DE102012112570B4 - Messung der Materialstärke breiter Folien - Google Patents

Messung der Materialstärke breiter Folien Download PDF

Info

Publication number
DE102012112570B4
DE102012112570B4 DE102012112570.8A DE102012112570A DE102012112570B4 DE 102012112570 B4 DE102012112570 B4 DE 102012112570B4 DE 102012112570 A DE102012112570 A DE 102012112570A DE 102012112570 B4 DE102012112570 B4 DE 102012112570B4
Authority
DE
Germany
Prior art keywords
distance
film
calibration
sensors
carriage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
DE102012112570.8A
Other languages
English (en)
Other versions
DE102012112570A1 (de
Inventor
Jochen Weber
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
ProNES automation GmbH
Original Assignee
ProNES automation GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ProNES automation GmbH filed Critical ProNES automation GmbH
Priority to DE102012112570.8A priority Critical patent/DE102012112570B4/de
Priority to ATA952/2013A priority patent/AT513766B1/de
Priority to CH02049/13A priority patent/CH707355B1/de
Publication of DE102012112570A1 publication Critical patent/DE102012112570A1/de
Application granted granted Critical
Publication of DE102012112570B4 publication Critical patent/DE102012112570B4/de
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/02Measuring arrangements characterised by the use of optical techniques for measuring length, width or thickness
    • G01B11/06Measuring arrangements characterised by the use of optical techniques for measuring length, width or thickness for measuring thickness ; e.g. of sheet material
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B1/00Measuring instruments characterised by the selection of material therefor
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/02Measuring arrangements characterised by the use of optical techniques for measuring length, width or thickness
    • G01B11/06Measuring arrangements characterised by the use of optical techniques for measuring length, width or thickness for measuring thickness ; e.g. of sheet material
    • G01B11/0608Height gauges
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/02Measuring arrangements characterised by the use of optical techniques for measuring length, width or thickness
    • G01B11/06Measuring arrangements characterised by the use of optical techniques for measuring length, width or thickness for measuring thickness ; e.g. of sheet material
    • G01B11/0691Measuring arrangements characterised by the use of optical techniques for measuring length, width or thickness for measuring thickness ; e.g. of sheet material of objects while moving
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/30Measuring arrangements characterised by the use of optical techniques for measuring roughness or irregularity of surfaces
    • G01B11/306Measuring arrangements characterised by the use of optical techniques for measuring roughness or irregularity of surfaces for measuring evenness
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B21/00Measuring arrangements or details thereof, where the measuring technique is not covered by the other groups of this subclass, unspecified or not relevant
    • G01B21/02Measuring arrangements or details thereof, where the measuring technique is not covered by the other groups of this subclass, unspecified or not relevant for measuring length, width, or thickness
    • G01B21/08Measuring arrangements or details thereof, where the measuring technique is not covered by the other groups of this subclass, unspecified or not relevant for measuring length, width, or thickness for measuring thickness
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B2210/00Aspects not specifically covered by any group under G01B, e.g. of wheel alignment, caliper-like sensors
    • G01B2210/40Caliper-like sensors
    • G01B2210/44Caliper-like sensors with detectors on both sides of the object to be measured

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Length Measuring Devices By Optical Means (AREA)
  • Length Measuring Devices With Unspecified Measuring Means (AREA)

Abstract

Verfahren zur Messung der Materialstärke breiter Folien, bei dem eine Folie (10) zwischen zwei Traversen (20, 30) hindurchgefördert wird und mithilfe von wenigstens zwei jeweils an einer der Traversen (20, 30) angeordneten, einander gegenüberliegenden Abstandssensoren (22, 32) deren Abstände zur Folienoberfläche ermittelt und an eine Datenverarbeitungseinrichtung gesendet werden, welche die Materialstärke der Folie (10) an einem Punkt aufgrund von Messwerten der Abstandssensoren (22, 32) berechnet, wobei es sich bei den Traversen (20, 30) um biegesteife Granitschienen handelt, auf denen jeweils ein Schlitten (21, 31) positionsgenau verfahren wird, wobei den Schlitten (21, 31) jeweils einer der Abstandssensoren (22, 32) zugeordnet ist, welcher während einer Überquerung der Folie (10) Abstandsmessungen an verschiedenen Messpunkten durchführt, dadurch gekennzeichnet, dass es sich bei den Abstandssensoren (22, 32) um Triangulationslasersensoren handelt, welche vor einer Überquerung der Folie (10) mithilfe wenigstens eines bezüglich der Traversen (20, 30) endständig angeordneten Kalibrierstücks (12, 13) kalibriert wird, indem ein Messstrahl (23, 33) eines Triangulationslasersensors in einer Kalibrierungsposition auf eine Ebene definierten Abstandes des Kalibrierstücks (12, 13) ausgesandt und wieder empfangen wird und aus der Laufzeit des Messstrahls (23, 33) der definierte Abstand bestimmt wird, wobei dem Kalibrierstück (12, 13) ein optischer Durchlass (14) zugeordnet ist, durch welchen hindurch zwei gegenüberliegende Abstandssensoren (22, 32) ihren gegenseitigen Abstand erfassen können, den sie an die Datenverarbeitungseinrichtung übermitteln.

