DE102012010795A1 - Steam power method for electric power generation in steam power plants, involves carrying out stress relief to apply high pressure and temperature potential, and increasing temperature according to high pressure steam turbine - Google Patents

Steam power method for electric power generation in steam power plants, involves carrying out stress relief to apply high pressure and temperature potential, and increasing temperature according to high pressure steam turbine Download PDF

Info

Publication number
DE102012010795A1
DE102012010795A1 DE201210010795 DE102012010795A DE102012010795A1 DE 102012010795 A1 DE102012010795 A1 DE 102012010795A1 DE 201210010795 DE201210010795 DE 201210010795 DE 102012010795 A DE102012010795 A DE 102012010795A DE 102012010795 A1 DE102012010795 A1 DE 102012010795A1
Authority
DE
Germany
Prior art keywords
steam
temperature
high pressure
reheat
pressure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Ceased
Application number
DE201210010795
Other languages
German (de)
Inventor
Auf Nichtnennung Antrag
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
RERUM COGNITIO INST GmbH
RERUM COGNITIO Institut GmbH
Original Assignee
RERUM COGNITIO INST GmbH
RERUM COGNITIO Institut GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by RERUM COGNITIO INST GmbH, RERUM COGNITIO Institut GmbH filed Critical RERUM COGNITIO INST GmbH
Priority to DE201210010795 priority Critical patent/DE102012010795A1/en
Publication of DE102012010795A1 publication Critical patent/DE102012010795A1/en
Ceased legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K7/00Steam engine plants characterised by the use of specific types of engine; Plants or engines characterised by their use of special steam systems, cycles or processes; Control means specially adapted for such systems, cycles or processes; Use of withdrawn or exhaust steam for feed-water heating
    • F01K7/16Steam engine plants characterised by the use of specific types of engine; Plants or engines characterised by their use of special steam systems, cycles or processes; Control means specially adapted for such systems, cycles or processes; Use of withdrawn or exhaust steam for feed-water heating the engines being only of turbine type
    • F01K7/22Steam engine plants characterised by the use of specific types of engine; Plants or engines characterised by their use of special steam systems, cycles or processes; Control means specially adapted for such systems, cycles or processes; Use of withdrawn or exhaust steam for feed-water heating the engines being only of turbine type the turbines having inter-stage steam heating

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Turbine Rotor Nozzle Sealing (AREA)

Abstract

The steam power method involves carrying out stress relief after high temperature intermediate superheating to apply a high pressure and temperature potential. The significant temperature is increased only according to the high pressure steam turbine (3) in a high temperature intermediate superheater (4), since the admissible voltage of the materials reduces with increasing temperatures, when high temperatures are obtained at the lower pressures till the material limits, which reduces the difference between the combustion chamber and steam temperatures.

Description

Die Erfindung betrifft ein auf dem Dampfkraftprozess bezogenes thermisches Verfahren, welches durch spezielle Modifikationen die Gesamteffizienz verbessert. Eine derartige Lösung wird in erster Linie im Bereich der Energiewirtschaft benötigt.The invention relates to a related to the steam power process thermal process, which improves the overall efficiency by special modifications. Such a solution is needed primarily in the energy industry.

