DE102011123079B3 - Modifizierte Nucleotide - Google Patents

Modifizierte Nucleotide Download PDF

Info

Publication number
DE102011123079B3
DE102011123079B3 DE102011123079.7A DE102011123079A DE102011123079B3 DE 102011123079 B3 DE102011123079 B3 DE 102011123079B3 DE 102011123079 A DE102011123079 A DE 102011123079A DE 102011123079 B3 DE102011123079 B3 DE 102011123079B3
Authority
DE
Germany
Prior art keywords
rna
nucleic acid
binding
group
cleavage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
DE102011123079.7A
Other languages
English (en)
Inventor
Kai Opperman
Jean-Samuel Schultz
Christopher L. Etienne
Greg Hermanson
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Pierce Biotechnology Inc
Original Assignee
Pierce Biotechnology Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Pierce Biotechnology Inc filed Critical Pierce Biotechnology Inc
Application granted granted Critical
Publication of DE102011123079B3 publication Critical patent/DE102011123079B3/de
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07HSUGARS; DERIVATIVES THEREOF; NUCLEOSIDES; NUCLEOTIDES; NUCLEIC ACIDS
    • C07H19/00Compounds containing a hetero ring sharing one ring hetero atom with a saccharide radical; Nucleosides; Mononucleotides; Anhydro-derivatives thereof
    • C07H19/02Compounds containing a hetero ring sharing one ring hetero atom with a saccharide radical; Nucleosides; Mononucleotides; Anhydro-derivatives thereof sharing nitrogen
    • C07H19/04Heterocyclic radicals containing only nitrogen atoms as ring hetero atom
    • C07H19/06Pyrimidine radicals
    • C07H19/10Pyrimidine radicals with the saccharide radical esterified by phosphoric or polyphosphoric acids
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07HSUGARS; DERIVATIVES THEREOF; NUCLEOSIDES; NUCLEOTIDES; NUCLEIC ACIDS
    • C07H19/00Compounds containing a hetero ring sharing one ring hetero atom with a saccharide radical; Nucleosides; Mononucleotides; Anhydro-derivatives thereof
    • C07H19/02Compounds containing a hetero ring sharing one ring hetero atom with a saccharide radical; Nucleosides; Mononucleotides; Anhydro-derivatives thereof sharing nitrogen
    • C07H19/04Heterocyclic radicals containing only nitrogen atoms as ring hetero atom
    • C07H19/06Pyrimidine radicals
    • C07H19/067Pyrimidine radicals with ribosyl as the saccharide radical
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07HSUGARS; DERIVATIVES THEREOF; NUCLEOSIDES; NUCLEOTIDES; NUCLEIC ACIDS
    • C07H19/00Compounds containing a hetero ring sharing one ring hetero atom with a saccharide radical; Nucleosides; Mononucleotides; Anhydro-derivatives thereof
    • C07H19/02Compounds containing a hetero ring sharing one ring hetero atom with a saccharide radical; Nucleosides; Mononucleotides; Anhydro-derivatives thereof sharing nitrogen
    • C07H19/04Heterocyclic radicals containing only nitrogen atoms as ring hetero atom
    • C07H19/16Purine radicals
    • C07H19/167Purine radicals with ribosyl as the saccharide radical
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6813Hybridisation assays
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6813Hybridisation assays
    • C12Q1/6816Hybridisation assays characterised by the detection means
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6876Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T436/00Chemistry: analytical and immunological testing
    • Y10T436/14Heterocyclic carbon compound [i.e., O, S, N, Se, Te, as only ring hetero atom]
    • Y10T436/142222Hetero-O [e.g., ascorbic acid, etc.]
    • Y10T436/143333Saccharide [e.g., DNA, etc.]

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Biochemistry (AREA)
  • Biotechnology (AREA)
  • General Health & Medical Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Molecular Biology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Wood Science & Technology (AREA)
  • Zoology (AREA)
  • Analytical Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Microbiology (AREA)
  • Immunology (AREA)
  • Biophysics (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Engineering & Computer Science (AREA)
  • Saccharide Compounds (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)

Abstract

Modifizierte Nucleotide und Verfahren zum Modifizieren von Nucleotiden mit einer Struktureinheit oder einem Etikett, wie Biotin, die ihren Nachweis ermöglichen und zu einem modifizierten Nucleotid führen, und Verfahren zur Verwendung des modifizierten Nucleotids in quantitativen und qualitativen Assays.

Description

  • Diese Anmeldung beansprucht die Priorität der gleichzeitig anhängigen vorläufigen US-Anmeldung Seriennummer 61/326,450 , eingereicht am 21. April 2010, auf die hier in ihrer Gesamtheit ausdrücklich Bezug genommen wird.
  • Modifizierte Nucleotide, Verfahren zum Modifizieren von Nucleotiden mit einer Struktureinheit oder einem Etikett, wie Biotin, die ihren Nachweis ermöglichen und zu einem modifizierten Nucleotid führen, Verfahren zur Verwendung des modifizierten Nucleotids in quantitativen und qualitativen Assays sowie Verfahren zum Synthetisieren der offenbarten modifizierten Nucleotide.
