DE102013225939A1 - Method for producing a composite component - Google Patents

Method for producing a composite component Download PDF

Info

Publication number
DE102013225939A1
DE102013225939A1 DE102013225939.5A DE102013225939A DE102013225939A1 DE 102013225939 A1 DE102013225939 A1 DE 102013225939A1 DE 102013225939 A DE102013225939 A DE 102013225939A DE 102013225939 A1 DE102013225939 A1 DE 102013225939A1
Authority
DE
Germany
Prior art keywords
carbon fibers
composite
preform
composite component
carbon
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
DE102013225939.5A
Other languages
German (de)
Inventor
Rudolf Weck
Steffen Weller
Ralf Gärtner
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Schunk Kohlenstofftechnik GmbH
Original Assignee
Schunk Kohlenstofftechnik GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Schunk Kohlenstofftechnik GmbH filed Critical Schunk Kohlenstofftechnik GmbH
Priority to DE102013225939.5A priority Critical patent/DE102013225939A1/en
Priority to PCT/EP2014/075254 priority patent/WO2015086291A1/en
Priority to PCT/EP2014/075251 priority patent/WO2015086290A1/en
Priority to EP14811786.4A priority patent/EP3080325A1/en
Priority to EP14809776.9A priority patent/EP3080324A1/en
Priority to US15/102,456 priority patent/US20160319410A1/en
Publication of DE102013225939A1 publication Critical patent/DE102013225939A1/en
Withdrawn legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C49/00Alloys containing metallic or non-metallic fibres or filaments
    • C22C49/14Alloys containing metallic or non-metallic fibres or filaments characterised by the fibres or filaments
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D17/00Pressure die casting or injection die casting, i.e. casting in which the metal is forced into a mould under high pressure
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D18/00Pressure casting; Vacuum casting
    • B22D18/02Pressure casting making use of mechanical pressure devices, e.g. cast-forging
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D18/00Pressure casting; Vacuum casting
    • B22D18/06Vacuum casting, i.e. making use of vacuum to fill the mould
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C47/00Making alloys containing metallic or non-metallic fibres or filaments
    • C22C47/02Pretreatment of the fibres or filaments
    • C22C47/04Pretreatment of the fibres or filaments by coating, e.g. with a protective or activated covering
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C47/00Making alloys containing metallic or non-metallic fibres or filaments
    • C22C47/08Making alloys containing metallic or non-metallic fibres or filaments by contacting the fibres or filaments with molten metal, e.g. by infiltrating the fibres or filaments placed in a mould
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C47/00Making alloys containing metallic or non-metallic fibres or filaments
    • C22C47/08Making alloys containing metallic or non-metallic fibres or filaments by contacting the fibres or filaments with molten metal, e.g. by infiltrating the fibres or filaments placed in a mould
    • C22C47/12Infiltration or casting under mechanical pressure
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C49/00Alloys containing metallic or non-metallic fibres or filaments
    • C22C49/02Alloys containing metallic or non-metallic fibres or filaments characterised by the matrix material
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C49/00Alloys containing metallic or non-metallic fibres or filaments
    • C22C49/02Alloys containing metallic or non-metallic fibres or filaments characterised by the matrix material
    • C22C49/04Light metals
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C49/00Alloys containing metallic or non-metallic fibres or filaments
    • C22C49/02Alloys containing metallic or non-metallic fibres or filaments characterised by the matrix material
    • C22C49/04Light metals
    • C22C49/06Aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C49/00Alloys containing metallic or non-metallic fibres or filaments
    • C22C49/02Alloys containing metallic or non-metallic fibres or filaments characterised by the matrix material
    • C22C49/10Refractory metals
    • C22C49/11Titanium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2302/00Metal Compound, non-Metallic compound or non-metal composition of the powder or its coating
    • B22F2302/40Carbon, graphite
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2999/00Aspects linked to processes or compositions used in powder metallurgy

Abstract

Die Erfindung betrifft ein Verfahren zur Herstellung eines Verbundbauteils sowie ein Verbundbauteil, wobei das Verbundbauteil aus einem Metallmatrix-Verbundwerkstoff aus Kohlenstofffasern und einem Metall oder einer Metalllegierung gebildet wird, wobei aus den Kohlenstofffasern ein Faserverbund ausgebildet wird, wobei aus dem Faserverbund ein Vorformling ausgebildet wird, wobei die Kohlenstofffasern des Faserverbunds zur Ausbildung des Vorformlings mit pyrolytischem Kohlenstoff beschichtet werden, wobei der Vorformling zumindest teilweise mit geschmolzenem Metall infiltriert wird.The invention relates to a method for producing a composite component and a composite component, wherein the composite component is formed from a metal matrix composite of carbon fibers and a metal or a metal alloy, wherein from the carbon fibers, a fiber composite is formed, wherein from the fiber composite, a preform is formed, wherein the carbon fibers of the fiber composite are coated with pyrolytic carbon to form the preform, wherein the preform is at least partially infiltrated with molten metal.

Description

Die Erfindung betrifft ein Verfahren zur Herstellung eines Verbundbauteils sowie ein Verbundbauteil, wobei das Verbundbauteil aus einem Metallmatrix-Verbundwerkstoff aus Kohlenstofffasern und einem Metall oder einer Metalllegierung gebildet wird.The invention relates to a method for producing a composite component and to a composite component, wherein the composite component is formed from a metal matrix composite of carbon fibers and a metal or a metal alloy.

Die zur Ausbildung von Verbundbauteilen verwendeten Metallmatrix-Verbundwerkstoffe bestehen regelmäßig aus einer zusammenhängenden Metallmatrix mit einer aus Kohlenstofffasern gebildeten Verstärkung in ihrem Inneren. Diese Verbundbauteile finden aufgrund ihrer hohen Stabilität bei zugleich geringem Gewicht allgemein Verwendung im Leichtbau, wie zum Beispiel im Flugzeugbau oder in der Raumfahrt. Die die Metallmatrix verstärkenden Kohlenstofffasern können Kurzschnittfasern oder auch Endlosfasern sein. Die Kurzschnittfasern können beispielsweise einer Metallschmelze zugesetzt und mit vergossen werden. Dabei kann es jedoch leicht zu Inhomogenitäten bei der Verteilung des Fasermaterials kommen. So kann sich je nach Gestalt der Form oder nach Art des angewendeten Gießverfahrens eine zugegebene Menge Fasern innerhalb des so ausgebildeten Verbundbauteils in unerwünschter Weise ungleichmäßig verteilen. Dies wird insbesondere auch dadurch begünstigt, dass Kohlenstofffasern gegenüber Metall eine wesentlich andere Dichte aufweisen.The metal matrix composites used to form composite components are typically a continuous metal matrix having carbon fiber reinforcements inside. Due to their high stability and low weight, these composite components are generally used in lightweight construction, for example in aircraft construction or in space travel. The metal matrix reinforcing carbon fibers may be short cut fibers or endless filaments. For example, the short cut fibers may be added to a molten metal and potted. However, it can easily come to inhomogeneities in the distribution of the fiber material. Thus, depending on the shape of the mold or the type of casting method used, an added amount of fibers may undesirably be distributed unevenly within the composite component thus formed. This is particularly favored by the fact that carbon fibers compared to metal have a significantly different density.

