DE102013223637A1 - Verfahren zum Behandeln eines lasertransparenten Substrats zum anschließenden Trennen des Substrats - Google Patents

Verfahren zum Behandeln eines lasertransparenten Substrats zum anschließenden Trennen des Substrats

Info

Publication number
DE102013223637A1
DE102013223637A1 DE102013223637.9A DE102013223637A DE102013223637A1 DE 102013223637 A1 DE102013223637 A1 DE 102013223637A1 DE 102013223637 A DE102013223637 A DE 102013223637A DE 102013223637 A1 DE102013223637 A1 DE 102013223637A1
Authority
DE
Germany
Prior art keywords
substrate
laser beam
method according
characterized
beam
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
DE102013223637.9A
Other languages
English (en)
Other versions
DE102013223637B4 (de
Inventor
Jonas Kleiner
Daniel Großmann
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Trumpf Laser und Systemtechnik GmbH
Original Assignee
Trumpf Laser und Systemtechnik GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Trumpf Laser und Systemtechnik GmbH filed Critical Trumpf Laser und Systemtechnik GmbH
Priority to DE102013223637.9A priority Critical patent/DE102013223637B4/de
Publication of DE102013223637A1 publication Critical patent/DE102013223637A1/de
Application granted granted Critical
Publication of DE102013223637B4 publication Critical patent/DE102013223637B4/de
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B33/00Severing cooled glass
    • C03B33/02Cutting or splitting sheet glass or ribbons; Apparatus or machines therefor
    • C03B33/0222Scoring using a focussed radiation beam, e.g. laser
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/20Bonding
    • B23K26/32Bonding taking account of the properties of the material involved
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/50Working by transmitting the laser beam through or within the workpiece
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B28WORKING CEMENT, CLAY, OR STONE
    • B28DWORKING STONE OR STONE-LIKE MATERIALS
    • B28D5/00Fine working of gems, jewels, crystals, e.g. of semiconductor material; apparatus or devices therefor
    • B28D5/0005Fine working of gems, jewels, crystals, e.g. of semiconductor material; apparatus or devices therefor by breaking, e.g. dicing
    • B28D5/0011Fine working of gems, jewels, crystals, e.g. of semiconductor material; apparatus or devices therefor by breaking, e.g. dicing with preliminary treatment, e.g. weakening by scoring
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2103/00Materials to be soldered, welded or cut
    • B23K2103/50Inorganic material, e.g. metals, not provided for in B23K2103/02 – B23K2103/26
    • B23K2103/52Ceramics

Abstract

Vorgeschlagen wird Verfahren zum Behandeln eines lasertransparenten Substrats (1) zum anschließenden Trennen des Substrats (1) entlang eines Trennbereichs (2), mit folgenden Verfahrensschritten: a.) Bestrahlen des Substratinneren an einer Substratposition (3) mit derart eingestellten Strahlparametern (zr, w0, l0, λ) eines Laserstrahls (4), dass im Laserstrahl (4) ein in der Strahlrichtung (11) keulenförmiger oder sich birnenförmig verjüngender Volumenbereich (5) gebildet wird, in welchem eine Schwellfluenz (φs) zum Erzeugen einer Modifikation überschritten ist, um im Substratinneren an der Substratposition (3) einen modifizierten Bereich (8) zu erzeugen, b.) Durchführen des Schritts a.) an mindestens einer weiteren Substratposition (3') zum Ausbilden eines die modifizierten Bereiche (8) umfassenden Trennbereichs (2).