  • Die modifizierten Nucleotide haben die Struktur (P1-P2)-Nus-Alk-Lnk-Obs und umfassen ein Salz, eine konjugierte Base, ein Tautomer oder eine dissoziierte Form, wobei P1 eine Phosphatgruppe ist, P2 eine Phosphatgruppe ist, Nus eine Nucleosid-Struktureinheit ist, die einen an eine Purin- oder Pyrimidinbase gebundenen Zucker umfasst, Alk eine Verbindungsgruppe ist, die die Struktur -//-(CH2)m-Y-//- aufweist, wobei Y eine Bindung oder bindungsbildende Gruppe, die aus
    Figure DE102011123079B3_0001
    ausgewählt ist, ist und m eine ganze Zahl im Bereich von 3 bis 6 einschließlich ist und wobei die am weitesten links gelegene Bindung zu Nus geht und die am weitesten rechts gelegene Bindung zu Lnk geht, Lnk eine Verknüpfungsgruppe mit der Struktur
    Figure DE102011123079B3_0002
    ist, wobei n eine ganze Zahl im Bereich von 2 bis 48 einschließlich ist, A1 eine bindungsbildende Gruppe ist, die aus
    Figure DE102011123079B3_0003
    ausgewählt ist, A2 eine bindungsbildende Gruppe ist, die aus
    Figure DE102011123079B3_0004
    Figure DE102011123079B3_0005
    ausgewählt ist, A3, falls vorhanden, eine bindungsbildende Gruppe ist, die aus
    Figure DE102011123079B3_0006
    Figure DE102011123079B3_0007
    ausgewählt ist, X eine abspaltbare Gruppe ist, die einer Silicium-Kohlenstoff-Spaltung, einer nucleophilen Spaltung, einer Redoxspaltung, einer photochemischen Spaltung, einer enzymatischen Spaltung oder einer Basenaustauschspaltung unterzogen werden kann, und die am weitesten links gelegene Bindung zu Alk geht und die am weitesten rechts gelegene Bindung zu Obs geht und Obs eine beobachtbare Marker-Struktureinheit ist.
  • Solche modifizierten Nucleotide, die auch „Nucleotid-Analoga“ genannt werden, behalten die biologische Aktivität bei. Zum Beispiel handelt es sich um Substrate für eine Vielzahl von DNA- und/oder RNA-Polymerasen. Das modifizierte Nucleotid wird durch Routineverfahren an ein Oligonucleotid oder eine Nucleinsäure addiert, zum Beispiel durch Nick-Translation, statistisches Primen, Polymerase-Kettenreaktion (PCR), Markierung am 3'-Ende, Transcribieren von RNA mit Hilfe von SP6-, T3- oder T7-TNA-Polymerasen usw.
  • Modifizierte Nucleotide können verwendet werden, um markierte Sonden zu bilden, die zum Beispiel im biologischen Screening, der Diagnose usw. verwendet werden können. Als Beispiel ermöglicht das Screening eines Array die Bestimmung verschiedener Bestandteile einer komplexen Probe. Zum Beispiel bindet eine Oligonucleotidsonde, die ein biotinyliertes Nucleotid enthält, spezifisch an Analyten in der Probe, die eine komplementäre Sequenz enthalten, was ein beobachtbares Bindungsmuster ergibt, das bei Befragung des Arrays nachweisbar ist. Als weiteres Beispiel kann eine Oligonucleotidsonde, die ein biotinyliertes Nucleotid enthält, verwendet werden, um kleine Ribonucleinsäuren (sRNAs), wie Mikro-RNAs (miRNAs), und ihre funktionellen Wechselwirkungen mit anderen RNA-Molekülen oder zellulären Proteinen zu untersuchen.
  • Figurenliste
    • 1 zeigt die Synthese von Biotin-Polyethylenglycol(PEG)-alkan-3',5'-cytidinbisphosphat.
    • 2 zeigt die Synthese von Biotin-Linker-alkin-3',5'-cytidinbisphosphat.
    • 3 zeigt die Synthese von Biotin-Linker-alken-3',5'-cytidinbisphosphat.
    • 4 zeigt die Funktionalität eines modifizierten Nucleotids, das eine Alkinbindung enthält.
    • 5 zeigt die Funktionalität eines modifizierten Nucleotids, das eine Alkenbindung enthält.
    • 6 zeigt die Funktionalität eines modifizierten Nucleotids, das eine Alkanbindung enthält.
    • 7 zeigt die Funktionalität eines modifizierten Nucleotids, das eine Alkanbindung enthält.
    • 8 zeigt die Funktionalität eines modifizierten Nucleotids, das eine Alkanbindung enthält.
  • Wie im Folgenden offenbart wird, kann das Nucleotid modifiziert werden, indem man wenigstens einen der folgenden Substituenten hinzufügt, die entweder direkt oder indirekt als Nachweismoleküle fungieren: Biotin und Derivate, Azid, Alkin, Aldehyd, Dien, Amin, Disulfid, Fluorophor, Spin-Label, Polyethylenglycol (PEG). Diese Substituenten werden in verschiedenen Permutationen, spezifischen Entitäten und Kettenlängen hinzugefügt.
  • In einer Ausführungsform ist das modifizierte Nucleotid ein biotinyliertes Nucleotid mit der Formel Biotin-Polyethylenglycol(PEG)-alkan-Nucleotid, wobei PE wenigstens 7 Kohlenstoffatome und bis zu 100 Kohlenstoffatome aufweist. Jede der offenbarten erfindungsgemäßen Verbindungen umfasst auch die Salzform, konjugierte Base, ein Tautomer und/oder die dissoziierte Form. In einer Ausführungsform ist das modifizierte Nucleotid ein Ribonucleotid. In einer Ausführungsform kann das Ribonucleotid Cytidin sein, ist aber nicht auf dieses beschränkt.
  • In einer Ausführungsform ist das biotinylierte Nucleotid ein Cytidin-3'-5'-bisphosphat mit einem PEG4-Linker mit der hier gezeigten Struktur:
    Figure DE102011123079B3_0008
  • Diese Struktur hatte aufgrund des an das Cytidin angrenzenden Alkans gegenüber biotinylierten Verbindungen des Standes der Technik eine verstärkte Ligationseffizienz.
