DE102013111448A1 - Verfahren zum Spülen von Kondensat aus einem Ladeluftkühler - Google Patents

Verfahren zum Spülen von Kondensat aus einem Ladeluftkühler Download PDF

Info

Publication number
DE102013111448A1
DE102013111448A1 DE102013111448.2A DE102013111448A DE102013111448A1 DE 102013111448 A1 DE102013111448 A1 DE 102013111448A1 DE 102013111448 A DE102013111448 A DE 102013111448A DE 102013111448 A1 DE102013111448 A1 DE 102013111448A1
Authority
DE
Germany
Prior art keywords
condensate
engine
airflow
cac
threshold
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
DE102013111448.2A
Other languages
English (en)
Inventor
Chris Paul Glugla
Adam Nathan Banker
Qiuping Qu
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ford Global Technologies LLC
Original Assignee
Ford Global Technologies LLC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ford Global Technologies LLC filed Critical Ford Global Technologies LLC
Publication of DE102013111448A1 publication Critical patent/DE102013111448A1/de
Pending legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B29/00Engines characterised by provision for charging or scavenging not provided for in groups F02B25/00, F02B27/00 or F02B33/00 - F02B39/00; Details thereof
    • F02B29/04Cooling of air intake supply
    • F02B29/0406Layout of the intake air cooling or coolant circuit
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D13/00Controlling the engine output power by varying inlet or exhaust valve operating characteristics, e.g. timing
    • F02D13/02Controlling the engine output power by varying inlet or exhaust valve operating characteristics, e.g. timing during engine operation
    • F02D13/0203Variable control of intake and exhaust valves
    • F02D13/0215Variable control of intake and exhaust valves changing the valve timing only
    • F02D13/0219Variable control of intake and exhaust valves changing the valve timing only by shifting the phase, i.e. the opening periods of the valves are constant
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D37/00Non-electrical conjoint control of two or more functions of engines, not otherwise provided for
    • F02D37/02Non-electrical conjoint control of two or more functions of engines, not otherwise provided for one of the functions being ignition
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/0002Controlling intake air
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/0002Controlling intake air
    • F02D41/0007Controlling intake air for control of turbo-charged or super-charged engines
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/04Introducing corrections for particular operating conditions
    • F02D41/10Introducing corrections for particular operating conditions for acceleration
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M35/00Combustion-air cleaners, air intakes, intake silencers, or induction systems specially adapted for, or arranged on, internal-combustion engines
    • F02M35/02Air cleaners
    • F02M35/08Air cleaners with means for removing dust, particles or liquids from cleaners; with means for indicating clogging; with by-pass means; Regeneration of cleaners
    • F02M35/088Water, snow or ice proofing; Separation or drainage of water, snow or ice
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02PIGNITION, OTHER THAN COMPRESSION IGNITION, FOR INTERNAL-COMBUSTION ENGINES; TESTING OF IGNITION TIMING IN COMPRESSION-IGNITION ENGINES
    • F02P5/00Advancing or retarding ignition; Control therefor
    • F02P5/04Advancing or retarding ignition; Control therefor automatically, as a function of the working conditions of the engine or vehicle or of the atmospheric conditions
    • F02P5/045Advancing or retarding ignition; Control therefor automatically, as a function of the working conditions of the engine or vehicle or of the atmospheric conditions combined with electronic control of other engine functions, e.g. fuel injection
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B75/00Other engines
    • F02B75/12Other methods of operation
    • F02B2075/125Direct injection in the combustion chamber for spark ignition engines, i.e. not in pre-combustion chamber
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D13/00Controlling the engine output power by varying inlet or exhaust valve operating characteristics, e.g. timing
    • F02D13/02Controlling the engine output power by varying inlet or exhaust valve operating characteristics, e.g. timing during engine operation
    • F02D13/0261Controlling the valve overlap
    • F02D13/0265Negative valve overlap for temporarily storing residual gas in the cylinder
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/0002Controlling intake air
    • F02D2041/001Controlling intake air for engines with variable valve actuation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2200/00Input parameters for engine control
    • F02D2200/02Input parameters for engine control the parameters being related to the engine
    • F02D2200/04Engine intake system parameters
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2200/00Input parameters for engine control
    • F02D2200/02Input parameters for engine control the parameters being related to the engine
    • F02D2200/04Engine intake system parameters
    • F02D2200/0402Engine intake system parameters the parameter being determined by using a model of the engine intake or its components
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2200/00Input parameters for engine control
    • F02D2200/02Input parameters for engine control the parameters being related to the engine
    • F02D2200/04Engine intake system parameters
    • F02D2200/0406Intake manifold pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2200/00Input parameters for engine control
    • F02D2200/02Input parameters for engine control the parameters being related to the engine
    • F02D2200/04Engine intake system parameters
    • F02D2200/0414Air temperature
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2200/00Input parameters for engine control
    • F02D2200/02Input parameters for engine control the parameters being related to the engine
    • F02D2200/04Engine intake system parameters
    • F02D2200/0418Air humidity
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/0025Controlling engines characterised by use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures
    • F02D41/0047Controlling exhaust gas recirculation [EGR]
    • F02D41/005Controlling exhaust gas recirculation [EGR] according to engine operating conditions
    • F02D41/0055Special engine operating conditions, e.g. for regeneration of exhaust gas treatment apparatus
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M26/00Engine-pertinent apparatus for adding exhaust gases to combustion-air, main fuel or fuel-air mixture, e.g. by exhaust gas recirculation [EGR] systems
    • F02M26/02EGR systems specially adapted for supercharged engines
    • F02M26/04EGR systems specially adapted for supercharged engines with a single turbocharger
    • F02M26/05High pressure loops, i.e. wherein recirculated exhaust gas is taken out from the exhaust system upstream of the turbine and reintroduced into the intake system downstream of the compressor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02PIGNITION, OTHER THAN COMPRESSION IGNITION, FOR INTERNAL-COMBUSTION ENGINES; TESTING OF IGNITION TIMING IN COMPRESSION-IGNITION ENGINES
    • F02P5/00Advancing or retarding ignition; Control therefor
    • F02P5/04Advancing or retarding ignition; Control therefor automatically, as a function of the working conditions of the engine or vehicle or of the atmospheric conditions
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/40Engine management systems

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)
  • Electrical Control Of Ignition Timing (AREA)
  • Output Control And Ontrol Of Special Type Engine (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)
  • Supplying Secondary Fuel Or The Like To Fuel, Air Or Fuel-Air Mixtures (AREA)

Abstract

Es werden Verfahren und Systeme zum Durchführen einer proaktiven Kondensatentleerung eines Ladeluftkühlers bereitgestellt. Als Reaktion auf Kondensat in einem Ladeluftkühler und Motorbetriebsbedingungen wird der Luftstrom zum Einlasskrümmer verstärkt, wodurch Kondensat aus dem Kühler gespült wird. Motoraktuatoren können auch dazu eingestellt werden, die Drehmomentanforderung während der Entleerungsprozedur aufrechtzuerhalten.