Description

  • Die vorliegende Erfindung betrifft ein Verfahren zur Messung der Materialstärke breiter Folien, bei dem eine Folie zwischen zwei Traversen hindurchgefördert wird und mithilfe von wenigstens zwei jeweils an einer der Traversen angeordneten, einander gegenüberliegenden Abstandssensoren deren Abstände zur Folienoberfläche ermittelt und an eine Datenverarbeitungseinrichtung gesendet werden, welche die Materialstärke der Folie an einem Punkt aufgrund von Messwerten der Abstandssensoren berechnet, wobei es sich bei den Traversen um biegesteife Granitschienen handelt, auf denen jeweils ein Schlitten positionsgenau verfahren wird, wobei den Schlitten jeweils einer der Abstandssensoren zugeordnet ist, welcher während einer Überquerung der Folie Abstandsmessungen an verschiedenen Messpunkten durchführt.
  • Ein solches Verfahren ist bereits aus der CN 201 364 149 Y bekannt. Dort wird bereits erkannt, dass es für eine präzise Messung der Materialdicke auf eine stabile und biegesteife Anordnung der Verfahrschienen der genannten Schlitten ankommt. Aus der JP 2002 131044 A ist ferner ein Verfahren geringerer Genauigkeit bekannt, aus der DE 103 03 659 A1 die Verwendung von Granitschienen für präzise Messaufgaben.
  • Bei heute bekannten Verfahren wird die Materialstärke der Folie üblicherweise an zwei oder mehreren statischen Messpunkten erfasst. Werden an diesen Punkten Abweichungen von der Qualitätsnorm festgestellt, greift das Qualitätsmanagement-System in einem solchen Verfahren. Diese bekannte Vorgehensweise ist jedoch immer dann problematisch, wenn gegebenenfalls zwischen den Messpunkten Abweichungen von der gewünschten Materialstärke einer Folie auftreten, welche nach den Kriterien des Qualitätsmanagements zu einem Ausscheiden führen würde, die aber aufgrund der Platzierung der Messpunkte nicht festgestellt werden können.
  • Durch die Anordnung einer Vielzahl von Sensoren und damit der Schaffung einer Vielzahl von Messpunkten kann theoretisch die Genauigkeit der Messung beliebig verbessert werden, problematisch ist hierbei jedoch der Kostenfaktor, welcher mit steigender Sensorzahl immer spürbarer wird.
  • Umgekehrt handelt es sich bei den gewünschten, herzustellenden Folien um technische Präzisionsfolien, deren Materialstärke einen wesentlichen Anteil an der Qualität der Folien hat, so dass im Hinblick auf die Messgenauigkeit besondere Anforderungen zu stellen sind. Diese Folien werden typischerweise auf Produktionsstraßen in langen Bändern gefertigt und am Ende des Fertigungsprozesses gegebenenfalls auf die erforderlichen Maße beschnitten. Zum Teil werden in die Folienbänder aber auch bereits die vorgesehenen Schnittstellen mit eingearbeitet, so dass die Folien permanent als Endlosprodukt hergestellt werden und mithilfe geeigneter Überwachungsmittel am Ende der Fertigungsstraße hinsichtlich ihrer Qualität, insbesondere der Materialstärke, zu überprüfen sind.
  • Eine Materialprüfung bei sehr schmalen Folienbändern ist bereits in einer Anordnung bekannt, welche eine C-förmige Traversenanordnung vorsieht, welche die hergestellte Folie einseitig umgreift und welche eine obere sowie eine untere Traverse bildet, auf denen jeweils miteinander verbundene Sensoren bewegt werden. Aufgrund der Anordnung ist es hierbei lediglich möglich, sehr schmale Folienbänder zu prüfen, insbesondere deshalb, weil die Traversen der C-förmigen Traversenanordnung zu den Enden hin aufgrund der Schwerkraft durchhängen und damit eine präzise Messung allenfalls bis zu einer Messgenauigkeit von 10 μm ermöglichen.
  • Vor diesem Hintergrund soll jedoch nunmehr auch eine Messung der Materialstärke breiterer Folien ermöglicht werden, welche zudem gleichzeitig eine Messgenauigkeit von einem Mikrometer erreicht. Gleichzeitig sollen die Kosten für eine engmaschige Überprüfung der hergestellten Folie gering gehalten werden.
  • Gelöst wird diese Aufgabe durch ein Verfahren zur Messung der Materialstärke breiter Folien gemäß den Merkmalen des Anspruchs 1 sowie des nebengeordneten Anspruchs 7. Weitere sinnvolle Ausgestaltungen dieses Verfahrens können den nachfolgenden Ansprüchen entnommen werden.
  • Erfindungsgemäß ist es vorgesehen, dass im Rahmen eines Verfahrens zur Messung der Materialstärke breiter Folien die endlos aus dem Fertigungsprozess herausgeführte Folie allseits von einer Traversenanordnung umgriffen wird, welche eine oben liegende und eine unten liegende Traverse realisiert.
  • Die Worte „oben” und „unten” werden im weiteren Verlauf der Beschreibung allgemein verwendet, trotzdem die Lage der Folie und damit auch der Traversen willkürlich wählbar ist. Für die weitere Betrachtung wird davon ausgegangen, dass die Flächen der Folie nach oben bzw. unten weisen und oberhalb bzw. unterhalb der Folienflächen jeweils eine Traverse im Wesentlichen parallel zu den Folienoberflächen aufgestellt ist. Andere Anordnungen mit anderen Ausrichtungen sind jedoch ebenso denkbar und mit geschützt wie ein Austausch der oberen mit der unteren Traversen.
