Current transformers
    • H01F38/32Circuit arrangements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01RELECTRICALLY-CONDUCTIVE CONNECTIONS; STRUCTURAL ASSOCIATIONS OF A PLURALITY OF MUTUALLY-INSULATED ELECTRICAL CONNECTING ELEMENTS; COUPLING DEVICES; CURRENT COLLECTORS
    • H01R4/00Electrically-conductive connections between two or more conductive members in direct contact, i.e. touching one another; Means for effecting or maintaining such contact; Electrically-conductive connections having two or more spaced connecting locations for conductors and using contact members penetrating insulation
    • H01R4/28Clamped connections, spring connections
    • H01R4/30Clamped connections, spring connections utilising a screw or nut clamping member
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02HEMERGENCY PROTECTIVE CIRCUIT ARRANGEMENTS
    • H02H7/00Emergency protective circuit arrangements specially adapted for specific types of electric machines or apparatus or for sectionalised protection of cable or line systems, and effecting automatic switching in the event of an undesired change from normal working conditions
    • H02H7/04Emergency protective circuit arrangements specially adapted for specific types of electric machines or apparatus or for sectionalised protection of cable or line systems, and effecting automatic switching in the event of an undesired change from normal working conditions for transformers
    • H02H7/042Emergency protective circuit arrangements specially adapted for specific types of electric machines or apparatus or for sectionalised protection of cable or line systems, and effecting automatic switching in the event of an undesired change from normal working conditions for transformers for current transformers
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02HEMERGENCY PROTECTIVE CIRCUIT ARRANGEMENTS
    • H02H9/00Emergency protective circuit arrangements for limiting excess current or voltage without disconnection
    • H02H9/005Emergency protective circuit arrangements for limiting excess current or voltage without disconnection avoiding undesired transient conditions
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R15/00Details of measuring arrangements of the types provided for in groups G01R17/00 - G01R29/00, G01R33/00 - G01R33/26 or G01R35/00
    • G01R15/14Adaptations providing voltage or current isolation, e.g. for high-voltage or high-current networks
    • G01R15/18Adaptations providing voltage or current isolation, e.g. for high-voltage or high-current networks using inductive devices, e.g. transformers
    • G01R15/183Adaptations providing voltage or current isolation, e.g. for high-voltage or high-current networks using inductive devices, e.g. transformers using transformers with a magnetic core

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Emergency Protection Circuit Devices (AREA)
  • Dc-Dc Converters (AREA)

Abstract

Die Erfindung betrifft ein Andockmodul (22) für einen Stromwandler (10) umfassend: – eine elektronische Schaltung (12) und – mindestens ein elektrisches Verbindungselement (28.3) zum elektrischen Koppeln der Schaltung (12) mit dem Stromwandler (10) und zum Andocken des Andockmoduls (22) an den Stromwandler (10).