Beim Vergießen oder Infiltrieren von Kohlenstofffasern mit beispielsweise Aluminium kann es darüber hinaus zur Bildung von Carbiden bzw. Aluminiumcarbid kommen, was bei einem längeren Verweilzeitraum der Kohlenstofffasern in einer Aluminiumschmelze zur Auflösung der Kohlenstofffasern führt, was wiederum die mechanischen Festigkeitseigenschaften des so ausgebildeten Verbundbauteils verschlechtert.Further, when casting or infiltrating carbon fibers with, for example, aluminum, carbides or aluminum carbide may be formed, resulting in dissolution of the carbon fibers at a longer residence time of the carbon fibers in an aluminum melt, which in turn deteriorates the mechanical strength properties of the composite component thus formed.

Weiter ist es bekannt, kohlenstofffaserverstärkten Kohlenstoff als Werkstoff zur Ausbildung eines Verbundbauteils zu verwenden. Bei einem kohlenstofffaserverstärkten Kohlenstoff werden zunächst Kohlenstofffasern mit beispielsweise einem Harz getränkt, wobei das Harz nachfolgend pyrolysiert wird. Ein so ausgebildeter Vorformling kann dann allerdings nicht mehr oder nicht mehr vollständig mit einem Metall infiltriert werden, weil die Zwischenräume zwischen den Kohlestofffasern dann nahezu vollständig von Pyrokohlenstoff ausgefüllt sind, der dann die Matrix des Verbundwerkstoffes bildet. Gleichwohl ist es möglich einen kohlenstofffaserverstärkten Kohlenstoff bzw. ein derartiges Verbundbauteil mit einem Metall zu beschichten, wobei dann jedoch nicht die mechanischen Festigkeitseigenschaften eines Metallmatrix-Verbundwerkstoffs erzielt werden können.Further, it is known to use carbon fiber reinforced carbon as a material for forming a composite component. In a carbon fiber reinforced carbon, first, carbon fibers are impregnated with, for example, a resin, whereby the resin is subsequently pyrolyzed. However, a preform formed in this way can then no longer or no longer be completely infiltrated with a metal because the interstices between the carbon fibers are then almost completely filled with pyrocarbon, which then forms the matrix of the composite material. However, it is possible to coat a carbon fiber reinforced carbon or such a composite member with a metal, but then the mechanical strength properties of a metal matrix composite material can not be achieved.

Der vorliegenden Erfindung liegt daher die Aufgabe zugrunde, ein Verfahren zur Herstellung eines Verbundbauteils sowie ein mit dem Verfahren hergestelltes Verbundbauteil mit verbesserten Festigkeitseigenschaften vorzuschlagen.The present invention is therefore based on the object of proposing a method for producing a composite component and a composite component produced by the method with improved strength properties.

Diese Aufgabe wird durch ein Verfahren mit den Merkmalen des Anspruchs 1 und ein Verbundbauteil mit den Merkmalen des Anspruchs 21 gelöst.This object is achieved by a method having the features of claim 1 and a composite component having the features of claim 21.

Bei dem erfindungsgemäßen Verfahren zur Herstellung eines Verbundbauteils wird das Verbundbauteil aus einem Metallmatrix-Verbundwerkstoff aus Kohlenstofffasern und einem Metall oder einer Metalllegierung gebildet, wobei aus den Kohlenstofffasern ein Faserverbund ausgebildet wird, wobei aus dem Faserverbund ein Vorformling ausgebildet wird, wobei die Kohlenstofffasern des Faserverbunds zur Ausbildung des Vorformlings mit pyrolytischem Kohlenstoff beschichtet werden, und wobei der Vorformling zumindest teilsweise mit geschmolzenem Metall infiltriert wird.In the method according to the invention for producing a composite component, the composite component is formed from a metal matrix composite of carbon fibers and a metal or a metal alloy, wherein from the carbon fibers, a fiber composite is formed, wherein from the fiber composite, a preform is formed, wherein the carbon fibers of the fiber composite to Forming the preform be coated with pyrolytic carbon, and wherein the preform is at least partially infiltrated with molten metal.

Die mechanischen Festigkeitseigenschaften des Verbundbauteils können demnach dadurch verbessert werden, dass aus den Kohlestofffasern zunächst ein Faserverbund ausgebildet wird, der eine definierte Geometrie aufweist. Unerwünschte Inhomogenitäten der Kohlenstofffasern im Verbundbauteil können so vermieden werden. Aus dem Faserverbund wird ein formstabiler Vorformling dadurch ausgebildet, dass die Kohlenstofffasern des Faserverbunds mit pyrolytischem Kohlenstoff beschichtet werden. Die Kohlenstofffasern werden dann vollständig von dem pyrolytischen Kohlenstoff umgeben, wobei die Kohlenstofffasern an ihren jeweiligen gegenseitigen Kontaktpunkten mittels der Beschichtung aus dem pyrolytischen Kohlenstoff miteinander verbunden werden. Da die Kohlenstofffasern mit einer vergleichsweise dünnen Schicht von pyrolytischem Kohlenstoff beschichtet werden, verbleibt zwischen den Kohlestofffasern noch ein Zwischenraum, der eine ausreichende, für eine Infiltration mit einem geschmolzenen Metall geeignete Porosität des Vorformlings gewährleistet. Der formstabile Vorformling kann so mit dem geschmolzenen Metall infiltriert werden, ohne dass die geometrische Form des Vorformlings aufgelöst oder verändert wird. Auch bildet der pyrolytische Kohlenstoff eine Schutzschicht auf den Kohlenstofffasern aus, die eine Bildung von Carbiden, und damit ein Auflösen der Kohlenstofffasern, verhindert. Darüber hinaus bewirkt die Beschichtung mit pyrolytischem Kohlenstoff eine verbesserte Benetzbarkeit der Kohlenstofffasern. Insgesamt kann so eine geometrische Orientierung der Kohlenstofffasern fixiert werden, wobei die Kohlenstofffasern selbst erhalten bleiben und aneinander anhaften. Ein mit dem erfindungsgemäßen Verfahren hergestelltes Verbundbauteil weist dann gegenüber einem herkömmlichen Verbundbauteil verbesserte mechanische Festigkeitseigenschaften, auch im Bezug auf ein vergleichbares Bauteilgewicht, auf.The mechanical strength properties of the composite component can accordingly be improved by first forming a fiber composite of the carbon fibers which has a defined geometry. Undesirable inhomogeneities of the carbon fibers in the composite component can thus be avoided. From the fiber composite, a dimensionally stable preform is formed by coating the carbon fibers of the fiber composite with pyrolytic carbon. The carbon fibers are then completely surrounded by the pyrolytic carbon, the carbon fibers being bonded together at their respective mutual points of contact by means of the pyrolytic carbon coating. Since the carbon fibers are coated with a comparatively thin layer of pyrolytic carbon, there still remains a space between the carbon fibers which ensures sufficient porosity of the preform suitable for infiltration with a molten metal. The dimensionally stable preform can thus be infiltrated with the molten metal without the geometric shape of the preform is dissolved or changed. Also, the pyrolytic carbon forms a protective layer on the carbon fibers which prevents formation of carbides, and hence dissolution of the carbon fibers. In addition, the pyrolytic carbon coating provides improved wettability of the carbon fibers. Overall, such a geometric orientation of the carbon fibers can be fixed, wherein the carbon fibers themselves are preserved and adhere to each other. A composite component produced by the method according to the invention then faces a conventional composite component improved mechanical strength properties, also in relation to a comparable component weight on.