Description

  • Die Erfindung betrifft ein Verfahren zum Behandeln eines lasertransparenten Substrats zum anschließenden Trennen des Substrats entlang eines Trennbereichs.
  • Ein derartiges Verfahren ist beispielsweise aus der EP 2 258 512 A1 bekannt geworden. Im Stand der Technik wird das Substrat lokal aufgeschmolzen, so dass im Inneren des Substrats ein strukturell geschwächter Bereich entsteht. Das Substrat wird durch mechanisches Einwirken auf den geschwächten Bereich gebrochen und somit getrennt.
  • Die WO 2011/025908 A1 offenbart ein Verfahren zum Schneiden von chemisch gehärtetem Glas mit einem Laserstrahl dessen Wellenlänge für das chemisch gehärtete Glas transparent ist. Der Laserstrahl wird dabei in einem inneren auf Zug belasteten Bereich des chemisch gehärteten Glases fokussiert.
  • Aus der WO 2012/006736 A2 ist ein Verfahren zum Vorbereiten des Substrats auf eine Spaltung bekannt, wobei das Substrat mit einem Laserstrahl derart bestrahlt wird, dass durch Selbstfokussierung des Laserstrahls Filamente entstehen entlang derer das Substrat im Anschluss gespalten werden kann.
  • Die EP 1 494 271 A1 offenbart schließlich ein Verfahren zum Auftrennen eines Substrats mittels eines Laserstrahls. Dieser wird in einem Punkt im Substratinneren fokussiert, der als Ausgangspunkt zum Auftrennen des Substrats dient.
  • Bei den vorbekannten Verfahren zum Trennen von Substraten kann häufig eine geforderte Güte bzw. Qualität der Schnittkanten oder Trennflächen nicht erreicht werden. Insbesondere treten im Bereich der Schnittkanten bzw. Trennflächen so genannte „Voids”, d. h. kleine Risse und/oder Hohlräume im Substratmaterial, auf, die eine Schädigungszone im Substrat darstellen und die beispielsweise Ausgangspunkte für unerwünschte weiterführende Risse sein können. Darüber hinaus ergeben sich beim Trennen von Substraten, insbesondere beim Trennen von chemisch vorgespannten Gläsern, mittels materialabtragender Verfahren nachteilig lange Bearbeitungszeiten sowie teilweise auch eine nicht zufriedenstellende Güte der Schnittkanten bzw. Trennflächen. So ergeben sich durch diese Verfahren typischerweise Schnittkanten mit einem Taperwinkel von mehr als 4°. Zudem ist ein rein mechanisches Trennen vorgespannter Gläser mit Schichtdicken (engt. „Depth Of Layer” bzw. DOL) von mehr als 40 μm generell nicht möglich.
  • Der vorliegenden Erfindung liegt die Aufgabe zugrunde, ein Verfahren zum Behandeln eines lasertransparenten Substrats zum anschließenden Trennen des Substrats anzugeben, das die Nachteile des Standes der Technik überwindet.
  • Insbesondere soll die Güte der Schnittkanten bzw. Trennflächen zertrennter Substratteile verbessert werden.
  • Diese Aufgabe wird durch ein Verfahren zum Behandeln eines lasertransparenten Substrats zum anschließenden Trennen des Substrats entlang eines Trennbereichs, mit den folgenden Verfahrensschritten gelöst:
    • a.) Bestrahlen des Substratinneren an einer Substratposition mit derart eingestellten Strahlparametern eines Laserstrahls, dass im Laserstrahl ein in der Strahlrichtung keulenförmiger bzw. sich birnenförmig verjüngender Volumenbereich gebildet wird, in welchem eine Schwellfluenz (ϕs) zum Erzeugen einer Modifikation überschritten ist, um im Substratinneren an der Substratposition einen modifizierten Bereich zu erzeugen,
    • b.) Durchführen des Schritts a.) an mindestens einer weiteren Substratposition zum Ausbilden eines die modifizierten Bereiche umfassenden Trennbereichs. Dabei kann die Modifikation sowohl aus Bindungs- und Dichteänderungen wie auch aus transienten Effekten, wie erhöhten Elektronendichten oder Temperaturen bestehen.
  • Durch das erfindungsgemäße Verfahren ergeben sich unter anderem die folgenden Vorteile. Die im Substrat erzeugten modifizierten Bereiche bilden gemeinsam einen Trennbereich, entlang dessen das Substrat im Anschluss an den Behandlungsschritt auf einfache Weise in einen oder mehrere Substratteile getrennt werden kann. Dadurch, dass die Strahlparameter erfindungsgemäß derart eingestellt werden, dass im Laserstrahl der sich in der Strahlrichtung keulenförmige bzw. birnenförmig verjüngende Volumenbereich gebildet wird, in welchem eine Schwellfluenz zum Erzeugen einer Modifikation überschritten ist, entstehen im Substrat bzw. im Trennbereich keine Voids (Risse oder Hohlräume), sondern ein gleichmäßig und einheitlich modifizierter Trennbereich, der nach dem Trennvorgang glatte und saubere Trennflächen hoher Oberflächengüte an den Substratteilen hervorbringt. Durch den erfindungsgemäß keulenförmigen bzw. birnenförmig verjüngten Volumenbereich im Laserstrahl werden modifizierte Bereiche im Substrat erzeugt, in denen die zum späteren Trennen erforderlichen Kräfte kumuliert werden können. Bei dem erfindungsgemäßen Verfahren ist dabei zum Erzeugen des Trennbereichs grundsätzlich keine Fokuslagenverschiebung in der Ausbreitungsrichtung des Laserstrahls erforderlich. Zum anderen kann durch den Laserstrahl in dem keulenförmigen bzw. birnenförmig verjüngten Volumenbereich eine vergleichsweise hohe Energiemenge in das Substrat eingebracht werden, sodass ein verlangsamtes Abkühlen möglich ist und damit einhergehend geringere Temperaturgradienten im Substrat auftreten. Auch können auf diese Weise transiente Effekte zum Trennen genutzt werden. Dabei sind zwei Grenzfälle möglich: In einem der beiden Grenzfälle kann eine permanente Modifikation erzielt werden, im anderen eine temporäre. Im zweiten Fall wird dies durch einen höheren Wärmeeintrag, beispielsweise durch einen größeren Überlapp der temporär modifizierten Bereiche, erreicht. In diesem Fall ist das Volumen des temporär modifizierten Bereichs größer, dieser kühlt langsamer ab, so dass die Modifikationen ausheilen können. Erfindungsgemäß wird das Innere des Substrats durch die modifizierten Bereiche so vorbehandelt, dass es anschließend einfach, d. h. durch beispielsweise einen geringen manuellen Kraftaufwand, getrennt werden kann. Lediglich beim Trennen stellt sich ein (einziger) durchgängiger, das Substrat in einen oder mehrere Substratteile trennender Riss ein. Erfindungsgemäß können sowohl vorgespannte als auch nicht vorgespannte Substrate bzw. Gläser mit 0° Taperwinkel und vergleichsweise hoher Bearbeitungsgeschwindigkeit getrennt werden. Das Verfahren ermöglicht es darüber hinaus, transparente Substratmaterialien (beispielsweise chemisch vorgespannte, aber auch nicht vorgespannte Substrate) mit Materialdicken im Bereich von 50 μm bis 5 mm, insbesondere von 0,3 mm bis 1,1 mm zu trennen. Durch das erfindungsgemäße Verfahren lassen sich grundsätzlich beliebige Schnittkonturen bzw. Schnittgeometrien realisieren.
  • Die Längserstreckung des keulenförmigen bzw. birnenförmig verjüngten Volumenbereichs ist typischerweise wesentlich größer als dessen Quererstreckung, wobei die Längsausdehnungsrichtung des keulenförmigen bzw. birnenförmigen Volumenbereichs (gewissermaßen die Keule- bzw. Birnenlängsrichtung) und die Strahlrichtung des Laserstrahls (bzw. die Laserstrahlachsrichtung) in der Regel zusammenfallen oder parallel zueinander ausgerichtet sind. Das zu behandelnde bzw. zu trennende Substrat ist typischerweise plattenförmig, d. h. eben, ausgebildet, wobei die Strahlrichtung des Laserstrahls in der Regel orthogonal zur Substratoberfläche des plattenförmigen Substrats einstrahlt bzw. ausgerichtet ist. Der keulenförmige bzw. birnenförmig verjüngte Volumenbereich stellt ein durch eine Isophote, d. h. durch eine geschlossene Fläche gleicher Fluenz bzw. Strahlungsintensität, abgegrenztes Volumen dar. Der keulenförmige bzw. birnenförmige Volumenbereich umgibt typischerweise den Fokus des Laserstrahls.
  • Durch das Bestrahlen des Substrats mit den erfindungsgemäß eingestellten Strahlparametern bzw. durch das Einwirken des im Wesentlichen keulenförmigen bzw. birnenförmig verjüngten Volumenbereichs des Laserstrahls auf das Substratmaterial, entstehen im Substrat durch Absorption von Energie modifizierte Bereiche, die eine dem Volumenbereich im Wesentlichen entsprechende Form (ebenfalls eine in der Strahlrichtung verjüngte Keulen- oder Birnenform) aufweisen. Die modifizierten Bereiche erstrecken sich demnach jeweils im Wesentlichen längs der Strahlachse des Laserstrahls und weisen in einem Eintrittsbereich (Bereich, in welchem der Laserstrahl in das Substrat eintritt), eine größere Quererstreckung auf als in einem sich daran in Ausbreitungsrichtung des Laserstrahls anschließenden unteren Teilbereich. Der Grund für die einenends keulen- oder birnenförmig verbreiterte Form der modifizierten Bereiche ist, dass während deren Bildung in dem Eintrittsbereich bereits Energie des Laserstrahls absorbiert wird, sodass in dem in Ausbreitungsrichtung des Laserstrahls folgenden unteren Teilbereich des modifizierten Bereichs weniger Energie zur Verfügung steht und diese aufgrund des Schwellverhaltens in einem kleineren Bereich deponiert wird. Der Schwellenwert zur Erzeugung einer Modifikation ist grundsätzlich vom behandelten Substratmaterial abhängig. Ein typischer Wert für die Schwellfluenz zur Erzeugung einer Modifikation beträgt ca. 10 J/cm2. Die Quererstreckung bzw. Breite der modifizierten Bereiche (Breite in Vorschubrichtung) beträgt typischerweise zwischen 8 μm und 10 μm und deren Längserstreckung bzw. Länge beträgt in der Regel ca. einige 100 μm.
  • Als Strahlung zum Erzeugen des keulenförmigen bzw. birnenförmig verjüngten Volumenbereichs kann grundsätzlich IR-, VIS- und UV-Strahlung der Wellenlänge 1064 nm, 1030 nm, 800 nm, 515 nm bzw. 343 nm eingesetzt werden. Es versteht sich, dass auch Strahlung mit Wellenlängen, welche zwischen diesen Werten liegt, eingesetzt werden kann. Dabei können Optiken mit Brennweiten von f = 3 mm und f = 100 mm, insbesondere von f = 10 mm bis 56 mm, verwendet werden. Für das erfindungsgemäße Verfahren werden typischerweise Strahlintensitäten von 1010 W/cm2 bis 1017 W/cm2, insbesondere von 1013 bis 1014 W/cm2, im Fokus eingesetzt.