  • Die Traversen können seitlich mithilfe von Trägern miteinander verbunden sein, so dass die Traversenanordnung das Folienband umschließt. An den Traversen sind Abstandssensoren zur Messung des Abstandes zur Folienoberfläche angeordnet, wobei jeweils ein Sensor auf der oberen Traverse mit einem Sensor auf der unteren Traverse korreliert und gleiche Folienkoordinaten beiderseits der Folie fokussieren. Durch einen bekannten Wert des Abstandes der korrelierenden Sensoren und den über bzw. unter der Folie gemessenen Abstandswerte lässt sich die Materialstärke der Folie in dem jeweiligen Messpunkt durch einfache Differenzbildung ermitteln.
  • Im Rahmen der Erfindung werden hierbei Abstandssensoren paarweise eingesetzt, welche auf Schlitten montiert über die Länge der Traversen verfahrbar sind. Hierdurch können dieselben Sensoren während der gegebenenfalls unterbrochenen Fahrt der Schlitten nacheinander mehrere Messpunkte aufnehmen und damit die Aufgabe von mehreren Abstandssensoren übernehmen, die ansonsten nebeneinander auf einer Traverse angeordnet sein müssten. Erforderlich ist es hierfür, dass die Schlitten so positionsgenau und übereinstimmend verfahrbar sind, es also gewährleistet ist, dass beide Schlitten bezüglich der Folie exakt an den gleichen Koordinaten messen.
  • Eine derart exakte Messung erfordert extrem biegesteife Traversen, was im Rahmen der Erfindung durch den Einsatz von Traversen aus Granit gewährleistet wird. Derartige Granitschienen sind absolut biegesteif und damit dafür geeignet, auch einen größeren Abstand, wie etwa einen Meter Breite zu überspannen, ohne dass mit einer Verbiegung während des Verfahrens des Schlittens gerechnet werden muss. Hierbei ist es zudem sinnvoll, wenn die verwendeten Granitschienen in ihrer Längserstreckung gewinkelt sind, also im Querschnitt einen L-förmigen, C-förmigen, U-förmigen oder anderen gewinkelten Querschnitt aufweisen. Ein Verbiegen ist durch eine derartige Form der Granitschienen noch weiter vermieden.
  • Die positionsgenaue Bewegung des Schlittens, welcher die Abstandssensoren auf den Traversen trägt, kann hierbei mithilfe eines motorischen Antriebs bewerkstelligt werden, welcher als Servomotor, Linearmotor, Schrittmotor und dergleichen mehr oder auch als Spindelantrieb ausgeführt sein kann. Eine exakte Positionsbestimmung der Schlitten wird über eine Skale geleistet, die den Traversen zugeordnet ist. Um eine möglichst große Genauigkeit der Verortung gewährleisten zu können, ist die Skale in einen Glasstab eingraviert, welcher mit der Granitschiene verbunden, vorzugsweise in diese eingearbeitet ist. Mithilfe eines optischen Sensors, der mit dem Schlitten verbunden ist, wird das Überschreiten jedes Teilstrichs der Skale des Glasstabes erfasst und an eine Datenverarbeitungseinrichtung übermittelt, welche ebenfalls die Abstandsdaten der Abstandssensoren empfängt und verarbeitet und welche insoweit an dem Verfahren teilnimmt.
  • Aufgrund der erfassten Abstandsmessungen sowie der mithilfe der Skale erfassten Position der Schlitten auf den Traversen ist die Datenverarbeitungseinrichtung in der Lage, jedem Punkt der Folie seine jeweilige Materialstärke zuzuordnen, so dass durch die beschriebene Anordnung eine weitgehend flächendeckende Überwachung der Materialstärke der Foliendicke erreicht werden kann.
  • Um eine möglichst große Laufruhe der Schlitten und eine präzise Lagerung derselben auf den Traversen zu erreichen, werden diese jeweils auf einem Luftkissen gelagert, welches mithilfe von auf den Schlitten angeordneten Luftdüsen geschaffen wird. Im Einzelnen weist jeder Schlitten eine Mehrzahl von Radkammern auf, in welche Räder eingesetzt sind. Diese Räder sind jedoch nicht direkt mit den Schlitten verbunden, sondern werden von allen Seiten, in denen sie von dem Schlitten umgeben sind, mit einem Luftstrahl beaufschlagt, welcher den Schlitten letzten Endes über den Rädern schweben lässt. Durch eine entsprechende Anordnung von verschiedenen Seiten der Traverse wird der Schlitten auf diese Art und Weise nicht angehoben, sondern in einer exakten Position ausgemittelt, indem die Traverse zwischen mehreren derart von dem Schlitten weg gedrückten Rädern gehalten bzw. eingeklemmt ist.
  • Bei den verwendeten Abstandssensoren handelt es sich mit einigem Vorteil um Triangulationslasersensoren, welche einen Laserstrahl aussenden und dessen Reflexion wieder empfangen um dann aufgrund der Lichtlaufzeit den zurückgelegten Weg und damit den Abstand zu der zu messenden Folie bestimmen zu können. Um eine Kalibrierung bezüglich der Laufzeit für einen Abstand zu verwirklichen, sind den Trägern, welche die Traversen miteinander verbinden, Kalibrierstücke zugeordnet, in deren Bereich die mit den Schlitten verbundenen Abstandssensoren vor und/oder nach der Überquerung der Folie einfahren können. Wenn sich dann der Abstandssensor eines Schlittens oberhalb eines Kalibrierstücks befindet, wird der Laserstrahl des Abstandssensors nicht mehr von der Folie reflektiert, sondern von dem Kalibrierstück, so dass anhand des definierten Abstandes des Kalibrierstücks eine Einstellung und Kalibrierung des Abstandssensors vorgenommen werden kann.