  • Eine Ausführungsform ist ein Verfahren zur Markierung einer RNA-Sonde mit einem biotinylierten Nucleotid mit der Struktur
    Figure DE102011123079B3_0009
    unter Bedingungen, bei denen die RNA-Sonde markiert wird. Das modifizierte Ribonucleotid wird mit einem Enzym inkubiert, das das biotinylierte Ribonucleotid an die RNA-Sonde ligieren kann (z.B. einer Ligase, wie T4-Ligase), was zu einer biotinmarkierten RNA-Sonde führt. In einer Ausführungsform wird einzelsträngige T4-Ligase verwendet. In einer Ausführungsform wird doppelsträngige T4-Ligase verwendet. In einer Ausführungsform wird thermostabile T4-Ligase verwendet. Beispiele für geeignete Ligasen sind T4-RNA-Ligase 1 (Anwendungen umfassen die Markierung von 3'-Termini von RNA mit 5'-[32P]pCp, die inter- und intramolekulare Verknüpfung von RNA- und DNA-Molekülen, die Synthese von einzelsträngigen Oligodesoxyribonucleotiden und der Einbau von unnatürlichen Aminosäuren in Proteine); T4-RNA-Ligase 2 (Anwendungen umfassen die Ligation eines Nicks in dsRNA, Ligation von zersplitterter RNA und die Ligation der 3'-OH-Gruppe von RNA mit der 5'-Phosphatgruppe von DNA in einer doppelsträngigen Struktur); T4-RNA-Ligase 2, verkürzt (Anwendungen umfassen die Verknüpfung eines einzelsträngigen adenylierten Primers mit RNAs zum Klonieren und das Klonieren von kleiner RNA); T4-RNA-Ligase 2, verkürzt K227Q (Anwendungen umfassen die Verknüpfung eines einzelsträngigen adenylierten Primers mit RNAs zum Klonieren, das Klonieren von kleiner RNA und die Ligation mit dem geringstmöglichen Ligationsnebenprodukt); jede davon ist kommerziell erhältlich von New England BioLab; und thermostabile RNA-Ligase, die Ligationen bei erhöhten Temperaturen durchführen kann, wie oberhalb etwa 40 °C, kommerziell erhältlich von Epicentre. In einer Ausführungsform wird das modifizierte Nucleotid vor der Ligation gereinigt. Das anschließende Testen auf die biotinylierte Sonde ermöglicht den Nachweis der Anwesenheit, Menge usw. des Ribonucleotids in der Probe. Das Verfahren wird zum Beispiel unter Anderem mit Mobilitäts-Shift-Assays, Northern Blots, in-situ-Hybridisierung usw. verwendet. Eine biotinmarkierte RNA-Sonde kann mit Hilfe eines Streptavidin-konjugierten Reportermoleküls, wie zum Beispiel unter Anderem Enzymen (z.B. Peroxidasen), Fluoreszenzfarbstoffen usw. nachgewiesen werden.
  • Eine Ausführungsform ist ein Verfahren zum Synthetisieren von Biotin-PEG-4-alkan-3',5'-cytidinbisphosphat.
  • Eine Ausführungsform ist ein Kit, der eine Verbindung mit der Struktur
    Figure DE102011123079B3_0010
    und Anweisungen zur Markierung einer Nucleinsäure mit Hilfe der Verbindung enthält. Der Kit kann auch ein Enzym, eine Kontroll-RNA (entweder markiert oder unmarkiert mit dem modifizierten Nucleotid) und Puffer enthalten.
  • Das modifizierte Nucleotid weist aufgrund der Anwesenheit einer Alkanverknüpfung gegenüber bekannten Verbindungen eine verstärkte Ligationseffizienz auf. Die Alkanverknüpfung verbessert auch die Funktionalität des modifizierten Nucleotids durch Reduktion der Reaktivität des modifizierten Nucleotids mit Zelllysaten. Der PEG-Spacer erhöht die Hydrophilie des modifizierten Nucleotids und erhöht dadurch die Zugänglichkeit des Biotins zum Nachweis.
  • In einer Ausführungsform haben die biotinylierten Nucleotidverbindungen die folgende Struktur: (P1-P2)-Nus-Alk-Lnk-Obs (I) oder deren Salt, konjugierte Base, Tautomer oder dissoziierte Form, wobei
    P1 und P2 Phosphatgruppen sind;
  • Nus ein Nucleosid ist (ein Zucker (z.B. Ribose), der an eine Purin- oder Pyrimidinbase gebunden ist);
  • Alk eine Verbindungsgruppe ist, die direkt oder indirekt zwischen Nus und Lnk gebunden sein kann und die Struktur -//-(CH2)m-Y-//- aufweist, wobei Y eine bindungsbildende Gruppe, die aus
    Figure DE102011123079B3_0011
    ausgewählt ist, ist und m eine ganze Zahl im Bereich von 3 bis 6 einschließlich ist und wobei die am weitesten links gelegene Bindung zu Nus geht und die am weitesten rechts gelegene Bindung zu Lnk geht;
  • Lnk eine Verknüpfungsgruppe zwischen Alk und Obs mit den folgenden Strukturen ist:
    Figure DE102011123079B3_0012
    • wobei n eine ganze Zahl im Bereich von 2 bis 48 einschließlich ist;
    • A1 eine bindungsbildende Gruppe ist, die aus
      Figure DE102011123079B3_0013
      ausgewählt ist, A2 eine bindungsbildende Gruppe ist, die aus
      Figure DE102011123079B3_0014
      Figure DE102011123079B3_0015
      ausgewählt ist, A3 eine bindungsbildende Gruppe ist, die aus
      Figure DE102011123079B3_0016
      Figure DE102011123079B3_0017
      ausgewählt ist;
    • X eine abspaltbare Gruppe ist, die einer Silicium-Kohlenstoff-Spaltung, einer nucleophilen Spaltung, einer Redoxspaltung, einer photochemischen Spaltung, einer enzymatischen Spaltung oder einer Basenaustauschspaltung unterzogen werden kann; und
    • Obs ein beobachtbarer Marker ist.
    • Y hat die Funktion eines Ankers, um die Befestigung von Nachweismolekülen (z.B. Fluorophor, Biotin usw.) zu ermöglichen.
  • Wenn der Zucker Ribose ist, weist er die folgenden Anhänge auf: P1 ist an der 5'-Position gebunden; P2 ist an der 3'-Position gebunden; und die Purin- oder Pyrimidinbase ist an der 1'-Position gebunden.