Im Rahmen des Verfahrens kann der pyrolytische Kohlenstoff auf den Kohlenstofffasern aus der Gasphase abgeschieden werden. Dadurch wird es möglich die Kohlenstofffasern mit einer vergleichsweise dünnen Schicht aus pyrolytischem Kohlenstoff zu beschichten. Weiter ist eine Schichtdicke bei einer Beschichtung aus der Gasphase je nach Bedarf besonders einfach einstellbar. Auch ist es möglich Faserverbünde mit nahezu beliebigen Geometrien und Kohlenstofffaserdichten mit pyrolytischem Kohlenstoff zu beschichten, da das betreffende Gas den Faserverbund gut durchdringen kann.In the process, the pyrolytic carbon can be deposited on the carbon fibers from the gas phase. This makes it possible to coat the carbon fibers with a comparatively thin layer of pyrolytic carbon. Further, a layer thickness in a coating from the gas phase is particularly easy to adjust as needed. It is also possible to coat fiber composites with virtually arbitrary geometries and carbon fiber densities with pyrolytic carbon, since the gas in question can penetrate the fiber composite well.

Vorzugsweise kann der pyrolytische Kohlenstoff als eine mittels eines CVD-Verfahrens oder eines CVI-Verfahrens auf den Kohlenstofffasern erzeugte Abscheidung ausgebildet werden. Die Beschichtung der Kohlenstofffasern mit pyrolytischem Kohlenstoff kann so besonders einfach durchgeführt werden. Auch ist es möglich mehrere Behandlungsschritte vorzusehen, bei denen der Faserverbund mittels des CVD- oder/und CVI-Verfahrens mit pyrolytischem Kohlenstoff bzw. sogenannten Glaskohlenstoff durch Abscheidung beschichtet wird.Preferably, the pyrolytic carbon may be formed as a deposit formed on the carbon fibers by a CVD method or a CVI method. The coating of the carbon fibers with pyrolytic carbon can be carried out so easily. It is also possible to provide several treatment steps in which the fiber composite is coated by means of the CVD or / and CVI method with pyrolytic carbon or so-called glassy carbon by deposition.

In einer Alternativen Variante des Verfahrens kann die Beschichtung mit dem pyrolytischen Kohlenstoff auf den Kohlenstofffasern durch Pyrolyse einer dünnen Harz- oder Pechschicht auf den Kohlenstofffasern ausgebildet werden. Eine Teilegröße wird durch eine Wandungsdicke des Faserverbunds bzw. Verbundbauteils bei einer Beschichtung aus der Gasphase aufgrund einer Durchdringung des Faserverbundes mit Gas und einer regelmäßig prozessbedingt begrenzten Größe einer Reaktorkammer zur Gasphasenbeschichtung bedingt. Durch die Beschichtung mit der dünnen, niedrig viskosen, flüssigen Harzschicht wird es möglich nahezu beliebig große Verbundbauteile herzustellen. Weiter kann die Pyrolyse in einem gebräuchlichen Pyrolyseofen erfolgen, dessen Größe nicht prozessbedingt begrenzt ist.In an alternative variant of the method, the coating with the pyrolytic carbon may be formed on the carbon fibers by pyrolysis of a thin layer of resin or pitch on the carbon fibers. A part size is due to a wall thickness of the fiber composite or composite component in a coating from the gas phase due to a penetration of the fiber composite with gas and a regularly process-related limited size of a reactor chamber for gas phase coating. The coating with the thin, low-viscous, liquid resin layer makes it possible to produce virtually any size composite components. Furthermore, the pyrolysis can take place in a conventional pyrolysis furnace whose size is not limited by the process.

Vorzugsweise kann eine Dicke der Harz- oder Pechschicht kleiner als eine Dicke der Kohlenstofffasern ausgebildet werden. Dies kann insofern erforderlich sein, um eine ausreichende Porosität des Vorformlings zur Infiltration zu gewährleisten. Insbesondere sind dann Zwischenräume zwischen den Kohlestofffasern nicht vollständig von Harz bzw. Pyrokohlenstoff ausgefüllt, so dass zusammenhängende Zwischenräume ausgebildet werden. Bevorzugt kann die Dicke der Harzschicht 50 Prozent kleiner und besonders bevorzugt 80 Prozent kleiner als eine Dicke der Kohlenstofffasern ausgebildet werden.Preferably, a thickness of the resin or pitch layer may be made smaller than a thickness of the carbon fibers. This may be necessary in order to ensure sufficient porosity of the preform for infiltration. In particular, gaps between the carbon fibers are then not completely filled by resin or pyrocarbon, so that coherent interspaces are formed. Preferably, the thickness of the resin layer may be formed 50 percent smaller, and more preferably 80 percent smaller than a thickness of the carbon fibers.

Die Harzschicht kann einfach durch Tränken des Faserverbunds in einer stark verdünnten Phenolharzlösung, z. B. Phenolharz verdünnt mit Ethanol oder Aceton, ausgebildet werden. So ist es möglich, dass flüssiges Harz in den Faserverbund, unabhängig von einer Wandungsdicke, vollständig eindringen kann. Das Tränken mit Harz kann auch unter einer Vakuumatmosphäre erfolgen. Bei einer Nachfolgenden Pyrolyse durch zum Beispiel Aushärten und Verkoken bzw. Pyrolysieren bei ca. 1000 bis 2000°C kann so eine Beschichtung der Kohlenstofffasern aus pyrolytischen, glasartigen Kohlenstoff erzeugt werden.The resin layer can be prepared simply by soaking the fiber composite in a highly diluted phenolic resin solution, e.g. As phenolic resin diluted with ethanol or acetone, are formed. Thus, it is possible that liquid resin in the fiber composite, regardless of a wall thickness, can fully penetrate. The impregnation with resin can also be done under a vacuum atmosphere. In a subsequent pyrolysis by, for example, curing and coking or pyrolyzing at about 1000 to 2000 ° C so a coating of carbon fibers of pyrolytic glassy carbon can be produced.