Description

  • Gebiet der Erfindung
  • Die Erfindung betrifft ein Andockmodul für einen Stromwandler umfassend eine elektronische Schaltung, vorzugsweise eine Schutzschaltung für den Stromwandler zum Verhindern, dass eine Sekundärspannung an einem Sekundärkreis des Stromwandlers einen Sekundärspannungsschwellwert überschreitet. Die Erfindung betrifft ferner einen Stromwandler mit einem Andockmodul.
  • Hintergrund der Erfindung
  • Stromwandler arbeiten im Allgemeinen mit einer niederohmigen Bürde von weniger als einem Ohm, beispielsweise beim Einsatz eines Strommessgeräts im Sekundärkreis. Da die Sekundärspannung proportional zur Bürde ist, kann bei einem leerlaufenden Sekundäranschluss die Spannung an den Sekundärklemmen unzulässig hohe Werte annehmen. Um diesbezüglich einen Schutz des Wandlers bei Unterbrechung seines sekundärseitigen Kurzschlusses zu erzielen, beispielsweise bei Entfernung des Messgeräts einschließlich seines Shunt-Widerstands, sind Schutzschalter bekannt, die beim Auftreten unzulässig hoher Sekundärspannungen den Kurzschluss wieder herstellen.
  • Die bei einem offenen Sekundärkreis des Stromwandlers entstehenden Spannungsspitzen können sehr hoch und damit lebensgefährlich sein und können zudem zur Zerstörung des Stromwandlers führen.
  • Als Abhilfe sind Einrichtungen bekannt, die unverzögert, beispielsweise mittels Dioden oder Relais, oder verzögert kurzschließen. Für den verzögerten Kurzschluss sind Ausführungen bekannt, die periodisch, beispielsweise mittels eines Thermistors, oder dauernd, beispielsweise nach Erweichung eines Abstandhalters, kurzschließen.
  • Einrichtungen, die beim Abheben einer Sekundär-Abdeckung oder Abziehen eines Steckers kurzschließen, sind insofern problematisch, als sie bei Unterbrechung an anderer Stelle des Sekundärkreises nicht wirken.
  • Relais können so ausgeführt sein, dass sie den Stromwandler-Sekundärkreis nach Beseitigung der Unterbrechung selbsttätig und ohne größere Verzögerung wieder freigeben.
  • Eine solche Einrichtung lässt sich allerdings in einem Sekundärklemmenkasten eines Stromwandlers im Allgemeinen nicht unterbringen. Außerdem ist sie teuer und genügt hinsichtlich der Betriebssicherheit und Wetterbeständigkeit nicht immer den hohen betrieblichen Anforderungen.
  • So ist aus der FR 1 178 783 ein Schutzschalter bekannt, bei welchem ein spannungsabhängiges Schaltungselement beim Auftreten unzulässig hoher Sekundärspannungen einen von dem Stromwandler gespeisten Schalter betätigt. Parallel zur Sekundärwicklung und zur Bürde des Wandlers liegt eine Reihenschaltung von zwei antiparallel geschalteten Gleichrichtern und einem als Thermorelais ausgebildeten Relais. Falls die Sekundärspannung einen kritischen Wert erreicht, spricht das Relais an und schließt dabei einen Kontakt, der einen Kurzschlusspfad herstellt, der entweder nur die Gleichrichter oder die Reihenschaltung aus Gleichrichtern und Relais überbrückt.
  • Nachteilig bei diesem bekannten Schutzschalter ist, dass er eine hohe Trägheit besitzt, so dass sowohl das Ansprechen, als auch die Wiederherstellung des normalen Betriebszustandes nach Abklingen der unzulässig hohen Sekundärspannung, zeitverzögert ausgeführt werden. Ferner lässt sich ein solcher Schutzschalter, aufgrund seiner Größe, nur schwer im Sekundärklemmenkasten des Stromwandlers unterbringen, ist zudem teuer und ist problematisch hinsichtlich der Betriebssicherheit.
  • Allgemeine Beschreibung der Erfindung
  • Der Erfindung liegt die Aufgabe zugrunde, eine Schutzschaltung für einen Stromwandler hinsichtlich höherer Reaktionsgeschwindigkeit, höheren Belastungsstroms, höherer Betriebssicherheit, geringeren Bauvolumens und geringerer Herstellkosten weiterzuentwickeln.
  • Diese Aufgabe wird durch den Gegenstand der unabhängigen Ansprüche gelöst. Vorteilhafte Ausgestaltungen und Weiterbildungen sind in den abhängigen Ansprüchen angegeben. Die Merkmale der Weiterbildungen können, soweit technisch sinnvoll, miteinander und mit den Merkmalen der unabhängigen Ansprüche kombiniert werden.
  • Ein Aspekt der Erfindung betrifft ein Andockmodul für einen Stromwandler. Das Andockmodul befindet sich vorzugsweise außerhalb eines Stromwandlers und kann an den Stromwandler angedockt oder angekoppelt werden. Das Andockmodul kann eine elektronische Schaltung für den Stromwandler und mindestens ein elektrisches Verbindungselement zum elektrischen Koppeln der Schaltung mit dem Stromwandler und zum Andocken des Andockmoduls an den Stromwandler umfassen.
  • Hierbei umfasst vorzugsweise das Andocken das mechanische Befestigen des Andockmoduls an den Stromwandler. Um das Andocken zu ermöglichen kann der Stromwandler in einem Außenbereich mindestens eine Öffnung aufweisen, in welche das mindestens eine Verbindungselement einsteckbar ist.
  • Vorzugsweise umfasst das Andockmodul zwei elektrische Verbindungselemente, insbesondere zum Bereitstellen einer Spannung oder zum Übertragen eines Stroms über die Verbindungselemente oder zum Herstellen eines Kurzschlusses zwischen den Verbindungselementen. Der Kurzschluss kann vorzugsweise dann hergestellt werden, wenn i) die Schaltung als eine Schutzschaltung ausgebildet ist und ii) die Spannung zwischen den Verbindungselementen einen Schwellwert überschreitet.
  • Das Andockmodul kann auch eine Schaltung umfassen, die eine von einer Schutzschaltung verschiedene Funktion bereitstellt, beispielsweise einen Shunt-Widerstand.
  • Vorteilhafter Weise ermöglich das vorliegende Konzept ein leichtes, effizientes und unproblematisches Koppeln oder Andocken des Andockmoduls an den Stromwandler. Besonders vorteilhaft ist ein solches Andocken wenn der Stromwandler nachträglich um die in dem Andockmodul implementierte Funktionalität erweitert werden soll. Hierbei heißt nachträglich, dass ein Nutzer zunächst einen Stromwandler hat, welcher die in dem Andockmodul implementierte Funktionalität nicht aufweist; wenn der Stromwandler um die in dem Andockmodul implementierte Funktionalität erweitert werden soll, dann kann der Stromwandler mit dem Andockmodul nachgerüstet werden. Das Andockmodul kann damit als Nachrüstmodul angesehen werden.
  • Der Stromwandler ist im Wesentlichen ein kurzgeschlossener Transformator, der zum potentialfreien Messen von Wechselströmen verwendet wird. Er dient vorzugsweise zur Speisung von Strommessgeräten oder Energiezählern.
  • Die Primärwicklung des Stromwandlers besteht häufig aus einer einzigen Windung, beispielsweise einer Kupferschiene, während die Sekundärwicklung eine höhere Windungszahl hat. Das bedeutet, dass bei Leerlauf die Spannung des Primärkreises auf eine noch höhere Spannung im Sekundärkreis transformiert wird. Die hohe Spannung im Sekundärkreis kann zu einer Personengefährdung oder zu einer Zerstörung des Stromwandlers führen.
  • Die Schaltung kann eine Schutzschaltung für den Stromwandler sein. Die Schutzschaltung dient zum Verhindern, dass eine Sekundärspannung an einem Sekundärkreis des Stromwandlers einen Sekundärspannungsschwellwert überschreitet. Der Sekundärspannungsschwellwert kann beispielsweise einen bei der Herstellung der Schutzschaltung voreingestellter Wert oder einen durch eine Bedienperson einstellbaren Wert aufweisen.
  • Die Schutzschaltung kann einen Schutzschaltungseingang aufweisen, vorzugsweise in Form von Kontaktstiften oder eines Klemmenpaares, der an den Sekundärkreis des Stromwandlers koppelbar ist, so dass die Sekundärspannung an dem Schutzschaltungseingang anliegt.
  • Die Schutzschaltung kann ferner eine mit dem Schutzschaltungseingang verbundene Steuereinheit, sowie eine mit dem Schutzschaltungseingang verbundene Schaltereinheit, die mit der Steuereinheit ansteuerbar verbunden ist, umfassen.
  • Die Steuereinheit kann dazu ausgebildet sein, unter Ansprechen auf ein Überschreiten des Sekundärspannungsschwellwerts durch die Sekundärspannung, ein Steuersignal an die Schaltereinheit bereitzustellen. Der Wert der Sekundärspannung, der mit dem Sekundärspannungsschwellwert verglichen wird, kann eine Amplitude, ein Mittelwert, Momentanwert oder Effektivwert der Sekundärspannung sein.