  • Das Kalibrierstück kann hierfür wenigstens zwei Kalibrierungspositionen vorsehen, indem es zweistufig ausgebildet ist, so dass eine von dem Kalibrierstück gebildete Ebene einen Höchstabstand, die zweite gebildete Ebene einen Mindestabstand repräsentiert. Zudem kann das Kalibrierstück beidseitig der Folie angeordnet sein und auch gleichermaßen für die Schlitten und Abstandssensoren beider Traversen ausgelegt sein, indem die eingearbeiteten Stufen beidseitig vorhanden sind. Es ist vorgesehen, wenngleich nicht zwingend erforderlich, dass eine Kalibrierung der Abstandssensoren nach jeder Überquerung der Folie in beiden Richtungen durchgeführt wird.
  • Um das Reflexionsverhalten der zu messenden Folie bei der Kalibrierung berücksichtigen zu können, weisen die Kalibrierstücke im Bereich ihrer Kalibrierungspositionen jeweils eine Aufnahme auf, in welchen Kalibrierungsmuster eingesetzt werden können. Diese Kalibrierungsmuster sind aus einem mit dem Material der Folie korrespondierenden Material hergestellt, so dass die Reflexionseigenschaften der Folie an dieser Stelle nachgebildet werden und eine exakte Kalibrierung möglich ist.
  • Zudem können die Kalibrierstücke jeweils einen optischen Durchlass aufweisen, durch welchen hindurch zwei einander gegenüberstehende Abstandsmesssensoren sich gegeneinander abgleichen können. Hierzu wird jeder der Abstandssensoren einen Messstrahl aussenden, welcher den jeweils anderen Abstandssensor trifft und von diesem zurückgeworfen wird. Hierbei wird ein Abstandssensor den Messstrahl gegenüber dem Normalbetrieb verstärken und der andere Abstandssensor den Messstrahl abschwächen. Im Idealfall wird der erstgenannte Abstandssensor den Messstrahl in maximaler Stärke einsetzen, während der andere Abstandssensor den Messstrahl bei der niedrigsten möglichen Energie betreibt. Hierdurch wird durch einen Vergleich des gesendeten mit dem empfangenen Strahl der reflektierte eigene Strahl von dem zu reflektierenden, fremden Strahl unterscheidbar.
  • Im Zuge einer gegenseitigen Positionsabgleichung im Bereich des optischen Durchlasses der Kalibrierung wird vorteilhafter Weise auch ein Abgleich hinsichtlich der Vorschubsposition auf der Traverse durchgeführt, indem die jeweilige Position auf der Skale des Glasstabes in dieser Position auf 0 bzw. auf den höchsten Wert gesetzt wird.
  • Über den Abstandssensor hinaus kann wenigstens einem der Schlitten ein Thermoelement zugeordnet sein, welches auf dem Schlitten im Bereich der Folie gehalten wird. Auf diese Art und Weise kann die Umgebungstemperatur der Folie erfasst werden, so dass von der erfassten Temperatur auf die tatsächliche Temperatur der Folie zurückgeschlossen werden kann und mithilfe dieser Information, welche an die Datenverarbeitungseinrichtung weitergeleitet wird, eine Umrechnung der tatsächlichen gemessenen Materialstärke auf Normalbedingungen unter einer vorgegebenen Temperatur von der Datenverarbeitungseinrichtung geleistet werden kann.
  • Neben dieser Normalisierung wird auch im Vorfeld der Verwendung einer Traverse deren eventuelle Verformung erfasst und im Rahmen einer Vermessung geprüft, ob die jeweilige Traverse einen Höhenschlag besitzt oder nicht.
  • Eventuelle Verformungen werden hierbei im Zusammenhang mit der jeweiligen Position auf der Traverse bei der Datenverarbeitungseinrichtung hinterlegt und bei der Berechnung der Materialstärke der Folie berücksichtigt.
  • Die vorstehend beschriebene Erfindung wird im Folgenden anhand eines Ausführungsbeispiels näher erläutert.
  • Es zeigen
  • 1 Eine von einer Traversenanordnung umbaute, endlos produzierte Folie in einer schematischeren Darstellung quer zur Folie,
  • 2 eine der in 1 gezeigten Traversen mit einem aufgesetzten Schlitten in einer schematischen Querschnittsdarstellung, sowie
  • 3 eines der in 1 gezeigten Kalibrierstücke in einer seitlichen, schematischen Querschnittsdarstellung.
  • 1 zeigt eine Folie 10 in einer Querschnittsdarstellung, wobei um diese Folie 10 herum eine Traversenanordnung aufgebaut ist, welche aus einer oberen Traverse 20, einer unteren Traverse 30 und zwei diese in Position haltenden Trägern 11 besteht. Auf den Traversen 20 und 30 sind jeweils ein oberer Schlitten 21 bzw. ein unterer Schlitten 31 verfahrbar angeordnet, welche die gesamte Breite der Folie 10 mit einem auf den Schlitten 21 und 31 angeordneten Abstandssensor 22 und 32 erfassen können. Die Traversen 20 und 30 sind aus Granit gefertigt, so dass trotz der großen Breite der Folie 10, welche von den Traversen 20 und 30 übergriffen wird, diese während des Verfahrens der Schlitten 21 und 31 ihre Form exakt beibehalten.