Vorteilhaft können die beschichteten Kohlenstofffasern mit einer weiteren Beschichtung aus Siliziumcarbid versehen werden. So wird es möglich die mechanischen Eigenschaften des Verbundbauteils in gegebenenfalls gewünschter Weise zu verändern, und, beispielsweise bei einer Verwendung von Aluminium als Matrixmaterial, eine unerwünschte chemische Reaktion des Aluminiums bei einer Infiltration zu vermeiden. Auch weisen derart beschichtete Kohlenstofffasern bzw. ein den Vorformling ausbildendes Geflecht oder Gewebe aus Kohlenstofffasern eine erhöhte Steifigkeit auf, die für den nachfolgenden Verfahrensschritt der Infiltration besonders vorteilhaft ist.Advantageously, the coated carbon fibers can be provided with a further coating of silicon carbide. Thus, it becomes possible to change the mechanical properties of the composite component in any desired manner, and, for example, when using aluminum as a matrix material, to avoid an undesirable chemical reaction of the aluminum in an infiltration. Carbon fibers coated in this way or a braid or fabric of carbon fibers forming the preform also exhibit increased rigidity, which is particularly advantageous for the subsequent process step of infiltration.

Weiter kann es vorgesehen sein, eine zumindest teilweise unidirektionale Orientierung der Kohlenstofffasern des Faserverbundes auszubilden. Beispielsweise können Endlosfasern durch Wickeln oder eine andere beliebige Technik in eine gewünschte geometrische Form gebracht werden. Prinzipiell ist es jedoch auch möglich Kurzschnittfasern ohne eine bestimmte räumliche Orientierung für eine Beschichtung mit pyrolytischem Kohlenstoff zu verwenden. Die Kurzschnittfasern können in Form einer Fasermatte oder eines Vlies vorliegen, wobei die Fasermatte bzw. das Vlies selbst zur geometrischen Formgebung des Vorformlings verwendet werden kann. Bevorzugt können jedoch Fasergewebematten oder Filamentgarne zur Ausbildung eines gegebenenfalls mehrlagigen Faserverbundes verwendet werden.It may further be provided to form an at least partially unidirectional orientation of the carbon fibers of the fiber composite. For example, continuous filaments can be formed into a desired geometric shape by winding or any other technique. In principle, however, it is also possible to use short-cut fibers without a specific spatial orientation for a coating with pyrolytic carbon. The short cut fibers can be in the form of a fiber mat or a nonwoven, wherein the fiber mat or the nonwoven itself can be used for the geometric shaping of the preform. Preferably, however, fiber fabric mats or filament yarns can be used to form an optionally multi-layer fiber composite.

Weiter kann vorgesehen sein den Faserverbund vor der Ausbildung des Vorformlings durch Beschichten zu verpressen. So kann erreicht werden, dass die Kohlenstofffasern dicht aneinander anliegen und ein Volumenanteil an Kohlenstofffasern im Verbundbauteil wesentlich erhöht wird. Dem Faserverbund können beim Verpressen Hilfsstoffe zugegeben werden, die den Faserverbund bzw. die Kohlenstofffasern aneinander anhaften lassen und so vorläufig fixieren, ohne eine Porosität des Faserverbundes wesentlich herabzusetzen.Further, it can be provided to compress the fiber composite before the formation of the preform by coating. Thus it can be achieved that the carbon fibers lie close together and a volume fraction of carbon fibers in the composite component is substantially increased. The fiber composite can be added during compression auxiliaries, which can adhere the fiber composite or the carbon fibers to each other and so provisionally fix, without significantly reduce a porosity of the fiber composite.

Besonders bevorzugt kann der Faserverbund als eine räumlich orientierte Tragstruktur des Verbundbauteils ausgebildet werden, die an einen Lastfall des Verbundbauteils angepasst ist. Idealerweise kann der Faserverbund so im Verbundbauteil angeordnet werden bzw. die Kohlenstofffasern können so im Verbundbauteil ausgerichtet werden, dass bei einer vorgesehenen Verwendung des Verbundbauteils Kräfte bzw. Spannungen innerhalb des Verbundbauteils im Wesentlichen in Richtung der Längserstreckung der Kohlenstofffasern verlaufen, um eine größtmögliche mechanische Festigkeit des Verbundbauteils zu erzielen. Ein beispielsweise primär zugbelastetes Verbundbauteil kann dann eine Tragstruktur aus Kohlenstofffasern aufweisen, die in Richtung der Zugspannungen räumlich orientiert sind. Je nach vorgesehenem Lastfall des Verbundbauteils können die Kohlenstofffasern des Faserverbundes auch in einer Kombination von unterschiedlichen räumlichen Orientierungen angeordnet sein.Particularly preferably, the fiber composite can be formed as a spatially oriented support structure of the composite component, which is adapted to a load case of the composite component. Ideally, the fiber composite can be arranged in the composite component or the carbon fibers can be aligned in the composite component, that in an intended use of the composite component forces or stresses within the composite component substantially in the direction of the longitudinal extent of the carbon fibers extend to a maximum mechanical strength of To achieve composite component. A, for example, primarily tensile loaded composite component may then have a support structure of carbon fibers, which are spatially oriented in the direction of the tensile stresses. Depending on the intended load case of the composite component, the carbon fibers of the fiber composite can also be arranged in a combination of different spatial orientations.

Verbundbauteile mit besonders komplexen geometrischen Formen werden besonders einfach herstellbar, wenn eine Tragstruktur des Verbundbauteils durch eine Mehrzahl von Vorformlingen ausgebildet wird. So können einzelne Vorformlinge ausgebildet werden, die zu einer Tragstruktur des Verbundbauteils zusammengesetzt werden. Beispielsweise können die Vorformlinge dann formschlüssig ineinander greifen oder auch unabhängig voneinander innerhalb des Verbundbauteils angeordnet werden. Damit wird es dann möglich Verbundbauteile mit nahezu beliebigen Geometrien herzustellen, da eventuelle geometrische Beschränkungen bei der Ausbildung des Faserverbundes aus Kohlenstofffasern nicht mehr zwangsläufig berücksichtigt werden müssen. Auch ist es denkbar einen Vorformling vor einer Infiltration mechanisch, zum Beispiel spanend zu bearbeiten um eine gewünschte geometrische Form der Tragstruktur bzw. des Vorformlings zu erhalten. Dies wird insbesondere dadurch möglich, dass der Vorformling durch die Beschichtung mit pyrolytischem Kohlenstoff formstabil ist.Composite components with particularly complex geometric shapes are particularly easy to produce when a support structure of the composite component is formed by a plurality of preforms. Thus, individual preforms can be formed, which are assembled to form a support structure of the composite component. For example, the preforms can then engage in one another in a form-fitting manner or can also be arranged independently of one another within the composite component. This then makes it possible to produce composite components with virtually any geometry, since any geometric restrictions in the formation of fiber composite from carbon fibers need not necessarily be taken into account. It is also conceivable to machine a preform prior to an infiltration, for example by machining, in order to obtain a desired geometric shape of the support structure or of the preform. This is particularly possible because the preform is dimensionally stable by the coating with pyrolytic carbon.