  • Die Steuereinheit kann in Form einer elektronischen Schaltung, beispielsweise auf Halbleiterbasis, insbesondere in Gestalt eines integrierten Schaltkreises, implementiert sein.
  • Die Schaltereinheit kann dazu ausgebildet sein, unter Ansprechen auf das von der Steuereinheit bereitgestellte Steuersignal, den Schutzschaltungseingang kurzzuschließen. Das Steuersignal kann auf der Leitung, welche die Steuereinheit mit der Schaltereinheit verbindet, in Form einer Spannung bereitgestellt werden, die beim Überschreiten oder unter Ansprechen auf das Überschreiten des Sekundärspannungsschwellwerts ihren Wert ändert, beispielsweise von LOW auf HIGH oder umgekehrt.
  • Unter Kurzschließen des Schutzschaltungseingangs kann verstanden werden, dass das Schaltelement einen niederohmigen Widerstand in Höhe von weniger als 10 Ω, oder 1 Ω, oder 0,1 Ω, annimmt, der somit an den Schutzschaltungseingang geschaltet wird.
  • Die Schaltereinheit kann als eine Halbleiterschaltung ausgebildet sein. Die Halbleiterschaltung kann vorzugsweise als ein Halbleiterschalter oder Halbleiterrelais ausgebildet sein. Hierbei kann unter Halbleiterschalter ein auf Halbleiterbasis implementierter Schalter verstanden werden. Unter Halbleiterrelais kann ein auf Halbleiterbasis implementiertes Relais verstanden werden.
  • Gegenüber elektromechanischen Relais (EMR) bieten auf Halbleiterbasis implementierte Schalter oder Relais eine Vielzahl von Vorteilen:
    • – Halbleiterschalter sind typischerweise kleiner als EMRs, wodurch sich eine deutliche Platzeinsparung auf gedruckten Leiterplatten ergibt.
    • – Halbleiterschalter bieten eine bessere Systemzuverlässigkeit, da sie keine beweglichen Bauteile haben oder Kontakte die sich abnutzen könnten.
    • – Halbleiterschalter schalten prellfrei.
    • – Halbleiterschalter bieten bessere System-Lebenszeitkosten, einschließlich einer einfacheren Schaltung mit geringeren Anforderungen an Stromversorgung und die Wärmeabfuhr.
    • – Halbleiterschalter können Surface-Mount-Technologie (SMT) nutzen, was geringere Bestückungskosten und eine einfache Leiterplattenmontage zur Folge hat.
    • – Halbleiterschalter können nicht durch Magnetfelder beeinträchtigt werden.
    • – Halbleiterschalter sind unempfindlich gegenüber mechanischen Einflüssen wie Schock und Vibration.
    • – Halbleiterschalter erzeugen keine elektromagnetischen Störungen und sind auch nicht empfindlich gegenüber diesen Einflüssen (EMV, EMI).
    • – Halbleiterschalter können auf gedruckten Leiterplatten vorteilhaft wie ICs verarbeitet werden.
  • Die Schaltung, insbesondere die Schutzschaltung, kann auf einer Schaltungsplatine aufgebaut sein, wobei das Verbindungselement über die Schaltungsplatine hinaus und/oder aus dem Andockmodul heraus ragen kann. Hierbei kann das Verbindungselement als eine zungenförmige Lasche ausgebildet sein, die aus dem Gehäuse oder dem Andockmodul herausragt, wobei die Lasche insbesondere als eine zungenförmige Ausbuchtung der Schaltungsplatine ausgebildet ist.
  • Das Andockmodul umfasst vorzugsweise ein Gehäuse, in welchem die Schaltung, insbesondere die Schutzschaltung, untergebracht ist. Das Gehäuse kann aus einem elektrisch isolierenden Material bestehen, beispielsweise Spezialkeramik mit hohen Aluminiumoxidanteilen, Steatit, Porzellan, Glas, Kunststoff, glasfaserverstärkter oder hydrophober Kunststoff.
  • Aufgrund der hohen Ströme, die bei einem Kurzschluss zu erwarten sind, ist ein niedriger Kontaktwiderstand an dem Verbindungselement sehr wichtig. Daher kann die Lasche einseitig oder beidseitig mit einem elektrisch leitenden Material, insbesondere mit einem Metall, vorzugsweise mit Gold, Silber oder Kupfer, beschichtet sein.
  • Die beidseitigen Beschichtungen der Lasche können über eine Durchkontaktierung der Schaltungsplatine miteinander verbunden sein. Der Vorteil der Durchkontaktierung liegt in dem verbesserten elektrischen Kontakt (beidseitig, oben und unten) mit einem entsprechenden Element, vorzugsweise einem Sekundäranschluss, des Stromwandlers. Sofern die Beschichtungen der Lasche gegebenenfalls nicht miteinander verbunden sind, können mit einer Lasche oder einem Verbindungselement zwei elektrische Verbindungen bereitgestellt werden.
  • Das Verbindungselement kann mittels eines Anspannungselements, vorzugsweise einer Schraube, an den Stromwandler angepresst sein oder angepresst werden, wobei vorzugsweise das Verbindungselement in einem dem Stromwandler zugewandten Endbereich eine Kerbe aufweist. Das Anpressen des Verbindungselements an den Stromwandler kann zum Herstellen oder Verbessern eines elektrischen Kontakts mit dem Stromwandler, vorzugsweise mit einem der Sekundäranschlüsse des Stromwandlers, dienen. Das Anziehen des Anspannungselements kann auch zum Festmachen, Anmontieren oder Anlegen des Andockmoduls an den Stromwandler dienen.
  • Das Andocken umfasst das Herstellen oder Verbessern eines elektrischen Kontakts zwischen Verbindungselement und Stromwandler. Zum Andocken des Andockmoduls ist vorzugsweise folgendes Vorgehen möglich: i) die Schraube wird gelockert, ii) das Verbindungelement wird in die komplementäre, auf der Stromwandler-Seite bereitstehende Öffnung eingeschoben, iii) die Schraube wird angezogen, wodurch der elektrische Kontakt zum Stromwandler hergestellt ist oder das Andockmodul an den Stromwandler anmontiert ist.
  • Vorzugsweise weist das Gehäuse Rastelemente auf, die dazu ausgebildet sind, mit Rastelementen der Schaltungsplatine zusammenzuwirken, um einen Rastmechanismus zum Befestigen der Schaltungsplatine an das Gehäuse zu bilden. Mittels des Rastmechanismus kann die Schaltungsplatine in das Gehäuse geschoben und dort verrastet werden. Der Rastmechanismus dient insbesondere zum Herstellen einer schwer lösbaren, vorzugsweise nicht lösbaren, mechanischen Verbindung der Schaltungsplatine mit dem Gehäuse.
  • Ein weiterer Aspekt der Erfindung betrifft einen Stromwandler, vorzugsweise einen Durchsteckwandler, an den ein Andockmodul gemäß obiger Beschreibung andockbar oder koppelbar ist.
  • Die Vorteile der Erfindung liegen darin, dass
    • – die Baugröße der Schutzschaltung gegenüber herkömmlichen Schutzschaltungen sehr viel geringer ist,
    • – ein Stromwandler mit integrierter Schutzschaltung bereitgestellt werden kann, der sich bezüglich seiner Abmessungen nicht oder nur geringfügig von einem herkömmlichen Stromwandler unterscheidet, und
    • – eine sehr geringe Reaktionszeit der Schutzschaltung gewährleistet ist.
  • Weitere Vorteile der Erfindung hängen unter anderen mit der Realisierung von Steuereinheit und Schaltereinheit auf Halbleiterbasis zusammen.
  • Die Merkmale der nachfolgenden Weiterbildungen und Ausführungsformen der Erfindung können mit den obigen Aspekten der Erfindung kombiniert werden.
  • Gemäß einer Ausführungsform kann die Steuereinheit direkt mit dem Schutzschaltungseingang verbunden sein.
  • Ferner kann die Schaltereinheit direkt mit dem Schutzschaltungseingang verbunden sein.
  • Hierbei heißt „direkt verbunden“, dass die Komponente „Steuereinheit“ und/oder „Schaltereinheit“ unmittelbar an den Schutzschaltungseingang gekoppelt oder damit verbunden ist, wobei sich keine elektrischen oder mechanischen Elemente zwischen der Komponente und dem Schutzschaltungseingang befinden.
  • Die Schutzschaltung kann eine mit dem Schutzschaltungseingang verbundene Begrenzungseinheit für einen Überspannungsschutz umfassen. Die Begrenzungseinheit kann einen spannungsabhängigen Widerstand umfassen. Der spannungsabhängige Widerstand hat einen konstanten Wert, solange die an der Begrenzungseinheit anliegende Spannung unter einem Schwellwert liegt. Wenn die Spannung den Schwellwert überschreitet, reduziert der Widerstand seinen Wert, so dass sich der Strom durch den Widerstand erhöht und die am Widerstand anliegende Spannung den Schwellwert nicht überschreitet.
  • Vorteilhafter Weise ergänzen und unterstützen sich Begrenzungseinheit, Schalteinheit und Steuereinheit gegenseitig bezüglich der Schutzfunktion für den Stromwandler. Einerseits, weil die Schalteinheit für größere Ströme als die Begrenzungseinheit ausgelegt ist. Gemeinsam können die Komponenten Schalteinheit und Begrenzungseinheit einen größeren Strom ertragen als jede Komponente für sich allein.