  • Die Purin- oder Pyrimidinbase ist ausgewählt aus Cytosin (C), Uracil (U), Adenin (A), Thymin (T), Guanin (G) oder Inosin (I) und kann modifiziert oder unmodifiziert sein. Ausführungsformen umfassen unter Anderem 1-Methyladenin, N6-Methyladenin, N6-Isopentyladenin, N,N-Dimethyladenin, 7-Desazaadenin, 2-Thiocytosin, 3-Methylcytosin, N4-Acetylcytosin, 2-Thiocytosin, 1-Methylguanin, 2-Methylguanin, 7-Methylguanin, N2,N2-Dimethylguanin, 7-Desazaguanin, 2-Thiouracil, 6-Thiopurin oder 2,6-Diaminopurin.
  • Die Modifikation kann ein beobachtbarer Marker sein. Zu den beobachtbaren Markern gehören unter Anderem eine chromogene Struktureinheit, ein Fluorophor, wie Fluorescein, Rhodamin, ein kommerzieller Farbstoff (z.B. DyLight® (Dyomics), Alexa®, Cy3, Cy5), ein Massenmarker, ein Spin-Label oder eine Struktureinheit, die einen beobachtbaren Marker binden kann, wie ein Streptavidin-bindender Marker, wie Biotin, Desthiobiotin oder Iminobiotin, oder ein sekundärer Nachweismarker, wie Azid, Alkin, Aldehyd oder Dien, der eine kovalente Bindung mit einem auf einem beobachtbaren Marker vorhandenen Alkin, Phosphin, Azid, Hydrazid, Alkoxyamin oder Alken bilden kann. In einer Ausführungsform ist der beobachtbare Marker Biotin, und die Verbindung ist Biotin-PEG4-alkan-3',5'-cytidinbisphosphat. In einer Ausführungsform ist der beobachtbare Marker ein Azid, und die Verbindung ist Azido-PEG4-alkan-3',5'-cytidinbisphosphat. In einer Ausführungsform ist der beobachtbare Marker ein Fluorophor, und die Verbindung ist Cy5-PEG4-alkan-3',5'-cytidinbisphosphat. Das markieren erfolgt mit hoher Effizienz und einer mit der von Radioisotopenmarkierung vergleichbaren Empfindlichkeit, vermeidet jedoch die Verwendung von Radioaktivität und die damit einhergehenden Nachteile.
  • In einer Ausführungsform ist n eine ganze Zahl im Bereich von 2 bis 24 einschließlich, der Zucker ist Ribose, die Purin- oder Pyrimidinbase ist A, C, G, U oder I, m ist 3, n ist 4, und der beobachtbare Marker ist ein Streptavidin-bindender Marker, der aus Biotin, Desthiobiotin oder Iminobiotin ausgewählt ist.
  • In einer Ausführungsform haben die modifizierten Nucleotidverbindungen die folgende Struktur (II):
    Figure DE102011123079B3_0018
    oder deren Salz, konjugierte Base, Tautomer oder dissoziierte Form, wobei
    • Base* eine Purin- oder Pyrimidinbase ist;
    • R = H, OH, CH3 oder eine Hydroxy-Schutzgruppe ist;
    • Alk eine Verbindungsgruppe zwischen Base* und Lnk ist, die die Struktur -//-(CH2)m-Y-//- aufweist, wobei Y eine bindungsbildende Gruppe, die aus
      Figure DE102011123079B3_0019
      ausgewählt ist, ist und m eine ganze Zahl im Bereich von 3 bis 6 einschließlich ist;
    • Lnk eine Verknüpfungsgruppe mit den folgenden Strukturen ist:
      Figure DE102011123079B3_0020
    • wobei n eine ganze Zahl im Bereich von 2 bis 48 einschließlich ist;
    • A1 eine bindungsbildende Gruppe ist, die aus
      Figure DE102011123079B3_0021
      ausgewählt ist, A2 eine bindungsbildende Gruppe ist, die aus
      Figure DE102011123079B3_0022
      Figure DE102011123079B3_0023
      ausgewählt ist, A3 eine bindungsbildende Gruppe ist, die aus
      Figure DE102011123079B3_0024
      Figure DE102011123079B3_0025
      ausgewählt ist, X eine abspaltbare Gruppe ist, die einer Silicium-Kohlenstoff-Spaltung, einer nucleophilen Spaltung, einer Redoxspaltung, einer photochemischen Spaltung, einer enzymatischen Spaltung oder einer Basenaustauschspaltung unterzogen werden kann;
    • Obs eine beobachtbare Marker-Struktureinheit ist.
  • Die Zuckergruppe kann Ribose oder Desoxyribose sein. Die Purin- oder Pyrimidinbase ist aus C, U, A, G, T oder I ausgewählt und kann modifiziert oder unmodifiziert sein. Ausführungsformen umfassen unter Anderem 1-Methyladenin, N6-Methyladenin, N6-Isopentyladenin, N,N-Dimethyladenin, 7-Desazaadenin, 2-Thiocytosin, 3-Methylcytosin, N4-Acetylcytosin, 2-Thiocytosin, 1-Methylguanin, 2-Methylguanin, 7-Methylguanin, N2,N2-Dimethylguanin, 7-Desazaguanin, 2-Thiouracil, 6-Thiopurin oder 2,6-Diaminopurin.
  • Der beobachtbare Marker kann eine chromogene Struktureinheit, ein Fluorophor, wie Fluorescein, Rhodamin, ein kommerzieller Farbstoff (z.B. DyLight® (Dyomics), Alexa®, Cy3, Cy5), ein Massenmarker, ein Spin-Label oder eine Struktureinheit, die einen beobachtbaren Marker binden kann, wie ein Streptavidin-bindender Marker, wie Biotin, Desthiobiotin oder Iminobiotin, oder ein sekundärer Nachweismarker, wie Azid, Alkin, Aldehyd oder Dien, sein.