Description

  • Hintergrund/Kurzdarstellung
  • Turboaufgeladene und aufgeladene Motoren können dazu konfiguriert sein, in den Motor eintretende Umgebungsluft zur Leistungssteigerung zu verdichten. Die Luftverdichtung kann zu einem Lufttemperaturanstieg führen; daher kann ein Ladeluftkühler verwendet werden, um die erhitzte Luft zu kühlen, wodurch ihre Dichte erhöht wird und die potentielle Leistung des Motors weiter erhöht wird. Umgebungsluft von außerhalb des Fahrzeugs strömt über den Ladeluftkühler (CAC – charge air cooler), um die durch das Innere des CAC strömende Einlassluft zu kühlen. Kondensat kann sich im CAC bilden, wenn die Umgebungslufttemperatur abnimmt oder bei schwülen oder regnerischen Witterungsverhältnissen, bei denen die Einlassluft unter den Wassertaupunkt abgekühlt wird. Kondensat kann sich am Boden des CAC oder in den inneren Kanälen und in Kühlturbulatoren ansammeln. Wenn das Drehmoment erhöht wird, wie während der Beschleunigung, kann der verstärkte Luftmassenstrom das Kondensat aus dem CAC abziehen, in den Motor ansaugen und die Wahrscheinlichkeit eines Motoraussetzers erhöhen.
  • Andere Versuche, Motoraussetzern aufgrund von Kondensataufnahme zu begegnen, betreffen die Vermeidung von Kondensatbildung. Die Erfinder haben hier jedoch potenzielle Probleme bei derartigen Verfahren identifiziert. Insbesondere kann sich ein Kondensat dennoch mit der Zeit aufbauen, selbst wenn einige Verfahren die Kondensatbildung im CAC reduzieren oder verlangsamen können. Wenn diese Bildung nicht aufgehalten werden kann, kann die Aufnahme von Kondensat während der Beschleunigung zu Motoraussetzern führen. Ein weiteres Verfahren zur Vermeidung von Motoraussetzern aufgrund von Kondensataufnahme umfasst das Abfangen und/oder Ablassen des Kondensats aus dem CAC. Obwohl dies die Kondensathöhen im CAC reduzieren kann, wird Kondensat jedoch zu einem anderen Ort oder Reservoir transportiert, der/das anderen Kondensatproblemen wie Gefrieren und Korrosion ausgesetzt sein kann.
  • Bei einem Beispiel kann den oben beschriebenen Problemen durch ein Verfahren zum periodischen Spülen des Kondensats aus dem CAC während sicherer Fahrzeugbetriebsbedingungen begegnet werden. Ein CAC-Entleerungszyklus kann als Reaktion auf eine Kondensathöhe eingeleitet werden, wenn die Betriebserfordernisse für eine stabile Verbrennung erfüllt sind. Durch das Erhöhen des Luftstroms durch den CAC, können kontrollierte Mengen an Kondensat in den Motor abgeblasen werden, ohne Aussetzer zu verursachen. Der Erhöhung des Motorluftstroms kann durch Einstellen verschiedener Motoraktuatoren zur Aufrechterhaltung der Drehmomentanforderung entgegengewirkt werden. Auf diese Weise wird der Fahrzeugführer möglicherweise nicht auf den Entleerungszyklus hingewiesen. Durch die Durchführung dieser Entleerungsroutine können die Kondensathöhen im CAC auf einer geringen Höhe gehalten werden, um Motoraussetzer während normalen Fahrzeugbetriebs zu verhindern.
  • Es versteht sich, dass die obige Kurzdarstellung dazu vorgesehen ist, in vereinfachter Form eine Auswahl von Konzepten vorzustellen, die in der ausführlichen Beschreibung näher beschrieben werden. Sie soll keine Schlüssel- oder wesentlichen Merkmale des beanspruchten Erfindungsgegenstands aufzeigen, dessen Schutzbereich einzig durch die der ausführlichen Beschreibung folgenden Ansprüche definiert wird. Des Weiteren ist der beanspruchte Erfindungsgegenstand nicht auf Implementierungen beschränkt, die irgendwelche oben oder in irgendeinem anderen Teil dieser Offenbarung angeführten Nachteile lösen.
  • Kurze Beschreibung der Zeichnungen
  • 1 ist ein Schemadiagramm eines beispielhaften Motorsystems, das einen Ladeluftkühler enthält.
  • 2 zeigt ein detailliertes Flussdiagramm eines Verfahrens zum Spülen von Kondensat aus einem Ladeluftkühler (CAC – charge air cooler) basierend auf Betriebsbedingungen und Kondensathöhe.
  • 3 zeigt ein Flussdiagramm, das ein Verfahren zum Bestimmen der Kondensatmenge in einem CAC gemäß einer Ausführungsform der vorliegenden Offenbarung darstellt.
  • 4 zeigt ein Flussdiagramm eines Verfahrens zum Bestimmen, ob Bedingungen zum Aktivieren einer proaktiven CAC-Entleerungsroutine vorliegen.
  • 5 zeigt ein Flussdiagramm eines Verfahrens zum Durchführen einer proaktiven CAC-Entleerungsroutine.
  • 6 zeigt ein Flussdiagramm eines Verfahrens zum Einstellen einer Grenzlinienklopfgrenze und eines Zündzeitpunkts basierend auf Feuchtigkeit und Kondensathöhe in einem CAC.
  • 78 zeigen beispielhafte Kondensatspülvorgänge.
  • 9 zeigt ein graphisches Beispiel für das Einstellen einer Grenzlinienklopfgrenze und des Zündzeitpunkts als Reaktion auf Einlasskrümmerfeuchtigkeit und CAC-Kondensathöhe.
  • 10 zeigt ein graphisches Beispiel für das Einstellen des Zündzeitpunkts als Reaktion auf das Spülen von Kondensat aus einem Ladeluftkühler während eines proaktiven Entleerungszyklus.
  • 11 zeigt ein graphisches Beispiel für das Einstellen des Zündzeitpunkts als Reaktion auf das Spülen von Kondensat aus einem CAC während eines Tip-In.
  • Ausführliche Beschreibung
  • Die folgende Beschreibung betrifft Systeme und Verfahren zum Spülen von Kondensat aus einem Ladeluftkühler (CAC) eines Motorsystems, wie zum Beispiel des Systems aus 1, während als Reaktion auf Kondensatstrom auch Motoraktuatoren eingestellt werden, einschließlich des Zündzeitpunkts. CAC-Kondensatspülung kann als Reaktion auf eine fahrerinduzierte Eingabe, wie zum Beispiel eine Tip-In-Bedingung, erfolgen. Alternativ dazu kann eine proaktive Kondensatentleerung des CAC als Reaktion auf die Kondensathöhe und andere Systemvariablen durchgeführt werden. In beiden Spülsituationen können Motoraktuatoren eingestellt werden, Drehmoment aufrechtzuerhalten und Motorleistung zu verbessern. Eine Motorsteuerung kann dazu konfiguriert sein, eine Steuerroutine, wie zum Beispiel die Routine von 2, durchzuführen, um eine Kondensathöhe im CAC zu schätzen und auf eine Tip-In-Kondensatentleerung zu reagieren oder eine proaktive Kondensatentleerung durchzuführen, während der Zündzeitpunkt entsprechend eingestellt wird. Die Steuerung kann die Kondensatmenge im CAC basierend auf einem in 3 vorgestellten Modell ableiten. Eine proaktive Entleerungsroutine (5), bei der Luftstrom durch den CAC proaktiv verstärkt wird, um Kondensat zu spülen, kann durchgeführt werden, wenn Bedingungen zum Aktivieren einer proaktiven CAC-Entleerungsroutine vorliegen (4). Als Alternative dazu kann das Spülen aufgrund des verstärkten Luftstroms während eines Tip-In erfolgen. Motordrehmoment kann während des Spülens durch Einstellen einer Reihe von Motorsteuerungen aufrechterhalten werden. Beispielhafte Einstellungen und Spülvorgänge werden in den 78 vorgestellt. Diese Beispiele verdeutlichen die Steuerungen, die zum Auslösen und Durchführen eines CAC-Entleerungszyklus erforderlich sein können. Weiterhin kann der Zündzeitpunkt durch die Steuerung basierend auf Änderungen der Einlasskrümmerfeuchtigkeit, die teilweise durch die Kondensathöhe im CAC bestimmt werden, eingestellt werden, wie in 6 ausgeführt. Beispielhafte Einstellungen der Grenzlinienklopfgrenze und des Zündzeitpunkts, die auf Feuchtigkeit und CAC-Kondensatmenge basieren, werden in 9 dargelegt. Beispielhafte Spülvorgänge bei gleichzeitigen Einstellungen des Zündzeitpunkts werden in den 1112 gezeigt.
  • Nunmehr auf 1 Bezug nehmend, wird ein mehrere Zylinder umfassender Verbrennungsmotor 10 durch die elektronische Motorsteuerung 12 gesteuert, von denen ein Zylinder in 1 gezeigt wird. Der Motor 10 enthält eine Brennkammer (Zylinder) 30 und Zylinderwände 32 mit einem darin positionierten Kolben 36, der mit einer Kurbelwelle 40 verbunden ist. Die Brennkammer 30 steht in der Darstellung über ein Einlassventil 52 bzw. ein Auslassventil 54 mit einem Einlasskrümmer 46 und einem Auslasskrümmer 48 in Verbindung. Jedes Einlass- und Auslassventil kann durch einen Einlassnocken 51 und einen Auslassnocken 53 betätigt werden. Die Öffnungs- und Schließzeit des Auslassventils 54 kann bezüglich der Kurbelwellenstellung über den Nockenversteller 58 eingestellt werden. Die Öffnungs- und Schließzeit des Einlassventils 52 kann bezüglich der Kurbelwellenstellung über den Nockenversteller 59 eingestellt werden. Die Stellung des Einlassnockens 51 kann durch den Einlassnockensensor 55 bestimmt werden. Die Stellung des Auslassnockens 53 kann durch den Auslassnockensensor 57 bestimmt werden. Auf diese Weise kann die Steuerung 12 die Nockensteuerung durch die Versteller 58 und 59 regeln. Variable Nockensteuerung (VCT – variable cam timing) kann in Abhängigkeit von verschiedenen Faktoren, wie zum Beispiel Motorlast und Motordrehzahl (RPM), nach früh oder nach spät verstellt werden.
  • In der Darstellung ist das Kraftstoffeinspritzventil 66 so positioniert, dass es den Kraftstoff direkt in die Brennkammer 30 einspritzt, was dem Fachmann als Direkteinspritzung bekannt ist. Alternativ dazu kann Kraftstoff in einen Einlasskanal eingespritzt werden, was dem Fachmann als Einlasskanaleinspritzung bekannt ist. Das Kraftstoffeinspritzventil 66 liefert Flüssigkraftstoff proportional zu der Impulsbreite des Signals FPW von der Steuerung 12. Kraftstoff wird von einem Kraftstoffsystem (nicht gezeigt), das einen Kraftstofftank, eine Kraftstoffpumpe und eine Kraftstoffverteilerleitung (nicht gezeigt) enthält, an das Kraftstoffeinspritzventil 66 geliefert. Das Kraftstoffeinspritzventil 66 wird vom Treiber 68, der von der Steuerung 12 angesprochen wird, mit Betriebsstrom versorgt. In einem Beispiel wird ein zweistufiges Hochdruck-Kraftstoffsystem verwendet, um höhere Kraftstoffdrücke zu erzeugen. Darüber hinaus steht der Einlasskrümmer 46 in der Darstellung mit einer optionalen elektronischen Drosselklappe 62 in Verbindung, die eine Stellung der Drosselplatte 64 zur Steuerung des Luftstroms von der Einlassladekammer 44 steuert. Der Verdichter 162 saugt Luft vom Lufteinlass 42 an, um die Einlassladekammer 44 zu versorgen. Abgase drehen die Turbine 164, die mit dem Verdichter 162 gekoppelt ist, welcher Luft in der Ladekammer 44 verdichtet. Es können verschiedene Anordnungen zum Antrieb des Verdichters vorgesehen sein. Bei einem Auflader kann der Verdichter 162 von dem Motor und/oder einer elektrischen Maschine zumindest teilweise angetrieben werden und enthält möglicherweise keine Turbine. Somit kann das für einen oder mehrere Zylinder des Motors über einen Turbolader oder Auflader bereitgestellte Verdichtungsausmaß durch die Steuerung 12 variiert werden. Eine Turbolader-Abgangsöffnung 171 ist ein Ventil, das ermöglicht, dass Abgase die Turbine 164 über einen Bypass-Kanal 173 umgehen, wenn sich die Turbolader-Abgasöffnung 171 in einem geöffneten Zustand befindet. Im Wesentlichen durchströmen alle Abgase die Turbine 164, wenn sich die Abgasöffnung 171 in einer vollständig geschlossenen Stellung befindet.
  • Des Weiteren kann bei den offenbarten Ausführungsformen ein Abgasrückführungssystem (AGR-System) einen gewünschten Anteil der Abgase über den AGR-Kanal 140 vom Auslasskrümmer 48 zur Einlassladekammer 44 leiten. Die der Einlassladekammer 44 zugeführte AGR-Menge kann durch die Steuerung 12 über das AGR-Ventil 172 variiert werden. Unter einigen Bedingungen kann das AGR-System zur Regelung der Temperatur des Luft- und Kraftstoffgemisches in der Brennkammer verwendet werden. 1 zeigt ein Hochdruck-AGR-System, bei dem AGR von stromaufwärts einer Turbine eines Turboladers nach stromabwärts eines Verdichters eines Turboladers geleitet wird. Bei anderen Ausführungsformen kann der Motor zusätzlich oder alternativ ein Niederdruck-AGR-System enthalten, bei dem AGR von stromabwärts einer Turbine eines Turboladers nach stromaufwärts eines Verdichters des Turboladers geleitet wird. Bei Betriebsfähigkeit kann das AGR-System die Bildung von Kondensat aus der verdichteten Luft induzieren, insbesondere, wenn die verdichtete Luft durch den Ladeluftkühler gekühlt wird, wie unten ausführlicher beschrieben. Insbesondere enthält die AGR eine große Menge an Wasser, da dies ein Verbrennungsnebenprodukt ist. Da sich AGR auf einer relativ hohen Temperatur befindet und viel Wasser enthält, kann auch die Taupunkttemperatur relativ hoch sein. Folglich kann die Kondensatbildung aus AGR sogar viel höher sein als die Kondensatbildung aus dem Verdichten von Luft und ihrem Absenken auf die Taupunkttemperatur.
  • Die Einlassladekammer 44 kann weiterhin den Ladeluftkühler (CAC) 166 (zum Beispiel einen Zwischenkühler) enthalten, um die Temperatur der turboaufgeladenen oder aufgeladenen Einlassgase zu verringern. Bei einigen Ausführungsformen kann es sich bei dem CAC 166 um einen Luft-Luft-Wärmetauscher handeln. Bei anderen Ausführungsformen kann es sich bei dem CAC 166 um einen Luft-Flüssigkeit-Wärmetauscher handeln. Der CAC 166 kann ein Ventil zum gezielten Modulieren der Strömungsgeschwindigkeit der den Ladeluftkühler 166 durchströmenden Einlassluft als Reaktion auf Kondensationsbildung im Ladeluftkühler enthalten.
  • Heiße Ladeluft vom Verdichter 162 tritt in den Einlass des CAC 166 ein, kühlt sich beim Durchströmen des CAC 166 ab und tritt dann zum Strömen durch die Drosselklappe 62 und in den Motoreinlasskrümmer 46 aus. Umgebungsluftstrom von außerhalb des Fahrzeugs kann durch ein Fahrzeugvorderende in den Motor 10 eintreten und über den CAC strömen, um das Kühlen der Ladeluft zu unterstützen. Kondensat kann sich bilden und im CAC ansammeln, wenn die Umgebungslufttemperatur abnimmt oder bei feuchten oder regnerischen Witterungsverhältnissen, in denen die Ladeluft unter dem Wassertaupunkt abgekühlt wird. Wenn die Ladeluft zurückgeführte Abgase enthält, kann das Kondensat sauer werden und das CAC-Gehäuse korrodieren. Die Korrosion kann zu Lecks zwischen der Ladeluft, der Atmosphäre und möglicherweise dem Kühlmittel im Falle von Wasser-Luft-Kühlern führen. Zum Reduzieren der Ansammlung von Kondensat und der Gefahr von Korrosion kann Kondensat am Boden des CAC aufgefangen und dann unter ausgewählten Motorbetriebsbedingungen, wie zum Beispiel bei Beschleunigungsereignissen, in den Motor gespült werden. Wenn das Kondensat jedoch während eines Beschleunigungsereignisses auf einmal in den Motor eingeleitet wird, kann es zu einer Zunahme der Möglichkeit eines Motoraussetzers oder eines Verbrennungsinstabilität (in Form von späten/langsamen Verbrennungen) aufgrund der Aufnahme von Wasser führen. Wie hier unter Bezugnahme auf die 25 dargelegt, kann Kondensat unter kontrollierten Bedingungen aus dem CAC zum Motor gespült werden. Dieses kontrollierte Spülen kann dabei helfen, die Wahrscheinlichkeit von Motoraussetzerereignissen zu reduzieren. In einem Beispiel kann Kondensat unter Verwendung eines verstärkten Luftstroms unter einer Tip-In-Bedingung aus dem CAC gespült werden. In einem anderen Beispiel kann Kondensat durch Verstärken von Luftstrom zum Motoreinlass, während Motoraktuatoren zum Aufrechterhalten der Drehmomentanforderung gesteuert werden, proaktiv aus dem CAC gespült werden.
  • Eine verteilerlose Zündanlage 88 liefert über die Zündkerze 92 als Reaktion auf die Steuerung 12 einen Zündfunken an die Brennkammer 30. In der Darstellung ist ein Universal-Lambdasensor 126 (UEGO-Sensor, UEGO – Universal Exhaust Gas Oxygen, Universal-Abgas-Sauerstoffgehalt) stromaufwärts einer Turbine 164 mit dem Auslasskrümmer 48 verbunden. Alternativ dazu kann anstelle des UEGO-Sensors 126 ein Zweizustands-Lambdasensor eingesetzt werden.
  • In einigen Beispielen kann der Motor mit einem Elektromotor/Batteriesystem in einem Hybridfahrzeug gekoppelt sein. Das Hybridfahrzeug kann eine Parallelkonfiguration, Serienkonfiguration oder eine Variationen oder Kombinationen davon aufweisen. Ferner können in einigen Beispielen andere Motorkonfigurationen, zum Beispiel ein Dieselmotor, eingesetzt werden.
  • Im Betrieb erfährt jeder Zylinder im Motor 10 in der Regel einen Viertaktprozess: Der Prozess umfasst den Ansaughub, den Verdichtungshub, den Arbeitshub und den Auslasshub. Während des Ansaughubs schließt sich allgemein das Auslassventil 54 und das Einlassventil 52 öffnet sich. Über den Einlasskrümmer 46 wird Luft in die Brennkammer 30 eingeleitet, und der Kolben 36 bewegt sich zum Boden des Zylinders, um das Volumen in der Brennkammer 30 zu vergrößern. Die Position, in der sich der Kolben 36 nahe dem Boden des Zylinders und am Ende seines Hubs befindet (zum Beispiel, wenn die Brennkammer 30 ihr größtes Volumen aufweist), wird in der Regel vom Fachmann als unterer Totpunkt (uT) bezeichnet. Während des Verdichtungshubs sind das Einlassventil 52 und das Auslassventil 54 geschlossen. Der Kolben 36 bewegt sich zum Zylinderkopf, um die Luft in der Brennkammer 30 zu komprimieren. Der Punkt, an dem sich der Kolben 36 an seinem Hubende befindet und der am nächsten zum Zylinderkopf liegt (zum Beispiel, wenn der Zylinder 30 sein kleinstes Volumen aufweist), wird vom Fachmann in der Regel als oberer Totpunkt (oT) bezeichnet. Bei einem im Folgenden als Einspritzung bezeichneten Vorgang wird Kraftstoff in die Brennkammer eingeleitet. Bei einem im Folgenden als Zündung bezeichneten Vorgang wird der eingespritzte Kraftstoff durch ein bekanntes Zündmittel, wie zum Beispiel eine Zündkerze 92, gezündet, was zur Verbrennung führt. Der Zündzeitpunkt kann so gesteuert werden, dass die Zündung vor dem vom Hersteller angegebenen Zeitpunkt erfolgt (Frühzündung) oder danach (Spätzündung). Der Zündzeitpunkt kann zum Beispiel von der MBT-Steuerung (MBT: maximum brake torque – maximales Bremsmoment) nach spät verstellt werden, um Motorklopfen zu regeln, oder unter Bedingungen hoher Feuchtigkeit nach früh verstellt werden. Insbesondere kann das MBT nach früh verstellt werden, um der langsamen Verbrennungsrate Rechnung zu tragen. Während des Arbeitshubs drücken die expandierenden Gase den Kolben 36 zum uT zurück. Die Kurbelwelle 40 wandelt Kolbenbewegung in ein Drehmoment der Drehwelle um. Die Kurbelwelle 40 kann zum Antrieb der Lichtmaschine verwendet werden. Schließlich öffnet sich das Auslassventil 54 während des Auslasshubs, um das verbrannte Luft-Kraftstoff-Gemisch zum Auslasskrümmer 48 abzugeben, und der Kolben kehrt zum uT zurück. Es sei darauf hingewiesen, dass Obiges nur als Beispiel gezeigt wird und dass die Zeitpunkte des Öffnens und/oder Schließens des Einlass- und Auslassventils variieren können, um eine positive oder negative Ventilüberschneidung, spätes Schließen des Einlassventils oder verschiedene andere Beispiele zu liefern.
  • In der Darstellung von 1 ist die Steuerung 12 ein herkömmlicher Mikrocomputer, der eine Mikroprozessoreinheit 102, Eingangs-/Ausgangs-Ports (I/O) 104, ein elektronisches Speichermedium für ausführbare Programme und Kalibrierwerte, als Nur-Lese-Speicher (Read-only-memory, ROM) 106 gezeigt, einen Direktzugriffsspeicher (Random Access Memory, RAM) 108, einen Erhaltungsspeicher (Keep-active-memory, KAM) 110 und einen herkömmlichen Datenbus enthält. Die Steuerung 12 erhält in der Darstellung neben den zuvor besprochenen Signalen verschiedene Signale von mit dem Motor 10 gekoppelten Sensoren, darunter die Motorkühlmitteltemperatur (engine roolant temperature, ECT) von dem mit der Kühlhülse 114 gekoppelten Temperatursensor 112; einen mit einem Gaspedal 130 gekoppelten Pedalstellungssensor 134 der Erfassung von durch den Fahrzeugführer 132 angelegten Kraft; eine Messung eines Einlasskrümmer-Absolutdrucks (MAP) von dem mit dem Einlasskrümmer 46 gekoppelten Drucksensor 122; eine Messung des Ladedrucks (Boost) vom Drucksensor 123; eine Messung des angesaugten Luftmassenflusses (MAF – mass air flow, Massenluftstrom) vom Luftmassensensor 120; eine Messung der Drosselklappenstellung (TP – throttle position) von einem Sensor 5 und der Temperatur am Auslass eines Ladeluftkühlers 166 von einem Temperatursensor 124. Es kann auch der Barometerdruck für die Verarbeitung durch die Steuerung 12 erfasst werden (Sensor nicht gezeigt). Gemäß einem bevorzugten Aspekt der vorliegenden Beschreibung erzeugt der Motorpositionssensor 118 ein Profilzündungsaufnahmesignal (PIP – profile ignition pickup signal). Dies erzeugt eine vorbestimmte Anzahl von gleichmäßig beabstandeten Impulsen bei jeder Umdrehung der Kurbelwelle, anhand derer die Motordrehzahl (RPM) bestimmt werden kann. Es sei darauf hingewiesen, dass verschiedene Kombinationen der obigen Sensoren verwendet werden können, wie zum Beispiel ein MAF-Sensor ohne einen MAP-Sensor oder umgekehrt. Bei stöchiometrischem Betrieb kann der MAP-Sensor eine Anzeige des Motordrehmoments abgeben. Des Weiteren kann dieser Sensor zusammen mit der erfassten Motordrehzahl eine Schätzung der in den Zylinder gesaugten Ladung (einschließlich Luft) bereitstellen. Es können auch andere, nicht gezeigte Sensoren vorgesehen sein, wie zum Beispiel ein Sensor zur Bestimmung der Einlassluftgeschwindigkeit am Einlass des Ladeluftkühlers und andere Sensoren.