  • Auf der anderen Seite unterstützt die Begrenzungseinheit die Steuereinheit, weil mittels der Parallelschaltung von Begrenzungseinheit und Steuereinheit eine definierte Spannung an den Eingang der Steuereinheit bereitgestellt oder ermöglicht wird. Damit kann die Wahrscheinlichkeit einer Beschädigung der Steuereinheit durch eine überhöhte Spannung am Eingang der Steuereinheit reduziert werden.
  • Zudem ermöglicht die Verwendung der Begrenzungseinheit einen Einsatz von Komponenten für die Steuereinheit und Schalteinheit, die nicht für hohe Spannungen ausgelegt sind, so dass dafür preiswerte Komponenten eingesetzt werden können.
  • Gemäß einer Ausführungsform kann die Steuereinheit eine Komparatoreinheit umfassen, welche dazu ausgebildet ist, das Steuersignal an die Schaltereinheit bereitzustellen, falls eine Eingangsspannung der Komparatoreinheit einen Schwellwert überschreitet.
  • Die Steuereinheit kann ferner einen mit dem Schutzschaltungseingang verbundenen Gleichrichter umfassen zum Bereitstellen einer von einer Amplitude der Sekundärspannung abhängigen, insbesondere pulsierenden, Gleichspannung als Eingangsspannung der Komparatoreinheit.
  • Vorteilhafter Weise ermöglich der Gleichrichter eine Reaktion der Steuereinheit sowohl während negativer als auch positiver Halbwellen der Sekundärspannung, was eine weitere Verkürzung der Reaktionszeit ermöglicht.
  • Gemäß einer Ausführungsform kann die Komparatoreinheit einen Komparator umfassen mit einem positiven Eingang, einem negativen Eingang an welchem eine Spannung in Höhe von etwa der Eingangsspannung der Komparatoreinheit anliegt, und einem Ausgang, welcher das Steuersignal bereitstellt.
  • Die Komparatoreinheit kann ferner einen Spannungsteiler umfassen, wobei der positive Eingang mit der Eingangsspannung der Komparatoreinheit über den Spannungsteiler verbunden ist. Dadurch kann dem positiven Eingang des Komparators eine gemäß dem Teilungsverhältnis des Spannungsteilers reduzierte Eingangsspannung zugeführt werden.
  • Die Komparatoreinheit kann auch eine Zener-Diode umfassen, die mit dem negativen Eingang verbunden ist, zum Begrenzen einer am negativen Eingang anliegenden Spannung. Damit ist gewährleistet, dass am negativen Eingang des Komparators maximal die Durchbruchsspannung der Zener-Diode anliegt.
  • Die Komparatoreinheit kann einen Kondensator umfassen, der mit dem positiven Eingang verbunden ist.
  • Gemäß einer Ausführungsform kann die Schaltereinheit mehrere MOSFETs umfassen.
  • Vorteilhafter Weise kann die Schaltereinheit zwei in einer Back-to-Back Schaltung angeordnete MOSFETs umfassen. Hierbei können die Drain-Anschlüsse der Transistoren jeweils mit den Klemmen des Schutzschaltungseingangs verbunden sein, und die Gates können mit der Steuereinheit zum Zuführen des Steuersignals verbunden sein. Die Back-to-Back Schaltung ist vorteilhafter Weise für sehr hohe Ströme verwendbar. Zudem ist die Back-to-Back Schaltung wechselspannungsfähig, da ein Stromfluss in beide Richtungen möglich ist.
  • Die Schaltereinheit kann insbesondere einen Solid-State Relay (SSR) umfassen.
  • Alternativ kann die Schaltereinheit einen Thyristor, vorzugsweise einen Triac, umfassen. Ein Triac hat bis zu seiner Sperrspannung einen sehr hohen Innenwiderstand, so dass er die Messgenauigkeit des Stromwandlers nicht beeinflusst. Andererseits sinkt sein Innenwiderstand sehr schnell nach seiner Ansteuerung auf Werte << 1 Ω, so dass dann ein sekundärer Kurzschluss des Wandlers hergestellt wird.
  • Die Schaltereinheit kann einen Optokoppler zum Einkoppeln des Steuersignals umfassen. Damit wird kann die Schaltereinheit gegenüber der Steuereinheit galvanisch entkoppelt werden.
  • Gemäß einer Ausführungsform kann die Begrenzungseinheit eine Suppressordiode (englisch: Transient Absorption Zener / TAZ-Diode, oder Transient Voltage Suppressor / TVS-Diode) umfassen. Die Suppressordiode bewirkt einen Schutz des Schutzschaltungseingangs, sowie aller damit verbundenen Komponenten wie Sekundärkreis, Steuereinheit oder Schaltereinheit, vor kurzzeitigen Überspannungsimpulsen.
  • Alternativ oder ergänzend kann die Begrenzungseinheit einen Varistor und/oder einen Gasableiter zum Schutz des Schutzschaltungseingangs vor kurzzeitigen Überspannungsimpulsen umfassen.
  • Gemäß einer Ausführungsform kann die Schutzschaltung unmittelbar an dem Stromwandler, genauer in dem Gehäuse des Stromwandlers, vorzugsweise in einem Sekundärklemmenkasten des Stromwandlers, beherbergt sein. Hierbei kann ein Stromwandlergehäuse derart ausgebildet sein, dass es den Sekundärklemmenkasten, in welchem Sekundärkreisklemmen des Stromwandlers angeordnet sind, sowie ein Sekundärkreisgehäuse, worin die Sekundärspule des Stromwandlers angeordnet ist, umfasst.
  • Eine derartige Unterbringung der Schutzschaltung ermöglicht für eine aus Stromwandler und Schutzschaltung bestehende Anordnung, aufgrund der kompakten Bauweise, eine erhöhte Beständigkeit gegen Witterungseinflüsse.
  • Die Erfindung wird nachfolgend anhand von Ausführungsbeispielen und unter Bezugnahme auf die Zeichnungen näher erläutert. Dabei verweisen gleiche Bezugszeichen auf gleiche oder entsprechende Elemente. Die Merkmale verschiedener Ausführungsbeispiele können miteinander kombiniert werden.
  • Kurzbeschreibung der Figuren
  • Es zeigen:
  • 1 eine schematische Darstellung einer ersten Ausführungsform der Schutzschaltung im Zusammenspiel mit einem Stromwandler,
  • 2 eine schematische Darstellung einer zweiten Ausführungsform der Schutzschaltung im Zusammenspiel mit einem Stromwandler,
  • 3 eine schematische Detail-Darstellung der zweiten Ausführungsform der Schutzschaltung,
  • 4 ein Strom-Spannungs-Diagramm einer Suppressordiode,
  • 5a eine perspektivische Darstellung eines Stromwandlers,
  • 5a eine Schnittdarstellung des Stromwandlers,
  • 6 eine perspektivische Darstellung der Schaltung, die Teil eines Andockmoduls ist,
  • 7 eine perspektivische Darstellung des Andockmoduls,
  • 8a eine perspektivische Darstellung eines Stromwandlers umfassend das Andockmodul, und
  • 8b eine perspektivische Darstellung eines Stromwandlers umfassend das Andockmodul, mit freigelegter Einsicht in das Andockmodul.
  • Detaillierte Beschreibung der Erfindung
  • 6 zeigt eine perspektivische Darstellung der als Schutzschaltung ausgebildeten Schaltung 12, die Teil eines Andockmoduls 22 ist, welches zwei Verbindungselemente 28.3 aufweist. 7 zeigt eine perspektivische Darstellung des Andockmoduls 22, worin auch das Gehäuse 26 des Andockmoduls 22 erkennbar ist.
  • Die Schaltung 12 ist auf einer Schaltungsplatine 28 aufgebaut, wobei die Verbindungselemente 28.3 über die Schaltungsplatine 28 und aus dem Andockmodul 22 heraus ragen, was in 7 erkennbar ist. Hierbei sind die Verbindungselemente als zungenförmige Laschen 28.3 ausgebildet, die aus dem Gehäuse 26 des Andockmoduls 22 herausragen, wobei die Laschen 28.3 insbesondere als zungenförmige Ausbuchtungen der Schaltungsplatine 28 ausgebildet sind. Hierbei sind die Laschen 28.3 beidseitig (obere Fläche und untere Fläche) vergoldet.
  • Die Verbindungselemente 28.3 sind mittels Schrauben 30 an den Stromwandler 10 anpressbar, wobei die Verbindungselemente 28.3 in dem Stromwandler 10 zugewandten Endbereichen Kerben aufweisen. Zum Andocken des Andockmoduls 22 ist folgendes Vorgehen vorgesehen:
    • i) die Schrauben 30 werden gelockert,
    • ii) die Verbindungelemente 28.3 werden in komplementäre, auf der Stromwandler-Seite bereitstehenden Öffnungen 38 eingeschoben, und
    • iii) die Schrauben 30 werden angezogen, wodurch der elektrische Kontakt zum Stromwandler 10 hergestellt ist und zugleich die Verbindungelemente 28.3 an den Stromwandler 10 festgemacht oder anmontiert werden.