Der weltweit steigende Energiebedarf erhöht die anthropogenen Belastungen für Klima und Umwelt. Sparsamer Umgang mit Energie und effiziente thermische Wandlerprozesse werden immer wichtiger, um den Klimawandel nicht weiter zu beschleunigen. Dampfkraftwerke übernehmen auch im Zeitalter erneuerbarer Energien den verlässlichen Anteil der Stromerzeugung. Der Stand der Technik befindet sich auf einem sehr hohen technischen Niveau. Modifikationen wie regenerative Speisewasservorwärmung, Zwischenüberhitzungen, Erhöhung der Frischdampfparameter, Senkung der Kondensationstemperatur, Optimierung der Anlagenkomponenten sowie verbesserte Prozesssteuerung sind Maßnahmen, um Kraftwerke für die Belange des 21. Jahrhundert fit zu machen. Im Forschungsverbund abayfor (www.abayfor.de/kw21) werden die Schwerpunkte benannt. Mit dem Anheben der Frischdampfparameter auf 700°C bei Drücken um 350 bar und mehr, werden warm- und hochfeste Superlegierungen benötigt, die sich noch in der Entwicklung befinden. Die Verbindung hohe Temperaturen bei hohen Drücken stößt an Materialgrenzen, sodass zwischen der Brennraumtemperatur und der max. Dampftemperatur noch thermische Reserven bestehen.The increasing global energy demand increases the anthropogenic pressures on the climate and the environment. Economical use of energy and efficient thermal conversion processes are becoming increasingly important in order to avoid further accelerating climate change. Steam power plants are responsible for the reliable share of power generation even in the age of renewable energies. The state of the art is at a very high technical level. Modifications such as regenerative feedwater pre-heating, reheating, increasing the live steam parameters, lowering the condensation temperature, optimizing the system components and improved process control are measures to make power plants fit for the needs of the 21st century. The focal points are named in the research association abayfor (www.abayfor.de/kw21). Increasing live steam parameters to 700 ° C at pressures of 350 bar and over requires hot and high strength superalloys that are still in development. The compound high temperatures at high pressures encounters material boundaries, so between the combustion chamber temperature and the max. Steam temperature still exist thermal reserves.

Bestünde die Möglichkeit, diese noch zu nutzen, würde das im Vergleich zum Stand der Technik eine markante Verbesserung bedeuten. Austenite bspw. 800 H verfügen bei 700°C über eine zulässige Spannung von ca. 35 MPa, welche sich bei 900°C auf ca. 7 MPa verringert oder Nickelbasis-Legierungen bspw. IN617, bei dem im Temperaturbereich von 850°C bis 1100°C die zulässige Spannung von ca. 25 MPa auf ca. 7 MPa abnimmt. Höhere Temperaturen sind demnach beherrschbar, wenn der Innendruck nicht so hoch wäre, da dieser maßgeblich die zulässige Spannung belastet.If it were possible to use them, this would mean a significant improvement compared to the prior art. Austenites, for example 800 H, have a permissible stress of about 35 MPa at 700 ° C., which is reduced to about 7 MPa at 900 ° C. or nickel-based alloys, for example IN 617, in the temperature range from 850 ° C. to 1100 ° C, the permissible stress decreases from approx. 25 MPa to approx. 7 MPa. Higher temperatures are therefore manageable, if the internal pressure would not be so high, as this significantly affects the allowable stress.

Es ist deshalb Aufgabe der Erfindung, den Dampfkraftprozess mit erhöhter Effizienz so zu gestalten, das im Prozessverlauf ein höheres Temperaturgefälle nutzbar wird.It is therefore an object of the invention to design the steam power process with increased efficiency so that a higher temperature gradient is available in the course of the process.

Die Aufgabe wird erfindungsgemäß im Wesentlichen durch die kennzeichnenden Merkmale der Ansprüche 1 bis 5, gelöst. In Dampfkraftanlagen sind Zwischenüberhitzungen Stand der Technik, um ein hohes Druckgefälle bis in den Nassdampfbereich effizient nutzen zu können. Dabei wird überhitzter Hochdruckdampf in der Hochdruckturbine bis zum Nassdampfbereich entspannt z. B. von 260 bar/545°C auf 55 bar/300°C, ausgekoppelt und durch im Dampferzeuger installierte Rohrsysteme wieder auf 545°C Ausgangstemperatur erwärmt. In den Mittel- und Niederdruckstufen erfolgt dann die Entspannung bis zum Kondensationsdruck z. B. von 55 bar/300°C auf 0,05 bar/32°C.The object is achieved according to the invention essentially by the characterizing features of claims 1 to 5. In steam power plants, intermediate superheaters are state of the art in order to be able to efficiently use a high pressure gradient down to the wet steam range. In this case, superheated high-pressure steam in the high-pressure turbine to the wet steam area is relaxed z. B. from 260 bar / 545 ° C to 55 bar / 300 ° C, coupled and heated by installed in the steam generator pipe systems back to 545 ° C outlet temperature. In the middle and low pressure stages then the relaxation takes place up to the condensation pressure z. B. from 55 bar / 300 ° C to 0.05 bar / 32 ° C.