  • Während die Folie 10 also produziert und gefördert wird, verfahren die Schlitten 21 und 31 über der Folie 10 bzw. darunter hin und her und messen in einer Vielzahl von Messpunkten jeweils den Abstand zwischen den Abstandssensoren 22 und 32 und der dem jeweiligen Abstandssensor 22 und 32 zugewandten Oberfläche der Folie 10. In einer Kalibrierungsposition, also im Bereich der seitlich an den Trägern 11 angeordneten Kalibrierstücken 12 und 13, kann der Abstand zudem zwischen den beiden Abstandssensoren ermittelt werden, so dass aus diesen Abstandsmessungen die Materialstärke der Folie 10 in jedem Messpunkt ermittelt werden kann. Die erfassten Abstandswerte der Abstandssensoren 22 und 32 werden an eine entfernt liegende Datenverarbeitungseinrichtung gesendet, welche im Bild nicht dargestellt ist. Die Datenverarbeitungseinrichtung verarbeitet die erfassten Messdaten und entscheidet aufgrund der Produktionsvorgaben, ob die Vorgaben hinsichtlich der Materialdicke und der erlaubten Abweichungen erfüllt sind. Ist dies nicht der Fall, so wird zumindest ein Teil der Folie 10 als Ausschuss markiert.
  • Zusätzlich zu dem Messen des Abstands eines Abstandssensors 22 bzw. 32 zu der Oberfläche der Folie 10 wird an wenigstens einem der Schlitten 21 bzw. 31 ein Thermoelement 29 angeordnet, welches die Temperatur im Bereich der Folie 10 erfasst. Die Temperaturmesswerte werden ebenfalls an die Datenverarbeitungseinrichtung übermittelt, welche aufgrund der Temperaturwerte die gemessenen Abstandswerte auf eine gewünschte Normaltemperatur normalisiert. Bei dem oberen Messstrahl 23 und dem unteren Messstrahl 33 handelt es sich um Laserstrahlen, welche von den als Triangulationslasersensoren ausgestalteten Abstandssensoren ausgesandt werden.
  • Wie in 2 zu erkennen ist, sind die Schlitten 21 und 31 auf den Traversen 20 und 30 verfahrbar. In 2 ist exemplarisch der obere Schlitten 21 in einer Querschnittsdarstellung gezeigt, so dass zu erkennen ist, dass der obere Schlitten 21 in der gezeigten Ebene auf insgesamt drei Rädern 27 gelagert ist. Die Räder sind hierzu in Radkammern 28 des oberen Schlittens 21 aufgenommen und werden von allen Seiten mithilfe von Luftdüsen 26 angestrahlt, so dass letztendlich durch die Anordnung mehrerer solcher Räder 27 aus verschiedenen Richtungen der obere Schlitten 21 auf der Traverse festgehalten ist und auf einem Luftkissen transportiert wird. Dies ermöglicht eine exakte Positionierung auf der Traverse 20, welche einzig mit den Radlaufflächen in Kontakt steht.
  • In die obere Traverse 20 ist ein Glasstab 25 eingearbeitet, welcher eine Skale aufweist. Die Skale wird mithilfe eines optischen Sensors 24 abgelesen, so dass aufgrund der Ablesungen Rückschlüsse auf die Position des oberen Schlittens 21 auf der oberen Traverse 20 von der Datenverarbeitungseinrichtung gezogen werden können. Im Einzelnen handelt es sich bei den Markierungen auf dem Glasstab 25 um eingravierte Kerben, welche mit dem optischen Sensor 24 erfasst werden. Ausgehend von einem Nullpunkt kann dann auf die Position des Schlittens 21 auf der Traverse 20 durch Abzählen der erfassten, überquerten Teilstriche und der aktuellen Bewegungsrichtung des Antriebs rückgeschlossen werden.
  • 3 zeigt ein Kalibrierstück 12, welches an einem Träger 11 angeordnet ist. Sobald der Abstandssensor 22 bzw. 32 über den Rand der Folie 10 hinaus fährt, wird er in den Bereich des Kalibrierstücks 12 oder 13 eintreten, welches eine erste Kalibrierposition 15 und eine zweite Kalibrierposition 16 aufweist. Die erste Kalibrierposition 15 repräsentiert einen Mindestabstand, welchen die Folie im Rahmen der durchzuführenden Messung einnimmt, während die zweite Kalibrierposition 16 den Höchstabstand der Folie repräsentiert. An beiden Kalibrierpositionen 15 und 16 ist jeweils eine Aufnahme 17 angeordnet, in welche ein Kalibriermuster eingelegt werden kann. Dieses ist im Material der Folie 10 nachgebildet, so dass die Reflexionseigenschaften der Folie bei der Kalibrierung berücksichtigt werden können. Durch einen optischen Durchlass 14 des ersten Kalibrierstücks 12 kann ein gegenseitiges Abstandsmessen der über diesem optischen Durchlass 14 bzw. darunterliegenden Abstandssensoren 22 und 32 erfolgen. Das erste Kalibrierstück 12, ebenso wie sein Pendant am gegenüberliegenden Träger 11, nämlich das zweite Kalibrierstück 13, sind jeweils so ausgearbeitet, dass eine Kalibrierung von beiden einander gegenüberliegenden Abstandssensoren 22 und 32 gleichzeitig erfolgen kann. Eine Kalibrierung wird vor und nach jedem Überqueren der Folie 10 auf beiden Seiten der Folie 10 an den jeweiligen Kalibrierstücken 12 und 13 durchgeführt.
  • Vorstehend beschrieben ist somit ein Verfahren zur Messung der Materialstärke breiter Folien, welches es erlaubt, trotz der Folienbreite eine Anordnung von traversierenden Sensoren einzusetzen, was durch extrem biegesteifes Material, in Form von Granittraversen ermöglicht wird. Deren Einsatz ermöglicht zudem eine hohe Messgenauigkeit. Mit der Verwendung traversierender Abstandssensoren kann auch die Anordnung einer großen Anzahl von Sensoren trotz einer engmaschigen Abdeckung mit Messpunkten kostenschonend verzichtet werden.