  • Des Weiteren kann die Steuerung 12 mit verschiedenen Aktuatoren in Verbindung stehen, die Motoraktuatoren, wie zum Beispiel Kraftstoffeinspritzventile, eine elektronisch gesteuerte Einlassluftdrosselplatte, eine Zündkerze, Nockenwellen usw. umfassen können. Verschiedene Motoraktuatoren können dahingehend gesteuert werden, Drehmomentanforderungen, wie durch den Fahrzeugführer 132 vorgegeben, bereitzustellen oder aufrechtzuerhalten. Diese Aktuatoren können bestimmte Motorsteuerparameter, darunter variable Nockensteuerung (VCT – variable cam timing), das Luft-Kraftstoff-Verhältnis (AFR – air-to-fuel ratio), Lichtmaschinenlast, Zündzeitpunkt, Drosselklappenstellung usw., einstellen. Wenn zum Beispiel eine Zunahme einer Pedalstellung von einem Pedalstellungssensor 134 angezeigt wird (zum Beispiel während eines Tip-In), wird die Drehmomentanforderung erhöht.
  • Als Reaktion auf ein Tip-In kann die Steuerung 12 die Öffnung der Drosselklappe 62 vergrößern, wodurch der Einlassluftstrom verstärkt wird. Wie hier in den 2 und 11 dargelegt, kann der während eines Tip-In zur Verfügung stehende verstärkte Luftstrom vorteilhaft zum Spülen von Kondensat aus einem CAC zu einem Motoreinlass verwendet werden. Gleichzeitig können Zündzeitpunkteinstellungen verwendet werden, um Drehmomente durch Verbrennungsphaseneinstellung während des Spülens aufrechtzuerhalten.
  • Bei einigen Ausführungsformen kann eine Zunahme des Luftmassenflusses durch andere Systeme als den Fahrzeugführer, wie zum Beispiel als Reaktion auf eine Kondensathöhe in dem CAC, ausgelöst werden. Zum Beispiel kann Spülen von Kondensat vom CAC angezeigt werden, wodurch eine Zunahme des Luftmassenflusses durch den CAC erforderlich ist. In diesem Fall muss das Motordrehmoment trotz der Zunahme des Luftstroms unverändert bleiben. Hierbei können die Motoraktuatoren dahingehend eingestellt werden, die erwünschte Drehmomentanforderung aufrechtzuerhalten. Zum Beispiel kann Drehmoment durch Verzögern (Nachspätverstellen) oder Vorverlegen (Nachfrühverstellen) des Zündzeitpunkts im Hinblick auf MBT verringert werden, um die (proaktive) Zunahme des Luftstroms während der Entleerungsroutine auszugleichen. In einem anderen Beispiel kann Verzögern (Nachspätverstellen) oder Vorverlegen (Nachfrühverstellen) der VCT verwendet werden, um das Drehmoment während der proaktiven Entleerungsroutine zu verringern. Bei einigen Ausführungsformen kann Einstellen des AFR, in Richtung magerer oder fetter als RBT (fett für bestes Drehmoment), die Leistungsabgabe an der größeren Drosselklappenöffnung reduzieren, um das Aufrechterhalten der Drehmomentanforderung zu unterstützten. Darüber hinaus kann das Erhöhen der Lichtmaschinenlast einen Drehmomentausgleich bereitstellen. Fahrzeuge mit elektrischen Maschinen (zum Beispiel Hybridfahrzeuge) können in der Lage sein, die Lichtmaschinenlast in einem höheren Ausmaß zu erhöhen, da sie einen größeren Betriebsbereich haben können.
  • Auf 1 Bezug nehmend, kann in einigen Beispielen ein Nur-Lese-Speicher 106 als Speichermedium mit computerlesbaren Daten programmiert sein, die durch die Mikroprozessoreneinheit 102 ausführbaren Anweisungen wiedergeben, um die unten beschriebenen Verfahren sowie anderer Varianten, die erwartet werden, aber nicht speziell angeführt werden, auszuführen. Beispielhafte Verfahren werden hier unter Bezugnahme auf die 26 beschrieben.
  • Nunmehr auf 2 Bezug nehmend, wird ein beispielhaftes Verfahren 200 zum Spülen von Kondensat aus einem CAC während eines Tip-In oder eine proaktive Kondensatentleerungsroutine unter Aufrechterhaltung einer Solldrehmomenthöhe gezeigt. Die Wahl kann auf Fahrzeugbetriebsbedingungen und einer CAC-Kondensathöhe basieren. Durch Durchführen einer Entleerungsroutine während eines Tip-In kann der verstärkte Luftstrom beim Tip-In zum Spülen von Kondensat verwendet werden. Unter anderen Bedingungen kann der Luftstrom aktiv verstärkt werden, um das Spülen zu vollenden.
  • Bei 202 umfasst das Verfahren 200 Schätzen und/oder Messen von Motorbetriebsbedingungen. Diese können Fahrerdrehmomentanforderung (basierend auf einer Pedalstellung), Motordrehzahl (Ne) und -last, ECT, Aufladung, Umgebungstemperatur, MAF, MAP, AGR-Menge, Luft-Kraftstoff-Verhältnis (A/F), Umgebungsfeuchtigkeit, Umgebungsdruck, Barometerdruck (BP), Motortemperatur, Abgaskatalysatortemperatur, CAC-Bedingungen (Einlass- und Auslasstemperatur, Einlass- und Auslassdruck, Durchflussrate durch den CAC usw.) und andere Parameter umfassen. Bei 204 stellt die Routine eine oder mehrere Motoraktuatoreinstellungen basierend auf den Motorbetriebsbedingungen und der Drehmomentanforderung ein. Die eingestellten Aktuatoreinstellungen können zum Beispiel variable Nockensteuerung (VCT), AFR, Drosselklappenöffnung, Zündzeitpunkt usw. umfassen.
  • Bei 206 umfasst das Verfahren 200 Bestimmen der Kondensathöhe im CAC. Dies kann das Abrufen von Details, wie zum Beispiel der Umgebungslufttemperatur, der Umgebungsluftfeuchtigkeit, der Einlass- und Auslassladelufttemperatur und des Einlass- und Auslassladeluftdrucks von mehreren Sensoren und das Verwenden der Variablen umfassen, um die in dem CAC gebildeten Kondensatmenge zu bestimmen. In einem Beispiel bei 208 basieren die Kondensathöhen am CAC auf einem (in 3 dargelegten) Modell, das die Kondensatbildungsrate im CAC basierend auf Umgebungstemperatur, CAC-Auslasstemperatur, Massenstrom, AGR, Feuchtigkeit usw. berechnet. In einem anderen Beispiel wird der Kondensatbildungswert bei 210 als Funktion der CAC-Auslasstemperatur und eines Verhältnisses von CAC-Druck zu Umgebungsdruck abgebildet. In einem alternativen Beispiel kann der Kondensatbildungswert als Funktion der CAC-Auslasstemperatur und der Motorlast abgebildet werden. Die Motorlast kann eine Funktion von Luftmasse, Drehmoment, Fahrpedalstellung und Drosselklappenstellung sein und kann somit eine Anzeige für die Luftstromgeschwindigkeit durch den CAC liefern. Zum Beispiel kann eine geringe Motorlast in Kombination mit einer relativ kühlen CAC-Auslasstemperatur aufgrund der kühlen Flächen des CAC und der relativ geringen Einlasslufstromgeschwindigkeit einen hohen Kondensatbildungswert anzeigen. In einem Beispiel kann das Kennfeld einen Umgebungstemperaturmodifikator enthalten. In einem weiteren Beispiel kann ein Druckverhältnis des CAC zum Umgebungsdruck zur Schätzung von Kondensatbildung verwendet werden. Dabei kann die Motorlast normalisiert und im Einlasskrümmer (hinter der Drosselklappe) geschätzt werden, so dass der Druck geringer als im CAC sein kann.
  • Bei 212 bestimmt das Verfahren 200, ob die Kondensatspeicherung im CAC zunimmt. Das heißt, es kann bestimmt werden, ob eine Kondensatmenge (oder Kondensathöhe) am CAC über die Zeit zunimmt. Falls die Kondensatspeicherung zunehmend ist, umfasst die Routine Verzögern (Nachspätverstellen) des Zündzeitpunkts während erhöhter Kondensatspeicherung bei 214 zur Regelung von Klopfen. Das Verfahren 200 wird sowohl von 212 als auch von 214 fortgesetzt, um bei 216 zu bestimmen, ob die CAC-Kondensathöhe über einem Schwellenwert T1 liegt. Der Schwellenwert T1 kann eine Kondensatmenge wiedergeben (reflektieren), oberhalb der die Aufnahme durch den Motor Aussetzerereignisse verursachen kann. Wenn die CAC-Kondensathöhe nicht über dem Schwellenwert T1 liegt, bestimmt die Routine bei 218, ob sich die CAC-Kondensathöhe in einem stationären Zustand befindet (zum Beispiel nimmt die Kondensathöhe nicht zu oder ab). Wenn die CAC-Kondensathöhe stationär ist, hält die Routine den Zündzeitpunkt bei 220 auf MBT aufrecht. Wenn die CAC-Kondensathöhe nicht stationär ist, endet die Routine.
  • Zu 216 zurückkehrend, falls die Kondensathöhe über dem Schwellenwert T1 liegt, bestimmt die Routine bei 222, ob eine Tip-In-Bedingung vorliegt. In einem Beispiel kann eine Tip-In-Bedingung basierend auf einer Drosselklappenänderung oder einer Luftmassenänderung abgeleitet werden. In einem anderen Beispiel kann eine Tip-In-Bedingung abgeleitet werden, die darauf basiert, dass ein Fahrzeugführer das Fahrpedal betätigt und eine Pedalstellung über eine Schwellenstellung hinaus (oder um ein Schwellenausmaß) bewegt wird. Als weiteres Beispiel können Tip-In-Bedingungen abgeleitet werden, wenn das Fahrzeug beschleunigt. Falls ein Tip-In vorliegt, wird Kondensat bei 224 während des Tip-In aus dem CAC zum Motoreinlasskrümmer gespült. Insbesondere wird der Luftstrom zum Einlasskrümmer basierend auf der Änderung der Pedalstellung verstärkt, um das Drehmoment zu erhöhen (wie durch den Fahrzeugführer angefordert). Darüber hinaus verstellt die Routine den Zündzeitpunkt bei 224 während des Tip-In-induzierten Spülzyklus nach früh, um die Zuführung des Solldrehmoments zu ermöglichen, während durch die Kondensataufnahme induzierte Aussetzerereignisse reduziert werden. In einem alternativen Beispiel wird das Spätzündungsausmaß begrenzt, anstatt den Zündzeitpunkt nach früh zu verstellen.
  • Wenn bei 222 keine Tip-In-Bedingung bestätigt wird, kann das Verfahren bei 226 eine proaktive Kondensatentleerungsroutine durchführen, um Kondensat aus dem CAC zu spülen. Dies kann Verstärken des Luftstroms zum Einlasskrümmer (ohne eine entsprechende Änderung der Pedalstellung) unter Aufrechterhaltung des Drehmoments zum Spülen von Kondensat umfassen. Der Zündzeitpunkt kann während des Entleerungszyklus bei 226 nach spät verstellt werden, um sich aus dem verstärkten Luftstrom ergebendes Drehmoment zu reduzieren, wodurch ein Aufrechterhalten des Motordrehmoments während des Spülens ermöglicht wird. Wie in 4 dargelegt, können zusätzliche Bedingungen, die vor Einleitung der proaktiven Kondensatentleerungsroutine eingeschätzt werden können, ein Bestätigen umfassen, dass die Verbrennungsstabilität und der Luftstrom innerhalb vordefinierter Bereiche der Abblasluftstromhöhe liegen. Selbst wenn die Kondensathöhen über dem Schwellenwert liegen und sich der Luftstrom innerhalb des Bereichs der Abblasluftstromhöhe befindet, kann auf diese Weise, wenn stabile Verbrennungsbedingungen nicht erfüllt werden, die proaktive CAC-Entleerungsroutine nicht vollzogen werden. Details über den proaktiven Entleerungszyklus werden in 5 dargelegt und weiter unten erläutert.
  • 3 zeigt ein Verfahren 300 zum Einschätzen der in einem CAC gespeicherten Kondensatmenge. Basierend auf der Kondensatmenge am CAC bezüglich eines Schwellenwerts können Kondensatspülungsroutinen, wie zum Beispiel die zur 2 besprochenen, eingeleitet werden.
  • Das Verfahren beginnt bei 302 durch Bestimmen der Motorbetriebsbedingungen. Diese können, wie bei 202, Umgebungsbedingungen, CAC-Bedingungen, Luftmasse, AGR-Strom, Motordrehzahl und -last, Aufladung usw. einschließen. Als Nächstes bestimmt die Routine bei 304, ob die Umgebungsfeuchtigkeit bekannt ist. In einem Beispiel kann die Umgebungsfeuchtigkeit basierend auf der Ausgabe eines mit dem Motor gekoppelten Feuchtigkeitssensors bekannt sein. Wenn die Feuchtigkeit nicht bekannt ist (zum Beispiel wenn der Motor keinen Feuchtigkeitssensor enthält), kann die Feuchtigkeit bei 306 auf 100% eingestellt werden. Wenn die Feuchtigkeit jedoch bekannt ist, kann der bekannte Feuchtigkeitswert, wie durch den Feuchtigkeitssensor zugeführt, bei 308 als Feuchtigkeitseinstellung verwendet werden.
  • Die Umgebungstemperatur und -feuchtigkeit können dazu verwendet werden, den Taupunkt der Einlassluft zu bestimmen, der ferner durch die AGR-Menge in der Einlassluft beeinflusst werden kann (zum Beispiel kann AGR eine andere Feuchtigkeit und Temperatur als die Luft aus der Atmosphäre aufweisen). Der Unterschied zwischen dem Taupunkt und der CAC-Auslasstemperatur zeigt an, ob sich im Kühler Kondensation bilden wird, und die Luftmasse kann beeinflussen, wie viel Kondensation sich tatsächlich im Kühler ansammelt. Bei 310 kann ein Algorithmus den Sättigungsdampfdruck am CAC-Auslass als eine Funktion der (des) CAC-Auslasstemperatur und -drucks berechnen. Dann berechnet der Algorithmus bei 312 die Wassermasse bei diesem Sättigungsdampfdruck. Schließlich wird bei 314 durch Subtrahieren der Wassermasse unter der Sättigungsdampfdruckbedingung am CAC-Auslass von der Wassermasse in der Umgebungsluft die Kondensationsbildungsrate am CAC-Auslass bestimmt. Durch Bestimmen der Zeitdauer zwischen Kondensatmessungen bei 316 kann das Verfahren 300 die Kondensatmenge im CAC seit der letzten Messung bei 318 bestimmen. Die Zeitdauer zwischen Messungen kann auf Motorbetriebsbedingungen oder Witterungsbedingungen basieren. Wenn zum Beispiel Bedingungen vorliegen, die die Kondensatbildung verstärken, wie zum Beispiel Regen, kann die Zeit zwischen Messungen verkürzt werden, um die Kondensatbildung besser zu verfolgen. In einem anderen Beispiel kann die Zeit zwischen Kondensatmessungen kürzer sein, wenn sich die Kondensathöhe im CAC der Schwellenhöhe für Kondensatspülung nähert. Als Alternative dazu kann die Zeit zwischen Messungen bei 316 verlängert werden, wenn die Kondensathöhe im CAC niedriger ist oder wenn keine Kondensatbildungsbedingungen (wie zum Beispiel hohe Feuchtigkeit) vorliegen. Bei noch weiteren Ausführungsformen können die Messungen in festen, vorbestimmten Intervallen durchgeführt werden. In einem Beispiel würde eine Schätzung der Kondensatbildung als ein Anteil der Luftmassenrate viel schneller abgetastet werden als sich die tatsächlichen Bedingungen ändern könnten. Selbst bei einer Rate von 0,5 s pro Abtastung kann eine adäquate Schätzung zwecks Verfolgung von Kondensat in Höhen, die eine Verbrennung bei Kondensataufnahme beeinflussen könnten, durchgeführt werden. Die aktuelle Kondensatmenge im CAC wird bei 322 durch Hinzuaddieren des bei 318 geschätzten Kondensatwerts zu dem vorherigen Kondensatwert und dann Subtrahieren jeglicher Kondensatverluste seit der letzten Routine (das heißt einer zum Beispiel durch Spülungsroutinen entfernten Kondensatmenge) bei 320 berechnet. Es kann angenommen werden, dass Kondensatverluste null sind, wenn die CAC-Auslasstemperatur über dem Taupunkt lag. Als Alternative dazu können Kondensatverluste über dem Taupunkt durch Verdampfen verfolgt werden.
  • Zusätzlich zu der Bestimmung der Kondensatmenge im CAC kann das Verfahren 300 zur Bestimmung des Kondensatstroms vom CAC zum Motoreinlasskrümmer verwendet werden. Der CAC kann zum Beispiel in drei verschiedenen Zuständen vorliegen. In einem ersten Zustand kann der CAC Kondensat speichern, so dass die (bei 322 bestimmte) Kondensathöhe zunimmt. Wenn zum Beispiel die Kondensatmenge bei 318 oder die Kondensatbildungsrate bei 314 einen positiven Wert hat, kann die Kondensathöhe im CAC als zunehmend angesehen werden. Hierbei kann Wasser aus durch den CAC zirkulierender Luft entfernt und am CAC gespeichert werden. Unter solchen Bedingungen kann somit aufgrund des Entfernens von Wasser aus der zirkulierenden Luft die in den Einlasskrümmer (nach Passieren durch den CAC) eintretende Luftfeuchtigkeit geringer sein als die Feuchtigkeit der (in den CAC eintretende) Umgebungsluft.
  • In einem zweiten Zustand kann der CAC Kondensat aus dem CAC zu dem Motoreinlasskrümmer abgeben (zum Beispiel spülen), so dass die Kondensathöhe abnimmt. Wenn zum Beispiel die Kondensatmenge bei 318 oder die Kondensationsbildungsrate bei 314 einen negativen Wert hat, kann die Kondensathöhe im CAC als abnehmend betrachtet werden. Hierbei kann bereits im CAC gespeichertes Wasser in den Einlasskrümmer abgegeben werden. Unter solchen Bedingungen kann somit aufgrund des Entfernens von Wasser aus dem CAC die (nach dem Passieren durch den CAC) in den Einlasskrümmer eintretende Luftfeuchtigkeit höher sein als die Feuchtigkeit der (in den CAC eintretenden) Umgebungsluft. Hierbei kann die Abgabe entweder aufgrund der Luftmassengeschwindigkeit oder Verdampfung erfolgen. Die Abnahme des gespeicherten Kondensats oder die Kondensatentfernung kann als Funktion der Luftmassenflussrate erfolgen, wenn die Flussrate über einem Schwellenwert liegt, wobei die Abnahmerate im Verhältnis linear mit dem Luftstrom verläuft. Somit erfolgt die Verdampfungskomponente der Wasserabgabe mit einer viel geringeren Rate und würde nur unter langen Stationärfahrtbedingungen bei der Bestimmung der Kondensatspeicherungsabnahme, wenn kein Kondensat gebildet wird, berücksichtigt werden.
  • In einem dritten Zustand kann sich der CAC in einem stationären Zustand befinden, in dem die Kondensathöhe im CAC im Wesentlichen konstant ist (das heißt weder zunimmt noch abnimmt). Wenn sich die Kondensatmenge bei 318 oder die Kondensationsbildungsrate bei 314 auf oder um null befindet, kann die Kondensathöhe zum Beispiel als sich im stationären Zustand befindend betrachtet werden. Während des stationären Zustands kann die Einlasskrümmerfeuchtigkeit im Wesentlichen gleich der Umgebungsfeuchtigkeit sein.
  • Nunmehr auf 4 Bezug nehmend, wird ein Verfahren 400 zur Bestimmung, ob eine proaktive CAC-Entleerungsprozedur durchgeführt werden kann, dargelegt. Insbesondere bestätigt Verfahren 400, ob Bedingungen zur Aktivierung einer proaktiven CAC-Entleerungsroutine (bei der Luftstrom durch den CAC ohne eine entsprechende Zunahme des Drehmoments aktiv verstärkt wird) ohne Induzierung von Aussetzern während der Wasseraufnahme vorliegen.
  • Verfahren 400 umfasst bei 402 Bestimmen, ob Motorbetriebsbedingungen erfüllt sind, um die Entleerungsroutine zu aktivieren. Diese können zum Beispiel Betriebserfordernisse für stabile Verbrennungsbedingungen umfassen. Betriebserfordernisse für eine stabile Verbrennung können zum Beispiel umfassen, dass die Motorkühlmitteltemperatur über einem Schwellenwert liegt, die Spätzündung innerhalb eines Schwellenwerts liegt, die VCT nicht mehr als ein Schwellenwert nach spät verstellt wird, die AGR-Höhe unter einem Schwellenwert liegt und die Kraftstoffqualität innerhalb eines vorbestimmten Niveaus liegt. Wenn diese Bedingungen nicht erfüllt werden, kann keine proaktive CAC-Entleerungsroutine durchgeführt werden, da die Verbrennungsstabilität beeinflusst werden könnte. Als Reaktion darauf, dass die Bedingungen nicht erfüllt werden, geht die Routine zu 408 über, wo mehrere Schritte durchgeführt werden, um ein Spülen von CAC-Kondensat ohne Durchführung einer proaktiven Entleerungsroutine zu aktivieren.
  • Als Beispiel kann die Motorsteuerung bei 410 Maßnahmen zur Reduzierung von Kondensatbildung am CAC, wie zum Beispiel durch Einstellen des CAC-Wirkungsgrads, ergreifen. Der CAC-Wirkungsgrad kann durch die Verwendung eines Kühlergrillklappensystems oder eines Kühlgebläses eingestellt (zum Beispiel verringert) werden. Zum Beispiel kann die Öffnung der Kühlergrillklappen verkleinert werden, um den externen Kühlluftstrom durch den CAC zu verringern und den CAC-Wirkungsgrad zu verringern.
  • In einem anderen Beispiel kann die Steuerung bei 412 eine oder mehrere Motorbetriebsparameter oder Aktuatoren einstellen, um die Motorverbrennungsstabilität zu verbessern oder zu erhöhen. Zum Beispiel kann bei Kondensataufnahme ein verwendetes Spätzündungsausmaß reduziert oder begrenzt werden. Nach Verbesserung der Verbrennungsstabilität kann die Routine von 4 neu gestartet werden, so dass eine CAC-Entleerungsroutine durchgeführt werden kann, während die Verbrennungsstabilität innerhalb eines Schwellenwerts liegt.