  • Bei einer bevorzugten Verfahrensvariante werden die Strahlparameter derart eingestellt, dass ein Verhältnis aus der maximalen Quererstreckung substratoberflächenseitiger Enden des Volumenbereichs und der maximalen Längserstreckung des Volumenbereichs zwischen 1/2 und 1/150, insbesondere zwischen 1/10 und 1/70, beträgt. Auf diese Weise ergeben sich nach dem Trennen des Substrats entlang des Trennbereichs qualitativ besonders hochwertige Trennflächen an den voneinander getrennten Substratteilen. Es können insbesondere Trennflächen mit einer spiegelglatten Oberfläche erreicht werden. Unter einem substratoberflächenseitigen Ende wird, insbesondere eine Endzone des keulenförmigen bzw. birnenförmigen Volumenbereichs verstanden.
  • Bevorzugt ist auch eine Variante des Verfahrens, bei der die Strahlparameter derart eingestellt werden, dass die erzeugten modifizierten Bereiche eine Breite von mehr als 3 μm aufweisen. Auf diese Weise wird erreicht, dass das Volumen der modifizierten Bereiche vergleichsweise groß ist. Es ist nun möglich, die zum Trennen erforderlichen Kräfte zu kumulieren. Weiter kann durch das vergleichsweise große Volumen die gespeicherte Energie für transiente Effekte nutzbar gemacht werden.
  • Bei einer weiteren bevorzugten Verfahrensvariante werden die Rayleighlänge zr, die Pulsenergie E im Laserstrahl, die Pulsdauer τ und die Wellenlänge λ des Laserstrahls als Strahlparameter derart eingestellt, dass nach:
    Figure DE102013223637A1_0002
    mit: knl als Korrekturfaktor; ϕs als Schwellfluenz zum Erzeugen einer Modifikation im Substratmaterial, die erzeugten modifizierten Bereiche jeweils eine Länge l(zr) aufweisen, die einer Breite von mehr als 3 μm entspricht. Dabei hängt die Rayleighlänge zr durch
    Figure DE102013223637A1_0003
    von der Wellenlänge λ und vom minimalen Strahlradius w0 ab. In analoger Weise kann somit vorteilhaft ein vergleichsweise großes Volumen der modifizierten Bereiche erreicht werden. Entsprechend können die zum Trennen erforderlichen Kräfte kumuliert und die gespeicherte Energie für transiente Effekte nutzbar gemacht werden.
  • Bei einer weiteren bevorzugten Variante wird zum Bestrahlen des Substratinneren an den weiteren Substratpositionen der Laserstrahl jeweils um das 0,01-fache bis 5-fache, insbesondere das 0,3-fache bis 2-fache, des minimalen Laserstrahlradius w0 relativ zum Substrat, insbesondere parallel, versetzt. Auf diese Weise können im Grenzfall permanenter Modifikationen mehrere, insbesondere schlauchartig ausgebildete, modifizierte Bereiche aneinandergereiht werden, ohne dass sich die einzelnen modifizierten Bereiche bei ihrer Erzeugung gegenseitig nachteilig beeinflussen. Es können durch die Wahl eines entsprechenden Parallelversatzes Überschneidungen benachbart angeordneter modifizierter Bereiche verhindert werden. Der Abstand zwischen benachbarten modifizierten Bereichen kann bei einem Fokusdurchmesser von 7 μm beispielsweise 8 μm bis 20 μm betragen.
  • Bevorzugt wird das Bestrahlen des Substrats während des Relativversetzens von einer Substratposition zu einer weiteren Substratposition unterbrochen. Alternativ kann der Laserstrahl während des Relativversetzens zwischen benachbarten Substratpositionen kontinuierlich oder zumindest mit einer verringerten Intensität betrieben werden.
  • Besonders bevorzugt liegt das Verhältnis aus einer Geschwindigkeit zum Versetzen des Laserstrahls zwischen benachbarten Substratpositionen (Versatz-Geschwindigkeit) und einer Pulsrate des Laserstrahls zwischen 0,1 μm und 50 μm, insbesondere zwischen 1 μm und 20 μm. Auf diese Weise können nicht nur gleichmäßige und klare Trennflächen erzeugt werden, ohne dabei Voids oder andere Schädigungszonen zu verursachen, sondern darüber hinaus können auch negative, auf Wärmeakkumulation basierende, thermische Effekte vermieden werden.
  • Bei einer weiteren bevorzugten Verfahrensvariante werden mehrere, in der Strahlrichtung übereinander angeordnete, modifizierte Bereiche im Substratinneren erzeugt, wenn das Verhältnis aus der Substratdicke d0 und dem minimalen Strahlradius w0 im Bereich zwischen ca. 30 und ca. 800, insbesondere zwischen ca. 30 und ca. 100, liegt. Auf diese Weise können auch Substrate nach dem erfindungsgemäßen Verfahren getrennt werden, deren Dicken wesentlich größer als die Länge eines einzelnen modifizierten Bereichs sind. Zum Anordnen der modifizierten Bereiche übereinander kann die Fokuslage des Laserstrahls entsprechend in der Strahlrichtung, d. h. in der Ausbreitungsrichtung des Laserstrahls, verändert werden.
  • Bei einer Verfahrensweiterbildung der vorhergehenden Verfahrensvariante werden übereinander angeordnete modifizierte Bereiche mittels jeweils eines weiteren Laserstrahls erzeugt. Durch ein derartiges zeitgleiches bzw. paralleles Behandeln des Substrats kann der erfindungsgemäße Verfahrensablauf beim Trennen vergleichsweise dicker Substrate beschleunigt werden. Hierzu kann beispielsweise eine Doppelfokusoptik verwendet werden. Der die Trennung der Substratteile bewirkende Riss kann sich somit gleichzeitig entlang der übereinander angeordneten modifizierten Bereiche erstrecken, wobei insbesondere transiente Effekte genutzt werden können.
  • Bevorzugt ist ferner eine Variante des Verfahrens, bei der die modifizierten Bereiche mittels an den Substratpositionen jeweils eingebrachter Laserpulse erzeugt werden. Durch ein anfänglich vergleichsweise schwaches Einwirken bzw. Einstrahlen auf das Substrat (durch einen ersten vergleichsweise schwachen Puls) können weitere (vergleichsweise schwächere) Pulse an der gleichen Stelle besser absorbiert werden. Auf diese Weise werden die Entstehung von Voids und eine daraus folgende unerwünschte Rissausbreitung weiter vermieden, wobei insgesamt mehr Energie deponiert werden kann. Um den keulenförmigen bzw. birnenförmig verjüngten Volumenbereich im Laserstrahl zu erzeugen, können Pulsenergien und Pulsdauern im Bereich 1 μJ bis 5 mJ (typischerweise 100 μJ bis 500 μJ) bzw. 10 fs bis 50 ps, typischerweise 700 fs bis 20 ps als weitere Strahlparameter gewählt bzw. eingestellt werden. Die Laserpulse können in einer Verfahrensvariante auch räumlich getrennt voneinander in das Substrat eingebracht werden. Dies erfolgt bevorzugt im Abstand von 5 μs–1 ms.
  • Bevorzugt ist auch eine Verfahrensweiterbildung der vorhergehenden Verfahrensvariante, bei der die Laserpulse mit zeitlichen Pulsabständen von 1 ps bis 100 ns aufeinander folgen. Auf diese Weise wird ein sanfterer bzw. schonenderer Energieeintrag in das Substratmaterial erreicht. Die Energieabsorption erfolgt effizienter, und es kann mehr Energie im Substratmaterial deponiert werden. Die aufeinander folgenden Laserpulse bilden so genannte Pulsbursts (Pulsgruppen). Zur Erzeugung eines Pulsbursts wird typischerweise ein (Haupt-)Puls mit hoher Energie in mehrere Pulse mit geringerer Energie jedoch gleicher Spitzenleistung geteilt.
  • Bei einer bevorzugten Verfahrensvariante wird der Volumenbereich von mindestens einer Substratoberfläche um bis zu 15% der Substratdicke d0 beabstandet im Substratinneren gebildet. Auf diese Weise werden die modifizierten Bereiche nicht vollständig von einer Substratoberfläche bis zur gegenüberliegenden anderen Substratoberfläche erzeugt, sondern die unmittelbar an die Substratoberflächen angrenzenden Bereiche bleiben unbehandelt.
  • Bevorzugt ist das Substratmaterial ausgewählt aus der Gruppe umfassend: transparente Keramiken, Halbleiter, (Dünn-)Schichtsysteme bzw. Verbundwerkstoffe aus den zuvor genannten Substratmaterialien sowie Metalle. Polymere, transparente Leiter, Glas, Quarzkristalle, Diamant, und Saphir. Derartige Substratmaterialien sind typischerweise lasertransparent.
  • Schließlich ist eine Verfahrensvariante bevorzugt, bei der das Substrat entlang eines die modifizierten Bereiche umfassenden Trennbereichs durch ein mechanisches oder chemisches Verfahren getrennt wird. Als mechanisches Trennverfahren kann beispielsweise das Trennen des Substrats in zwei oder mehrere Substratteile von Hand oder mittels entsprechender Greifmaschinen eingesetzt werden. Durch das (Vor-)Behandeln des Substratinneren kann das Substrat besonders einfach, d. h. mittels eines lediglich geringen Kraftaufwands, getrennt werden. Beim Trennen stellt sich ein einziger durchgängiger, das Substrat in einen oder mehrere Substratteile trennender Riss ein und es entstehen die Trennflächen an den jeweiligen Substratteilen. Bei Nutzung transienter Effekte trennt sich das Material bei geschickter Wahl der Parameter ohne weitere Nachbehandlung.
  • Weitere Vorteile und vorteilhafte Ausgestaltungen des Gegenstands der Erfindung ergeben sich aus der Beschreibung, den Ansprüchen und der Zeichnung. Ebenso können die vorstehend genannten und die noch weiter aufgeführten Merkmale je für sich oder zu mehreren in beliebigen Kombinationen Verwendung finden. Die gezeigte und beschriebene Ausführungsform ist nicht als abschließende Aufzählung zu verstehen, sondern hat vielmehr beispielhaften Charakter für die Schilderung der Erfindung. Die Figuren der Zeichnung zeigen den erfindungsgemäßen Gegenstand stark schematisiert und sind nicht maßstäblich zu verstehen.
  • Es zeigen:
  • 1 ein Substrat in einer perspektivischen Ansicht, in das erfindungsgemäß mittels eines Laserstrahls modifizierte Bereiche eingebracht werden;