Besser wäre es, wenn das Rohrsystem für die Zwischenüberhitzung im Brennraum-Heißbereich des Dampferzeugers so platziert und dimensioniert wird, dass das Materialpotential im Mitteldruckbereich z. B. 55 bar und niedriger, temperaturbezogen voll ausgeschöpft werden kann. Waren es vorher wie im Zahlenbeispiel 545°C bei 55 bar, so sind Dampftemperaturen von über 800°C möglich, da der Innendruck mit 55 bar im Vergleich zum Frischdampfdruck 260 bar mit der abnehmenden zulässigen Spannung auskommt. Allerdings müssen die ersten Reihen der Turbinen-Beschaufelung analog einer Gasturbine gekühlt werden. Neben den üblichen Kühlmethoden wie Film-, Prall- oder Innenkühlung lassen sich die Schaufeln auch durch Oberflächenverdampfung schützen, indem ausgekoppeltes Kondensat die Heißgaskonturen benetzt. Somit werden die Vorteile des Dampfkraftprozesses hohe Drücke nutzen zu können mit den Vorzügen einer Heißgasturbine kombiniert, was sich positiv auf die Gesamteffizienz auswirkt. Probleme durch Nassdampf-Schaufelerosion bei der Niederdruck-Entspannung bestehen nicht mehr, da sie weitgehend außerhalb des kritischen Bereiches abläuft.It would be better if the pipe system for reheating in the combustion chamber hot area of the steam generator is placed and dimensioned so that the material potential in the medium pressure range z. B. 55 bar and lower, temperature-related can be fully exploited. Were it previously as in the numerical example 545 ° C at 55 bar, so steam temperatures of about 800 ° C are possible because the internal pressure of 55 bar compared to the live steam pressure 260 bar gets along with the decreasing allowable voltage. However, the first rows of turbine blading must be cooled analogously to a gas turbine. In addition to the usual cooling methods such as film, impingement or internal cooling, the blades can also be protected by surface evaporation, as decoupled condensate wets the hot gas contours. Thus, the advantages of the steam power process to combine high pressures combined with the benefits of a hot gas turbine, which has a positive effect on the overall efficiency. Problems due to wet steam blade erosion in the case of low-pressure expansion no longer exist because it runs to a large extent outside the critical range.

Mit der vorgeschlagenen Lösung können schon jetzt mit konstruktiven Maßnahmen am Dampferzeuger und an den Mittel- bzw. Niederdruckturbinen mit vorhandenen Materialien markante Wirkungsgradsteigerungen erreicht werden, ohne auf neue Superlegierungen warten oder hoffen zu müssen.The proposed solution can already be achieved with constructive measures on the steam generator and the medium and low pressure turbines with existing materials significant efficiency gains without having to wait for new superalloys or hope.

1 ein schematisches Blockschaltbild des Dampfkraftprozesses mit der Hochtemperatur-Zwischenüberhitzung und der gekühlten Heißdampfturbine für die Elektroenergieerzeugung im Kreisprozess. 1 a schematic block diagram of the steam power process with the high-temperature reheat and the cooled superheated steam turbine for electric power generation in the cycle.

2 stellt die Überhitzung nach dem Stand der Technik und die Hochtemperatur-Zwischenüberhitzung im Temperatur – Entropie Diagramm für Wasser Industrie-Formulation IAPWS-IF97 mit den Parameterbeispiel der Beschreibung dar. 2 Represents the state-of-the-art overheating and the high-temperature reheat in the temperature-entropy diagram for IAPWS-IF97 Industrial Formulation Water with the parameter example of the description.