Eine Infiltration des Vorformlings kann mit Aluminium, Titan, Magnesium, Kupfer oder einer Legierung eines dieser Metalle erfolgen. Prinzipiell ist für eine Infiltration jedes Metall bzw. jede Legierung geeignet, das bzw. die einen Schmelzpunkt aufweist, der nicht zur Auflösung der pyrolytischen Kohlenstoffbeschichtung der Kohlenstofffasern führt. Insbesondere Aluminium eignet sich besonders aufgrund seines geringen Gewichts und seiner guten Verarbeitbarkeit als Matrixwerkstoff für Leichtbau-Verbundbauteile.An infiltration of the preform can be done with aluminum, titanium, magnesium, copper or an alloy of one of these metals. In principle, any metal or alloy that has a melting point that does not dissolve the pyrolytic carbon coating of the carbon fibers is suitable for infiltration. In particular, aluminum is particularly suitable because of its low weight and good processability as a matrix material for lightweight composite components.

Wesentlich für die Herstellung eines Verbundbauteils ist, dass der Vorformling mit einer offenen Porenstruktur ausgebildet werden kann. So wird es möglich, dass der Vorformling leicht mit dem geschmolzenen Metall infiltriert werden kann. Zumindest teilweise geschlossene Porenstrukturen verhindern eine vollständige Infiltrierung des Vorformlings mit Metall und haben eine Bildung von sich negativ auf eine mechanische Festigkeit des Verbundbauteils auswirkenden Lunkern zur Folge.Essential for the production of a composite component is that the preform can be formed with an open pore structure. Thus, it becomes possible that the preform can be easily infiltrated with the molten metal. At least partially closed pore structures prevent complete infiltration of the preform with metal and have the formation of a negative impact on mechanical strength of the composite component impacting voids.

Demnach kann der Vorformling vollständig mit geschmolzenem Metall infiltriert werden. So kann dann eine zusammenhängende Matrix aus Metall erhalten werden, die im Wesentlichen alle Zwischenräume des Faserverbundes der Kohlenstofffasern des Vorformlings vollständig ausfüllt. In einer besonders einfachen Variante des Verfahrens kann es vorgesehen sein, den Vorformling lediglich durch Eintauchen in eine Metallschmelze mit dem geschmolzenen Metall zu infiltrieren. Der Vorformling kann dabei vergleichsweise lange in der Metallschmelze verbleiben, da eine Auflösung der Kohlenstofffasern bzw. eine Carbidbildung aufgrund der Beschichtung aus pyrolytischem Kohlenstoff verhindert wird. Auch besteht die Möglichkeit den Vorformling mehrfach mit geschmolzenem Metall zu infiltrieren, um eine vollständige Infiltration zu erreichen.Thus, the preform can be completely infiltrated with molten metal. Thus, a coherent matrix of metal can then be obtained, which completely fills substantially all interstices of the fiber composite of the carbon fibers of the preform. In a particularly simple variant of the method, it may be provided to infiltrate the preform only by immersion in a molten metal with the molten metal. In this case, the preform can remain in the molten metal for a comparatively long time since dissolution of the carbon fibers or carbide formation due to the coating of pyrolytic carbon is prevented. It is also possible to infiltrate the preform several times with molten metal to achieve complete infiltration.

In einer weiteren Ausführungsform des Verfahrens ist es möglich den Vorformling in einer Gießform anzuordnen. So kann ein Verbundbauteil mit einer gewünschten geometrischen Form gegossen werden, wobei der Vorformling dann während des Gießvorgangs mit geschmolzenem Metall infiltriert werden kann. Beispielsweise können ein oder mehrere Vorformlinge in Art eines Kerns in eine Gießform eingelegt werden, wobei der Vorformling die Gießform vollständig oder auch nur teilweise ausfüllen kann. Weiter kann der Vorformling so in der Gießform angeordnet werden, dass der Vorformling nur abschnittsweise mit Metall infiltriert wird, das heißt, ein Abschnitt des so erhaltenen Verbundbauteils kann ausschließlich aus beschichteten Kohlenstofffasern ohne Metallmatrix bestehen, wobei ein weiterer Abschnitt des Verbundbauteils beschichtete Kohlenstofffasern mit einer Metallmatrix umfasst. Das Verbundbauteil kann darüber hinaus auch einen Abschnitt aufweisen, der ausschließlich aus dem Matrixmaterial bzw. dem Metall ausgebildet ist. So wird es möglich Verbundbauteile herzustellen, die an Belastungsfälle oder bestimmte Anwendungen angepasste Bauteilabschnitte aufweisen.In a further embodiment of the method, it is possible to arrange the preform in a casting mold. Thus, a composite member having a desired geometric shape may be cast, and the preform may then be infiltrated with molten metal during the casting operation. For example, one or more preforms can be inserted in the manner of a core into a casting mold, wherein the preform can fill the casting mold completely or only partially. Furthermore, the preform can be arranged in the casting mold so that the preform is infiltrated only partially with metal, that is, a portion of the composite component thus obtained can consist exclusively of coated carbon fibers without a metal matrix, wherein a further portion of the composite component coated carbon fibers with a metal matrix includes. The composite component may moreover also have a section which is formed exclusively from the matrix material or the metal. This makes it possible to produce composite components which have component sections adapted to load cases or specific applications.

Eine Infiltration des Vorformlings kann mittels Druckguss, Pressgießen oder Vakuumgießen erfolgen. Beispielsweise sind mittels Druckguss besonders maßhaltige Verbundbauteile herstellbar. Durch das Vakuumgießen kann einfach erreicht werden, dass eine vollständige Infiltration des Vorformlings mit Metall erfolgt. Dadurch, dass der Vorformling formstabil ist, lässt er sich besonders einfach in die vorgenannten Gießverfahren zur Herstellung des Verbundbauteils integrieren.An infiltration of the preform can be done by die casting, compression molding or vacuum casting. For example, by means of die casting particularly dimensionally stable composite components can be produced. Vacuum casting makes it easy to achieve complete infiltration of the preform with metal. The fact that the preform is dimensionally stable, it can be particularly easily integrated into the aforementioned casting process for the production of the composite component.

In einer Ausführungsform des Verfahrens kann das Verbundbauteil so ausgebildet werden, das es einen Metallanteil von mehr als 50 Volumenprozent aufweist. Dies ist dann besonders vorteilhaft, wenn entsprechend der vorgesehenen Verwendung des Verbundbauteils sich ein höherer Metallanteil besonders günstig auf dessen Eigenschaften auswirkt.In one embodiment of the method, the composite member may be formed to have a metal content of more than 50% by volume. This is particularly advantageous if, according to the intended use of the composite component, a higher metal content has a particularly favorable effect on its properties.

In einer weiteren Ausführungsform des Verfahrens kann das Verbundbauteil so ausgebildet werden, das es einen Kohlenstofffaseranteil von mehr als 50 Volumenprozent aufweist. Dies ist dann besonders vorteilhaft, wenn eine vorgesehene Verwendung des Verbundbauteils durch einen besonders hohen Kohlenstofffaseranteil im Verbundbauteil begünstigt wird.In a further embodiment of the method, the composite component may be formed to have a carbon fiber content of more than 50% by volume. This is particularly advantageous if an intended use of the composite component is favored by a particularly high proportion of carbon fiber in the composite component.