  • 2 einen schematischen Querschnitt durch einen sich in Luft ausbreitenden Laserstrahl, in dessen Inneren ein hantelförmiger Volumenbereich gebildet ist (links), sowie einen schematischen Querschnitt durch ein Substrat, in dessen Substratinneren ein modifizierter Bereich erzeugt wurde (rechts);
  • 3 einen schematischen Querschnitt durch ein Substrat, in dessen Substratinneren in der Ausbreitungsrichtung des Laserstrahls übereinander angeordnete modifizierte Bereiche gebildet sind; und
  • 4 eine Grafik, die einen Zusammenhang zwischen der Länge modifizierter Bereiche und der Rayleighlänge eines Laserstrahls für unterschiedliche Strahlenergien darstellt.
  • In der folgenden Beschreibung der Zeichnung werden für gleiche bzw. funktionsgleiche Bauteile identische Bezugszeichen verwendet.
  • Mit Bezug zu den 1 und 2 wird im Folgenden ein Verfahren zum Behandeln eines lasertransparenten Substrats 1, beispielsweise eines chemisch gehärteten Glases, zum anschließenden Trennen des Substrats 1 entlang eines Trennbereichs 2 beschrieben.
  • Gemäß einem ersten Verfahrensschritt wird das Substratinnere an einer ersten Substratposition 3 mit derart eingestellten Strahlparametern eines Laserstrahls 4 bestrahlt, dass im Laserstrahl 4 ein sich in der Strahlrichtung 11 keulenförmiger bzw. birnenförmig verjüngender Volumenbereich 5 mit einer einen Schwellwert zum Erzeugen einer Modifikation übersteigenden Fluenz bzw. Strahlungsintensität gebildet wird (vgl. 2, rechts). Dabei entspricht bei festgelegter Pulsdauer die Strahlungsintensität der Fluenz des Laserstrahls. Die Strahlparameter des Laserstrahls 4 werden insbesondere derart eingestellt, dass das Verhältnis aus der maximalen Quererstreckung A1 eines substratoberflächenseitigen Endes 6 des Volumenbereichs 5 und der maximalen Längserstreckung A2 des Volumenbereichs 5 ca. 1/40 beträgt, und dass der Volumenbereich 5 von zumindest einer Substratoberfläche 7 um bis zu 15% der Substratdicke d0 beabstandet im Substratinneren gebildet wird. Die Fluenz des Laserstrahls 4 wird dabei z. B. auf einen Wert von 160 J/cm2 eingestellt.
  • Der in 2 links dargestellte Zustand gilt für einen sich in Luft ausbreitenden Laserstrahl 4. Dabei entsteht ein hantelförmiger Volumenbereich 5', also ein Bereich, der durch eine geschlossene Fläche gleicher Strahlungsintensität (eine so genannte Isophote) begrenzt wird. Der hantelförmige Volumenbereich 5' weist ebenfalls an seinen substratoberflächenseitigen Enden 6 eine maximale Quererstreckung A1 und eine maximale Längserstreckung A2 auf. In 2 (links) sind weitere, im Inneren des Volumenbereichs 5 angeordnete Flächen jeweils gleicher Fluenz bzw. Strahlungsintensität im fokussierten Laserstrahl 4 dargestellt.
  • Dadurch, dass im Laserstrahl 4 bzw. im Substratinneren der keulenförmige bzw. birnenförmig verjüngte Volumenbereich 5 mit der den Schwellwert zum Erzeugen einer Modifikation übersteigenden Fluenz bzw. Strahlungsintensität gebildet wird, kann Strahlungsenergie in einem durch die Strahlkaustik des Laserstrahls 4 begrenzten Bereich in das Substratinnere eingebracht bzw. deponiert werden. Dies hat wiederum zur Folge, dass im Substratinneren durch Absorption an der jeweiligen Substratposition 3 ein der Form des Volumenbereichs im Wesentlichen entsprechender modifizierter Bereich 8 erzeugt wird (vgl. ebenfalls 2, rechts). Der modifizierte Bereich 8 erstreckt sich, wie der Volumenbereich 5, im Wesentlichen längs der Strahlachse 9 des Laserstrahls 4 und weist in einem Eintrittsbereich 10, also einem Bereich, in dem der Laserstrahl 4 in das Substrat 1 eintritt, eine größere Quererstreckung B1 auf als in einem sich daran in Strahlrichtung 11 (in Ausbreitungsrichtung 11 des Laserstrahls 4) anschließenden unteren Teilbereich 12. Die modifizierten Bereiche 8 weisen somit ebenfalls eine keulenförmige bzw. birnenförmige, einenends (in 2 oben) verdickte und anderenends (in 2 unten) verjüngte Form mit einer maximalen Längserstreckung B2 auf.
  • Gemäß eines weiteren Verfahrensschrittes wird das Bestrahlen des Substratinneren mittels des im Laserstrahl 4 entsprechend gebildeten Volumenbereichs 5 an mindestens einer weiteren, insbesondere zur Strahlrichtung 11 des Laserstrahls 4 querversetzten, Substratposition 3' durchgeführt, um den die modifizierten Bereiche 8 umfassenden Trennbereich 2 auszubilden. Beispielsweise werden gemäß 1 eine Vielzahl modifizierter Bereiche 8 an unterschiedlichen Substratpositionen 3, 3', 3'' im Substratinneren durch relatives Parallelversetzen des Laserstrahls 4 erzeugt, sodass der sich entlang dieser modifizierten Bereiche 8 erstreckende Trennbereich 2 entsteht. Zum Erzeugen der modifizierten Bereiche 8 an den jeweiligen, weiteren Substratpositionen 3, 3', 3'' wird der Laserstrahl 4 beispielsweise jeweils um den Betrag des minimalen Laserstrahlradius w0 relativ zum Substrat 1 querversetzt, wobei das Bestrahlen des Substrats 1 mittels des Laserstrahls 4 während des Relativversetzens von einer Substratposition 3 zu einer weiteren Substratposition 3' unterbrochen wird. Bei einem Verhältnis aus der Versatz-Geschwindigkeit des Laserstrahls 1 zwischen benachbarten Substratpositionen 3, 3' und einer Pulsrate des Laserstrahls 4 von 8 μm, kann eine hohe und sichere Bearbeitungsgeschwindigkeit erreicht werden. Der Laserstrahl 4 bestrahlt das Substrat 1 typischerweise in gepulster Form, d. h. die modifizierten Bereiche 8 werden mittels an den Substratpositionen 3, 3' jeweils eingebrachter Laserpulse erzeugt. Dabei können Einzelpulse, welche räumlich getrennt voneinander im Abstand von typischerweise 5 μs–1 ms auf das Substrat einwirken, verwendet werden. Alternativ können auch so genannte Pulsbursts, zu deren Erzeugung typischerweise ein (Haupt-)Puls mit hoher Energie in mehrere Pulse mit geringerer Energie jedoch gleicher Spitzenleistung geteilt wird, eingesetzt werden. Die Laserpulse folgen mit zeitlichen Pulsabständen von 1 ps bis 100 ns aufeinander.
  • Nachdem, wie vorbeschrieben, im Substratinneren der Trennbereich 2 erzeugt wurde, kann in einem letzten Verfahrensschritt das Substrat 1 entlang des Trennbereichs 2 durch ein mechanisches Verfahren, beispielsweise durch manuelles Brechen, in zwei oder mehrere Substratteile (je nach Konturverlauf des Trennbereichs 2) getrennt werden. Alternativ kann das Substrat 1 auch entlang des Trennbereichs 2 mittels eines chemischen Verfahrens getrennt werden. Durch das vorbeschriebene Verfahren zum Vorbehandeln und Trennen des Substrats 1 kann das Substrat 1 besonders einfach in Substratteile getrennt werden, wobei die Substratteile dadurch jeweils qualitativ hochwertige Trennflächen aufweisen.
  • In 3 ist das mittels einer Verfahrensvariante bearbeitete Substrat 1 dargestellt. Bei dieser Verfahrensvariante werden mehrere, in der Strahlrichtung 11 des Laserstrahls 4 übereinander angeordnete modifizierte Bereiche 8 im Substratinneren erzeugt, wenn das Verhältnis aus der Substratdicke d0 und dem minimalen Strahlradius w0 den Wert von ca. 40, übersteigt. Auf diese Weise können auch Substrate 1 getrennt werden, deren Substratdicken d0 wesentlich größer sind als die Länge B2 eines einzelnen modifizierten Bereichs 8. In 3 sind lediglich zwei modifizierte Bereiche 8 übereinander dargestellt. Es versteht sich jedoch, dass entsprechend 1 eine Vielzahl solcher übereinander angeordneter modifizierter Bereiche 8 nebeneinander zu einem Trennbereich 2 aneinandergereiht werden können. Zum Anordnen der modifizierten Bereiche 8 übereinander kann entweder die Fokuslage des Laserstrahls 4 in der Strahlrichtung 11 des Laserstrahls 4 verändert werden, oder die übereinander angeordneten modifizierten Bereiche 8 werden mittels jeweils eines eigens zugeordneten bzw. vorhandenen, weiteren Laserstrahls 4, 4' erzeugt.
  • 4 zeigt den Zusammenhang zwischen der Länge B2 der modifizierten Bereiche 8 und dem Strahlparameter der Rayleighlänge zr für unterschiedliche Strahlenergien E des Laserstrahls 4. Ihr liegt die folgende Formel für B2 (bzw. l) zugrunde:
    Figure DE102013223637A1_0004
  • Anhand dieses Zusammenhangs kann die Länge B2 der modifizierten Bereiche 8 in Abhängigkeit von Strahlparametern, wie beispielsweise der Rayleighlänge zr, der Pulsenergie E im Laserstrahl 4 und der Wellenlänge λ sowie den weiteren Konstanten knl (Korrekturfaktor) und ϕs (Schwellfluenz zum Erzeugen einer Modifikation im Substratmaterial), bestimmt werden. Dabei hängt die Rayleighlänge zr durch
    Figure DE102013223637A1_0005
    von der Wellenlänge λ und vom minimalen Strahlradius w0 ab. In 4 sind dabei Kurvenverläufe für zwei Laserstrahlen 4 mit unterschiedlicher Strahlenergie E dargestellt. Im ersten Fall wurde für die Strahlenergie E = 87 μJ ein Korrekturfaktor von knl = 1,2 (Vierecksymbole) und im zweiten Fall für die Energie E = 44 μJ ein Faktor knl = 1,1 angenommen (Dreiecksymbole). Durch eine Anpassung der vorgenannten Strahlparameter zr, w0, l0, λ, insbesondere durch eine Anpassung der Rayleighlänge zr, können gemäß den Kurvenverläufen aus 4 die Bereiche, in denen Strahlenergie E in das Substrat 1 eingebracht werden soll, insbesondere die Länge B2 der modifizierten Bereiche 8, beeinflusst werden. Die Länge B2 der modifizierten Bereiche 8 kann jedoch bei gegebener Strahlenergie E nur bis zu einer bestimmten Maximallänge (den Höhepunkten der beiden Kurven) erhöht werden.
  • ZITATE ENTHALTEN IN DER BESCHREIBUNG
  • Diese Liste der vom Anmelder aufgeführten Dokumente wurde automatisiert erzeugt und ist ausschließlich zur besseren Information des Lesers aufgenommen. Die Liste ist nicht Bestandteil der deutschen Patent- bzw. Gebrauchsmusteranmeldung. Das DPMA übernimmt keinerlei Haftung für etwaige Fehler oder Auslassungen.
  • Zitierte Patentliteratur
    • EP 2258512 A1 [0002]
    • WO 2011/025908 A1 [0003]
    • WO 2012/006736 A2 [0004]
    • EP 1494271 A1 [0005]