Claims (12)

  1. Verfahren zur Messung der Materialstärke breiter Folien, bei dem eine Folie (10) zwischen zwei Traversen (20, 30) hindurchgefördert wird und mithilfe von wenigstens zwei jeweils an einer der Traversen (20, 30) angeordneten, einander gegenüberliegenden Abstandssensoren (22, 32) deren Abstände zur Folienoberfläche ermittelt und an eine Datenverarbeitungseinrichtung gesendet werden, welche die Materialstärke der Folie (10) an einem Punkt aufgrund von Messwerten der Abstandssensoren (22, 32) berechnet, wobei es sich bei den Traversen (20, 30) um biegesteife Granitschienen handelt, auf denen jeweils ein Schlitten (21, 31) positionsgenau verfahren wird, wobei den Schlitten (21, 31) jeweils einer der Abstandssensoren (22, 32) zugeordnet ist, welcher während einer Überquerung der Folie (10) Abstandsmessungen an verschiedenen Messpunkten durchführt, dadurch gekennzeichnet, dass es sich bei den Abstandssensoren (22, 32) um Triangulationslasersensoren handelt, welche vor einer Überquerung der Folie (10) mithilfe wenigstens eines bezüglich der Traversen (20, 30) endständig angeordneten Kalibrierstücks (12, 13) kalibriert wird, indem ein Messstrahl (23, 33) eines Triangulationslasersensors in einer Kalibrierungsposition auf eine Ebene definierten Abstandes des Kalibrierstücks (12, 13) ausgesandt und wieder empfangen wird und aus der Laufzeit des Messstrahls (23, 33) der definierte Abstand bestimmt wird, wobei dem Kalibrierstück (12, 13) ein optischer Durchlass (14) zugeordnet ist, durch welchen hindurch zwei gegenüberliegende Abstandssensoren (22, 32) ihren gegenseitigen Abstand erfassen können, den sie an die Datenverarbeitungseinrichtung übermitteln.
  2. Verfahren gemäß Anspruch 1, dadurch gekennzeichnet, dass das Kalibrierstück (12, 13) wenigstens zwei Kalibrierungspositionen (15, 16) vorsieht, welche einen Mindestabstand und einen Höchstabstand repräsentieren.
  3. Verfahren gemäß einem der Ansprüche 1 oder 2, dadurch gekennzeichnet, dass das Kalibrierstück (12, 13) für die Schlitten (21, 31) beider Traversen (20, 30) eingesetzt wird und Kalibrierungspositionen (15, 16) für beide Abstandssensoren (22, 32) repräsentiert.
  4. Verfahren gemäß Anspruch 2, dadurch gekennzeichnet, dass dem Kalibrierstück (12, 13) an den unterschiedlichen Kalibrierungspositionen (15, 16) Aufnahmen (17) zum Einlegen von mit dem Material der Folie (10) übereinstimmenden Kalibriermustern zugeordnet sind.
  5. Verfahren gemäß einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass zur gegenseitigen Abstandsmessung ein Abstandssensor (22, 32) die Intensität seines Messstrahls (23, 33) erhöht, der andere Abstandssensor (32, 22) die Intensität seines Messstrahls (33, 23) senkt und zur Verifizierung des Empfangs des jeweils anderen Messstrahls (23, 33) eine Differenz zwischen ausgesandter und empfangener Lichtstärke ausgewertet wird.
  6. Verfahren gemäß einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass an der Kalibrierungsposition im Bereich des optischen Durchlasses (14) eine Kalibrierung der Position entlang der Skale des Glasstabes (25) durchgeführt wird.
  7. Verfahren zur Messung der Materialstärke breiter Folien, bei dem eine Folie (10) zwischen zwei Traversen (20, 30) hindurchgefördert wird und mithilfe von wenigstens zwei jeweils an einer der Traversen (20, 30) angeordneten, einander gegenüberliegenden Abstandssensoren (22, 32) deren Abstände zur Folienoberfläche ermittelt und an eine Datenverarbeitungseinrichtung gesendet werden, welche die Materialstärke der Folie (10) an einem Punkt aufgrund von Messwerten der Abstandssensoren (22, 32) berechnet, wobei es sich bei den Traversen (20, 30) um biegesteife Granitschienen handelt, auf denen jeweils ein Schlitten (21, 31) positionsgenau verfahren wird, wobei den Schlitten (21, 31) jeweils einer der Abstandssensoren (22, 32) zugeordnet ist, welcher während einer Überquerung der Folie (10) Abstandsmessungen an verschiedenen Messpunkten durchführt, dadurch gekennzeichnet, dass die Datenverarbeitungseinrichtung von den Abstandssensoren (22, 32) jeweils eine Position der Schlitten (21, 31) auf der Traverse (20, 30) und Abstandswerte der Sensoren übermittelt erhält und für jeden Messpunkt auf der Folie (10) deren Materialstärke durch Differenzbildung zwischen einem kalibrierten Abstand und der Summe der in dem Messpunkt gemessenen Abstände ermittelt, wobei wenigstens einem der Schlitten ein Thermoelement (29) zugeordnet ist, welches eine Temperaturmessung im Bereich der Folie (10) durchführt und die so ermittelten Temperaturmesswerte in Korrelation mit den Abstandsmesswerten an die Datenverarbeitungseinrichtung übermittelt werden, welche anhand der Temperaturmesswerte eine Normalisierung der Abstandsmesswerte auf vorgegebene Normalbedingungen vornimmt.
  8. Verfahren gemäß einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Schlitten (21, 31) auf den Traversen (20, 30) jeweils mittels eines motorischen Antriebs verfahren werden, wobei eine exakte Verortung der Schlitten (21, 31) über jeweils eine den Traversen (20, 30) zugeordnete Skale durchgeführt wird.
  9. Verfahren gemäß Anspruch 8, dadurch gekennzeichnet, dass die Skale in einen in die Granitschiene eingearbeiteten Glasstab (25) eingraviert ist und mithilfe eines optischen Sensors (24) bei jedem Überschreiten eines Teilstrichs der Skale ein Positionssignal von dem optischen Sensor (24) an die Datenverarbeitungseinrichtung übermittelt wird.
  10. Verfahren gemäß Anspruch 8, dadurch gekennzeichnet, dass jedem Schlitten (21, 31) Räder (27) zugeordnet sind, welche auf der entsprechenden Traverse (20, 30) laufen und gegenüber dem jeweiligen Schlitten (21, 31) auf einem Luftkissen gelagert sind.
  11. Verfahren gemäß Anspruch 10, dadurch gekennzeichnet, dass mehrere Luftkissen mehrerer Räder (27) zur definierten Lagerung eines Schlittens (21, 31) auf seiner Traverse (20, 30) zusammenwirken, indem die Luftkissen auf Räderpaare (27) mit entgegengesetzt ausgerichteten Laufflächen, oder auf Räder (27) mit die Traverse (20, 30) in Schwerkraftrichtung kontaktierenden Laufflächen, einwirken.
  12. Verfahren gemäß einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass eventuelle Verformungen der Traversen (20, 30) im Wege einer einmaligen Vermessung erfasst, an die Datenverarbeitungseinrichtung übermittelt und von dieser bei der Bestimmung der Materialstärke der Folie (10) berücksichtigt werden.
DE102012112570.8A 2012-12-18 2012-12-18 Messung der Materialstärke breiter Folien Expired - Fee Related DE102012112570B4 (de)