  • In einer Ausführungsform ist n eine ganze Zahl im Bereich von 2 bis 24 einschließlich. In einer Ausführungsform ist der Zucker Ribose, die Purin- oder Pyrimidinbase ist A, C, G, U oder I, m ist 3, n ist 4, und der beobachtbare Marker ist ein Streptavidin-bindender Marker, der aus Biotin, Desthiobiotin oder Iminobiotin ausgewählt ist.
  • In einer Ausführungsform ist der Zucker Ribose, die Purin- oder Pyrimidinbase ist C, m ist 3, Lnk ist
    Figure DE102011123079B3_0026
    n ist 4, A1 ist
    Figure DE102011123079B3_0027
    A2 ist
    Figure DE102011123079B3_0028
    und A3, falls vorhanden, ist
    Figure DE102011123079B3_0029
    und Obs ist aus der Gruppe ausgewählt, die aus Biotin, einem Fluorophor und einem Azid besteht.
  • Eine Ausführungsform ist ein Verfahren zur Markierung von RNA durch Erhitzen der gewünschten RNA-Probe auf wenigstens 75 °C bis zu 95 °C. In einer Ausführungsform enthielt die Lösung, die die RNA-Probe enthielt, Dimethylsulfoxid (DMSO) in einer Konzentration im Bereich von 0% bis 25%. Die RNA-Probe wurde 1 Minute bis 5 Minuten lang erhitzt, dann wenigstens eine Minute lang auf Eis schnell auf 2 °C bis 10 °C abgekühlt. Dann wurde die RNA mit einer der modifizierten Nucleotidverbindungen mit der Struktur (P1-P2)-Nus-Alk-Lnk-Obs, wie sie oben beschrieben sind, in Kontakt gebracht. Das Nucleotid wurde mit der RNA ligiert, was zu einer markierten RNA führte.
  • Das modifizierte Nucleotid wurde mit der RNA ligiert, wobei ein Enzym wie unter Anderem T4-RNA-Ligase verwendet wurde, was zu einer markierten RNA führte. In dieser Ausführungsform wurde RNA auf wenigstens 75 °C und bis zu 95 °C erhitzt, dann wenigstens eine Minute lang auf weniger als 10 °C abgekühlt. Dann wurde die gekühlte RNA unter Reaktionsbedingungen, bei denen T4-RNA-Ligase verwendet wurde und die PEG mit einem Molekulargewicht zwischen etwa 1500 und 24 000 einschließlich und in einer Konzentration im Bereich von 5% PEG bis 20% PEG einschließlich umfassten, mit dem biotinylierten Cytidinbisphosphat in Kontakt gebracht. Die Reaktion wurde 30 Minuten bis 16 Stunden lang bei einer Temperatur im Bereich zwischen 16 °C und 37 °C inkubiert, um das biotinylierte Cytidinbisphosphat mit der RNA zu ligieren, was zu einer modifizierten RN führte.
  • Anschließend wird eine Synthese von beispielhaften spezifischen Verbindungen unter jeweils den folgenden modifizierten Nucleotiden beschrieben. Der Fachmann wird sich darüber im Klaren sein, dass solche Syntheseschemata repräsentative und nicht einschränkend sind; der Fachmann wird wissen, wie man mit Hilfe von bekannten Verfahren und ohne unzumutbare Versuche andere spezifische Beispiele synthetisiert. Dazu gehören unter Anderem Biotin-PEG4-Modifikationen: Überblick über Biotin-PEG4-alkan-3',5'-cytidinbisphosphat (BPA-3',5'-pCp, Verbindung 6), Überblick über Biotin-PEG4-SS-alkan-3',5'-cytidinbisphosphat (BP4SSA-3',5'-pCp, Verbindung 12), Biotin-PEG4-SS-alkan-cytidin (BP4SSAC, Verbindung 11) und ausführliche Reaktionen für Biotin-PEG4-SS-alkan-3',5'-cytidinbisphosphat (BP4SSA-3',5'-pCp, Verbindung 12); Biotin-PEG12-Modifikationen; Azido-PEG4-Modifikationen; Fluorophor-PEG4-Modifikationen, DyLight-550-PEG4-alkan-3',5'-cytidinbisphosphat (Dy550P4A-3',5'-pCp, Verbindung 14).
  • Biotin-PEG4-Modifikation
  • Eine Ausführungsform ist ein Verfahren zur Herstellung von Biotin-polyethylenglycol(PEG)-alkan-3',5'-cytidinbisphosphat. Bei dem Verfahren wird Propargylamin mit Methyltrifluoracetat umgesetzt, was zu Propargyltrifluoracetamid führt. Das Propargyltrifluoracetamid reagiert mit 5-Iodcytidin, was 5-[3-(Trifluoracetamido)propinyl]cytidin ergibt. Dann wird das 5-[3-(Trifluoracetamido)propinyl]-cytidin in 5-[3-(Trifluoracetamido)propyl]cytidin umgewandelt. Das 5-[3-(Trifluoracetamido)propyl]cytidin wird dann in 5-(3-Aminopropyl)cytidin umgewandelt. Dann wird das 5-(3-Aminopropyl)cytidin mit NHS-PEG-Biotin umgesetzt, was zu Biotin-PEG-alkan-cytidin führt. Das Biotin-PEG-alkan-cytidin wird dann mit Diphosphorylchlorid umgesetzt, was zu Biotin-polyethylenglycol(PEG)-alkan-3',5'-cytidinbisphosphat führt.
  • Propargyltrifluoracetamid (1) wurde gemäß der folgenden Reaktion hergestellt:
  • Figure DE102011123079B3_0030
  • Propargylamin (4,00 g, 72,62 mmol, 1,00 Äquiv.) wurde bei 0 °C tropenweise zu Methyltrifluoracetat (11,16 g, 87,15 mmol, 1,20 Äquiv.) gegeben. Das Reaktionsgemisch wurde 2 h lang bei 0 °C gerührt und dann unter reduziertem Druck eingeengt, um Methanol zu entfernen. Das Produkt wurde durch Vakuumdestillation gereinigt, was Propargyltrifluoracetamid als farblose Flüssigkeit ergab (9,59 g, 87%). Die Struktur wurde durch 1H- und 19F-NMR bestätigt.