  • In noch einem anderen Beispiel kann die Steuerung bei 414 warten, bis die Bedingungen für eine proaktive CAC-Entleerung (wie zuvor bei 402 dargelegt) erfüllt sind. Das heißt, die proaktive Kondensatentleerungsroutine kann so lange verzögert werden, bis die gewählten Motorbedingungen von 402 erfüllt sind. Wenn die Entleerungsroutine aufgrund dessen, dass Luftstrombedingungen nicht erfüllt werden (das heißt der Luftstrom bei 406 nicht innerhalb eines Schwellenbereichs liegt), nicht eingeleitet wurde, dann kann alternativ die Steuerung warten und die CAC-Entleerungsroutine so lange verzögern, bis die Luftstrombedingungen erfüllt sind (das heißt, bis der Luftstrom innerhalb des Schwellenbereichs liegt).
  • Die Steuerung kann eine der bei 408 gezeigten alternativen Optionen (410414) zumindest basierend auf der Kondensatmenge innerhalb des CAC auswählen. Wenn sich zum Beispiel eine größere Menge (zum Beispiel mehr als eine Schwellenmenge) des Kondensats in dem CAC aufgebaut hat oder die Kondensatbildungsrate höher ist (zum Beispiel mehr als eine Schwellenrate beträgt), muss eine Entleerungsprozedur möglicherweise eher durchgeführt werden. In diesem Fall kann das System wählen, die Motorbetriebsbedingungen aktiv einzustellen, anstatt die Einleitung der Entleerungsroutine zu verzögern, bis die Bedingungen von alleine erfüllt werden. In einigen Beispielen kann die Routine mehrere der Optionen 410414 einsetzen. Zum Beispiel kann die Steuerung bei 408 eine oder mehrere alternative Maßnahmen zur Reduzierung von Kondensatbildung ergreifen (wie zum Beispiel Kühlergrillklappeneinstellungen, die den CAC-Wirkungsgrad reduzieren und dadurch die Kondensatbildung am CAC reduzieren) zusammen mit der Einstellung von Motorbetriebsbedingungen, um die Verbrennungsstabilität zu erhöhen.
  • Zu 402 zurückkehrend, bestimmt die Routine, wenn die Motorbedingungen zur Aktivierung einer Entleerungsroutine erfüllt sind, bei 404 die geeigneten Kondensatschwellenwerte (T1) und Luftstromschwellenwerte (T2 und T3). Wenn sich Kondensataufbau im CAC über einem ersten Schwellenwert T1 befindet, kann das Erfordernis einer CAC-Entleerungsroutine angezeigt werden. Der erste (Kondensat-)Schwellenwert T1 kann in Abhängigkeit von Fahrzeugbetriebsbedingungen, einschließlich beispielsweise einer Verbrennungsrate, einer Motortemperatur und eines Zündzeitpunkts, variieren. In einigen Situationen, wenn die Motorverbrennungsraten schneller sind, kann der Motor das Abblasen einer größeren Kondensatmenge vom CAC tolerieren. Deshalb kann der erste (Kondensat-)Schwellenwert T1 auf einen höheren Wert eingestellt werden, wenn die Verbrennungsraten höher sind und/oder die Motortemperaturen höher sind. Wenn umgekehrt die Verbrennungsraten langsamer sind und/oder die Motortemperaturen niedriger sind, kann der erste (Kondensat-)Schwellenwert T1 auf einen niedrigeren Wert eingestellt werden. In einem anderen Beispiel kann der erste (Kondensat-)Schwellenwert T1 mit Zunahme der Spätzündung verringert werden. Somit kann der erste (Kondensat-)Schwellenwert T1 einen höheren Wert aufweisen, wenn der Zündzeitpunkt nicht nach spät verstellt ist, und einen geringeren Wert, wenn der Zündzeitpunkt nach spät verstellt ist. Durch Einstellung des Kondensatschwellenwerts basierend auf dem Zündzeitpunkt, können Aussetzerereignisse bei Kondensatabblasen reduziert werden. In einem Beispiel kann die Kondensataufnahmerate als eine Funktion der Luftmassenflussrate der Haupt-(zum Beispiel dominante)Faktor sein, es sei denn die Schwellenhöhe ist niedrig genug, dass keine Aufnahmerate einen Aussetzer verursacht. Ebenso kann der Zündzeitpunkt als eine Funktion der Aufnahmerate oder basierend auf Rückkopplung von einem Einlasssauerstoffsensor eingestellt werden.
  • Die Luftstromschwellenwerte T2 und T3 können bei 404 auch so eingestellt werden, dass sich der durch den CAC und in den Motoreinlass strömende Luftstrom innerhalb eines Bereichs eines Abblasluftstromausmaßes befindet. Das Abblasluftstromausmaß kann als die Luftstrommenge definiert werden, die zum Herausspülen einer bestimmten Kondensatmenge aus dem CAC während der Entleerungsprozedur erforderlich ist. Deshalb bestimmt die Routine bei 404 sowohl das Abblasluftstromausmaß in Abhängigkeit von der Kondensatmenge im CAC als auch die Luftstromschwellenwerte zur Aktivierung der Reinigung. Der Luftstromschwellenwert kann zum Beispiel so definiert werden, dass: |Luftstrom – T2| < T3. In dieser Gleichung kann T2 die Abblasluftstromhöhe sein, der Luftstrom ist der aktuelle Luftstrom, der durch den CAC und in den Einlasskrümmer strömt und T3 ist ein eingestellter Luftstromschwellenwert. Mit anderen Worten, eine Entleerungsroutine kann nur dann eingeleitet werden, wenn sich der Luftstrom durch den CAC um weniger als den eingestellten Luftstromschwellenwert T3 über oder unter der Abblasluftstromhöhe T2 befindet. Das heißt, der Luftstrom muss sich möglicherweise innerhalb eines durch den Schwellenwert T2 – T3 am unteren Ende und den Schwellenwert T2 + T3 am oberen Ende definierten Bereichs befinden. Auf diese Weise wird Luftstrom durch die Steuerung während eines Spülvorgangs so gesteuert, dass das Kondensatabblasen gesteuert werden kann. Das Abblasen kann unter dem Schwellenwert null betragen, und ein Prozent der Luftmasse, wenn die Luftmasse über den Mindestschwellenwert zunimmt. Dies gestattet eine langsame Durchführung des Abblasens und reduziert die Wahrscheinlichkeit von Motoraussetzern oder eine Beeinträchtigung der Motorleistung. Der Luftstromschwellenwert T3 kann so eingestellt werden, dass die Verbrennungsstabilität während der gesamten Entleerungsprozedur aufrechterhalten wird. Alternativ kann statt einer Gesamthöhe dazu eine Schwellenaufnahmerate eingestellt werden. Die Aufnahmerate kann dann durch Steuern der Luftstromrate (zum Beispiel durch Beschneiden der Luftmassenflussrate, bis Kondensat gespült ist) gesteuert werden. Zum Aufrechterhalten von Verbrennungsstabilität müssen die Parameter, die zum Aufrechterhalten der Drehmomentanforderung während der gesamten Entleerungsprozedur geändert werden, möglicherweise innerhalb bestimmter Schwellenwerte bleiben. Diese Parameter können Zündzeitpunkt, Lichtmaschinenlast, VCT und AFR umfassen. Deshalb sollte T3 so eingestellt werden, dass diese Parameter nicht außerhalb ihrer Schwellenwerte der Verbrennungsstabilität erhöht oder verringert werden. Zum Beispiel kann der Schwellenwert T3 so eingestellt werden, dass Spätzündung nicht über eine Höhe erhöht wird, die zu Verbrennungsinstabilität führen kann.
  • Nachdem alle Kondensat- und Luftstromschwellenwerte bestimmt wurden, verifiziert das Verfahren 400 bei 406, ob die aktuellen Kondensat- und Luftstromhöhen innerhalb dieser Schwellenwerte liegen. Zum Beispiel überprüft die Routine, ob die Kondensathöhe, wie in Verfahren 300 bestimmt, über dem Schwellenwert T1 liegt. Die Routine kann auch überprüfen, ob der Luftstrom innerhalb des Schwellenbereichs liegt, das heißt |Luftstrom – T2| < T3. Wenn diese beiden Bedingungen erfüllt sind, geht die Routine zu 416 über, wo die CAC-Entleerungsroutine ausgelöst wird. Einzelheiten dieser Entleerungsroutine werden in 5 skizziert und unten weiter besprochen. Wenn die Bedingungen bei 406 jedoch nicht erfüllt werden, kehrt die Routine zu 408 zurück, wo eine oder mehrere Maßnahmen getroffen werden, wie oben besprochen.
  • Zum Beispiel kann die Routine bei 414 warten, bis sich Luftstrom innerhalb des angegebenen Schwellenwerts befindet, umfassen.
  • 5 zeigt ein Verfahren 500 zur Durchführung einer proaktiven Entleerungsroutine des CAC. Das Verfahren 500 kann durch die Steuerung 12 gemäß darin gespeicherten Anweisungen ausgeführt werden. Das Verfahren 500 umfasst bei 502 Bestimmen der zum Abblasen des Kondensats im CAC erforderlichen Luftstromzunahme. Diese kann anhand der durch das Verfahren 300 berechneten Kondensatmenge im CAC und der entsprechenden Abblasluftstromhöhe (Schwellenwert T2, wie unter Bezugnahme auf 4 oben besprochen) bestimmt werden. Das Verfahren geht zu 504 über, um den für die bei 502 bestimmte Luftstromzunahme erforderlichen Drehmomentausgleich zu bestimmen. Somit ist hier ein Drehmomentausgleich erforderlich, da die Luftstromzunahme nicht auf eine Änderung der Pedalstellung oder einer Aufforderung einer erhöhten Drehmomentanforderung durch den Fahrzeugführer zurückzuführen ist. Vielmehr, da die Luftstromzunahme zum Abblasen von Kondensat vom CAC in den Motor bestimmt ist. Mit Zunahme der Luftstromhöhe kann somit ein größerer Drehmomentausgleich erforderlich sein, um ein Aufrechterhalten des Gesamtmotordrehmoments zu gestatten. Bei 506 verstärkt die Steuerung den Luftstrom durch den CAC um das angegebene Ausmaß, während sie gleichzeitig einen oder mehrere Motoraktuatoren zum Aufrechterhalten des Motordrehmoments einstellt. Der Luftstrom durch den CAC kann durch Erhöhen der Luftmasse über eine Einlassdrosselklappe und Verzögern der Frühzündung zum Aufrechterhalten der Drehmomentabgabe verstärkt werden. In einem Beispiel wird durch Verstärken des Luftstroms über die Einlassdrosselklappe der Luftstrom zum Einlasskrümmer des Motors verstärkt. Somit kann durch Einstellen der Motoraktuatoren bei Verstärkung des Luftstroms ein Gesamtdrehmoment reduziert werden, so dass eine Istdrehmomentanforderung während des Kondensatspülungszyklus aufrechterhalten werden kann.
  • Das Einstellen der Motoraktuatoren zum Aufrechterhalten des Drehmoments kann Einstellen der Lichtmaschinenlast bei 508 umfassen. Durch Erhöhen der an den Motor angelegten Lichtmaschinenlast kann das Drehmoment verringert werden, wodurch der verstärkte Motorluftstrom ausgeglichen wird. Eine an den Motor angelegte Lichtmaschinenlast kann durch Einstellen eines Lichtmaschinenspulenstroms erhöht werden. Das Einstellen der Aktuatoren kann auch Einstellen der Spätzündung bei 510 umfassen. In einem Beispiel kann die Erhöhung des Spätzündungsausmaßes (das heißt, die Zündung weiter weg von MBT nach spät verstellen) das Drehmoment verringern und dabei helfen, die erwünschte Drehmomentanforderung aufrechtzuerhalten. Alternativ dazu kann bei 512 das Einstellen der Aktuatoren Einstellen der VCT umfassen. Bei einigen Ausführungsformen kann durch Nachspätverstellen der VCT das Drehmoment reduziert werden, wodurch die Zunahme des Motorluftstroms ausgeglichen wird. In noch einem anderen Beispiel kann das Einstellen der Aktuatoren Einstellen des Luft-Kraftstoff-Verhältnisses (AFR) bei 514 umfassen. Insbesondere kann Kraftstoffabmagerung verwendet werden, um das AFR zu erhöhen, wodurch die Leistungsabgabe bei einer größeren Drosselklappenöffnung reduziert wird. In einem Beispiel kann somit die Erhöhung des AFR den in den Einlasskrümmer des Motors eintretenden verstärkten Luftstrom ausgleichen und dazu beitragen, das Drehmoment aufrechtzuerhalten.
  • Bei einigen Ausführungsformen kann eine Kombination der obigen Parameter dazu eingestellt werden, die Luftstromzunahme zu kompensieren und Drehmoment aufrechtzuerhalten. Bei anderen Ausführungsformen kann eine Prioritätshierarchie für diese Einstellungsparameter basierend auf ihrer Auswirkung auf die Verbrennungsstabilität eingesetzt werden. Zum Beispiel wird durch das Erhöhen der Lichtmaschinenlast die Verbrennungsinstabilität möglicherweise nicht in dem gleichen Ausmaß verstärkt wie es durch VCT- oder Zündzeitpunkteinstellungen der Fall wäre. Somit kann die Prioritätshierarchie bei 506 zunächst Einstellen der Lichtmaschinenlast und dann (wenn eine weitere Drehmomentreduzierung erforderlich ist) Fortsetzen mit der Einstellung des Zündzeitpunkts, der VCT und/oder des AFR umfassen. Bei einigen Ausführungsformen kann ein Auslöser eingestellt werden, um zu dem nächsten Parameter in der Hierarchie überzugehen. Zum Beispiel kann anfangs die Lichtmaschinenlast dazu verwendet werden, das Drehmoment zu reduzieren, und wenn eine maximale Lichtmaschinenlast an den Motor angelegt worden ist, kann der Auslöser so eingestellt sein, dass die Restdrehmomentverringerung unter Verwendung von VCT-, Zündzeitpunkt- oder AFR-Einstellungen bewerkstelligt wird. Die Prioritätsfolge kann auch in Abhängigkeit von Motorbetriebsbedingungen und anderen Fahrzeugbetriebsbedingungen, wie zum Beispiel Fahrzeuggeschwindigkeit, ein Fahrzeugbetriebsmodus, ein Batterieladezustand usw., geändert werden. Beispielhafte Aktuatoreinstellungen, die während einer proaktiven Entleerungsroutine durchgeführt werden, werden hier unter Bezugnahme auf die 78 dargelegt.
  • Nach der Durchführung aller Einstellungen zur Aktivierung der CAC-Entleerungsroutine bei 506 überprüft das Verfahren 500 die Kondensathöhe in Bezug auf einen Schwellenwert T4 bei 516. Wenn die Kondensatmenge im CAC ausreichend gespült worden ist und weniger als T4 beträgt, endet der Entleerungszyklus bei 520, und alle Motoraktuatoren und -parameter werden auf ihre ursprünglichen Einstellungen zurückgeführt (oder auf korrigierte Einstellungen, die auf der aktuellen Drehmomentanforderung basieren). Diese Parameter können Luftstrom, Zündzeitpunkt, VCT, Drosselklappenstellung, AFR und Lichtmaschinenlast umfassen. Wenn die Kondensatmenge im CAC jedoch nicht unter dem Schwellenwert T4 liegt, wird bei 518 weiterhin Kondensat durch den Entleerungszyklus aus dem CAC gespült.
  • Bei einer anderen Ausführungsform kann die Entleerungsroutine auf dem Ablauf einer Schwellendauer seit der Einleitung der Spülroutine basierend, beendet werden, anstatt die Spülroutine auf der Kondensathöhe im CAC basierende zu beenden. Zum Beispiel kann bei 506 ein Zeitgeber gestartet werden, wenn die Spülroutine eingeleitet wird, und es kann bei 516 als Reaktion auf eine eingestellte Zeitdauer, die auf dem Zeitgeber abgelaufen ist, ein Signal zum Beenden des Entleerungszyklus eingestellt werden. Die auf dem Zeitgeber überwachte Schwellendauer (hier auch als die Zykluszeit bezeichnet) kann basierend auf den Motorbetriebsbedingungen und der Kondensatmenge im CAC eingestellt werden. Insbesondere kann in einem Beispiel als Reaktion auf eine größere Kondensatmenge im CAC eine längere Schwellendauer ablaufen gelassen werden.
  • Somit kann das Einleiten von Abwasser in den Motor bei Kondensatspülung (zum Beispiel Spülung während eines Tip-In oder Spülung während einer proaktiven Entleerungsroutine) aus einem CAC die Wahrscheinlichkeit von Aussetzerereignissen erhöhen. In einem Beispiel kann dem durch Einstellen des Zündzeitpunkts während der Kondensatspülung (des Entleerungszyklus) und/oder während der Kondensatspeicherung begegnet werden. Wie hier unter Bezugnahme auf 6 dargelegt, kann eine anfängliche Grenzlinienklopfgrenze basierend auf der Umgebungsfeuchtigkeit eingestellt werden. Die anfängliche Grenzlinieneinstellung kann auch ein anfängliches Ausmaß an Spätzündung von MBT umfassen. Kondensatstrom vom CAC (beim Speichern und Spülen) kann die Feuchtigkeit des Einlasskrümmers bezüglich der Umgebungsfeuchtigkeit ändern. Somit kann die Einlasskrümmerfeuchtigkeit und der CAC-Kondensatstromzustand dazu verwendet werden, diese anfänglichen Einstellungen zu modifizieren, um Motoraussetzerereignisse zu reduzieren und Drehmoment bei Kondensatspülung aufrechtzuerhalten.
  • Nunmehr auf 6 Bezug nehmend, wird ein beispielhaftes Verfahren 600 zum Einstellen einer Grenzlinienklopfgrenze und des Zündzeitpunkts basierend auf Umgebungsfeuchtigkeit und der Kondensathöhe im CAC gezeigt. Das Verfahren 600 umfasst bei 602 Bestimmen der Motoreinlasskrümmerfeuchtigkeit. In einem Beispiel kann die Einlasskrümmerfeuchtigkeit anhand eines Motoreinlasskrümmersauerstoffsensors genau bestimmt werden. In einem anderen Beispiel kann Feuchtigkeit durch einen stromabwärts vor dem Katalysator angeordneten UEGO während eines Verzögerungs-Schubabschaltungs-Ereignisses (Declaration fuel shutt off, DFSO) bestimmt werden. Diese Vorrichtung ist möglicherweise jedoch nicht in der Lage, schnell genug anzusprechen, um bei Aufnahme des Kondensats Zündungseinstellungen vorzunehmen. In noch einem anderen Beispiel kann die Einlassfeuchtigkeit basierend auf Motorbetriebsbedingungen, der Kondensatspeicherungshöhe im CAC und dem Kondensatstrom (zum Beispiel der Menge, der Durchflussrate usw.) vom CAC (wie zuvor in Verfahren 300 bestimmt), geschätzt werden. Bei 604 wird die Einlasskrümmerfeuchtigkeit mit der Umgebungsfeuchtigkeit verglichen. Wenn bei 604 die Einlasskrümmerfeuchtigkeit größer ist als die Umgebungsfeuchtigkeit, verstellt die Routine die Grenzlinienklopfgrenze bei 606 nach früh. Insbesondere kann die Klopfgrenze nach früh verstellt werden, um die Klopfreduzierungswirkung der erhöhten Feuchtigkeit am Motor auszunutzen. Dann verstellt die Routine den Zündzeitpunkt nach früh zu MBT oder zur korrigierten Grenzlinienklopfgrenze bei Kondensatspülung (das heißt während der Verringerung der Kondensathöhe im CAC). Während eines Kondensatentleerungszyklus aufgrund von Tip-In, wenn Kondensat zum Motoreinlass gespült wird, kann die Einlasskrümmerfeuchtigkeit zum Beispiel größer als die Umgebungsfeuchtigkeit sein. Unter solchen Bedingungen kann der Zündzeitpunkt an der anfänglichen Grenzlinienklopfgrenzeneinstellung vorbei in Richtung MBT oder zur neuen Grenzlinienklopfgrenze nach früh verstellt werden. Das Ausmaß der Frühzündung kann eingestellt werden, um das Motordrehmoment während des Kondensatentleerungszyklus aufrechtzuerhalten. Das Ausmaß der Frühzündung kann zum Beispiel auf der Pedalstellung, der Motordrehzahl und/oder der Drosselklappenstellung basieren. Eine Drehmomentreduzierung durch Frühzündung wird dann als Funktion davon bestimmt, wie weit der Zündzeitpunkt vom MBT-Zündzeitpunkt nach spät versetzt ist. Darüber hinaus oder alternativ dazu kann eine Rückkopplung im geschlossenen Regelkreis von der Kurbelwellenbeschleunigung verwendet werden, um den Zündzeitpunkt nach früh zu verstellen, wenn Verbrennungsraten langsam sind, und die Frühzündung basierend auf Grenzlinien-Rückkopplung vom Klopfsensor zu begrenzen.
  • Wenn bei 604 die Einlasskrümmerfeuchtigkeit nicht größer ist als die Umgebungsfeuchtigkeit, dann wird bei 610 bestimmt, ob die Einlasskrümmerfeuchtigkeit geringer ist als die Umgebungsfeuchtigkeit. Wenn ja, verstellt die Routine die Grenzlinienklopfgrenze bei 612 nach spät. Insbesondere kann die Klopfgrenze nach spät verstellt werden, um die Auswirkung einer Verringerung der Feuchtigkeit bei Motorklopfen auszugleichen. Dann verstellt die Routine den Zündzeitpunkt während der Kondensatspeicherung (das heißt, während der Vergrößerung der Kondensathöhe im CAC) nach spät auf die korrigierte Grenzlinienklopfgrenze. In Phasen zunehmender Kondensathöhe(-speicherung) am CAC kann der Zündzeitpunkt zum Beispiel von dem anfänglichen Ausmaß der Spätzündung zu einem größeren Spätzündungsendausmaß nach spät verstellt werden. Das Ausmaß der Spätzündung kann eingestellt werden, um Motordrehmoment bei Kondensatspeicherung aufrechtzuerhalten.
  • Wenn die Einlasskrümmerfeuchtigkeit bei 610 nicht unter der Umgebungsfeuchtigkeit liegt, dann kann bei 616 bestimmt werden, ob die Einlasskrümmerfeuchtigkeit der Umgebungsfeuchtigkeit im Wesentlichen entspricht. Somit kann bei stationären Kondensathöhen am CAC, bei denen die Kondensathöhen weder zunehmen noch abnehmen, sondern im Wesentlichen gleich bleiben, die Einlasskrümmerfeuchtigkeit der Umgebungsfeuchtigkeit im Wesentlichen entsprechen. Wenn die Einlasskrümmerfeuchtigkeit der Umgebungsfeuchtigkeit im Wesentlichen entspricht, hält die Routine die anfängliche Grenzlinienklopfgrenze bei 618 aufrecht. Dann wird bei 620 der Zündzeitpunkt während der stationären Kondensathöhen am CAC auf der Grenzlinienklopfgrenze gehalten. Nach Durchführung aller Einstellungen der Grenzlinienklopfgrenze und des Zündzeitpunkts endet die Routine.
  • 7 zeigt ein graphisches Beispiel für eine proaktive CAC-Entleerungsroutine, die die zuvor in den 25 dargelegten Verfahren verwendet. Kurve 700 zeigt ein Beispiel für einen Motorluftstrom in Auftragung 702, einen Zündzeitpunkt in Auftragung 704, eine Drosselklappenöffnung in Auftragung 706, eine variable Nockensteuerung (VCT) in Auftragung 708, eine Ladeluftkühlerkondensathöhe (CAC CL) in Auftragung 710, eine Pedalstellung (PP) in Auftragung 712 und ein Motordrehmoment in Auftragung 714 als Funktion der Zeit (entlang der X-Achse). In diesem Beispiel wird der Motor-Luftstrom als Reaktion auf die CAC-Kondensathöhe verstärkt, wodurch eine Entleerungs-(Spül-)Prozedur eingeleitet wird, die das Einstellen des Zündzeitpunkts zum Aufrechterhalten des Drehmoments umfasst.