Priority Applications (3)

Application Number Priority Date Filing Date Title
DE102012112570.8A DE102012112570B4 (de) 2012-12-18 2012-12-18 Messung der Materialstärke breiter Folien
ATA952/2013A AT513766B1 (de) 2012-12-18 2013-12-10 Verfahren zur Messung der Materialstärke breiter Folien
CH02049/13A CH707355B1 (de) 2012-12-18 2013-12-10 Verfahren zur Messung der Materialstärke breiter Folien.

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE102012112570.8A DE102012112570B4 (de) 2012-12-18 2012-12-18 Messung der Materialstärke breiter Folien

Publications (2)

Publication Number Publication Date
DE102012112570A1 DE102012112570A1 (de) 2014-06-18
DE102012112570B4 true DE102012112570B4 (de) 2016-03-03

Family

ID=50821280

Family Applications (1)

Application Number Title Priority Date Filing Date
DE102012112570.8A Expired - Fee Related DE102012112570B4 (de) 2012-12-18 2012-12-18 Messung der Materialstärke breiter Folien

Country Status (3)

Country Link
AT (1) AT513766B1 (de)
CH (1) CH707355B1 (de)
DE (1) DE102012112570B4 (de)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102015121662A1 (de) * 2015-12-11 2017-06-14 Friedrich Vollmer Feinmessgerätebau Gmbh Verfahren zur Durchführung einer Banddickenmessung sowie Banddickenmessgerät
DE102018121448B4 (de) 2018-09-03 2022-06-02 SmartRay GmbH Inspektions-Verfahren sowie diesbezügliche Vorrichtung

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4276480A (en) * 1979-09-28 1981-06-30 Accuray Corporation Sensor position independent material property determination using radiant energy
US6238092B1 (en) * 1999-06-01 2001-05-29 Tru-Stone Corporation Air bearing for a motion system
JP2002131044A (ja) * 2000-10-20 2002-05-09 Meisan Kk 平板用非接触式厚さ計
CN2508350Y (zh) * 2001-11-24 2002-08-28 四川省科学城高达测控公司 高精密度“o”型扫描架
DE10303659A1 (de) * 2003-01-23 2004-08-05 Berliner Elektronenspeicherring-Gesellschaft für Synchrotronstrahlung mbH Optisches Messverfahren zur Ermittlung von Idealformabweichungen technisch polierter Oberflächen und Präzisionsmessmaschine zur Durchführung des Messverfahrens
DE102008000105A1 (de) * 2008-01-21 2009-07-30 Feinmess Suhl Gmbh Koordinatenmessgerät
CN201364149Y (zh) * 2009-03-20 2009-12-16 陈炳生 高刚度、高稳定的精密测量装置