  • 5-[3-(Trifluoracetamido)propinyl]cytidin (2) wurde gemäß der folgenden Reaktion hergestellt:
  • Figure DE102011123079B3_0031
  • Ein 100-ml-Dreihalskolben wurde mit 5-Iodcytidin (2,66 g, 7,00 mmol, 1,00 Äquiv.), Kupfer(I)iodid (0,267 g, 1,40 mmol, 0,20 Äquiv.) und trockenem DMF (35 ml) gefüllt. Nach dem vollständigen Auflösen des Reaktionsgemischs wurden Propargyltrifluoracetamid (3,17 g, 21,00 mmol, 3,00 Äquiv.), Triethylamin (1,42 g, 14,00 mmol, 2,00 Äquiv.) und schließlich Tetrakis(triphenylphosphin)-palladium(0) (0,809 g, 0,70 mmol, 0,10 Äquiv.) unter N2 zu dem Reaktionsgemisch gegeben. Die Reaktion wurde 18-24 h lang bei Umgebungstemperatur (etwa 19 °C bis etwa 22 °C) unter N2 gerührt. Dann wurde die Reaktion mit 70 ml 1:1 Methanol-Dichlormethan verdünnt, und die Hydrogencarbonatform von AGI-X8-Harz (12,00 g) wurde hinzugefügt. Nach etwa einer Stunde Rühren wurde das Reaktionsgemisch filtriert, und das Harz wurde mit 1:1 Methanol-Dichlormethan gewaschen. Die vereinigten Filtrate wurden schnell mit einem Rotationsverdampfer eingeengt. Der Rückstand wurde sofort durch Flashchromatographie gereinigt. Entfernen des Lösungsmittels aus den geeigneten Fraktionen ergab 1,84 g (67%) 5-[3-(Trifluoracetamido)propinyl]cytidin als hellbraunen Feststoff, was durch 1H-NMR bestätigt wurde.
  • 5-[3-(Trifluoracetamido)propyl]cytidin (3) wurde gemäß der folgenden Reaktion hergestellt:
  • Figure DE102011123079B3_0032
  • 5-[3-(Trifluoracetamido)propinyl]cytidin (1,25 g, 3,19 mmol, 1,00 Äquiv.) wurde in Methanol (30 ml) gelöst. Palladiumhydroxid (0,25 g, 20 Gew.-%, bezogen auf Propinylcytidin) und Triethylsilan (3,71 g, 31,90 mmol, 10,00 Äquiv.) wurden zu dem Reaktionsgemisch gegeben. Nach 20-24 Stunden bei Umgebungstemperatur wurde das Reaktionsgemisch durch Glasfaser filtriert, und das Filtrat wurde unter reduziertem Druck eingeengt, was einen dunkelbraunen Rückstand ergab. Der Rückstand wurde durch Flash-Chromatographie gereinigt. Entfernen des Lösungsmittels aus den geeigneten Fraktionen ergab 0,85 g (71%) 5-[3-(Trifluoracetamido)propyl]cytidin als cremefarbenen Feststoff, was durch 1H-NMR bestätigt wurde.
  • 5-(3-Aminopropyl)cytidin (4) wurde gemäß der folgenden Reaktion hergestellt:
  • Figure DE102011123079B3_0033
  • 5-[3-(Trifluoracetamido)propyl]cytidin (0,69 g, 1,74 mmol) wurde in DI-H2O (8,5 ml) gelöst. Nach vollständigem Auflösen wurde konzentriertes Ammoniumhydroxid (NH4OH) (8,5 ml) zu dem Reaktionsgemisch gegeben. Die Reaktionslösung wurde 2-3 h lang bei Umgebungstemperatur gerührt und dann unter reduziertem Druck eingeengt, was das Rohprodukt als gelborangefarbenen Rückstand ergab. Das Rohprodukt wurde in deionisiertem H2O (10 ml) gelöst, und AG50W-X8-Harz (2,5 g) wurde zu der Lösung gegeben. Die Suspension wurde 15 min lang gerührt und dann über ein Bett aus AG50W-X8-Harz (2,5 g) filtriert. Das Harz wurde mit DI-H2O gewaschen, und dann wurde das Produkt vom Harz eluiert, indem man das Harz mit deionisiertem H2O/konz. NH4OH, 4:1, wusch, wobei Fraktionen gesammelt wurden (überwacht durch DC). Entfernen des Lösungsmittels aus den geeigneten Fraktionen ergab 0,51 g (98%) 5-(3-Aminopropyl)cytidin als helllohfarbenen Feststoff, was durch 1H-NMR bestätigt wurde.
  • Biotin-PEG4-alkan-cytidin (BPAC, 5) wurde gemäß der folgenden Reaktion hergestellt:
  • Figure DE102011123079B3_0034
  • NHS-PEG4-Biotin (0,196 g, 0,333 mmol, 1,00 Äquiv.) wurde in DMF (10 ml) gelöst. 5-(3-Aminopropyl)cytidin (0,100 g, 0,333 mmol, 1,00 Äquiv.) wurde zu der Reaktionslösung gegeben. Die Reaktionslösung wurde bei Umgebungstemperatur unter N2-Atmosphäre gerührt. Nach 20-24 h wurde das Reaktionsgemisch unter reduziertem Druck eingeengt, was das Rohprodukt ergab. Das Rohprodukt wurde durch Flashchromatographie gereinigt. Entfernen des Lösungsmittels aus den geeigneten Fraktionen ergab 0,18 g (69%) BPAC als weißen Feststoff, was durch 1H-NMR bestätigt wurde.