BezugszeichenlisteLIST OF REFERENCE NUMBERS

11
Dampferzeugersteam generator
22
HochdrucküberhitzerHigh-pressure superheater
33
Hochdruck-DampfturbineHigh-pressure steam turbine
44
Hochtemperatur-ZwischenüberhitzerHigh-temperature reheaters
55
Mittel- bzw. Niederdruck HeißdampfturbineMedium or low pressure steam turbine
66
Kondensatorcapacitor
77
Kondensatpumpecondensate pump
88th
Kondensatcondensate
99
Dampfsteam
1010
eneratorenerator
1111
Kühldampf für die SchaufelkühlungCooling steam for blade cooling
1212
optional Kondensat für die Oberflächenverdampfungoptional condensate for surface evaporation
1313
Wellewave
1414
Wärmequelleheat source
1515
Entspannung nach Zwischenüberhitzung Stand der TechnikRelaxation after reheating prior art
1616
Entspannung nach Hochtemperatur-ZwischenüberhitzungRelaxation after high-temperature reheat
1717
nutzbare Temperaturreserve durch niedrigeren Dampfdruckusable temperature reserve due to lower vapor pressure

Claims (5)

Dampfkraftprozess mit erhöhter Effizienz durch Hochtemperatur-Zwischenüberhitzung für die Elektroenergieerzeugung im Kreisprozess, indem nicht die Entspannung nach Zwischenüberhitzung Stand der Technik (15) sondern die Entspannung nach Hochtemperatur-Zwischenüberhitzung (16) erfolgt, um ein hohes Druck- und Temperaturpotential nutzen zu können dadurch gekennzeichnet, dass die maßgebliche Temperaturerhöhung erst nach der Hochdruck-Dampfturbine (3) im Hochtemperatur-Zwischenüberhitzer (4) erfolgt, da mit steigenden Temperaturen die zulässige Spannung der Werkstoffe abnimmt, lassen sich bei niedrigen Drücken bis zur Materialgrenze höhere Temperaturen erzielen, was die Prozesseffizienz markant verbessert und die Differenz zwischen Brennraum- und Dampftemperatur verkleinert.Steam power process with increased efficiency by high-temperature reheat for the generation of electrical energy in the cycle, by not the relaxation after reheating prior art ( 15 ) but the relaxation after high temperature reheat ( 16 ) in order to be able to use a high pressure and temperature potential, characterized in that the relevant temperature increase only after the high-pressure steam turbine ( 3 ) in the high-temperature reheater ( 4 ), since the permissible stress of the materials decreases with increasing temperatures, higher temperatures can be achieved at low pressures up to the material boundary, which significantly improves the process efficiency and reduces the difference between combustion chamber temperature and steam temperature. Dampfkraftprozess mit erhöhter Effizienz durch Hochtemperatur-Zwischenüberhitzung für die Elektroenergieerzeugung im Kreisprozess nach dem Anspruch 1 dadurch gekennzeichnet, dass der Hochtemperatur-Zwischenüberhitzer (4) im Brennraum des Dampferzeugers (1) in der Nähe der Wärmequelle (14) platziert wird, um die nutzbare Temperaturreserve durch niedrigeren Dampfdruck (17) auf das Arbeitsfluid Dampf (9) zu übertragen.Steam power process with increased efficiency by high-temperature reheat for the generation of electrical energy in the cycle according to claim 1, characterized in that the high-temperature reheater ( 4 ) in the combustion chamber of the steam generator ( 1 ) near the heat source ( 14 ) is placed to the usable temperature reserve by lower vapor pressure ( 17 ) on the working fluid steam ( 9 ) transferred to. Dampfkraftprozess mit erhöhter Effizienz durch Hochtemperatur-Zwischenüberhitzung für die Elektroenergieerzeugung im Kreisprozess nach dem Anspruch 1 und 2 dadurch gekennzeichnet, dass die Mittel- bzw. Niederdruck Heißdampfturbine (5) gekühlt werden muss.Steam power process with increased efficiency by high-temperature reheat for the production of electric power in the cycle according to claim 1 and 2, characterized in that the medium or low pressure superheated steam turbine ( 5 ) must be cooled. Dampfkraftprozess mit erhöhter Effizienz durch Hochtemperatur-Zwischenüberhitzung für die Elektroenergieerzeugung im Kreisprozess nach dem Anspruch 1 bis 3 dadurch gekennzeichnet, dass für die Mittel- bzw. Niederdruck Heißdampfturbine (5) entweder Kühldampf für die Schaufelkühlung (11) aus der Hochdruck-Dampfturbine (3) kommend abgezweigt oder optional Kondensat für die Oberflächenverdampfung (12) zur Kühlung genutzt wird.Steam power process with increased efficiency by high-temperature reheat for the production of electric power in the cycle according to claim 1 to 3, characterized in that for the medium or low pressure super steam turbine ( 5 ) either cooling steam for blade cooling ( 11 ) from the high-pressure steam turbine ( 3 ) or optionally condensate for surface evaporation ( 12 ) is used for cooling. Dampfkraftprozess mit erhöhter Effizienz durch Hochtemperatur-Zwischenüberhitzung für die Elektroenergieerzeugung im Kreisprozess nach dem Anspruch 1 bis 4 dadurch gekennzeichnet, dass die Höchtemperatur-Zwischenüberhitzung den Entspannungsverlauf aus den Nassdampfbereich verschiebt, wodurch Schaufelerosionsprobleme vermieden werden.Steam power process with increased efficiency by high-temperature reheat for electric power generation in the cycle according to claim 1 to 4, characterized in that the Höchtemperatur reheat shifts the relaxation process from the wet steam region, whereby Schaufel erosion problems are avoided.
DE201210010795 2012-06-01 2012-06-01 Steam power method for electric power generation in steam power plants, involves carrying out stress relief to apply high pressure and temperature potential, and increasing temperature according to high pressure steam turbine Ceased DE102012010795A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
DE201210010795 DE102012010795A1 (en) 2012-06-01 2012-06-01 Steam power method for electric power generation in steam power plants, involves carrying out stress relief to apply high pressure and temperature potential, and increasing temperature according to high pressure steam turbine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE201210010795 DE102012010795A1 (en) 2012-06-01 2012-06-01 Steam power method for electric power generation in steam power plants, involves carrying out stress relief to apply high pressure and temperature potential, and increasing temperature according to high pressure steam turbine