  • Vor t1 nimmt eine CAC-Kondensathöhe (CAC CL) zu (710) während PP (712), Drehmoment (714), VCT (708), Drosselklappenöffnung (706), Zündzeitpunkt (704) und Motorluftstrom (702) relativ konstant bleiben. Zum Zeitpunkt t1 beschleunigt das Fahrzeug als Reaktion auf ein Tip-In, wie durch eine Zunahme der Pedalstellung (712) gezeigt. Um der erhöhten Drehmomentanforderung zu entsprechen, nimmt infolgedessen die Drosselklappenöffnung zu (706), wodurch der Motorluftstrom (702) und das Drehmoment (714) erhöht werden. Zum Zeitpunkt t2 nimmt der Motorluftstrom (702) über den Schwellenwert T2 zu, der der CAC-Abblasluftstromhöhe (das heißt einer Luftstromhöhe, über der CAC-Kondensat in den Motoreinlass abgeblasen werden kann,) entspricht. Somit beginnt bei t2 die CAC-Kondensathöhe (710) mit einer Rate R1 bis zum Zeitpunkt t3 abzunehmen, wenn der Motorluftstrom unter T2 abnimmt. Dieses erste Beispiel für das Kondensatabblasen während eines Tip-In (bei 716 gezeigt) verursacht keine Motoraussetzer, da die Kondensatmenge geringer ist (unter der Schwellenhöhe T1 liegt). Somit kann die Schwellenhöhe T1 einer Kondensathöhe entsprechen, die einen proaktiven Entleerungszyklus auslöst.
  • Es liegt auf der Hand, dass bei einer alternativen Ausführungsform die Rate, mit der die Kondensathöhe abnimmt (R1), ein Faktor für Aussetzerregelung sein kann. Wenn die Gesamtkondensatmenge jedoch klein genug ist, kann die Abnahmerate kein Faktor bei der Aussetzerregelung sein. Somit kann zur Steuerung der Aufnahmerate die Änderungsrate des Luftstroms über Einstellungen der Drosselklappe verlangsamt werden. Dies kann jedoch dazu führen, dass der Fahrzeugfahrer eine echte und wahrgenommene Differenz bei der Leistung/Beschleunigung verspürt. Wenn das Fahrzeug eine Hybridanwendung ist, versteht es sich, dass das Elektromotordrehmoment dazu verwendet werden kann, unter Regelung der Änderungsrate des Luftstroms oder des in den Verbrennungsmotor eintretenden Kondensats das gesamte vom Fahrer angeforderte Drehmoment zu bilden oder zu liefern. In diesem Fall würde die elektrische Maschine des Hybrids Drehmoment ausgeben, anstatt Drehmoment aufzunehmen (welches für eine proaktive Entleerung zur Verstärkung des Motorluftstroms verwendet werden kann).
  • Nach dem Zeitpunkt t3 beginnt die CAC-Kondensathöhe mit zunehmender Zeit in Beispiel 700, bis zum Zeitpunkt t4, wenn sie die Schwellenhöhe T1 (710) erreicht, wieder zuzunehmen. Zu diesem Zeitpunkt liegt der Motorluftstrom zwischen dem unteren Schwellenwert T5 und dem oberen Schwellenwert T2, so dass |Luftstrom – T2| < T3 (702). In diesem Beispiel ist T3 die Differenz zwischen der Kondensatabblashöhe T2 und dem Luftstromschwellenwert T5. Da der Motorluftstrom innerhalb des eingestellten Schwellenbereichs liegt (das heißt unter dem oberen Schwellenwert T2, aber über dem unteren Schwellenwert T5) und die Kondensathöhe im CAC über dem Schwellenwert T1 liegt, wird eine proaktive CAC-Entleerungsroutine ausgelöst. Demgemäß wird eine Drosselklappenöffnung bei t4 vergrößert (706), wodurch der Motorluftstrom über Schwellenwert T2 verstärkt wird (702). Zur gleichen Zeit erhöht die Steuerung das Spätzündungsausmaß um einen größeren Betrag ΔS1 (704), um die Drehmomentanforderung während der gesamten Entleerungsprozedur aufrechtzuerhalten (714). Die Kondensathöhe im CAC beginnt, mit einer Rate R2 langsam abzunehmen (710). Während dieser zweiten Kondensatspülung mit einer proaktiven Routine (bei 718 gezeigt) ist die Spülrate R2 kleiner als die Spülrate R1 (während des vorherigen Spülvorgangs bei 716), weil sich der Motorluftstrom auf einer geringeren Höhe befindet (L2 bei 718 vs. L1 bei 716). Der Motorluftstrom (702), der Zündzeitpunkt (704) und das Drehmoment (714) werden bis zum Zeitpunkt t5 stabil gehalten, wenn die Kondensathöhe im CAC auf die Schwellenhöhe T4 abnimmt (710). Dies beendet die Entleerungsprozedur und führt alle Parameter auf ihre vorherigen oder aktuell angeforderten Einstellungen zurück.
  • Auf 7 Bezug nehmend, könnte die CAC-Entleerungsprozedur, die zum Zeitpunkt t4 (bei 718 gezeigt) ausgelöst wird, in Abhängigkeit von den Motorbetriebsbedingungen auf verschiedene Weise fortfahren. In dem gezeigten Beispiel wird Drehmomentausgleich durch Einstellen von nur einem einzigen Motorbetriebsparameter, insbesondere allein durch Erhöhen des Spätzündungsausmaßes (704), erreicht. Durch Nachspätverstellen des Zündzeitpunkts bleibt das Drehmoment trotz zunehmendem Luftstrom konstant. Somit ist sich der Fahrzeugführer keiner Änderung der Fahrzeugleistung bewusst, und das Fahrverhalten wird nicht beeinflusst. In anderen Beispielen kann Drehmomentausgleich jedoch durch Einstellen einer Kombination von verschiedenen Motoraktuatoren, wie zuvor bei 5 (bei 506) besprochen, durchgeführt werden. Diese Aktuatoren können Motorsteuerungen, wie zum Beispiel Lichtmaschinenlast, Zündzeitpunkt, VCT und AFR, einstellen. Insbesondere können mehrere dieser Parameter auf einmal eingestellt werden, um die Drehmomentanforderung während der Entleerungsroutine aufrechtzuerhalten. Ein Beispiel für solch eine Spülroutine wird in 8 gezeigt.
  • 8 zeigt ein alternatives graphisches Beispiel 800 für die in den 25 dargestellten Verfahren. Kurve 800 zeigt wieder ein Beispiel für den Motorluftstrom in Auftragung 802, den Zündzeitpunkt in Auftragung 804, die Drosselklappenöffnung in Auftragung 806, die variable Nockenwellensteuerung (VCT) in Auftragung 808, die Ladeluftkühlerkondensathöhe (CAC CL) in Auftragung 810, die Pedalstellung (PP) in Auftragung 812 und das Motordrehmoment in Auftragung 814 als Funktion der Zeit. Der Motorluftstrom nimmt als Reaktion auf die CAC-Kondensathöhe zu, wodurch eine Entleerungsprozedur ausgelöst wird, die Einstellen des Zündzeitpunkts und der VCT zum Aufrechterhalten des Drehmoments umfasst.
  • Das graphische Beispiel 800 fährt auf die gleiche Weise wie das graphische Beispiel 700 bis zum Zeitpunkt t4 fort. Bei t4 erreicht die Kondensathöhe im CAC den Schwellenwert T1 (810), und die Luftstromhöhe liegt zwischen T5 und T2 (802). Infolgedessen wird die CAC-Entleerungsprozedur eingeleitet. Die Drosselklappenöffnung wird bei t4 vergrößert (806), wodurch der Motorluftstrom über T2 zunimmt (802). Zur gleichen Zeit stellt die Steuerung eine Kombination aus Parametern dazu ein, das Drehmoment während der gesamten Entleerungsprozedur aufrechtzuerhalten.
  • Im Gegensatz zu Beispiel 700, in dem nur der Zündzeitpunkt eingestellt wird, stellt die Steuerung in Beispiel 800 sowohl den Zündzeitpunkt als auch die VCT ein. Zum Zeitpunkt t4 wird ein Zündzeitpunkt um ein geringeres Ausmaß ΔS2 (das kleiner ist als die in Beispiel 700 angewandte Nachspätverstellung ΔS1) nach spät verstellt (804). Da VCT in Beispiel 800 auch nach spät verstellt wird (siehe Auftragung 808) kann hierbei der Zündzeitpunkt zu einem geringeren Grad nach spät verstellt werden. Das heißt, dass durch Verwendung gleichzeitiger VCT-Einstellungen ein während der Entleerungsroutine angewandtes Spätzündungsausmaß verringert werden kann. In noch anderen Beispielen kann eine Zunahme der Lichtmaschinenlast und/oder des AFR zusätzlich zu diesen Parametern oder in Kombination damit implementiert werden, um das Drehmoment aufrechtzuerhalten. Zum Zeitpunkt t5 endet die Entleerungsprozedur, und alle Parameter werden auf ihre vorherigen oder aktuell angeforderten Einstellungen zurückgeführt.
  • 9 zeigt ein graphisches Beispiel für ein Verfahren 600 zum Einstellen einer Grenzlinienklopfgrenze und des Zündzeitpunkts basierend auf Umgebungsfeuchtigkeit und Kondensathöhe in einem CAC. Das beispielhafte Diagramm 900 stellt Einstellungen einer Grenzlinienklopfgrenze in 904, des Zündzeitpunkts in Auftragung 902, Änderungen einer Motoreinlasskrümmerfeuchtigkeit in Auftragung 906 und die CAC-Kondensathöhe in Auftragung 910 dar.
  • Vor dem Zeitpunkt t1 kann das Kondensat am CAC gespeichert werden. Aufgrund des fortwährenden Entfernens von Wasser aus der Einlassluft in den Ladeluftkühler ist die Einlasskrümmerfeuchtigkeit (906) geringer als die Umgebungsfeuchtigkeit (908). Während dieser Zeit arbeitet der CAC in einem ersten Zustand, in dem die Kondensathöhe zunimmt (910), was auf das Speichern von Kondensat im CAC hindeutet. Als Reaktion darauf, dass die Einlasskrümmerfeuchtigkeit geringer als die Umgebungsfeuchtigkeit ist, kann die Grenzlinienklopfgrenze nach spät verstellt werden (904), um die verstärkte Klopfwirkung auszugleichen, die sich durch die geringere Einlasskrümmerfeuchtigkeit ergeben kann. Darüber hinaus wird während dieses ersten Zustands der Zündzeitpunkt von MBT zu der korrigierten Grenzlinienklopfgrenze nach spät verstellt.
  • Zum Zeitpunkt t1 kann die Höhe des am CAC gespeicherten Kondensats über einen Schwellenwert ansteigen. Als Reaktion auf ein Pedal-Tip-In kann CAC-Spülen durchgeführt werden. Aufgrund des fortwährenden Entfernens von Wasser aus dem Ladeluftkühler in den Motoreinlass nimmt die Einlasskrümmerfeuchtigkeit (906) über Umgebungsfeuchtigkeit zu (908). Die Einlasskrümmerfeuchtigkeit bleibt bis zum Zeitpunkt t2 höher als die Umgebungsfeuchtigkeit. Während dieser Zeit arbeitet der CAC in einem zweiten Zustand, in dem die Kondensathöhe aufgrund eines Spül-(CAC-Entleerungs-)Zyklus abnimmt (910). Als Reaktion darauf, dass die Einlasskrümmerfeuchtigkeit höher ist als die Umgebungsfeuchtigkeit, kann die Grenzlinienklopfgrenze nach früh verstellt werden (904), um die Klopfreduzierungswirkung, die sich durch die höhere Einlasskrümmerfeuchtigkeit ergeben kann, auszunutzen. Darüber hinaus verstellt die Steuerung als Reaktion auf die Kondensatspülung den Zündzeitpunkt nach früh auf MBT.
  • Nach dem Zeitpunkt t2 kann die Einlasskrümmerfeuchtigkeit (906) im Wesentlichen auf oder bei Umgebungsfeuchtigkeit (908) liegen. Demgemäß wird die Grenzlinienklopfgrenze zur MBT zurückgeführt (904). Hierbei kann der CAC in einem dritten Zustand nach dem Zeitpunkt t2 arbeiten, in dem sich die Kondensathöhe in einem stabilen Zustand befindet (910). Während dieses dritten Zustands hält die Steuerung den Zündzeitpunkt bei MBT (902).
  • Auf diese Weise können Grenzlinienklopfgrenzen und der Zündzeitpunkt während der Kondensatspeicherung am CAC nach spät verstellt werden, während Grenzlinienklopfgrenzen und der Zündzeitpunkt während Kondensatabgabe von einem CAC nach früh verstellt werden. Durch Einstellen der Grenzlinienklopfgrenze und des Zündzeitpunkts als Reaktion auf die Wasseraufnahme von einem CAC können Motoraussetzerereignisse und Drehmomentverlust, der aufgrund der Wasseraufnahme verursacht wird, reduziert werden.
  • Nunmehr auf die 10 und 11 Bezug nehmend, werden zwei graphische Beispiele für die Einstellung des Zündzeitpunkts als Reaktion auf das Spülen von Kondensat aus einem Ladeluftkühler für zwei verschiedene Fahrbedingungen gezeigt. In 10 wird Kondensat während eines proaktiven Entleerungszyklus aus einem CAC gespült. Dieser Entleerungszyklus wird als Reaktion auf eine Kondensathöhe in einem CAC eingeleitet, während die Pedalstellung unter einem Schwellenwert (das heißt, nicht in einem Tip-In-Zustand) gehalten wird. Das Diagramm 1000 zeigt die Pedalstellung (PP) in Auftragung 1002, den Luftstrom zum Einlasskrümmer (Luftstrom) in Auftragung 1004, die Kondensatspülung in Auftragung 1006 und den Zündzeitpunkt (Zündung) in Auftragung 1008.
  • Vor t1 kann zum Beispiel keine Kondensatspülung durchgeführt werden, da die Kondensathöhe am CAC unter einer Schwellenmenge liegt. Zum Zeitpunkt t1 wird als Reaktion darauf, dass die Kondensathöhe über den Schwellenwert zunimmt, eine Kondensatspülungsroutine eingeleitet. Insbesondere wird eine proaktive Entleerungsroutine eingeleitet. Demgemäß wird zum Spülen des Kondensats ein Luftstrom zum Einlasskrümmer verstärkt (zum Beispiel über eine Abblasluftstromhöhe), wie bei Auftragung 1004 gezeigt. Hierbei reagiert die Luftstromzunahme auf die Kondensathöhe in dem CAC. Das heißt, der Luftstrom wird verstärkt, obgleich eine Pedalstellung unter einem Schwellenwert (1002) bleibt und keine Anforderung nach einem erhöhten Drehmoment vom Fahrzeugführer empfangen wird. Die Verstärkung des Luftstroms aktiviert das Spülen des Kondensats aus dem CAC (1006). Da Kondensatspülung durch ein gesteuertes Verfahren (Verfahren 400) basierend auf der Kondensathöhe und den Luftstromschwellenwerten ausgelöst wird, wird eine geringere Kondensatmenge pro Motorzyklus gespült, und ferner wird das Spülen für eine längere Dauer durchgeführt. Als Reaktion auf die verlängerte Kondensatspülung mit einer geringeren Spülrate (das heißt einer geringeren Spülmenge pro Zyklus) wird der Zündzeitpunkt von MBT nach spät verstellt (1008). Hierbei wird die Spätzündung dazu verwendet, das Motordrehmoment konstant zu halten. Zum Zeitpunkt t2 endet der Kondensatentleerungszyklus aufgrund dessen, dass die Kondensathöhe unter einen Schwellenwert zurückkehrt. Demgemäß wird bei t2 Luftstrom reduziert und zu den ursprünglichen Einstellungen (1004) zurückgeführt, wodurch die Kondensatspülung (1006) endet. Der Zündzeitpunkt wird auch zu MBT (1008) zurückgeführt.
  • Unter Bezugnahme auf 11 wird Kondensat während eines Tip-In aus einem CAC gespült, was durch eine Zunahme der Pedalstellung dargestellt wird. Kondensat wird als Reaktion auf eine durch einen Tip-In verursachte Verstärkung des Luftstroms zum Einlasskrümmer aus dem CAC gespült. Diagramm 1100 zeigt die Pedalstellung in Auftragung 1102, den Luftstrom zum Einlasskrümmer (Luftstrom) in Auftragung 1104, die Kondensatspülung in Auftragung 1106 und den Zündzeitpunkt (Zündung) in Auftragung 1108.
  • Vor t1 kann keine Kondensatspülung durchgeführt werden, zum Beispiel ist die Kondensathöhe am CAC geringer als eine Schwellenmenge. Zum Zeitpunkt t1 nimmt Luftstrom zum Einlasskrümmer als Reaktion darauf, dass die Pedalstellung einen Schwellenwert übersteigt, was ein Tip-In anzeigt (1102) über eine Abblasluftstromhöhe (1104) zu. Die Verstärkung des Luftstroms spült dann das Kondensat aus dem CAC (1106). Da Kondensatspülung durch einen Tip-In ausgelöst wird, wird eine größere Kondensatmenge pro Zyklus über eine kürzere Dauer gespült. Als Reaktion auf die beschleunigte Kondensatspülung mit einer höheren Spülrate (das heißt eine höhere Spülmenge pro Zyklus) wird der Zündzeitpunkt in Richtung MBT nach früh verstellt (1108). Hier wird die Frühzündung dazu verwendet, um die Wahrscheinlichkeit von Aussetzern und Zunahme des Motordrehmoments zu reduzieren. Zum Zeitpunkt t2 verringert sich die Pedalstellung (1102) und beendet den Tip-in. Luftstrom wird zu einer ursprünglichen, geringeren Höhe zurückgeführt, wodurch die Kondensatspülung (1106) verringert wird. Der Zündzeitpunkt wird auch auf sein vorheriges Ausmaß der Spätzündung (1108) zurückgestellt.
  • Auf diese Weise kann Kondensat aus einem CAC in einen Einlasskrümmer gespült werden, während der Zündzeitpunkt basierend auf der pro Zyklus gespülten Kondensatmenge eingestellt wird. Die pro Zyklus gespülte Kondensatmenge kann auf Umgebungsbedingungen und Motorbetriebsbedingungen, einschließlich Umgebungstemperatur, Umgebungsfeuchtigkeit, Einlassluft-AGR-Gehalt, Luftmassenfluss und CAC-Auslasstemperatur, basieren. Die pro Zyklus gespülte Kondensatmenge kann ferner auf der Pedalstellung basieren. Zum Beispiel kann die pro Zyklus gespülte Kondensatmenge zunehmen, wenn eine Pedalstellung eine Schwellenstellung (zum Beispiel während eines Tip-In) übersteigt und eine Luftmassenflussrate zunimmt. Der Zündzeitpunkt kann nach früh oder nach spät verstellt werden, basierend auf der Art der Spülung, zum Beispiel basierend darauf, ob die Spülung während eines Tip-In basiert im Gegensatz zu einer proaktiven Entleerung.
  • In dem Tip-In-Beispiel, wenn die pro Zyklus gespülte Kondensatmenge größer (zum Beispiel größer als ein Schwellenwert) ist, kann der Zündzeitpunkt nach früh verstellt werden. Das Ausmaß der Frühzündung kann auf einer Pedalstellung (zum Beispiel dem Tip-In-Grad) und einer Fahrzeugführer-Drehmomentanforderung basieren. Als anderes Beispiel kann das Frühzündungsausmaß basierend auf der geschätzten Kondensataufnahmerate oder der gemessenen Kondensataufnahmerate (wie zum Beispiel basierend auf einem Einlasssauerstoffsensor bestimmt) von einem Basiswert geändert werden. Hierbei kann die Rückkopplung von dem Einlasssauerstoffsensor eine Schätzung der Wassermenge im Einlass liefern. In einem anderen Beispiel, wie zum Beispiel während einer proaktiven CAC-Entleerung, bei der die pro Zyklus gespülte Kondensatmenge geringer ist (zum Beispiel unter dem Schwellenwert liegt), kann der Zündzeitpunkt nach spät verstellt werden, um das Motordrehmoment konstant zu halten, während der Luftstrom verstärkt wird.
  • Wie oben beschrieben, kann Kondensat durch Verstärken des Luftstroms zum Motoreinlasskrümmer aus einem CAC gespült werden. Luftstrom kann als Reaktion auf ein vom Fahrer eingeleitetes Tip-In oder einen periodischen proaktiven Kondensatentleerungszyklus auf eine Kondensatabblashöhe verstärkt werden.
  • Während der Kondensatspülung müssen möglicherweise Motoraktuatoren eingestellt werden, um die Drehmomentanforderung aufrechtzuerhalten. Die Motoraktuatoreinstellungen können Einstellen des Zündzeitpunkts, der VCT, der Lichtmaschinenlast und des AFR-Verhältnisses umfassen. Durch Einstellung der Motoraktuatoren zum Aufrechterhalten der Drehmomentanforderung wird eine Verstärkung des Luftstroms zum Spülen des CAC möglicherweise vom Fahrzeugführer nicht bemerkt. Zündzeitpunkteinstellungen können auch auf der Kondensathöhe im CAC, Einlasskrümmerfeuchtigkeit, Umgebungsfeuchtigkeit und Kondensatstrom vom CAC basieren. Insbesondere kann das Frühzündungsausmaß verstärkt werden, wenn ein CAC während eines Tip-In gespült wird, um die höhere Feuchtigkeit, die eine Verbrennungsrate verlangsamen kann, auszugleichen und die Gefahr von Klopfen zu vermindern. Durch Verstärken des Frühzündungsausmaßes wird die Verbrennungsstabilität verbessert und die Gefahr von Aussetzern reduziert.
  • Berechnungen der Kondensatmenge im CAC können auch zur Bestimmung, wann ein Entleerungszyklus erforderlich ist, verwendet werden. Wenn allen Motorbetriebsbedingungen und Motorluftstromschwellenwerten entsprochen wird, kann ein Entleerungszyklus ausgelöst werden. Auf diese Weise kann die Durchführung periodischer Kondensatentleerungszyklus dazu beitragen, eine Aufnahme großer Kondensatmengen auf einmal und Motoraussetzer zu verhindern. Durch Verwendung von Verfahren zur Einstellung des Zündzeitpunkts während Perioden der Kondensatspeicherung und -spülung, können Motoraussetzer reduziert werden.
  • Für einen Durchschnittsfachmann liegt auf der Hand, dass die hier beschriebenen Routinen eine oder mehrere einer beliebigen Anzahl von CAC-Entleerungsprozeduren unter Verwendung verschiedener Motoraktuatorsteuerungen darstellen können. Somit können verschiedene dargestellte Schritte oder Funktionen in der dargestellten Reihenfolge oder parallel durchgeführt werden oder in einigen Fällen weggelassen werden. Ebenso ist die Steuerabfolge nicht zwangsweise erforderlich, um die hier beschriebenen Ziele, Merkmale und Vorteile zu erreichen, sondern ist zur besseren Veranschaulichung und Beschreibung vorgesehen. Obgleich dies nicht explizit dargestellt wird, wird ein Durchschnittsfachmann erkennen, dass eine(r) oder mehrere der dargestellten Schritte oder Funktionen in Abhängigkeit von der verwendeten bestimmten Strategie wiederholt durchgeführt werden kann.
  • Der Gegenstand der vorliegenden Offenbarung umfasst alle neuen und nicht offensichtlichen Kombinationen und Unterkombinationen der verschiedenen Prozesse, Systeme und Konfigurationen, und andere Merkmale, Funktionen, Handlungen und/oder Eigenschaften, die hier offenbart werden, sowie jegliche Äquivalente davon.