Claims (15)

  1. Verfahren zum Behandeln eines lasertransparenten Substrats (1) zum anschließenden Trennen des Substrats (1) entlang eines Trennbereichs (2), mit folgenden Verfahrensschritten: a. Bestrahlen des Substratinneren an einer Substratposition (3) mit derart eingestellten Strahlparametern (zr, E, λ) eines Laserstrahls (4), dass im Laserstrahl (4) ein in der Strahlrichtung (11) keulenförmiger oder sich birnenförmig verjüngender Volumenbereich (5) gebildet wird, in welchem eine Schwellfluenz (ϕs) zum Erzeugen einer Modifikation überschritten ist, um im Substratinneren an der Substratposition (3) einen modifizierten Bereich (8) zu erzeugen, b. Durchführen des Schritts a. an mindestens einer weiteren Substratposition (3') zum Ausbilden eines die modifizierten Bereiche (8) umfassenden Trennbereichs (2).
  2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass die Strahlparameter (zr, l0, λ) derart eingestellt werden, dass ein Verhältnis aus der maximalen Quererstreckung (A1) substratoberflächenseitiger Enden (6) des Volumenbereichs (5) und der maximalen Längserstreckung (A2) des Volumenbereichs (5) zwischen 1/2 und 1/150, insbesondere zwischen 1/10 und 1/70, beträgt.
  3. Verfahren nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass die Strahlparameter (zr, l0, λ) derart eingestellt werden, dass die erzeugten modifizierten Bereiche (8) eine Breite (B1) von mehr als 3 μm aufweisen.
  4. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Rayleighlänge zr, die Pulsenergie E im Laserstrahl (4) und die Wellenlänge λ des Laserstrahls (4) als Strahlparameter derart eingestellt werden, dass nach:
    Figure DE102013223637A1_0006
    mit: knl als Korrekturfaktor; ϕs als Schwellfluenz zum Erzeugen einer Modifikation im Substratmaterial, die erzeugten modifizierten Bereiche (8) jeweils eine Länge (l; B2) aufweisen, die einer Breite (B1) von mehr als 3 μm entspricht.
  5. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass zum Bestrahlen des Substratinneren an den weiteren Substratpositionen (3') der Laserstrahl (4) jeweils um das 0,01-fache bis 5-fache, insbesondere das 0,3-fache bis 2-fache, des minimalen Laserstrahlradius (w0) relativ zum Substrat (1), insbesondere parallel, versetzt wird.
  6. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass das Bestrahlen des Substrats (1) während des Relativversetzens von einer Substratposition (3) zu einer weiteren Substratposition (3') unterbrochen wird.
  7. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass das Verhältnis aus einer Geschwindigkeit zum Versetzen des Laserstrahls (4) zwischen benachbarten Substratpositionen (3, 3') und einer Pulsrate des Laserstrahls (4) zwischen 0,1 μm und 50 μm, insbesondere zwischen 1 μm und 12 μm liegt.
  8. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass mehrere, in der Strahlrichtung (11) übereinander angeordnete modifizierte Bereiche (8) im Substratinneren erzeugt werden, wenn das Verhältnis aus der Substratdicke (d0) und dem minimalen Strahlradius (w0) im Bereich zwischen ca. 30 und ca. 800, insbesondere zwischen ca. 30 und ca. 100, liegt.
  9. Verfahren nach Anspruch 8, dadurch gekennzeichnet, dass übereinander angeordnete modifizierte Bereiche (8) mittels jeweils eines weiteren Laserstrahls (4, 4') erzeugt werden.
  10. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die modifizierten Bereiche (8) mittels an den Substratpositionen (3, 3') jeweils eingebrachten Laserpulsen erzeugt werden.
  11. Verfahren nach Anspruch 10, dadurch gekennzeichnet, dass die Laserpulse mit zeitlichen Pulsabständen von 1 ps bis 100 ns aufeinander folgen.
  12. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass der Volumenbereich (5) von mindestens einer Substratoberfläche (7) um bis zu 15% der Substratdicke (d0) beabstandet im Substratinneren gebildet wird.
  13. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass das Substratmaterial ausgewählt ist aus der Gruppe umfassend: transparente Keramiken, Polymere, transparente Leiter, Glas, Quarzkristalle, Diamant, Saphir, Halbleiter, Schichtsysteme bzw. Verbundwerkstoffe aus den zuvor genannten Substratmaterialien sowie Metalle.
  14. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Fluenz des Laserstrahls (4) auf einen Wert von 1 J/cm2 bis 10 kJ/cm2, insbesondere von 50 J/cm2 bis 800 J/cm2, eingestellt wird.
  15. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass das Substrat (1) entlang des die modifizierten Bereiche (8) umfassenden Trennbereichs (2) durch ein mechanisches oder chemisches Verfahren getrennt wird.
DE102013223637.9A 2013-11-20 2013-11-20 Verfahren zum Behandeln eines lasertransparenten Substrats zum anschließenden Trennen des Substrats Active DE102013223637B4 (de)