Publications (1)

Publication Number Publication Date
DE102012010795A1 true DE102012010795A1 (en) 2013-12-05

Family

ID=49579077

Family Applications (1)

Application Number Title Priority Date Filing Date
DE201210010795 Ceased DE102012010795A1 (en) 2012-06-01 2012-06-01 Steam power method for electric power generation in steam power plants, involves carrying out stress relief to apply high pressure and temperature potential, and increasing temperature according to high pressure steam turbine

Country Status (1)

Country Link
DE (1) DE102012010795A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2802114A (en) * 1955-06-15 1957-08-06 Foster Wheeler Corp Method and apparatus for the generation of power
DE1147239B (en) * 1958-03-12 1963-04-18 Sulzer Ag Steam generator with at least two combustion chamber systems
DE2737059A1 (en) * 1977-08-17 1979-02-22 Alefeld Georg THERMODYNAMIC PROCESS FOR USING HIGH-TEMPERATURE HEAT ENERGY, IN PARTICULAR TO INCREASE THE EFFICIENCY OF A THERMAL POWER PLANT AND THERMAL POWER PLANT TO PERFORM SUCH A PROCESS
DE19547803C1 (en) * 1995-12-20 1997-04-10 Siemens Ag Steam-turbine assembly for electricity power station
US20080250790A1 (en) * 2007-04-13 2008-10-16 Shinya Imano High-temperature steam turbine power plant