  • In einem in den Öffnungen 38 des Stromwandlers 10 eingeschobenen Zustand der Verbindungelemente 28.3 stellen diese eine elektrische Verbindung zwischen den Sekundäranschlüssen 10.1 des Stromwandlers 10 und einem Eingang 12.1 der Schutzschaltung 12 her (die Öffnungen 38 sind in 5a erkennbar). In dem Stromwandler 10 liegen Schraubenanschlüsse vor, welche beim Anziehen der Schrauben 30 einen elektrischen Kontakt zwischen den Sekundäranschlüssen 10.1 des Stromwandlers 10 und den Verbindungelementen 28.3 herstellen.
  • Durch die paarig angeordneten Schrauben 30 können das als Nachrüstmodul ausgebildete Andockmodul 22 von der einen Seite und die Verbindungskabel 36 zum Strommessgerät 20 auf der anderen Seite des Strommesswandlers 10 angebracht werden. Entsprechende Kontaktelemente (auf einer Seite zum Andockmodul 22 hin und auf der Gegenseite zu den Verbindungskabeln 36 hin) sind in dem Strommesswandler 10 bereits vorhanden, so dass die Verbindungskabel 36 und/oder das Andockmodul 22 jederzeit an den Strommesswandler 10 festgemacht werden können. So kann das Nachrüstmodul auch bereits vor der Montage des Strommesswandlers 10 an den Strommesswandler 10 befestigt werden, was die Montage vor Ort erheblich erleichtert.
  • Oberhalb der Schrauben 30 sind Schieber 40 angeordnet (siehe 5a), die in einem eingeschobenen Zustand den Raum oberhalb der Schrauben 30 abdecken und das Eindringen von Staub ins Innere des Andockmoduls 22 verhindern, und in einem ausgeschobenen Zustand einen Zugang zu den Schrauben 30 ermöglichen.
  • Wie in 6 und 7 erkennbar ist, weist das Gehäuse 26 Rastelemente 26.1, 26.2 auf, die dazu ausgebildet sind, mit Rastelementen 28.1, 28.2 der Schaltungsplatine 28 zusammenzuwirken, um einen Rastmechanismus zum Befestigen der Schaltungsplatine 28 an das Gehäuse 26 zu bilden.
  • Das Gehäuse 26 umfasst in einem seitlichen Innenbereich und Öffnungsbereich eine Rippe mit einer Nut 26.2, die vorzugsweise entlang oder parallel zu Seitenkanten des Gehäuses 26 verlaufen. Die Nut 26.2 ist an der Öffnung des Gehäuses 26 mit einem Nutende 26.1 geschlossen. Komplementär zu den Rastelementen des Gehäuses 26 weist die Schaltungsplatine 28 Rastelemente 28.1, 28.2 auf, umfassend einen überstehenden Damm 28.1 mit einer Dammecke 28.2.
  • Vorzugsweise sind die Rastelemente Nutende 26.1, Nut 26.2 und Damm 28.1 mit Dammecke 28.2 jeweils paarweise ausgebildet.
  • In einem in dem Gehäuse 26 eingeführten Zustand der Schaltungsplatine 28 nimmt die Nut 26.2 des Gehäuses 26 den Damm 28.1 der Schaltungsplatine 28 auf, wobei die Dammecke 28.2 der Schaltungsplatine 28 hinter dem vorderen verschlossenen Ende 26.1 der Nut verrastet.
  • Die Verrastung von Nutende 26.1 und Dammecke 28.2 bildet den Rastmechanismus zum Befestigen der Schaltungsplatine 28 an das Gehäuse 26. Dieser Rastmechanismus verhindert das Lösen der Schaltungsplatine 28 von dem Gehäuse 26 oder das Herausnehmen der Schaltungsplatine 28 aus dem Gehäuse 26 und stellt damit eine feste, stabile, vorzugsweise nicht lösbare, mechanische Verbindung der Schaltungsplatine 28 mit dem Gehäuse 26 dar.
  • 8a zeigt eine perspektivische Darstellung des Stromwandlers 10, an welchem das Andockmodul 22 bereits angedockt ist. In dem gezeigten Zustand ist Andockmodul 22 fest an den Stromwandler 10 gepresst oder angedockt und kann nicht ohne weiteres von dem Stromwandler 10 getrennt werden, wodurch eine hohe mechanische Stabilität und Betriebssicherheit des Stromwandlers 10 gewährleistet ist.
  • 8b zeigt die Anordnung umfassend den Stromwandler 10 und das Andockmodul 22, mit freigelegter Einsicht in das Andockmodul 22. Hierbei ist erkennbar, wie der elektrische Kontakt zwischen dem Verbindungselement 28.3 und dem Stromwandler 10 hergestellt wird.
  • In der Öffnung 38 befindet sich eine kanalförmige, dünnschalige, aus einem Metall bestehende Aufnahmevorrichtung für das Verbindungselement 28.3, die zu den Schrauben 30 hin Öffnungen zum Einführen der Schrauben 30 und auf der zu den Öffnungen gegenüberliegenden Seite Gewindebohrungen aufweist. Eine in einer Öffnung eingeführte Schraube 30 kann in die Gewindebohrung mittels Drehen eingeschraubt werden, wodurch ein in der Aufnahmevorrichtung aufgenommenes und eingeklemmtes Verbindungselement 28.3 zusammengedrückt wird, i) zum Herstellen eines elektrischer Kontakts zwischen der oberen und/oder unteren Beschichtung des Verbindungselements 28.3 und der kanalförmigen Aufnahmevorrichtung und ii) zum mechanischen Befestigen des Andockmoduls 22 an den Stromwandler 10.
  • Die 1 zeigt ein erstes Ausführungsbeispiel der Schutzschaltung 12 für einen Stromwandler 10. Die Schutzschaltung 12 dient zum Verhindern, dass eine Sekundärspannung Us an einem Sekundärkreis 10.1 des Stromwandlers 10 einen Sekundärspannungsschwellwert überschreitet.
  • Die Schutzschaltung 12 umfasst
    • – einen Schutzschaltungseingang 12.1, der an den Sekundärkreis 10.1 des Stromwandlers 10 gekoppelt ist, so dass die Sekundärspannung Us an dem Schutzschaltungseingang 12.1 anliegt,
    • – eine mit dem Schutzschaltungseingang 12.1 verbundene Steuereinheit 16, und
    • – eine mit dem Schutzschaltungseingang 12.1 verbundene Schaltereinheit 18, die mit der Steuereinheit 16 ansteuerbar verbunden ist.
  • Die Steuereinheit 16 ist dazu ausgebildet, unter Ansprechen auf ein Überschreiten des Sekundärspannungsschwellwerts durch die Sekundärspannung Us, ein Steuersignal an die Schaltereinheit 18 bereitzustellen.
  • Die Schaltereinheit 18 ist dazu ausgebildet, unter Ansprechen auf das von der Steuereinheit 16 bereitgestellte Steuersignal, den Schutzschaltungseingang 12.1 kurzzuschließen.
  • In der 1 ist ferner ein Strommessgerät 20, das zum Messen des Stroms durch den Sekundärkreis 10.1 ausgebildet ist. Während des Messbetriebs ist das Auftreten einer Überspannung am Sekundärkreis 10.1 sehr unwahrscheinlich. Die Wahrscheinlichkeit für das Auftreten einer Überspannung oder überhöhten Sekundärspannung Us erhöht sich aber substantiell, sobald das Strommessgerät 20 vom Sekundärkreis 10.1 abgeklemmt wird, was in der 1 angedeutet ist.
  • Im Folgenden wird die Funktion der Schutzschaltung 12 erläutert.
  • Beim Auftreten einer überhöhten Sekundärspannung Us am Sekundärkreis 10.1 liegt an der Steuereinheit 16 eine Spannung an, welche einen voreingestellten Sekundärspannungsschwellwert überschreitet. Unter Ansprechen auf diese Überschreitung stellt die Steuereinheit 16 ein Steuersignal an die Schaltereinheit 18 bereit, welches beispielsweise von LOW auf HIGH wechselt. Unter Ansprechen auf das Steuersignal reduziert die Schalteinheit 18 ihren Innenwiderstand auf annähernd Null und schließt damit den Sekundärkreis 10.1 kurz.
  • Die 2 zeigt ein zweites Ausführungsbeispiel der Schutzschaltung 12 für einen Stromwandler 10. Im Unterschied zum ersten Ausführungsbeispiel umfasst die Schutzschaltung 12 gemäß dem in 2 gezeigten Ausführungsbeispiel eine Begrenzungseinheit 14, die parallel zur Steuereinheit 16 und zur Schaltereinheit 18 geschaltet ist und mit dem Sekundärkreis 10.1 verbunden ist.
  • Vorteilhafter Weise ergänzen und unterstützen sich Begrenzungseinheit 14, Schalteinheit 18 und Steuereinheit 16 gegenseitig bezüglich der Schutzfunktion für den Stromwandler 12. Einerseits, weil die Schalteinheit 18 für größere Ströme als die Begrenzungseinheit 14 ausgelegt ist. Gemeinsam können die Komponenten Schalteinheit 18 und Begrenzungseinheit 14 einen größeren Strom ertragen als jede Komponente für sich allein.
  • Auf der anderen Seite unterstützt die Begrenzungseinheit 14 die Steuereinheit 18, weil mittels der Parallelschaltung von Begrenzungseinheit 14 und Steuereinheit 18 eine definierte Spannung an den Eingang der Steuereinheit 18 bereitgestellt wird.
  • Bekanntlich haben Suppressordioden, die bevorzugt für die Begrenzungseinheit 14 verwendet wird, nach Erreichen der Durchbruchspannung (siehe 4) noch einen endlichen Innenwiderstand, so dass sie nur Dauerströme führen können, die niedriger als die üblichen sekundären Nennströme von Wandlern sind. Dies ist ein möglicher Grund dafür, dass bisher keine Schutzschaltungen bekannt sind, die allein aus Suppressordioden bestehen.