  • Biotin-PEG4-alkan-3',5'-cytidinbisphosphat (BPA-3',5'-pCp, 6) wurde gemäß der folgenden Reaktion hergestellt:
  • Figure DE102011123079B3_0035
  • BPAC (0,061 g, 0,079 mmol, 1,00 Äquiv.) wurde partiell in Diphosphorylchlorid (196 µl, 1,66 mmol, 21,00 Äquiv.), das zuvor in einem 1-ml-Reacti-Vial™ auf -10 °C bis -15 °C gekühlt worden war, gelöst. Dann wurde das Gemisch bei -10 °C bis -15 °C gerührt. Nach 5 h wurde die Reaktion durch Zugabe von eiskaltem Wasser (1-2 ml) und sofort danach mit einer gekühlten Lösung von 0,5 M TEAB-Puffer, pH 8,5 (17 ml), abgebrochen. Nach Stabilisierung bei neutralem pH wurde die farblose Lösung 30 min lang bei Umgebungstemperatur gerührt und mit Hilfe eines Rotationsverdampfers bis zur vollständigen Entfernung von TEAB eingeengt. Die Lösung wurde mit Hilfe einer C18-Kartusche (Waters) entsalzt und durch FPLC (MonoQ-10/100GL-Säule, GE) gereinigt, wobei man einen pH-Gradienten verwendete. Nach einer letzten Entsalzung, wieder mit Hilfe einer C18-Kartusche (Waters), wurde BPA-3',5'-pCp nach Lyophilisierung als weißer Feststoff isoliert (10 mg, 9%), was durch 1H-NMR und HPLC bestätigt wurde.
  • Überblick über die Herstellung von Biotin-PEG4-SS-alkan-3',5'-cytidinbisphosphat (BP4SSA-3',5'-pCp, Verbindung 12)
  • Figure DE102011123079B3_0036
  • Das Reaktionsschema zur Herstellung von Biotin-Polyethylenglycol(PEG)-SS-alkan-3',5'-cytidinbisphosphat ist wie folgt. Das 5-(3-Aminopropyl)cytidin (Verbindung 4) wird mit NHS-SS-PEG-Biotin umgesetzt, was zu Biotin-PEG-SS-alkan-cytidin (Verbindung 11) führt. Dann wird das Biotin-PEG-SS-alkan-cytidin (Verbindung 11) mit Diphosphorylchlorid umgesetzt, was zu Biotin-polyethylenglycol(PEG)-SS-alkan-3',5'-cytidin-bisphosphat (Verbindung 12) führt.
  • Herstellung von Biotin-PEG4-SS-alkan-cytidin (BP4SSAC, Verbindung 11)
  • Figure DE102011123079B3_0037
  • NHS-SS-PEG4-Biotin (0,250 g, 0,333 mmol, 1,00 Äquiv.) wurde in DMF (10 ml) gelöst. 5-(3-Aminopropyl)cytidin (0,100 g, 0,333 mmol, 1,00 Äquiv.) wurde zu der Reaktionslösung gegeben. Die Reaktionslösung wurde bei Umgebungstemperatur unter N2-Atmosphäre gerührt. Nach 20-24 Stunden wurde das Reaktionsgemisch unter reduziertem Druck eingeengt, was das Rohprodukt ergab. Das Rohprodukt wurde durch Flashchromatographie gereinigt. Entfernen des Lösungsmittels aus den geeigneten Fraktionen ergab 0,19 g (61%) BP4SSAC (Verbindung 11) als weißen Feststoff, was durch 1H-NMR bestätigt wurde.
  • Herstellung von Biotin-PEG4-SS-alkan-3',5'-cytidinbisphosphat (BP4SSA-3',5'-pCp, Verbindung 12)
  • Figure DE102011123079B3_0038
  • BP4SSAC (0,074 g, 0,079 mmol, 1,00 Äquiv.) wurde partiell in Diphosphorylchlorid (196 µl, 1,66 mmol, 21,00 Äquiv.), das zuvor in einem 1-ml-Reacti-Vial™ auf -10 °C bis -15 °C gekühlt worden war, gelöst. Dann wurde das Gemisch bei -10 °C bis -15 °C gerührt. Nach fünf Stunden wurde die Reaktion durch Zugabe von eiskaltem Wasser (1-2 ml) und sofort danach mit einer gekühlten Lösung von 0,5 M TEAB-Puffer, pH 8,5 (17 ml), abgebrochen. Nach Stabilisierung bei neutralem pH wurde die farblose Lösung 30 min lang bei Umgebungstemperatur gerührt und mit Hilfe eines Rotationsverdampfers bis zur vollständigen Entfernung von TEAB eingeengt. Die Lösung wurde mit Hilfe einer C18-Kartusche (Waters) entsalzt und durch FPLC (MonoQ-10/100GL-Säule, GE) gereinigt, wobei man einen pH-Gradienten verwendete. Nach einer letzten Entsalzung, wieder mit Hilfe einer C18-Kartusche (Waters), wurde BP4SSA-3',5'-pCp (Verbindung 12) nach Lyophilisierung als weißer Feststoff isoliert (5 mg, 6%), was durch 1H-NMR und HPLC bestätigt wurde.
  • Biotin- PEG12- Modifikation
  • Herstellung von Biotin-PEG12-alkancytidin (BP12AC, Verbindung 7)
  • Figure DE102011123079B3_0039
  • NHS-PEG12-Biotin (0,313 g, 0,333 mmol, 1,00 Äquiv.) wurde in DMF (10 ml) gelöst. 5-(3-Aminopropyl)cytidin (0,100 g, 0,333 mmol, 1,00 Äquiv., Verbindung 4) wurde zu der Reaktionslösung gegeben. Die Reaktionslösung wurde bei Umgebungstemperatur unter N2-Atmosphäre gerührt. Nach 20-24 h wurde das Reaktionsgemisch unter reduziertem Druck eingeengt, was das Rohprodukt ergab. Das Rohprodukt wurde durch Flashchromatographie gereinigt. Entfernen des Lösungsmittels aus den geeigneten Fraktionen ergab 0,27 g (72%) BP12AC (Verbindung 7) als hellgelben Schaum, was durch 1H-NMR bestätigt wurde.