Priority Applications (1)

Application Number Priority Date Filing Date Title
DE102013223637.9A DE102013223637B4 (de) 2013-11-20 2013-11-20 Verfahren zum Behandeln eines lasertransparenten Substrats zum anschließenden Trennen des Substrats

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE102013223637.9A DE102013223637B4 (de) 2013-11-20 2013-11-20 Verfahren zum Behandeln eines lasertransparenten Substrats zum anschließenden Trennen des Substrats
CN201480058301.8A CN105682848B (zh) 2013-11-20 2014-11-19 用于处理激光透明的衬底以便随后分离所述衬底的方法
PCT/EP2014/074989 WO2015075059A1 (de) 2013-11-20 2014-11-19 VERFAHREN ZUM BEHANDELN EINES LASERTRANSPARENTEN SUBSTRATS ZUM ANSCHLIEßENDEN TRENNEN DES SUBSTRATS

Publications (2)

Publication Number Publication Date
DE102013223637A1 true DE102013223637A1 (de) 2015-05-21
DE102013223637B4 DE102013223637B4 (de) 2018-02-01

Family

ID=52003731

Family Applications (1)

Application Number Title Priority Date Filing Date
DE102013223637.9A Active DE102013223637B4 (de) 2013-11-20 2013-11-20 Verfahren zum Behandeln eines lasertransparenten Substrats zum anschließenden Trennen des Substrats

Country Status (3)

Country Link
CN (1) CN105682848B (de)
DE (1) DE102013223637B4 (de)
WO (1) WO2015075059A1 (de)