Auch kann es vorteilhaft sein, wenn das Verbundbauteil so ausgebildet wird, dass die Kohlenstofffasern innerhalb des Verbundbauteils homogen verteilt sind. Das Verbundbauteil besteht dann aus einem homogenen Metallmatrix-Verbundwerkstoff mit, von einer Faserorientierung abgesehen, regelmäßigen Materialeigenschaften.It may also be advantageous if the composite component is formed so that the carbon fibers are homogeneously distributed within the composite component. The composite component then consists of a homogeneous metal matrix composite material, apart from a fiber orientation, regular material properties.

Das Verbundbauteil kann jedoch auch so ausgebildet werden, dass die Kohlenstofffasern innerhalb des Verbundbauteils heterogen verteilt sind. Dies bedeutet, dass Abschnitte des Verbundbauteils einen mehr oder weniger großen Anteil an Kohlenstofffasern aufweisen können. Aufgrund des formstabil ausgebildeten Vorformlings ist es möglich den Anteil der Kohlenstofffasern innerhalb des Verbundbauteils sowie auch die räumliche Orientierung der Kohlenstofffasern gezielt festzulegen bzw. vorzubestimmen, um die mechanischen Eigenschaften des Verbundbauteils zu beeinflussen.However, the composite component can also be formed so that the carbon fibers are distributed heterogeneously within the composite component. This means that sections of the composite component can have a more or less large proportion of carbon fibers. Because of the dimensionally stable preform, it is possible to selectively determine or predetermine the proportion of carbon fibers within the composite component as well as the spatial orientation of the carbon fibers in order to influence the mechanical properties of the composite component.

Das erfindungsgemäße Verbundbauteil ist aus einem Metallmatrix-Verbundwerkstoff aus Kohlenstofffasern und einem Metall oder einer Metalllegierung gebildet, wobei aus den Kohlenstofffasern ein Faserverbund ausgebildet ist, wobei aus dem Faserverbund ein Vorformling ausgebildet ist, wobei die Kohlenstofffasern des Faserverbunds zur Ausbildung des Vorformlings mit pyrolytischem Kohlenstoff beschichtet sind, wobei der Vorformling zumindest teilweise mit geschmolzenem Metall infiltriert ist. Das erfindungsgemäße Verbundbauteil ist mit dem erfindungsgemäßen Verfahren herstellbar. Zu den vorteilhaften Wirkungen des erfindungsgemäßen Verbundbauteils wird auf die Vorteilsbeschreibungen des erfindungsgemäßen Verfahrens verwiesen. Weitere Ausführungsformen des Verbundbauteils ergeben sich aus den auf dem Verfahrensanspruch 1 rückbezogenen Unteransprüchen.The composite component according to the invention is formed from a metal matrix composite of carbon fibers and a metal or a metal alloy, wherein from the carbon fibers, a fiber composite is formed, wherein from the fiber composite, a preform is formed, wherein the carbon fibers of the fiber composite coated to form the preform with pyrolytic carbon are, wherein the preform is at least partially infiltrated with molten metal. The composite component according to the invention can be produced by the method according to the invention. For the advantageous effects of the composite component according to the invention, reference is made to the description of advantages of the method according to the invention. Further embodiments of the composite component resulting from the dependent on the method claim 1 dependent claims.

Claims (21)