  • Die zum Kurzschließen der Schaltereinheit 18 benötigte kurze Zeit stellt eine vernachlässigbar kleine Trägheit der Schutzschaltung 12 sicher, da die Steuereinheit 16 jede Halbwelle der Spannung am Sekundärkreis 10.1 "abtasten" kann. Sobald also die Spannung wieder unter einen vorgegebenen Grenzwert gesunken ist, wird in kürzester Zeit selbsttätig der durch die Schutzschaltung 12 hervorgerufene sekundärseitige Kurzschluss aufgehoben. Die Ansteuerung erfolgt periodisch.
  • Die 3 zeigt Details der in 2 dargestellten Ausführungsform der Schutzschaltung 12. Demnach umfasst die Steuereinheit 16 einen Gleichrichter 16.1 und eine Komparatoreinheit 16.2. Die Komparatoreinheit 16.2 umfasst:
    • – einen Komparator K mit einem positiven Eingang, einem negativen Eingang an welchem eine Spannung in Höhe von etwa der Eingangsspannung der Komparatoreinheit 16.2 anliegt, und einem Ausgang, welcher das Steuersignal bereitstellt;
    • – einen Spannungsteiler R2, R3, wobei der positive Eingang mit der Eingangsspannung der Komparatoreinheit 16.2 über den Spannungsteiler R2, R3 verbunden ist;
    • – eine Zener-Diode D2, die mit dem negativen Eingang verbunden ist, zum Begrenzen einer am negativen Eingang anliegenden Spannung;
    • – einen Kondensator C, der mit dem positiven Eingang verbunden ist.
  • Die Begrenzungseinheit 14 umfasst eine Suppressordiode D1. Eine Strom-Spannungs-Kennlinie der Suppressordiode D1 ist in 4 schematisch dargestellt. Hierin ist ersichtlich, dass die Suppressordiode D1 bidirektional im Rückwärtsbetrieb arbeitet. Die Durchlasskennlinie spielt hierbei keine Rolle. Markante Punkte der Kennlinie sind:
    • – UR äußerster Punkt der Sperrspannung (revers-stand-off voltage),
    • – UB Durchbruchspannung (break-down voltage),
    • – UC Begrenzungsspannung (clamping voltage).
  • Die Schaltereinheit 18 umfasst zwei in einer Back-to-Back Schaltung angeordnete MOSFETs T1, T2. Hierbei sind die Drain-Anschlüsse der Transistoren T1, T2 jeweils mit den Klemmen des Schutzschaltungseingangs verbunden, und die Gates sind mit dem Komparator K der Komparatoreinheit 16.2 zum Zuführen des Steuersignals verbunden.
  • Hierbei wird vorteilhafter Weise ein Kurzschluss automatisch mit den kleinen und leichten Halbleitern der zwei N-Kanal FETs hergestellt, die in der Back-to-Back Schaltung angeordnet sind.
  • Die beiden Transistoren T1, T2 schließen den Wechselstrom durch den Sekundärkreis 10.1 nahezu leistungsfrei kurz. Damit ist es möglich auch sehr hohe Ströme, wie beispielsweise einen thermischen Bemessungs-Kurzzeitstrom, welcher das 60-fache des Nennstroms von 5A, also 300 A, beträgt, für eine Sekunde abzuleiten und einen Bemessungs-Stoßstrom welcher das 2,5-fache des Bemessungs-Kurzzeitstroms, also 750 A, beträgt, für eine Halbwelle abzuleiten.
  • Der Kurzschluss wird ausgeführt, bevor die Spannung einen gefährlichen Wert überschreitet. Ein solcher Wert entspricht einem Quotienten von Bemessungsleistung und sekundärem Bemessungsstrom des Messwandlers.
  • Gemäß 3 wird die gleichgerichtete Spannung Ug durch den Komparator K, mit der Spannung an einer Zener-Diode D2 verglichen. Der Strom durch den Gleichrichter 22 lädt den Kondensator C auf, der die notwendige Spannung für den Komparator K und die Ansteuerung der Transistoren T1, T2 bereitstellt.
  • Sobald die Spannung am Eingang des Komparators K die Schwellspannung des Komparators K erreicht, wird der Sekundärkreis 10.1 kurzgeschlossen und der Kondensator C entlädt sich über R1, R2, R3, D1 und K, bis die Abschaltspannung am positiven Eingang des Komparators K wieder erreicht ist.
  • Wenn beispielsweise R4 sehr groß ist und zugleich R2, R3 gleich groß sind, dann ergibt sich ein Sekundärspannungsschwellwert in doppelter Höhe der Zener-Spannung. Die Parameter der Bauelemente der Steuereinheit 16, vorzugsweise die Parameter von R1, R2, R3, D1 und K, ermöglichen somit eine Festlegung des Sekundärspannungsschwellwerts, insbesondere im Verhältnis zur Sekundärspannung Us.
  • Die Betriebsspannung des Komparators K ist durch die Gleichrichterdioden vom Kurzschluss getrennt. Steht nach dem Entfernen des Kurzschlusses weiterhin eine zu hohe Spannung am Sekundärkreis 10.1 an, wird der Vorgang wiederholt, sodass die Einschaltspannung am positiven Eingang des Komparators K niemals überschritten werden kann.
  • Die Einschaltspannung und Ausschaltspannung am positiven Eingang des Komparators K sind über R4 durch eine Hysterese der Komparatoreinheit 16.2 getrennt, sodass keine undefinierten Schwingungen entstehen können. Die Schaltschwellen werden durch die Zener-Diode D2 und die eingestellte Hysterese bestimmt. Das Verhältnis der Widerstände R2, R3 zu dem Kondensator C bestimmt die Häufigkeit des Schaltvorganges.
  • Diese Schutzschaltung 12 kann in den Kopf des Stromwandlers 10 untergebracht werden und fest mit der Sekundärkreis 10.1 verbunden werden. Somit funktioniert der automatische Kurzschluss immer, unabhängig davon, wo der Sekundärkreis 10.1 unterbrochen wird.
  • Bei der Unterbringung der Schutzschaltung 12 beispielsweise in einem Schaltschrank, welcher die Komponenten einer Anlage beherbergt, an welche der Stromwandler 10 für eine Strommessung angeordnet ist, kann ein Verbindungskabel zur Schutzschaltung 12 an beliebiger Stelle zwischen Stromwandler 10 und Strommessgerät 20 unterbrochen werden, direkt oder unmittelbar an den Anschlüssen des Stromwandlers 10 oder des Strommessgerätes 20.
  • Die Schutzschaltung 12 kann auch nach Fertigstellung des Stromwandlers 10 in den Sekundärstromkreis eingefügt werden. Das heißt, ein Nachrüsten des Stromwandlers 10 mit der Schutzschaltung 12 ist möglich.
  • Eine Möglichkeit zur Verringerung der Kosten und Baugröße besteht darin, den Maximalstrom des Sekundärkreises 10.1 durch Variation des Materials des Stromwandlers 10 zu begrenzen. Durch angepasstes Kernmaterial kann der magnetische Fluss begrenzt werden, wodurch auch der Strom im Sekundärkreis 10.1 begrenzt wird.
  • Die 5a, 5b zeigen zwei Ansichten eines Stromwandlergehäuses 10.2, das einen Stromwandler 10 beherbergt. Das Stromwandlergehäuse 10.2 umfasst
    • – ein Sekundärkreisgehäuse 10.5, in welchem der Sekundärkreis 10.1 des Stromwandlers 10 untergebracht ist, und
    • – ein Sekundärklemmengehäuse 10.3, genannt auch „Sekundärklemmenkasten“, in welchem Sekundärklemmen untergebracht sind, an denen die Sekundärspannung Us abgegriffen werden kann.
  • Die Schutzschaltung 12 ist in dem Stromwandlergehäuse 10.2, vorzugsweise im Sekundärklemmenkasten 10.3, untergebracht oder angeordnet. Die Schutzschaltung 12 ist direkt oder unmittelbar bei den Sekundärklemmen des Sekundärkreises 10.1 angeordnet. Die Schutzschaltung ist damit in dem Gehäuse 10.2 des Stromwandlers 10 vollständig integriert.
  • Bezugszeichenliste
  • 10
    Stromwandler
    10.1
    Sekundärkreis des Stromwandlers
    10.2
    Stromwandlergehäuse
    10.3
    Sekundärklemmenkasten, Sekundärklemmengehäuse
    10.4
    Sekundärkreisklemmen
    10.5
    Sekundärkreisgehäuse
    12
    Schutzschaltung, elektronische Schaltung
    12.1
    Schutzschaltungseingang
    14
    Begrenzungseinheit
    16
    Steuereinheit
    16.1
    Gleichrichter
    16.2
    Komparatoreinheit
    18
    Schaltereinheit
    20
    Strommessgerät, Shunt-Widerstand
    22
    Andockmodul
    26
    Gehäuse des Andockmoduls 22
    26.1
    geschlossenes Nutende
    26.2
    Nut
    28
    Schaltungsplatine, Leiterplatte
    28.1
    Damm
    28.2
    Dammecke
    28.3
    elektrisches Verbindungselement, Lasche
    30
    Anspannungselement, Befestigungselement, Schraube
    36
    Verbindungskabel zum Strommessgerät 20
    38
    Öffnung zum Aufnehmen des Verbindungselements 28.3
    40
    Schieber
    D1
    Suppressordiode
    D2
    Zenerdiode
    K
    Komparator
    R1–R4
    Widerstände
    T1, T2
    Transistoren
    Ug
    Gleichspannung
    Us
    Sekundärspannung
  • ZITATE ENTHALTEN IN DER BESCHREIBUNG
  • Diese Liste der vom Anmelder aufgeführten Dokumente wurde automatisiert erzeugt und ist ausschließlich zur besseren Information des Lesers aufgenommen. Die Liste ist nicht Bestandteil der deutschen Patent- bzw. Gebrauchsmusteranmeldung. Das DPMA übernimmt keinerlei Haftung für etwaige Fehler oder Auslassungen.
  • Zitierte Patentliteratur
    • FR 1178783 [0008]