Cited By (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150166397A1 (en) * 2013-12-17 2015-06-18 Corning Incorporated Transparent material cutting with ultrafast laser & beam optics
US9676167B2 (en) 2013-12-17 2017-06-13 Corning Incorporated Laser processing of sapphire substrate and related applications
US9701563B2 (en) 2013-12-17 2017-07-11 Corning Incorporated Laser cut composite glass article and method of cutting
US9815144B2 (en) 2014-07-08 2017-11-14 Corning Incorporated Methods and apparatuses for laser processing materials
US9815730B2 (en) 2013-12-17 2017-11-14 Corning Incorporated Processing 3D shaped transparent brittle substrate
US9850160B2 (en) 2013-12-17 2017-12-26 Corning Incorporated Laser cutting of display glass compositions
US9850159B2 (en) 2012-11-20 2017-12-26 Corning Incorporated High speed laser processing of transparent materials
US10047001B2 (en) 2014-12-04 2018-08-14 Corning Incorporated Glass cutting systems and methods using non-diffracting laser beams
US10144093B2 (en) 2013-12-17 2018-12-04 Corning Incorporated Method for rapid laser drilling of holes in glass and products made therefrom
US10173916B2 (en) 2013-12-17 2019-01-08 Corning Incorporated Edge chamfering by mechanically processing laser cut glass
US10233112B2 (en) 2013-12-17 2019-03-19 Corning Incorporated Laser processing of slots and holes
US10252931B2 (en) 2015-01-12 2019-04-09 Corning Incorporated Laser cutting of thermally tempered substrates
US10280108B2 (en) 2013-03-21 2019-05-07 Corning Laser Technologies GmbH Device and method for cutting out contours from planar substrates by means of laser
US10335902B2 (en) 2014-07-14 2019-07-02 Corning Incorporated Method and system for arresting crack propagation
US10377658B2 (en) 2016-07-29 2019-08-13 Corning Incorporated Apparatuses and methods for laser processing
WO2019158488A1 (de) 2018-02-15 2019-08-22 Schott Ag Verfahren und vorrichtung zum einfügen einer trennlinie in ein transparentes sprödbrüchiges material, sowie verfahrensgemäss herstellbares, mit einer trennlinie versehenes element
US10421683B2 (en) 2013-01-15 2019-09-24 Corning Laser Technologies GmbH Method and device for the laser-based machining of sheet-like substrates
US10522963B2 (en) 2016-08-30 2019-12-31 Corning Incorporated Laser cutting of materials with intensity mapping optical system
US10526234B2 (en) 2014-07-14 2020-01-07 Corning Incorporated Interface block; system for and method of cutting a substrate being transparent within a range of wavelengths using such interface block
US10525657B2 (en) 2015-03-27 2020-01-07 Corning Incorporated Gas permeable window and method of fabricating the same
US10611667B2 (en) 2014-07-14 2020-04-07 Corning Incorporated Method and system for forming perforations
US10626040B2 (en) 2017-06-15 2020-04-21 Corning Incorporated Articles capable of individual singulation
US10688599B2 (en) 2018-01-18 2020-06-23 Corning Incorporated Apparatus and methods for laser processing transparent workpieces using phase shifted focal lines

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2013102422A (ru) 2010-07-12 2014-08-20 ФАЙЛЭЙСЕР ЮЭс-Эй ЭлЭлСи Способ обработки материалов с использованием филаментации
US9757815B2 (en) 2014-07-21 2017-09-12 Rofin-Sinar Technologies Inc. Method and apparatus for performing laser curved filamentation within transparent materials
US9102011B2 (en) 2013-08-02 2015-08-11 Rofin-Sinar Technologies Inc. Method and apparatus for non-ablative, photoacoustic compression machining in transparent materials using filamentation by burst ultrafast laser pulses
US10017410B2 (en) 2013-10-25 2018-07-10 Rofin-Sinar Technologies Llc Method of fabricating a glass magnetic hard drive disk platter using filamentation by burst ultrafast laser pulses
US10005152B2 (en) 2013-11-19 2018-06-26 Rofin-Sinar Technologies Llc Method and apparatus for spiral cutting a glass tube using filamentation by burst ultrafast laser pulses
US9517929B2 (en) 2013-11-19 2016-12-13 Rofin-Sinar Technologies Inc. Method of fabricating electromechanical microchips with a burst ultrafast laser pulses
US10252507B2 (en) 2013-11-19 2019-04-09 Rofin-Sinar Technologies Llc Method and apparatus for forward deposition of material onto a substrate using burst ultrafast laser pulse energy
US10144088B2 (en) 2013-12-03 2018-12-04 Rofin-Sinar Technologies Llc Method and apparatus for laser processing of silicon by filamentation of burst ultrafast laser pulses
US9938187B2 (en) 2014-02-28 2018-04-10 Rofin-Sinar Technologies Llc Method and apparatus for material processing using multiple filamentation of burst ultrafast laser pulses
DE102014116958B9 (de) 2014-11-19 2017-10-05 Trumpf Laser- Und Systemtechnik Gmbh Optisches System zur Strahlformung eines Laserstrahls, Laserbearbeitungsanlage, Verfahren zur Materialbearbeitung und Verwenden einer gemeinsamen langgezogenen Fokuszone zur Lasermaterialbearbeitung
DE102014116957A1 (de) 2014-11-19 2016-05-19 Trumpf Laser- Und Systemtechnik Gmbh Optisches System zur Strahlformung
CN106132627B (zh) 2015-01-13 2018-09-07 罗芬-新纳技术有限责任公司 用于对脆性材料进行划割并随后进行化学蚀刻的方法和系统
DE102015111491A1 (de) * 2015-07-15 2017-01-19 Schott Ag Verfahren und Vorrichtung zum Abtrennen von Glas- oder Glaskeramikteilen
DE102015111490A1 (de) * 2015-07-15 2017-01-19 Schott Ag Verfahren und Vorrichtung zum lasergestützten Abtrennen eines Teilstücks von einem flächigen Glaselement
DE102015120950A1 (de) * 2015-12-02 2017-06-08 Schott Ag Verfahren zum lasergestützten Ablösen eines Teilstücks von einem flächigen Glas- oder Glaskeramikelement

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1494271A1 (de) 2002-03-12 2005-01-05 Hamamatsu Photonics K.K. Verfahren zum auftrennen eines substrats
EP2258512A1 (de) 2009-06-04 2010-12-08 Corelase OY Verfahren und Vorrichtung zur Verarbeitung von einem Substrat mithilfe eines Lasers, der auf der Oberfläche oder in dem Substrat fokussiert ist, so dass eine schwache Schneidelinie erzeugt wird
WO2011025908A1 (en) 2009-08-28 2011-03-03 Corning Incorporated Methods for laser cutting articles from chemically strengthened glass substrates
WO2012006736A2 (en) 2010-07-12 2012-01-19 Filaser Inc. Method of material processing by laser filamentation
US20120205357A1 (en) * 2000-09-13 2012-08-16 Hamamatsu Photonics K.K. Laser processing method and laser processing apparatus

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20070005713A (ko) * 2004-03-30 2007-01-10 하마마츠 포토닉스 가부시키가이샤 레이저 가공 방법 및 반도체 칩
JP4781661B2 (ja) * 2004-11-12 2011-09-28 浜松ホトニクス株式会社 レーザ加工方法
JP2007165850A (ja) * 2005-11-16 2007-06-28 Denso Corp ウェハおよびウェハの分断方法
JP5641835B2 (ja) * 2010-09-10 2014-12-17 株式会社ディスコ 分割方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120205357A1 (en) * 2000-09-13 2012-08-16 Hamamatsu Photonics K.K. Laser processing method and laser processing apparatus
EP1494271A1 (de) 2002-03-12 2005-01-05 Hamamatsu Photonics K.K. Verfahren zum auftrennen eines substrats
EP2258512A1 (de) 2009-06-04 2010-12-08 Corelase OY Verfahren und Vorrichtung zur Verarbeitung von einem Substrat mithilfe eines Lasers, der auf der Oberfläche oder in dem Substrat fokussiert ist, so dass eine schwache Schneidelinie erzeugt wird
WO2011025908A1 (en) 2009-08-28 2011-03-03 Corning Incorporated Methods for laser cutting articles from chemically strengthened glass substrates
WO2012006736A2 (en) 2010-07-12 2012-01-19 Filaser Inc. Method of material processing by laser filamentation