Claims (20)

  1. Verfahren für einen Motor, umfassend: als Reaktion auf eine Kondensathöhe in einem Ladeluftkühler, Verstärken des Motorluftstroms um mehr als von einem Fahrzeugführer angefordert wurde, ohne das Motordrehmoment durch Einstellen eines Motoraktuators zu erhöhen, um das Drehmoment aufrechtzuerhalten.
  2. Verfahren nach Anspruch 1, wobei das Verstärken des Motorluftstroms als Reaktion darauf erfolgt, dass die Kondensathöhe im Ladeluftkühler größer als eine Kondensatschwellenhöhe ist und sich ein Motorluftstrom innerhalb eines Abblasluftstromschwellenausmaßes befindet, und wobei das Motordrehmoment nicht mehr als um ein erwünschtes Drehmoment verstärkt wird.
  3. Verfahren nach Anspruch 1, wobei das Verstärken des Motorluftstroms das Vergrößern der Öffnung eines Einlassdrosselventils umfasst.
  4. Verfahren nach Anspruch 1, wobei die Kondensathöhe basierend auf Luftmassenstrom, Umgebungstemperatur, Ladeluftkühlerauslasstemperatur, Ladeluftkühlerdruck, Umgebungsdruck sowie einer AGR-Menge geschätzt wird.
  5. Verfahren nach Anspruch 4, wobei die Kondensathöhe des Weiteen basierend auf der Eingabe von einem Feuchtigkeitssensor eingestellt wird.
  6. Verfahren nach Anspruch 1, wobei die Kondensathöhe basierend auf der Ladeluftkühlerauslasstemperatur sowie dem Verhältnis zwischen Ladeluftkühlerdruck und Umgebungsdruck und/oder der Motorlast geschätzt wird.
  7. Verfahren für einen Motor, umfassend: Verstärken des Motorluftstroms von einer anfänglichen Höhe unter Beibehaltung einer Pedalstellung als Reaktion darauf, dass eine Kondensathöhe in einem Ladeluftkühler höher als eine Schwellenhöhe ist und die anfängliche Luftstromhöhe unter einer Abblashöhe liegt.
  8. Verfahren nach Anspruch 7, das ferner das Aufrechterhalten des Drehmoments während der Verstärkung des Luftstroms durch Einstellen der Spätzündung, der variablen Nockenwellensteuerung, der Lichtmaschinenlast und/oder des Luft-Kraftstoff-Verhältnisses umfasst.
  9. Verfahren nach Anspruch 7, wobei die Kondensathöhe basierend auf Luftmassenstrom, Umgebungstemperatur, Ladeluftkühlerauslasstemperatur, Ladeluftkühlerdruck, Umgebungsdruck sowie einer AGR-Menge geschätzt wird.
  10. Verfahren nach Anspruch 9, wobei die Kondensathöhe des Weiteren basierend auf der Eingabe von einem Umgebungsfeuchtigkeitssensor eingestellt wird.
  11. Verfahren nach Anspruch 7, wobei die Kondensathöhe basierend auf der Ladeluftkühlerauslasstemperatur sowie dem Verhältnis zwischen Ladeluftkühlerdruck und Umgebungsdruck und/oder der Motorlast geschätzt wird.
  12. Verfahren nach Anspruch 7, wobei ein Ausmaß an Verstärkung des Motorluftstroms auf einer Differenz zwischen der anfänglichen Motorluftststromhöhe und der Abblashöhe basiert und wobei das Verstärken des Motorluftstroms das Verstärken des Motorluftstroms über die Abblashöhe umfasst.
  13. Verfahren nach Anspruch 7, wobei die Kondensatschwellenhöhe basierend auf Motorbetriebsbedingungen eingestellt wird.
  14. Verfahren nach Anspruch 13, wobei die Kondensatschwellenhöhe mit zunehmender Motortemperatur erhöht wird.
  15. Verfahren nach Anspruch 13, wobei die Kondensatschwellenhöhe mit abnehmender Spätzündung erhöht wird.
  16. Verfahren nach Anspruch 7, das ferner während der Verstärkung des Luftstroms das Reduzieren einer AGR-Menge umfasst.
  17. Verfahren nach Anspruch 7, wobei die unterhalb einer Abblashöhe liegende anfängliche Luftstromhöhe die anfängliche Luftstromhöhe innerhalb eines Luftstromschwellenbereichs umfasst.
  18. Motorsystem, umfassend: einen Motor mit einem Einlasskrümmer; einen stromaufwärts einer Einlassdrosselklappe mit dem Einlasskrümmer gekoppelten Verdichter; einen stromabwärts des Verdichters gekoppelten Ladeluftkühler, ein Gaspedal zur Aufnahme einer Drehmomentanforderung durch den Fahrer; und eine Steuerung mit dafür computerlesbaren Anweisungen, während eine Gaspedalstellung beibehalten wird, als Reaktion auf eine Menge an im Ladeluftkühler gelagertem Kondensats die größer als ein Schwellenwert ist, Vergrößern einer Öffnung der Einlassdrosselklappe zur Verstärkung des Luftstroms zum Einlasskrümmer unter Aufrechterhaltung eines Motordrehmoments.
  19. System nach Anspruch 18, wobei das Aufrechterhalten eines Motordrehmoments das Spätverstellen des Zündzeitpunkts, Einstellen der variablen Nockenwellensteuerung, Erhöhen einer an den Motor angelegten Lichtmaschinenlast und/oder Abmagern eines Abgasluft-Kraftstoff-Verhältnisses vom stöchiometrischen Wert umfasst.
  20. System nach Anspruch 19, wobei das Verstärken des Luftstroms das Verstärken des Luftstroms von einer anfänglichen Einstellung auf eine Abblaseinstellung umfasst, wobei die Abblaseinstellung auf der Menge an im Ladeluftkühler gespeichertem Kondensat basiert.
DE102013111448.2A 2012-10-19 2013-10-17 Verfahren zum Spülen von Kondensat aus einem Ladeluftkühler Pending DE102013111448A1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US13/656511 2012-10-19
US13/656,511 US9145823B2 (en) 2012-10-19 2012-10-19 Method for purging condensate from a charge air cooler