Claims (12)

  1. Andockmodul (22) für einen Stromwandler (10) umfassend: – eine elektronische Schaltung (12) und – mindestens ein elektrisches Verbindungselement (28.3) zum elektrischen Koppeln der Schaltung (12) mit dem Stromwandler (10) und zum Andocken des Andockmoduls (22) an den Stromwandler (10).
  2. Andockmodul (22) nach Anspruch 1, gekennzeichnet durch mindestens eines der folgenden Merkmale: – die Schaltung ist eine Schutzschaltung (12) zum Verhindern, dass eine Sekundärspannung (Us) an einem Sekundärkreis (10.1) des Stromwandlers (10) einen Sekundärspannungsschwellwert überschreitet; – die Schaltung (12) ist auf einer Schaltungsplatine (28) aufgebaut.
  3. Andockmodul (22) nach einem der Ansprüche 1 oder 2, gekennzeichnet durch mindestens eines der folgenden Merkmale: – das Andockmodul (22) umfasst ein Gehäuse (26), in welchem die Schaltung (12) untergebracht ist; – Rastelemente (26.1, 26.2) des Gehäuses (26) sind dazu ausgebildet, mit Rastelementen (28.1, 28.2) der Schaltungsplatine (28) zusammenzuwirken, um einen Rastmechanismus zum Befestigen der Schaltungsplatine (28) an das Gehäuse (26) zu bilden.
  4. Andockmodul (22) nach einem der vorhergehenden Ansprüche, gekennzeichnet durch mindestens eines der folgenden Merkmale: – das Verbindungselement (28.3) ist mittels eines Anspannungselements, vorzugsweise einer Schraube (30), an dem Stromwandler (10) anpressbar zum Herstellen eines elektrischen Kontakts mit dem Stromwandler (10), vorzugsweise mit mindestens einem der Sekundäranschlüsse (10.1) des Stromwandlers (10), wobei insbesondere das Verbindungselement (28.3) in einem dem Stromwandler (10) zugewandten Endbereich eine Kerbe aufweist; – das Andockmodul (22) umfasst zwei Verbindungselemente (28.3).
  5. Andockmodul (22) nach einem der vorhergehenden Ansprüche, gekennzeichnet durch mindestens eines der folgenden Merkmale: – das Verbindungselement (28.3) ragt aus dem Andockmodul (22) heraus; – das Verbindungselement (28.3) ist als eine zungenförmige Lasche ausgebildet, die aus dem Gehäuse (26) oder dem Andockmodul (22) herausragt; – die Lasche (28.3) ist als eine zungenförmige Ausbuchtung der Schaltungsplatine (28) ausgebildet; – die Lasche (28.3) ist einseitig oder beidseitig mit einem elektrisch leitenden Material beschichtet; – die Lasche (28.3) ist mit einem Metall, vorzugsweise Gold, Silber oder Kupfer, beschichtet.
  6. Andockmodul (22) nach einem der vorhergehenden Ansprüche, die Schutzschaltung (12) umfassend – einen Schutzschaltungseingang (12.1), der an den Sekundärkreis (10.1) des Stromwandlers (10) koppelbar ist, so dass die Sekundärspannung (Us) an dem Schutzschaltungseingang (12.1) anliegt, – eine mit dem Schutzschaltungseingang (12.1) verbundene Steuereinheit (16), und – eine mit dem Schutzschaltungseingang (12.1) verbundene Schaltereinheit (18), die mit der Steuereinheit (16) ansteuerbar verbunden ist, wobei – die Steuereinheit (16) dazu ausgebildet ist, unter Ansprechen auf ein Überschreiten des Sekundärspannungsschwellwerts durch die Sekundärspannung (Us), ein Steuersignal an die Schaltereinheit (18) bereitzustellen, – die Schaltereinheit (18) dazu ausgebildet ist, unter Ansprechen auf das von der Steuereinheit (16) bereitgestellte Steuersignal, den Schutzschaltungseingang (12.1) kurzzuschließen, und – die Schaltereinheit (18) als eine Halbleiterschaltung ausgebildet ist.
  7. Andockmodul (22) nach einem der vorhergehenden Ansprüche, gekennzeichnet durch mindestens eines der folgenden Merkmale: – die Steuereinheit (16) ist direkt oder unmittelbar mit dem Schutzschaltungseingang (12.1) verbunden; – die Schaltereinheit (18) ist direkt oder unmittelbar mit dem Schutzschaltungseingang (12.1) verbunden; – die Schutzschaltung (12) umfasst eine mit dem Schutzschaltungseingang (12.1) verbundene Begrenzungseinheit (14) für einen Überspannungsschutz.
  8. Andockmodul (22) nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Steuereinheit (16) eine oder mehrere der folgenden Komponenten umfasst: – eine Komparatoreinheit (16.2), welche dazu ausgebildet ist, das Steuersignal an die Schaltereinheit (18) bereitzustellen, falls eine Eingangsspannung der Komparatoreinheit (16.2) einen Schwellwert überschreitet; – einen mit dem Schutzschaltungseingang (12.1) verbundenen Gleichrichter (16.1) zum Bereitstellen einer von einer Amplitude der Sekundärspannung (Us) abhängigen, vorzugsweise pulsierenden, Gleichspannung (Ug) als Eingangsspannung der Komparatoreinheit (16.2).
  9. Andockmodul (22) nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Komparatoreinheit (16.2) eine oder mehrere der folgenden Komponenten umfasst: – einen Komparator (K) mit einem positiven Eingang, einem negativen Eingang an welchem eine Spannung in Höhe von etwa der Eingangsspannung der Komparatoreinheit (16.2) anliegt, und einem Ausgang, welcher das Steuersignal bereitstellt; – einen Spannungsteiler (R2, R3), wobei der positive Eingang mit der Eingangsspannung der Komparatoreinheit (16.2) über den Spannungsteiler (R2, R3) verbunden ist; – eine Zener-Diode (D2), die mit dem negativen Eingang verbunden ist, zum Begrenzen einer am negativen Eingang anliegenden Spannung; – einen Kondensator (C), der mit dem positiven Eingang verbunden ist.
  10. Andockmodul (22) nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Schaltereinheit (18) eine oder mehrere der folgenden Komponenten umfasst: – mindestens einen MOSFET; – zwei in einer Back-to-Back Schaltung angeordnete MOSFETs (T1, T2); – einen Solid-State Relay (SSR) mit (i) einem MOSFET oder (ii) mehreren MOSFETs in einer Parallelanordnung; – einen Triac; – einen Optokoppler zum Einkoppeln des Steuersignals.
  11. Andockmodul (22) nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Begrenzungseinheit (14) eine oder mehrere der folgenden Komponenten umfasst: – eine Suppressordiode (D1); – einen Varistor; – einen Gasableiter.
  12. Stromwandler (10) mit einem Andockmodul (22) nach einem der vorhergehenden Ansprüche.
DE102014105888.7A 2014-04-25 2014-04-25 Andockmodul für einen Stromwandler und Stromwandler mit einem Andockmodul Pending DE102014105888A1 (de)