Cited By (32)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9850159B2 (en) 2012-11-20 2017-12-26 Corning Incorporated High speed laser processing of transparent materials
US10421683B2 (en) 2013-01-15 2019-09-24 Corning Laser Technologies GmbH Method and device for the laser-based machining of sheet-like substrates
US10280108B2 (en) 2013-03-21 2019-05-07 Corning Laser Technologies GmbH Device and method for cutting out contours from planar substrates by means of laser
US10144093B2 (en) 2013-12-17 2018-12-04 Corning Incorporated Method for rapid laser drilling of holes in glass and products made therefrom
US10611668B2 (en) 2013-12-17 2020-04-07 Corning Incorporated Laser cut composite glass article and method of cutting
US9815730B2 (en) 2013-12-17 2017-11-14 Corning Incorporated Processing 3D shaped transparent brittle substrate
US9850160B2 (en) 2013-12-17 2017-12-26 Corning Incorporated Laser cutting of display glass compositions
US9701563B2 (en) 2013-12-17 2017-07-11 Corning Incorporated Laser cut composite glass article and method of cutting
US10597321B2 (en) 2013-12-17 2020-03-24 Corning Incorporated Edge chamfering methods
US9687936B2 (en) * 2013-12-17 2017-06-27 Corning Incorporated Transparent material cutting with ultrafast laser and beam optics
US10173916B2 (en) 2013-12-17 2019-01-08 Corning Incorporated Edge chamfering by mechanically processing laser cut glass
US10179748B2 (en) 2013-12-17 2019-01-15 Corning Incorporated Laser processing of sapphire substrate and related applications
US10183885B2 (en) 2013-12-17 2019-01-22 Corning Incorporated Laser cut composite glass article and method of cutting
US10233112B2 (en) 2013-12-17 2019-03-19 Corning Incorporated Laser processing of slots and holes
US10442719B2 (en) 2013-12-17 2019-10-15 Corning Incorporated Edge chamfering methods
US9676167B2 (en) 2013-12-17 2017-06-13 Corning Incorporated Laser processing of sapphire substrate and related applications
US10293436B2 (en) 2013-12-17 2019-05-21 Corning Incorporated Method for rapid laser drilling of holes in glass and products made therefrom
US10392290B2 (en) 2013-12-17 2019-08-27 Corning Incorporated Processing 3D shaped transparent brittle substrate
US20150166397A1 (en) * 2013-12-17 2015-06-18 Corning Incorporated Transparent material cutting with ultrafast laser & beam optics
US9815144B2 (en) 2014-07-08 2017-11-14 Corning Incorporated Methods and apparatuses for laser processing materials
US10335902B2 (en) 2014-07-14 2019-07-02 Corning Incorporated Method and system for arresting crack propagation
US10526234B2 (en) 2014-07-14 2020-01-07 Corning Incorporated Interface block; system for and method of cutting a substrate being transparent within a range of wavelengths using such interface block
US10611667B2 (en) 2014-07-14 2020-04-07 Corning Incorporated Method and system for forming perforations
US10047001B2 (en) 2014-12-04 2018-08-14 Corning Incorporated Glass cutting systems and methods using non-diffracting laser beams
US10252931B2 (en) 2015-01-12 2019-04-09 Corning Incorporated Laser cutting of thermally tempered substrates
US10525657B2 (en) 2015-03-27 2020-01-07 Corning Incorporated Gas permeable window and method of fabricating the same
US10377658B2 (en) 2016-07-29 2019-08-13 Corning Incorporated Apparatuses and methods for laser processing
US10522963B2 (en) 2016-08-30 2019-12-31 Corning Incorporated Laser cutting of materials with intensity mapping optical system
US10626040B2 (en) 2017-06-15 2020-04-21 Corning Incorporated Articles capable of individual singulation
US10688599B2 (en) 2018-01-18 2020-06-23 Corning Incorporated Apparatus and methods for laser processing transparent workpieces using phase shifted focal lines
DE102018126381A1 (de) 2018-02-15 2019-08-22 Schott Ag Verfahren und Vorrichtung zum Einfügen einer Trennlinie in ein transparentes sprödbrüchiges Material, sowie verfahrensgemäß herstellbares, mit einer Trennlinie versehenes Element
WO2019158488A1 (de) 2018-02-15 2019-08-22 Schott Ag Verfahren und vorrichtung zum einfügen einer trennlinie in ein transparentes sprödbrüchiges material, sowie verfahrensgemäss herstellbares, mit einer trennlinie versehenes element

Also Published As

Publication number Publication date
CN105682848B (zh) 2019-04-23
DE102013223637B4 (de) 2018-02-01
WO2015075059A1 (de) 2015-05-28
CN105682848A (zh) 2016-06-15

Similar Documents

Publication Publication Date Title
EP2859983B1 (de) System zur Laserverarbeitung eines transparenten Materials
TWI650231B (zh) 雷射切割複合玻璃製品及切割方法
JP6275886B2 (ja) 透明材料の高速レーザ処理
US20170341971A1 (en) Method and device for separating a substrate
TWI674164B (zh) 以雷射切削透明物質之方法
US10074565B2 (en) Method of laser processing for substrate cleaving or dicing through forming “spike-like” shaped damage structures
JP6186016B2 (ja) 基板に貫通穴を開ける方法及び装置
TWI661889B (zh) 雷射處理方法與玻璃製品
TWI656936B (zh) 雷射切割材料的方法以及包括藍寶石的物品
US10399184B2 (en) Method of material processing by laser filamentation
CN107755904B (zh) 借助激光从平坦基板中切割轮廓的设备及方法
TWI629249B (zh) Method for cutting tempered glass sheets
US8338271B2 (en) Laser processing method and chip
US9757815B2 (en) Method and apparatus for performing laser curved filamentation within transparent materials
KR101754186B1 (ko) 취성 재료의 레이저 싱귤레이션을 위한 개선된 방법 및 장치
US8278592B2 (en) Laser processing method
JP5525601B2 (ja) レーザを用いた基板加工方法
EP1867427B1 (de) Laserbearbeitungsverfahren
US10137527B2 (en) Laser-based modification of transparent materials
EP1959482B1 (de) Laserbearbeitungsverfahren
KR101549271B1 (ko) 레이저 가공 방법
JP4741795B2 (ja) レーザ加工における材料除去レートを増大する方法および装置
JP5138219B2 (ja) レーザ加工方法
US8513567B2 (en) Laser processing method for forming a modified region for cutting in an object
TWI380867B (zh) Laser processing methods and semiconductor wafers

Legal Events

Date Code Title Description
R012 Request for examination validly filed
R079 Amendment of ipc main class

Free format text: PREVIOUS MAIN CLASS: B23K0026400000

Ipc: B23K0026402000

R016 Response to examination communication
R016 Response to examination communication
R018 Grant decision by examination section/examining division
R020 Patent grant now final