Verfahren zur Herstellung eines Verbundbauteils, wobei das Verbundbauteil aus einem Metallmatrix-Verbundwerkstoff aus Kohlenstofffasern und einem Metall oder einer Metalllegierung gebildet wird, dadurch gekennzeichnet, dass aus den Kohlenstofffasern ein Faserverbund ausgebildet wird, wobei aus dem Faserverbund ein Vorformling ausgebildet wird, wobei die Kohlenstofffasern des Faserverbunds zur Ausbildung des Vorformlings mit pyrolytischem Kohlenstoff beschichtet werden, wobei der Vorformling zumindest teilweise mit geschmolzenem Metall infiltriert wird.A method for producing a composite component, wherein the composite component of a metal matrix composite material of carbon fibers and a metal or a metal alloy is formed, characterized in that from the carbon fibers, a fiber composite is formed, wherein from the fiber composite, a preform is formed, wherein the carbon fibers of the Fiber composite are coated to form the preform with pyrolytic carbon, wherein the preform is at least partially infiltrated with molten metal. Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass der pyrolytische Kohlenstoff auf den Kohlenstofffasern aus der Gasphase abgeschiedenen wird.A method according to claim 1, characterized in that the pyrolytic carbon is deposited on the carbon fibers from the gas phase. Verfahren nach Anspruch 2, dadurch gekennzeichnet, dass der pyrolytische Kohlenstoff als eine mittels eines CVD-Verfahrens oder eines CVI-Verfahrens auf den Kohlenstofffasern erzeugte Abscheidung ausgebildet wird.A method according to claim 2, characterized in that the pyrolytic carbon is formed as a deposit produced by means of a CVD method or a CVI method on the carbon fibers. Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass der pyrolytische Kohlenstoff auf den Kohlenstofffasern durch Pyrolyse einer dünnen Harz- oder Pechschicht auf den Kohlenstofffasern ausgebildet wird.A method according to claim 1, characterized in that the pyrolytic carbon is formed on the carbon fibers by pyrolysis of a thin resin or pitch layer on the carbon fibers. Verfahren nach Anspruch 4, dadurch gekennzeichnet, dass eine Dicke der Harz- oder Pechschicht kleiner als eine Dicke der Kohlenstofffasern ausgebildet wird.A method according to claim 4, characterized in that a thickness of the resin or pitch layer is made smaller than a thickness of the carbon fibers. Verfahren nach Anspruch 4 oder 5, dadurch gekennzeichnet, dass die Harzschicht durch Tränken des Faserverbunds in einer verdünnten Phenolharzlösung ausgebildet wird.A method according to claim 4 or 5, characterized in that the resin layer is formed by impregnating the fiber composite in a dilute phenolic resin solution. Verfahren nach einem der vorangehenden Ansprüche, dadurch gekennzeichnet, dass die beschichteten Kohlenstofffasern mit einer weiteren Beschichtung aus Siliziumkarbid versehen werden.Method according to one of the preceding claims, characterized in that the coated carbon fibers are provided with a further coating of silicon carbide. Verfahren nach einem der vorangehenden Ansprüche, dadurch gekennzeichnet, dass eine zumindest teilweise unidirektionale Orientierung der Kohlenstofffasern des Faserverbundes ausgebildet wird.Method according to one of the preceding claims, characterized in that an at least partially unidirectional orientation of the carbon fibers of the fiber composite is formed. Verfahren nach einem der vorangehenden Ansprüche, dadurch gekennzeichnet, dass der Faserverbund verpresst wird.Method according to one of the preceding claims, characterized in that the fiber composite is pressed. Verfahren nach einem der vorangehenden Ansprüche, dadurch gekennzeichnet, dass der Faserverbund als eine räumlich orientierte Tragstruktur des Verbundbauteils ausgebildet wird, die an einen Lastfall des Verbundbauteils angepasst ist.Method according to one of the preceding claims, characterized in that the fiber composite is formed as a spatially oriented support structure of the composite component, which is adapted to a load case of the composite component. Verfahren nach einem der vorangehenden Ansprüche, dadurch gekennzeichnet, dass eine Tragstruktur des Verbundbauteils durch eine Mehrzahl von Vorformlingen ausgebildet wird.Method according to one of the preceding claims, characterized in that a Supporting structure of the composite component is formed by a plurality of preforms. Verfahren nach einem der vorangehenden Ansprüche, dadurch gekennzeichnet, dass die Infiltration mit Aluminium, Titan, Magnesium, Kupfer oder einer Legierung eines dieser Metalle erfolgt.Method according to one of the preceding claims, characterized in that the infiltration takes place with aluminum, titanium, magnesium, copper or an alloy of one of these metals. Verfahren nach einem der vorangehenden Ansprüche, dadurch gekennzeichnet, dass der Vorformling mit einer offenen Porenstruktur ausgebildet wird.Method according to one of the preceding claims, characterized in that the preform is formed with an open pore structure. Verfahren nach einem der vorangehenden Ansprüche, dadurch gekennzeichnet, dass der Vorformling vollständig mit geschmolzenem Metall infiltriert wird.Method according to one of the preceding claims, characterized in that the preform is completely infiltrated with molten metal. Verfahren nach einem der vorangehenden Ansprüche, dadurch gekennzeichnet, dass der Vorformling in einer Gießform angeordnet wird.Method according to one of the preceding claims, characterized in that the preform is arranged in a casting mold. Verfahren nach Anspruch 15, dadurch gekennzeichnet, dass die Infiltration mittels Druckguss, Pressgießen oder Vakuumgießen erfolgt.A method according to claim 15, characterized in that the infiltration takes place by means of die casting, compression molding or vacuum casting. Verfahren nach einem der vorangehenden Ansprüche, dadurch gekennzeichnet, dass das Verbundbauteil so ausgebildet wird, dass es einen Metallanteil von mehr als 50 Volumenprozent aufweist.Method according to one of the preceding claims, characterized in that the composite component is formed so that it has a metal content of more than 50 percent by volume. Verfahren nach einem der Ansprüche 1 bis 15, dadurch gekennzeichnet, dass das Verbundbauteil so ausgebildet wird, dass es einen Kohlenstofffaseranteil von mehr als 50 Volumenprozent aufweist.Method according to one of claims 1 to 15, characterized in that the composite component is formed so that it has a carbon fiber content of more than 50 percent by volume. Verfahren nach einem der vorangehenden Ansprüche, dadurch gekennzeichnet, dass das Verbundbauteil so ausgebildet wird, dass die Kohlenstofffasern innerhalb des Verbundbauteils homogen verteilt sind.Method according to one of the preceding claims, characterized in that the composite component is formed so that the carbon fibers are homogeneously distributed within the composite component. Verfahren nach einem der Ansprüche 1 bis 18, dadurch gekennzeichnet, dass das Verbundbauteil so ausgebildet wird, dass die Kohlenstofffasern innerhalb des Verbundbauteils heterogen verteilt sind.Method according to one of claims 1 to 18, characterized in that the composite component is formed so that the carbon fibers are distributed heterogeneously within the composite component. Verbundbauteil, gebildet aus einem Metallmatrix-Verbundwerkstoff aus Kohlenstofffasern und einem Metall oder einer Metalllegierung, dadurch gekennzeichnet, dass aus den Kohlenstofffasern ein Faserverbund ausgebildet ist, wobei aus dem Faserverbund ein Vorformling ausgebildet ist, wobei die Kohlenstofffasern des Faserverbunds zur Ausbildung des Vorformlings mit pyrolytischem Kohlenstoff beschichtet sind, wobei der Vorformling zumindest teilweise mit geschmolzenem Metall infiltriert ist.Composite component, formed from a metal matrix composite material of carbon fibers and a metal or a metal alloy, characterized in that from the carbon fibers, a fiber composite is formed, wherein from the fiber composite, a preform is formed, wherein the carbon fibers of the fiber composite to form the preform with pyrolytic carbon coated, wherein the preform is at least partially infiltrated with molten metal.
DE102013225939.5A 2013-12-13 2013-12-13 Method for producing a composite component Withdrawn DE102013225939A1 (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
DE102013225939.5A DE102013225939A1 (en) 2013-12-13 2013-12-13 Method for producing a composite component
PCT/EP2014/075254 WO2015086291A1 (en) 2013-12-13 2014-11-21 Method for producing a composite component formed by carbon fibers coated with pyrolitic carbon
PCT/EP2014/075251 WO2015086290A1 (en) 2013-12-13 2014-11-21 Method for producing a pyrolytic carbon layer/carbon fiber composite component
EP14811786.4A EP3080325A1 (en) 2013-12-13 2014-11-21 Method for producing a composite component formed by carbon fibers coated with pyrolitic carbon
EP14809776.9A EP3080324A1 (en) 2013-12-13 2014-11-21 Method for producing a composite component made from carbon fibres covered with pyrolytic carbon
US15/102,456 US20160319410A1 (en) 2013-12-13 2014-11-21 Device for producing a composite component formed from carbon fibers coated with pyrolytic carbon

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE102013225939.5A DE102013225939A1 (en) 2013-12-13 2013-12-13 Method for producing a composite component

Publications (1)

Publication Number Publication Date
DE102013225939A1 true DE102013225939A1 (en) 2015-06-18

Family

ID=52021161

Family Applications (1)

Application Number Title Priority Date Filing Date
DE102013225939.5A Withdrawn DE102013225939A1 (en) 2013-12-13 2013-12-13 Method for producing a composite component

Country Status (4)

Country Link
US (1) US20160319410A1 (en)
EP (2) EP3080324A1 (en)
DE (1) DE102013225939A1 (en)
WO (2) WO2015086291A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102016202755A1 (en) 2016-02-23 2017-08-24 Bayerische Motoren Werke Aktiengesellschaft Suspension and method of manufacturing the landing gear
EP3228890A1 (en) * 2016-03-24 2017-10-11 Schunk Bahn- und Industrietechnik GmbH Diversion device and method for diverting electrostatic charges
CN113737045A (en) * 2021-09-10 2021-12-03 河南科技大学 Method for preparing bicontinuous phase SiC/Cu composite material

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102015220994B4 (en) * 2015-10-27 2021-05-06 Schunk Kohlenstofftechnik Gmbh Electrode for an electrochemical application and process for its manufacture
US20190084254A1 (en) * 2016-03-18 2019-03-21 Schunk Kohlenstofftechnik Gmbh Fiber composite component and production method
CN106191716A (en) * 2016-07-11 2016-12-07 无锡市华东电力设备有限公司 A kind of heat-resisting wear-resistant composite material
CN108930006B (en) * 2018-08-27 2020-07-03 中南大学 Copper-plated chopped carbon fiber reinforced copper/graphite composite material and preparation method thereof