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2802114A (en) * 1955-06-15 1957-08-06 Foster Wheeler Corp Method and apparatus for the generation of power
DE1147239B (en) * 1958-03-12 1963-04-18 Sulzer Ag Steam generator with at least two combustion chamber systems
DE2737059A1 (en) * 1977-08-17 1979-02-22 Alefeld Georg THERMODYNAMIC PROCESS FOR USING HIGH-TEMPERATURE HEAT ENERGY, IN PARTICULAR TO INCREASE THE EFFICIENCY OF A THERMAL POWER PLANT AND THERMAL POWER PLANT TO PERFORM SUCH A PROCESS
DE19547803C1 (en) * 1995-12-20 1997-04-10 Siemens Ag Steam-turbine assembly for electricity power station
US20080250790A1 (en) * 2007-04-13 2008-10-16 Shinya Imano High-temperature steam turbine power plant

Similar Documents

Publication Publication Date Title
EP2467601B1 (en) Solar thermal power plant having a heat exchanger in the feedwater preheating section and method for operating the power plant
EP2698507B1 (en) System and method for temperature control of reheated steam
DE102006057448A1 (en) Method for increasing performance and efficiency in the ORC power plant process
EP2511486A2 (en) Combined cycle power plant
CN104633649B (en) Auxiliary steam supply system in solar power facility
CN104364475A (en) Method for improving thermal-cycle yield in nuclear power plants
DE102011054718A1 (en) Heat treatment of constructed tube wall regions or tube wall segments of a steam generator, preferably a power plant in installed state
DE102011121341A1 (en) Steam power method for creation of electric power from e.g. water in cyclic process, involves making vapor from heater to flow into afterburner, and burning hydrogen and oxygen with fluid such that fluid is mixed with exhaust gas
DE102012021357A1 (en) Low-temperature work process used in organic rankine cycle (ORC) power plants, involves generating vane surface evaporation of steam mass flow which is mixed by grating distributed steam outlet to guide blade profile ends
DE102012010795A1 (en) Steam power method for electric power generation in steam power plants, involves carrying out stress relief to apply high pressure and temperature potential, and increasing temperature according to high pressure steam turbine
WO2007144285A2 (en) Steam power plant
DE102012110579A1 (en) System for generating process steam, has expansion arrangement to perform expansion of partial stream on lower pressure level, and steam engine to drive generator to produce electric power by high pressurized partial steam
WO2014166472A1 (en) Steam/work process comprising gas and steam turbines having external combustion for electrical energy generation in a cyclical process
DE102014202275A1 (en) Energy storage for intermediate storage of electrical energy
CN107429579B (en) Reheating working fluid within a turbine system for power generation
DE102012012683A1 (en) Method for electric power generation in cyclic process in two-stage combined gas and steam turbine process, involves obtaining high temperatures with positive effect of efficiency in low pressures upto material limit
DE102015209812A1 (en) Water-steam circuit of a gas and steam turbine plant
Shabani et al. Performance assessment and leakage analysis of feed water pre-heaters in natural gas-fired steam power plants.
Zaryankin et al. Nuclear power plants with super-powerful high-temperature steam turbine
KR101548142B1 (en) Energy conversion cycle for the steam produced by a sodium-cooled fast neutron reactor
WO2015024886A1 (en) Steam power plant and method for operating a steam power plant
DE3042782A1 (en) Steam generating plant using superheated steam - has recuperation stage allowing excess heat to be transferred to intake water supply
RU2748362C1 (en) Method for operation of thermal power station
Vedran et al. 60 MW steam turbine conventional and segmental isentropic analyses comparison
DE102004014101A1 (en) Method for electric current generation at a heating installation involves utilization of low-pressure vapor expansion to drive the generator

Legal Events

Date Code Title Description
R012 Request for examination validly filed
R002 Refusal decision in examination/registration proceedings
R003 Refusal decision now final

Effective date: 20140220