Priority Applications (4)

Application Number Priority Date Filing Date Title
DE102014105888.7A DE102014105888A1 (de) 2014-04-25 2014-04-25 Andockmodul für einen Stromwandler und Stromwandler mit einem Andockmodul
US15/306,199 US10574050B2 (en) 2014-04-25 2015-04-24 Docking module for a current transformer for preventing overvoltages and a current transformer having a docking module
PCT/EP2015/058903 WO2015162253A1 (de) 2014-04-25 2015-04-24 Andockmodul für einen stromwandler zur vermeidung von überspannungen und stromwandler mit einem andockmodul
CN201580021948.8A CN106233554A (zh) 2014-04-25 2015-04-24 电流转换器用的用于避免过压的对接模块和包括对接模块的电流转换器

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE102014105888.7A DE102014105888A1 (de) 2014-04-25 2014-04-25 Andockmodul für einen Stromwandler und Stromwandler mit einem Andockmodul

Publications (1)

Publication Number Publication Date
DE102014105888A1 true DE102014105888A1 (de) 2015-10-29

Family

ID=52988071

Family Applications (1)

Application Number Title Priority Date Filing Date
DE102014105888.7A Pending DE102014105888A1 (de) 2014-04-25 2014-04-25 Andockmodul für einen Stromwandler und Stromwandler mit einem Andockmodul

Country Status (4)

Country Link
US (1) US10574050B2 (de)
CN (1) CN106233554A (de)
DE (1) DE102014105888A1 (de)
WO (1) WO2015162253A1 (de)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106526248B (zh) * 2016-11-22 2023-11-03 国网浙江省电力公司绍兴供电公司 一种一体化安措试验接线盒及使用方法
KR102364572B1 (ko) * 2017-12-14 2022-02-17 주식회사 엘지에너지솔루션 릴레이 이상 진단 시스템 및 방법
US10298208B1 (en) * 2018-06-08 2019-05-21 Siemens Aktiengesellschaft Dynamic impedance system for an increased range of operation of an instrument transformer
CN109633254B (zh) * 2019-01-15 2024-01-23 广东电网有限责任公司 一种用于一次通流试验的钳形电流表
DE102019110745B3 (de) * 2019-04-25 2020-10-08 Dehn Se + Co Kg Überspannungsschutzvorrichtung sowie modulares Überspannungsschutzsystem
TWI755919B (zh) * 2020-11-03 2022-02-21 中華精測科技股份有限公司 板狀連接器與其雙環式串接件、及晶圓測試組件
CN113030834B (zh) * 2021-04-19 2023-01-10 北京送变电有限公司 互感器二次回路校线装置及方法
CN113465902B (zh) * 2021-07-30 2023-06-23 国网浙江省电力有限公司绍兴供电公司 一种对高压电流互感器二次回路运行状态进行诊断的方法
TWI829371B (zh) * 2022-09-29 2024-01-11 車王電子股份有限公司 固態繼電器
CN116990562B (zh) * 2023-09-26 2024-01-09 国网江苏省电力有限公司泰州供电分公司 一种电力测量万用表用保护开关装置

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR1178783A (fr) 1956-07-18 1959-05-14 Licentia Gmbh Circuit de protection pour transformateur d'intensité
DE19641187A1 (de) * 1996-09-24 1998-04-09 Siemens Ag Schaltungsanordnung zur Energieversorgung von elektronischen Auslöseeinrichtungen

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4300110A (en) * 1980-03-14 1981-11-10 General Electric Company Trip interlock for static trip circuit breakers
US4698740A (en) 1986-02-14 1987-10-06 Westinghouse Electric Corp. Current fed regulated voltage supply
FR2688099B1 (fr) * 1992-03-02 1994-04-15 Merlin Gerin Bloc de connexion d'un relais moyenne tension a des capteurs de courant.
US20120092112A1 (en) 2009-04-17 2012-04-19 Molex Incorporated Toroid with channels and circuit element and modular jack with same
US8929042B2 (en) * 2011-03-30 2015-01-06 Thomas & Betts International, Inc. Surge protective device with contoller
DE102012111061A1 (de) * 2012-11-16 2014-05-22 Phoenix Contact Gmbh & Co. Kg Schutzschaltung für einen Stromwandler und Stromwandler mit einer Schutzschaltung

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR1178783A (fr) 1956-07-18 1959-05-14 Licentia Gmbh Circuit de protection pour transformateur d'intensité
DE19641187A1 (de) * 1996-09-24 1998-04-09 Siemens Ag Schaltungsanordnung zur Energieversorgung von elektronischen Auslöseeinrichtungen

Also Published As

Publication number Publication date
US10574050B2 (en) 2020-02-25
US20170047734A1 (en) 2017-02-16
WO2015162253A1 (de) 2015-10-29
CN106233554A (zh) 2016-12-14

Similar Documents

Publication Publication Date Title
EP2920857B1 (de) Schutzschaltung für einen stromwandler und stromwandler mit einer schutzschaltung
DE102014105888A1 (de) Andockmodul für einen Stromwandler und Stromwandler mit einem Andockmodul
DE102017217132B3 (de) Schaltnetzteil mit elektrischer Schaltungsanordnung zur Eingangsschutzbeschaltung
DE102005002359C5 (de) Schaltung zur Strombegrenzung und Verfahren zum Betrieb der Schaltung
EP3021444B1 (de) Schaltung zum schutz vor überspannungen
DE102014117807A1 (de) Gehäuseanordnung für einen Leitungsschalter, Leitungsschalter mit einer solchen und Verfahren
WO1997036373A1 (de) Elektronisches abzweigschaltgerät
DE102016117003A1 (de) Schutzschaltgerät
DE102011011983A1 (de) Fehlerstrom-Schutzeinrichtung
EP2978090A1 (de) Schutzeinrichtung für elektrische energieversorgungsnetze, energiequelle, energieversorgungsnetz sowie verwendung einer derartigen schutzeinrichtung
WO2010046247A1 (de) Schutzschaltung und messgerät mit einer solchen schutzschaltung
EP0106045B1 (de) Fehlerstromschutzschalter
EP1078432B1 (de) Schutzschaltgerät
EP0152127A2 (de) Anordnung zum Unterdrücken von Überspannungsspitzen
DE102011011984B4 (de) Fehlerstrom-Schutzeinrichtung mit frequenzabhängiger Schaltung zur Spannungsvervielfachung
DE3531023A1 (de) Schaltungsanordnung zur erfassung eines fehler- bzw. differenzstromes
EP0339598A2 (de) Schutzschaltung für kapazitive Lasten
DE102022130515A1 (de) Stromrichter, leistungssysteme und verfahren zum schutz von stromrichtern
DE3814251C1 (en) Protective circuit for capacitive loads
EP1011183B1 (de) Fehlerstromschutzschaltungsanordnung
EP2994988B1 (de) Geräteinterne energieversorgung einer vorrichtung
DE102015016232A1 (de) Schaltbare Überspannungsschutzanordnung
EP2394150B1 (de) Halbleiter-temperatursensor mit esd-schutz
EP0561149A2 (de) Anordnung zur Stromversorgung einer Elektronik aus einem Drehstromnetz
EP3053270B1 (de) Invertschaltung mit spannungsbegrenzung

Legal Events

Date Code Title Description
R163 Identified publications notified
R012 Request for examination validly filed
R016 Response to examination communication
R016 Response to examination communication
R016 Response to examination communication