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE59006447D1 (de) * 1990-11-19 1994-08-18 Kugelfischer G Schaefer & Co Dickenmessgerät.
DE4220501A1 (de) * 1992-06-23 1994-01-05 Robert Prof Dr Ing Massen Optische Dickenmessung an bahnförmigen Materialien
CN101458058B (zh) * 2007-12-12 2010-09-29 鸿富锦精密工业(深圳)有限公司 量测装置
DE102011107771B4 (de) * 2011-04-15 2013-10-17 Micro-Epsilon Messtechnik Gmbh & Co. Kg Vorrichtung und Verfahren zur Dickenmessung eines Messobjekts

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4276480A (en) * 1979-09-28 1981-06-30 Accuray Corporation Sensor position independent material property determination using radiant energy
US6238092B1 (en) * 1999-06-01 2001-05-29 Tru-Stone Corporation Air bearing for a motion system
JP2002131044A (ja) * 2000-10-20 2002-05-09 Meisan Kk 平板用非接触式厚さ計
CN2508350Y (zh) * 2001-11-24 2002-08-28 四川省科学城高达测控公司 高精密度“o”型扫描架
DE10303659A1 (de) * 2003-01-23 2004-08-05 Berliner Elektronenspeicherring-Gesellschaft für Synchrotronstrahlung mbH Optisches Messverfahren zur Ermittlung von Idealformabweichungen technisch polierter Oberflächen und Präzisionsmessmaschine zur Durchführung des Messverfahrens
DE102008000105A1 (de) * 2008-01-21 2009-07-30 Feinmess Suhl Gmbh Koordinatenmessgerät
CN201364149Y (zh) * 2009-03-20 2009-12-16 陈炳生 高刚度、高稳定的精密测量装置

Also Published As

Publication number Publication date
CH707355A2 (de) 2014-06-30
DE102012112570A1 (de) 2014-06-18
AT513766A2 (de) 2014-07-15
AT513766A3 (de) 2014-12-15
CH707355B1 (de) 2018-03-29
AT513766B1 (de) 2015-03-15

Similar Documents

Publication Publication Date Title
DE102011000304B4 (de) Kalibrierung von Laser-Lichtschnittsensoren bei gleichzeitiger Messung
DE102007042796A1 (de) Führungsschiene mit absoluter Maßverkörperung
WO2012139571A1 (de) Vorrichtung und verfahren zur dickenmessung eines messobjekts
DE19922363A1 (de) Einrichtung zur Ermittlung der Relativposition zweier relativ zueinander beweglicher Körper und Verfahren zur Herstellung einer solchen Einrichtung
AT515208B1 (de) Gleisbaumaschine zur Durchführung von Gleislagekorrekturen und Verfahren
EP2037229A1 (de) Verfahren und Vorrichtung zum Bestimmen der Position eines Fahrzeugs
EP2044387B1 (de) Verfahren und vorrichtung zur dickenmessung grossflächiger glassubstrate
EP2449338A1 (de) Verfahren und vorrichtung zur berührungslosen bestimmung der dicke einer materialbahn mit korrektur des ausrichtfehlers
EP2270422A2 (de) Vorrichtung zum Messen der Dicke einer laufenden Materialbahn
DE102009053874A1 (de) Roboter zur automatischen 3D-Vermessung und Verfahren
EP3680604B1 (de) Anlage und verfahren zum betreiben einer anlage zur herstellung von werkstoffplatten
DE102012112570B4 (de) Messung der Materialstärke breiter Folien
DE102010006504A1 (de) Verfahren zur Bestimmung der Position eines Werkzeuges
DE4105207A1 (de) Vorrichtung an werkzeugmaschinen
DE102016207593A1 (de) Vorrichtung und Verfahren zur Messung der Breite und der Dicke eines flächigen Objekts
DE10309679A1 (de) Abtasteinheit zum Abtasten einer Maßverkörperung
DE102019114061A1 (de) Vorrichtung und Verfahren zur Dickenmessung an bewegten bahn- oder plattenförmigen Messobjekten
DE102012005966A1 (de) Vorrichtung und Verfahren zur Erzeugung einer flächenhaften Darstellung eines dreidimensionalen Körpers sowie Beleuchtungseinrichtung dazu
EP3794308A1 (de) Ermittlung einer ausrichtung von wenigstens einem objekt und verfahren zum relativen ausrichten von rollen
DE102015119409B4 (de) Messverfahren zur Messung der Verformung einer Schiene
DE102004040345B4 (de) Verfahren und Einrichtung zum Überprüfen des Stoßbereiches nebeneinander auf eine Unterlage gelegter Bahnen aus einem Faserverbundwerkstoff
AT507081B1 (de) Vorrichtung zum erfassen von für die weiterbearbeitung von brettern relevanter daten
DE3509502A1 (de) Positionsfuehleinrichtung
AT14280U1 (de) Vorrichtung zum Messen der Lage von Schienen eines Gleises
DE102018121448A1 (de) Inspektions-Verfahren sowie diesbezügliche Vorrichtung

Legal Events

Date Code Title Description
R012 Request for examination validly filed
R012 Request for examination validly filed

Effective date: 20150115

R016 Response to examination communication
R018 Grant decision by examination section/examining division
R020 Patent grant now final
R082 Change of representative

Representative=s name: GEITZ TRUCKENMUELLER LUCHT CHRIST PATENTANWAEL, DE

R082 Change of representative

Representative=s name: GEITZ PATENTANWAELTE PARTG MBB, DE

Representative=s name: GEITZ TRUCKENMUELLER LUCHT CHRIST PATENTANWAEL, DE

R119 Application deemed withdrawn, or ip right lapsed, due to non-payment of renewal fee