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2928955A1 (en) * 1979-07-18 1981-02-12 Glyco Metall Werke Composite material using reinforcing fibres in metal matrix - esp. where aluminium powder is compacted into strip contg. oriented fibres
DE19861035C2 (en) * 1998-04-06 2000-11-30 Daimler Chrysler Ag Fiber composite material and process for its production
DE19815308C2 (en) * 1998-04-06 2000-11-30 Daimler Chrysler Ag Process for the production of reinforcing fibers or bundles of reinforcing fibers, fibers or bundles thus produced and their use
DE102009048709A1 (en) * 2009-10-08 2011-04-14 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Composite component comprises a metal, a fiber composite material and a connection zone, where the material-consistent connection of the metal with the fiber composite material in the connection zone is formed through casting

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS589822B2 (en) * 1976-11-26 1983-02-23 東邦ベスロン株式会社 Carbon fiber reinforced metal composite prepreg
US4415609A (en) * 1980-07-30 1983-11-15 Avco Corporation Method of applying a carbon-rich surface layer to a silicon carbide filament
JP3327637B2 (en) * 1993-07-14 2002-09-24 核燃料サイクル開発機構 Functionally graded composite material of copper and carbon and method for producing the same
WO2006027879A1 (en) * 2004-09-06 2006-03-16 Mitsubishi Corporation CARBON FIBER Ti-Al COMPOSITE MATERIAL AND PROCESS FOR PRODUCING THE SAME
CN1259445C (en) * 2004-09-07 2006-06-14 上海大学 Process for preparing carbon-carbon precast member for carbon-carbon/aluminium composite material
CN1316052C (en) * 2005-06-30 2007-05-16 上海交通大学 Method of improving damping performance of fiber reinforced magnesium base composite material
JP2009127116A (en) * 2007-11-27 2009-06-11 Honda Motor Co Ltd Method for producing metal matrix carbon fiber-reinforced composite material
JP4669014B2 (en) * 2008-02-15 2011-04-13 日信工業株式会社 Method for producing carbon fiber composite metal material
CN102952963B (en) * 2012-11-07 2014-12-10 中国路桥工程有限责任公司 Preparation method of carbon nanotube enhanced carbon aluminum and copper composite sliding plate

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2928955A1 (en) * 1979-07-18 1981-02-12 Glyco Metall Werke Composite material using reinforcing fibres in metal matrix - esp. where aluminium powder is compacted into strip contg. oriented fibres
DE19861035C2 (en) * 1998-04-06 2000-11-30 Daimler Chrysler Ag Fiber composite material and process for its production
DE19815308C2 (en) * 1998-04-06 2000-11-30 Daimler Chrysler Ag Process for the production of reinforcing fibers or bundles of reinforcing fibers, fibers or bundles thus produced and their use
DE102009048709A1 (en) * 2009-10-08 2011-04-14 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Composite component comprises a metal, a fiber composite material and a connection zone, where the material-consistent connection of the metal with the fiber composite material in the connection zone is formed through casting

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102016202755A1 (en) 2016-02-23 2017-08-24 Bayerische Motoren Werke Aktiengesellschaft Suspension and method of manufacturing the landing gear
WO2017144204A1 (en) 2016-02-23 2017-08-31 Bayerische Motoren Werke Aktiengesellschaft Chassis and method for producing the chassis
US10850329B2 (en) 2016-02-23 2020-12-01 Bayerische Motoren Werke Aktiengesellschaft Use of a part in chassis of motor vehicles
EP3228890A1 (en) * 2016-03-24 2017-10-11 Schunk Bahn- und Industrietechnik GmbH Diversion device and method for diverting electrostatic charges
US10485083B2 (en) 2016-03-24 2019-11-19 Schunk Bahn— und Industrietechnik GmbH Discharge device and method for discharging electrostatic charges
CN113737045A (en) * 2021-09-10 2021-12-03 河南科技大学 Method for preparing bicontinuous phase SiC/Cu composite material

Also Published As

Publication number Publication date
WO2015086290A9 (en) 2015-11-12
WO2015086291A1 (en) 2015-06-18
US20160319410A1 (en) 2016-11-03
EP3080325A1 (en) 2016-10-19
EP3080324A1 (en) 2016-10-19
WO2015086290A1 (en) 2015-06-18

Similar Documents

Publication Publication Date Title
DE102013225939A1 (en) Method for producing a composite component
DE102004009264B4 (en) Preparation of a preform by reinforcing a fibrous structure and / or joining fibrous structures together and use in the manufacture of composite parts
DE10257683A1 (en) Production of a needled fiber preform for the production of a composite material part
EP1008569A1 (en) Method of making a short carbon fibre-reinforced silicon carbide composite material
DE60029298T2 (en) Brake disc for a disc brake
EP1070027B1 (en) Reinforcing fibers and fiber bundles, especially for fiber composites, methods for the production thereof, and a fiber composite having reinforcing fibers
EP3088556B1 (en) Carbon fibre metal composite material
DE102019215661A1 (en) Ceramic fiber composite components
WO2005037733A1 (en) Carbon-based moulded part, method for the production and use thereof
DE102009047491A1 (en) Production of a 3D textile structure and semifinished fiber products from fiber composites
EP1845075B1 (en) Carbon fibre reinforced carbon bodies and a method for their production
DE102015201119B4 (en) Production process of ceramic matrix semi-finished products
EP3856700B1 (en) Method of producing a carbon-ceramic shaped body
EP3463871B1 (en) Method to make a substrate and substrate
DE3203659C2 (en)
EP0111080B1 (en) Method of making a fibre-reinforced composite ceramic material
DE102016205014A1 (en) Fiber composite component and method of manufacture
DE102010053841A1 (en) Textile semi-finished products useful for manufacturing fiber-reinforced structural-parts for motor vehicles, comprises at least one non-metallic fiber assembly, and at least one wire with a plastic deformability
WO2021069723A1 (en) Fibre composite components
WO2021190821A1 (en) Method and device for manufacturing a particle-reinforced composite-material component
DE4123677A1 (en) FIBER MOLDED BODY AND METHOD FOR THE PRODUCTION THEREOF AND USE OF THE MOLDED BODY FOR THE PRODUCTION OF FIBER REINFORCED ALUMINUM CASTING PARTS
DE4331307C2 (en) Manufacture of a carbon fiber reinforced composite and its use
DE19815308A1 (en) Reinforcing fibers and rovings for silicon carbide ceramic composite useful for brake disks and brake linings
DE102014223777A1 (en) Method for producing a composite component
EP1988068B1 (en) Process of manufacture of fiber-reinforced shaped bodies

Legal Events

Date Code Title Description
R012 Request for examination validly filed
R016 Response to examination communication
R016 Response to examination communication
R119 Application deemed withdrawn, or ip right lapsed, due to non-payment of renewal fee