Publications (1)

Publication Number Publication Date
DE102013111448A1 true DE102013111448A1 (de) 2014-04-24

Family

ID=50437175

Family Applications (1)

Application Number Title Priority Date Filing Date
DE102013111448.2A Pending DE102013111448A1 (de) 2012-10-19 2013-10-17 Verfahren zum Spülen von Kondensat aus einem Ladeluftkühler

Country Status (4)

Country Link
US (1) US9145823B2 (de)
CN (1) CN103775193B (de)
DE (1) DE102013111448A1 (de)
RU (1) RU2637796C2 (de)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE202015100579U1 (de) 2015-01-30 2015-02-25 Ford Global Technologies, Llc Ladeluftkühler
DE102015201619B3 (de) * 2015-01-30 2016-07-14 Ford Global Technologies, Llc Ladeluftkühler
DE102015201621A1 (de) 2015-01-30 2016-08-04 Ford Global Technologies, Llc Ladeluftkühler
DE102016214083A1 (de) 2016-07-29 2018-02-01 Mahle International Gmbh Brennkraftmaschine und Verfahren zum Vermindern einer Ansammlung von einer kritischen Menge an Kondensat in einem Ladeluftkühler
DE102017211927A1 (de) 2017-07-12 2019-01-17 Mahle International Gmbh Ladeluftkühler für eine Brennkraftmaschine
DE102018110230B4 (de) 2017-04-28 2022-06-02 Toyota Jidosha Kabushiki Kaisha Steuerungsvorrichtung für einen Verbrennungsmotor

Families Citing this family (34)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8961368B2 (en) 2012-10-10 2015-02-24 Ford Global Technologies, Llc Charge air cooler condensate purging cycle
US9359964B2 (en) * 2012-12-07 2016-06-07 Ford Global Technologies, Llc Controlled transient acceleration to evacuate condensate from a charge air cooler
US9488152B2 (en) 2013-05-29 2016-11-08 Ford Global Technologies, Llc Method for purging condensate from a charge air cooler
US9435251B2 (en) 2013-08-15 2016-09-06 Ford Global Technologies, Llc Method for estimating charge air cooler condensation storage and/or release with an intake oxygen sensor
US9683497B2 (en) * 2013-10-25 2017-06-20 Ford Global Technologies, Llc Methods and systems for adjusting engine airflow based on output from an oxygen sensor
US9051890B2 (en) 2013-10-28 2015-06-09 Ford Global Technologies, Llc Method for estimating charge air cooler condensation storage with an intake oxygen sensor
US9416740B2 (en) * 2014-02-27 2016-08-16 Ford Global Technologies, Llc Method for estimating charge air cooler condensation storage with an intake oxygen sensor while exhaust gas recirculation is flowing
US9234476B2 (en) 2014-04-14 2016-01-12 Ford Global Technologies, Llc Methods and systems for determining a fuel concentration in engine oil using an intake oxygen sensor
US9441564B2 (en) 2014-04-14 2016-09-13 Ford Global Technologies, Llc Methods and systems for adjusting EGR based on an impact of PCV hydrocarbons on an intake oxygen sensor
US9267423B2 (en) 2014-06-03 2016-02-23 Ford Global Technologies, Llc Methods and systems for increasing airflow through a charge air cooler to decrease charge air cooler condensate
JP6488113B2 (ja) 2014-11-28 2019-03-20 日立オートモティブシステムズ株式会社 内燃機関の制御装置
US9803570B2 (en) * 2014-12-19 2017-10-31 Ford Global Technologies, Llc System and method for controlling engine air flow
US9617909B2 (en) 2014-12-22 2017-04-11 Ford Global Technologies, Llc Method and system for charge air cooler condensate control
DE102015212833B4 (de) * 2015-07-09 2023-06-01 Ford Global Technologies, Llc Verfahren zum Betrieb einer Verbrennungskraftmaschine mit einem Turbolader
US9932921B2 (en) 2015-10-26 2018-04-03 Ford Global Technologies, Llc Method for utilizing condensate to improve engine efficiency
US9714620B2 (en) 2015-10-30 2017-07-25 Ford Global Technologies, Llc Methods and systems for improving boost response
US9938913B2 (en) 2015-11-23 2018-04-10 Ford Global Technologies, Llc Methods and systems for purging condensate from a charge air cooler
JP6012890B1 (ja) * 2016-01-18 2016-10-25 三菱電機株式会社 内燃機関の制御装置及びその制御方法
EP3217002B1 (de) 2016-03-09 2024-08-28 Ford Global Technologies, LLC Verfahren und system zur drehmomentunterstützung
US9874163B1 (en) 2016-08-02 2018-01-23 Ford Global Technologies, Llc Methods and system for adjusting engine operation based on evaporated and condensed portions of water injected at an engine
US10184429B2 (en) 2016-08-02 2019-01-22 Ford Global Technologies, Llc Methods and system for selecting a location for water injection in an engine
US9976502B2 (en) 2016-08-02 2018-05-22 Ford Global Technologies, Llc Methods and system for injecting water at different groups of cylinders of an engine
US10626840B2 (en) * 2017-06-29 2020-04-21 Ford Global Technologies, Llc Methods and systems for spark timing control
US10859044B2 (en) 2017-11-16 2020-12-08 Ford Global Technologies, Llc Methods and systems for removing moisture from engine components
CN108730018B (zh) * 2018-07-04 2023-05-30 福州大学 一种涡轮增压器进气中冷器中冷凝物的清理方法
JP2020062931A (ja) * 2018-10-16 2020-04-23 トヨタ自動車株式会社 車両
US11041418B2 (en) 2018-11-16 2021-06-22 Fca Us Llc Techniques for determining condensation accumulation and depletion at a charge air cooler of a turbocharged engine having a low pressure cooled EGR system
KR20200070816A (ko) * 2018-12-10 2020-06-18 현대자동차주식회사 응축수 발생을 방지하는 흡배기 시스템 및 그 작동 방법
US10781742B2 (en) 2018-12-13 2020-09-22 Fca Us Llc Condensate drain valve for charge air cooler
JP7266680B2 (ja) * 2019-07-03 2023-04-28 日立Astemo株式会社 内燃機関制御装置
US11473538B2 (en) 2021-02-23 2022-10-18 Ford Global Technologies, Llc Methods and systems to decrease charge air cooler condensate
US11879403B2 (en) * 2021-12-13 2024-01-23 GM Global Technology Operations LLC Method and system for a multivariable engine control using cam phasing with a combined humidity and exhaust gas recirculation (EGR) dilution value to schedule restraints, and determine a reference EGR setpoint
KR102574892B1 (ko) * 2021-12-27 2023-09-07 주식회사 현대케피코 마일드 하이브리드 시스템의 egr 응축수 유입 대응 장치 및 방법
US11566560B1 (en) 2022-02-14 2023-01-31 Ford Global Technologies, Llc Controlled charge air cooler accumulated water draining method by using throttle-plate delta pressure and metering orifice

Family Cites Families (54)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1992019851A2 (en) 1991-05-07 1992-11-12 Stephen Molivadas Airtight two-phase heat-transfer systems
FI102405B (fi) * 1993-07-08 1998-11-30 Waertsilae Nsd Oy Ab Menetelmä lämpövoimakoneen kokonaishyötyenergiatuotannon parantamiseks i ja voimalaitos, jossa on nestejäähdytteinen lämpövoimakone
US5949146A (en) * 1997-07-02 1999-09-07 Cummins Engine Company, Inc. Control technique for a lean burning engine system
US6301887B1 (en) 2000-05-26 2001-10-16 Engelhard Corporation Low pressure EGR system for diesel engines
RU2184251C1 (ru) * 2000-12-14 2002-06-27 Чувашский государственный университет им. И.Н. Ульянова Устройство для регулирования температуры наддувочного воздуха двигателя внутреннего сгорания
US6408831B1 (en) 2000-12-20 2002-06-25 Caterpillar Inc. System for controlling the temperature of an intake air
US20020112479A1 (en) * 2001-01-09 2002-08-22 Keefer Bowie G. Power plant with energy recovery from fuel storage
US6367256B1 (en) 2001-03-26 2002-04-09 Detroit Diesel Corporation Exhaust gas recirculation with condensation control
US6681171B2 (en) 2001-12-18 2004-01-20 Detroit Diesel Corporation Condensation control for internal combustion engines using EGR
JP2003343312A (ja) 2002-05-22 2003-12-03 Hitachi Ltd ターボ過給機を備えた筒内噴射型内燃機関の制御方法及びターボ過給機を備えた筒内噴射型内燃機関
DE10238839A1 (de) * 2002-08-23 2004-03-04 Behr Gmbh & Co. Ladeluftkühler
JP4158697B2 (ja) * 2003-06-17 2008-10-01 トヨタ自動車株式会社 内燃機関の排気浄化装置および排気浄化方法
US20050279093A1 (en) * 2004-06-17 2005-12-22 Lin-Shu Wang Supercharged intercooled engine using turbo-cool principle and method for operating the same
US20060095178A1 (en) 2004-10-29 2006-05-04 Freightliner Llc Controlling the flow of air through at least one vehicle opening at a front portion of the vehicle
US7886724B2 (en) 2006-02-23 2011-02-15 Mack Trucks, Inc. Charge air cooler arrangement with cooler bypass and method
US7533651B2 (en) 2006-03-17 2009-05-19 Ford Global Technologies, Llc System and method for reducing knock and preignition in an internal combustion engine
US7621126B2 (en) 2006-04-05 2009-11-24 Ford Global Technoloigies, LLC Method for controlling cylinder air charge for a turbo charged engine having variable event valve actuators
EP2044301B1 (de) 2006-04-28 2015-07-15 Scania CV AB Kühlgebläseanordnung an einem fahrzeug
US7424868B2 (en) 2006-05-15 2008-09-16 Daimler Trucks North America Llc Predictive auxiliary load management (PALM) control apparatus and method
CN2906511Y (zh) * 2006-05-18 2007-05-30 余延富 冷凝水自动疏水排放装置
US7349792B2 (en) * 2006-05-31 2008-03-25 Caterpillar Inc. System for a virtual liquid sensor
SE530033C2 (sv) 2006-06-30 2008-02-12 Scania Cv Abp Kylanordning för ett motorfordon
EP1918546B1 (de) 2006-10-30 2011-10-19 Wärtsilä Schweiz AG Ladeluftkühler für eine Hubkolbenbrennkraftmaschine
US7707991B2 (en) 2007-02-09 2010-05-04 Denso Corporation Intake control device for internal combustion engine
JP4483873B2 (ja) * 2007-02-13 2010-06-16 トヨタ自動車株式会社 内燃機関の制御装置
AT508010B1 (de) * 2008-09-26 2010-10-15 Ge Jenbacher Gmbh & Co Ohg Brennkraftmaschine
US7980076B2 (en) * 2008-09-30 2011-07-19 GM Global Technology Operations LLC Controlled condensate collection and evacuation for charge air cooler
WO2010090866A2 (en) 2009-01-21 2010-08-12 Appollo Wind Technologies Llc Turbo-compressor-condenser-expander
US9239025B2 (en) * 2009-06-29 2016-01-19 GM Global Technology Operations LLC Condensation detection systems and methods
US8795135B2 (en) 2009-09-01 2014-08-05 Ford Global Technologies, Llc Method for controlling an engine during a restart
US9010112B2 (en) 2009-10-27 2015-04-21 Ford Global Technologies, Llc Condensation trap for charge air cooler
US8707935B2 (en) 2009-10-28 2014-04-29 Ford Global Technologies, Llc Exhaust gas recirculation system with a NOx sensor
US8311708B2 (en) 2010-02-16 2012-11-13 Ford Global Technologies, Llc Adjustable grill shutter system
US8463493B2 (en) 2010-04-01 2013-06-11 GM Global Technology Operations LLC Powertrain thermal control with grille airflow shutters
JP5163698B2 (ja) 2010-06-09 2013-03-13 日産自動車株式会社 内燃機関の点火時期制御装置
US8914173B2 (en) 2010-12-21 2014-12-16 GM Global Technology Operations LLC Method and system for conditioning an energy storage system (ESS) for a vehicle
US9051901B2 (en) * 2011-06-07 2015-06-09 Ford Global Technologies, Llc Exhaust gas recirculation (EGR) system
US9027341B2 (en) * 2011-07-18 2015-05-12 Ford Global Technologies, Llc System for a charge-air-cooler
NO333258B1 (no) * 2011-09-13 2013-04-22 Geir Habesland Verktoy og fremgangsmate for sentrering av fôringsror
US9297296B2 (en) * 2012-08-07 2016-03-29 Ford Global Technologies, Llc Method for discharging condensate from a turbocharger arrangement
US9080499B2 (en) * 2012-08-20 2015-07-14 Ford Global Technologies, Llc Method for controlling a variable charge air cooler
US9032939B2 (en) * 2012-08-20 2015-05-19 Ford Global Technologies, Llc Method for controlling a variable charge air cooler
US9169809B2 (en) * 2012-08-20 2015-10-27 Ford Global Technologies, Llc Method for controlling a variable charge air cooler
US8783233B2 (en) * 2012-08-28 2014-07-22 Ford Global Technologies, Llc Charge air cooler with dual flow path conduit
US10914229B2 (en) * 2012-09-14 2021-02-09 Ford Global Technologies, Llc Charge air cooler condensation dispersion element
US9334791B2 (en) * 2012-09-17 2016-05-10 Ford Global Technologies, Llc Charge air cooler condensation control
US8961368B2 (en) * 2012-10-10 2015-02-24 Ford Global Technologies, Llc Charge air cooler condensate purging cycle
US9133757B2 (en) * 2012-10-10 2015-09-15 Ford Global Technologies, Llc Engine control system and method
US9038607B2 (en) * 2013-02-06 2015-05-26 Ford Global Technologies, Llc Air cooler and method for operation of an air cooler
US9140178B2 (en) * 2013-03-28 2015-09-22 Ford Global Technologies, Llc Method for purging charge air cooler condensate during a compressor bypass valve event
US9181859B2 (en) * 2013-05-02 2015-11-10 Ford Global Technologies, Llc Wastegate control to reduce charge air cooler condensate
US9127607B2 (en) * 2013-05-29 2015-09-08 Ford Global Technologies, Llc Method for purging condensate from a charge air cooler
US9488152B2 (en) * 2013-05-29 2016-11-08 Ford Global Technologies, Llc Method for purging condensate from a charge air cooler
US9228486B2 (en) * 2013-11-19 2016-01-05 Ford Global Technologies, Llc Method and systems for reducing charge air cooler condensate using a secondary intake throttle

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE202015100579U1 (de) 2015-01-30 2015-02-25 Ford Global Technologies, Llc Ladeluftkühler
DE102015201619B3 (de) * 2015-01-30 2016-07-14 Ford Global Technologies, Llc Ladeluftkühler
DE102015201621A1 (de) 2015-01-30 2016-08-04 Ford Global Technologies, Llc Ladeluftkühler
DE102016214083A1 (de) 2016-07-29 2018-02-01 Mahle International Gmbh Brennkraftmaschine und Verfahren zum Vermindern einer Ansammlung von einer kritischen Menge an Kondensat in einem Ladeluftkühler
DE102018110230B4 (de) 2017-04-28 2022-06-02 Toyota Jidosha Kabushiki Kaisha Steuerungsvorrichtung für einen Verbrennungsmotor
DE102017211927A1 (de) 2017-07-12 2019-01-17 Mahle International Gmbh Ladeluftkühler für eine Brennkraftmaschine

Also Published As

Publication number Publication date
RU2637796C2 (ru) 2017-12-07
CN103775193B (zh) 2018-03-30
US9145823B2 (en) 2015-09-29
RU2013146804A (ru) 2015-04-27
US20140109568A1 (en) 2014-04-24
CN103775193A (zh) 2014-05-07

Similar Documents

Publication Publication Date Title
DE102013111448A1 (de) Verfahren zum Spülen von Kondensat aus einem Ladeluftkühler
DE102013111445B4 (de) Motorsteuersystem und -verfahren
DE102013111446B4 (de) Motorsteuerungssystem und -verfahren
DE102013111450B4 (de) Verfahren zum Spülen von Kondensat aus einem Ladeluftkühler
DE102016101218B4 (de) System zur abgaskatalysator-erwärmung
DE102014216496B4 (de) Verfahren und system für die klopfsteuerung
DE102012215462B4 (de) Verfahren zum abtasten eines einlasskrümmerdrucks
DE102013217611B4 (de) Verfahren und System zur Katalysatorerwärmung mit Abgasgegendruck
DE102014209077A1 (de) Verfahren zum entleeren von kondensat aus einem ladeluftkühler
DE102013225421A1 (de) Steuern von Ladeluftkühlerkondensation durch Verwendung von erwärmter Einlassluft
DE102018110408A1 (de) Systeme und verfahren zur motorsteuerung
DE102006041520B4 (de) Erhöhte Belastung zur Verbesserung eines durch niedrige Last gesteuerten Selbstzündungsbetriebes
DE102014200857B4 (de) Flüssigkeitseinspritzung zum Spülen
DE102015108289A1 (de) Verfahren und System zur Verstärkung eines Luftstroms durch einen Ladeluftkühler zum Verringern des Ladeluftkühlerkondensats
DE102013225003A1 (de) Gesteuerte Übergangsbeschleunigung zum Evakuieren von Kondensat aus einem Ladeluftkühler
DE102015200815A1 (de) Verfahren und System für die Vorzündungssteuerung
DE102014209175A1 (de) Verbesserte vde-klopfsteuerung
DE102015110792A1 (de) System und Verfahren zur selektiven Zylinderdeaktivierung
DE102013217641A1 (de) Katalysatorerwärmung mit abgasgegendruck
DE102014209742A1 (de) Verfahren zum entleeren von kondensat aus einem ladeluftkühler
DE102015110924A1 (de) Systeme und Verfahren für eine dedizierte EGR-Zylinder-Abgastemperatursteuerung
DE102014216663A1 (de) Verfahren und System für verbesserte Verdünnungstoleranz
DE102013212086A1 (de) Verfahren und system zur vorzündungssteuerung
DE102015204001A1 (de) Verfahren und Systeme zur Vorzündungssteuerung in einer Kraftmaschine mit variablem Hubraum
DE102013216125A1 (de) Verfahren zum Steuern eines variablen Ladeluftkühlers

Legal Events

Date Code Title Description
R082 Change of representative

Representative=s name: ETL IP PATENTANWALTSGESELLSCHAFT MBH, DE

Representative=s name: ETL IP PATENT- UND RECHTSANWALTSGESELLSCHAFT M, DE

Representative=s name: ETL WABLAT & KOLLEGEN PATENT- UND RECHTSANWALT, DE

R082 Change of representative

Representative=s name: ETL IP PATENTANWALTSGESELLSCHAFT MBH, DE

Representative=s name: ETL IP PATENT- UND RECHTSANWALTSGESELLSCHAFT M, DE

R012 Request for examination validly filed