  • Herstellung von Biotin-PEG12-alkan-3',5'-bisphosphat-cytidin (BP12A-3',5'-pCp, Verbindung 8)
  • Figure DE102011123079B3_0040
  • Biotin-PEG12-alkancytidin (0,135 g, 0,120 mmol, 1,00 Äquiv., Verbindung 7) wurde partiell in Diphosphorylchlorid (315 µl, 2,40 mmol, 20,00 Äquiv.), das zuvor in einem 1-ml-Reacti-Vial™ auf -10 °C bis -15 °C gekühlt worden war, gelöst. Das Gemisch wurde bei -10 °C bis -15 °C gerührt. Nach fünf Stunden wurde die Reaktion durch Zugabe von eiskaltem Wasser (1-2 ml) und sofort danach mit einer gekühlten Lösung von 0,5 M TEAB-Puffer, pH 8,5 (40 ml), abgebrochen. Nach Stabilisierung bei neutralem pH wurde die farblose Lösung 30 min lang bei Umgebungstemperatur gerührt und mit Hilfe eines Rotationsverdampfers bis zur vollständigen Entfernung von TEAB eingeengt. Die Lösung wurde mit Hilfe einer C18-Kartusche (Waters) entsalzt und durch FPLC (MonoQ-10/100GL-Säule, GE) gereinigt, wobei man einen pH-Gradienten verwendete. Nach einer letzten Entsalzung mit Hilfe einer C18-Kartusche (Waters) wurde Biotin-PEG12-alkan-3',5'-cytidinbisphosphat (Verbindung 8) nach Lyophilisierung als klebriger weißer Feststoff isoliert (8 mg, 5%), was durch 1H-NMR und HPLC bestätigt wurde.
  • Azido-PEG4- Modifikation
  • Azido-PEG4-alkan-3',5'-cytidinbisphosphat, Verbindung 9
  • Figure DE102011123079B3_0041
  • Eine Ausführungsform ist ein Verfahren zur Herstellung von Azido-PEG4-alkan-3',5'-cytidinbisphosphat. Das 5-(3-Aminopropyl)cytidin wurde so synthetisiert, wie es oben beschrieben ist, und dann mit NHS-PEG4-Azide umgesetzt, was zu Azido-PEG4-alkan-cytidin führte. Dann wurde das Azido-PEG4-alkan-cytidin mit Diphosphorylchlorid umgesetzt, was zu Azido-PEG4-alkan-3',5'-cytidin-bisphosphat führte.
  • NHS-PEG4-Azid (0,408 g, 1,05 mmol, 1,00 Äquiv.) wurde in DMF (32 ml) gelöst. Das 5-(3-Aminopropyl)cytidin) (0,315 g, 1,05 mmol, 1,00 Äquiv.) wurde zu der Reaktionslösung gegeben. Die Reaktionslösung wurde bei Umgebungstemperatur unter N2-Atmosphäre gerührt. Nach 20-24 Stunden wurde das Reaktionsgemisch unter reduziertem Druck eingeengt, was das Rohprodukt ergab. Das Rohprodukt wurde durch Flashchromatographie gereinigt. Entfernen des Lösungsmittels aus den geeigneten Fraktionen ergab 0,378 g (63%) Azido-PEG4-alkan-cytidin (Verbindung 9) als fast farbloses Glas, was durch 1H-NMR bestätigt wurde.
  • Azido-PEG4-alkan-3',5'-bisphosphat-cytidin (AzP4A-3',5'p-C-p), Verbindung 10
  • Figure DE102011123079B3_0042
  • Azido-PEG4-alkancytidin (0,150 g, 0,262 mmol, 1,00 Äquiv., Verbindung 9) wurde partiell in Diphosphorylchlorid (688 µl, 5,24 mmol, 20,00 Äquiv.), das zuvor in einem 1-ml-Reacti-Vial™ auf -10 °C bis -15 °C gekühlt worden war, gelöst. Dann wurde das Gemisch bei -10 °C bis -15 °C gerührt. Nach fünf Stunden wurde die Reaktion durch Zugabe von eiskaltem Wasser (2-3 ml) und sofort danach mit einer gekühlten Lösung von 0,5 M TEAB-Puffer, pH 8,5 (87 ml), abgebrochen. Nach Stabilisierung bei neutralem pH wurde die farblose Lösung 30 min lang bei Umgebungstemperatur gerührt und mit Hilfe eines Rotationsverdampfers bis zur vollständigen Entfernung von TEAB eingeengt. Die Lösung wurde mit Hilfe einer C18-Kartusche (Waters) entsalzt und durch FPLC (MonoQ-10/100GL-Säule, GE) gereinigt, wobei man einen pH-Gradienten verwendete. Nach einer letzten Entsalzung, wieder mit Hilfe einer C18-Kartusche (Waters), wurde Azido-PEG4-alkan-3',5'-cytidinbisphosphat (Verbindung 10) nach Lyophilisierung als klebriger weißer Feststoff isoliert (10 mg, 6%), was durch 1H-NMR und HPLC bestätigt wurde.
  • Fluorophor- PEG4- Modifikationen
  • Überblick über die Herstellung von DyLight-550-PEG4-alkan-3',5'-cytidinbisphosphat (Dy550P4A-3',5'-pCp, 14).
  • Figure DE102011123079B3_0043
  • DyLight 550-Polyethylenglycol(PEG)-alkan-3',5'-cytidinbisphosphat (Verbindung 14) wird wie folgt hergestellt. Das Azido-PEG4-alkan-3',5'-cytidinbisphosphat (Verbindung 10) wurde synthetisiert, wie es oben beschrieben ist, und dann mit Tris(2-carboxyethyl)phosphin-Hydrochlorid (TCEP) reagieren gelassen, was zu Amino-PEG4-alkan-3',5'-cytidinbisphosphat (Verbindung 13) führte. Dann wurde das Amino-PEG4-alkan-3',5'-cytidinbisphosphat (Verbindung 13) mit DyLight-550-NHS-Ester umgesetzt, was zu 550-Polyethylenglycol(PEG)-alkan-3',5'-cytidinbisphosphat (Verbindung 14) führte.
  • Herstellung von Amino-PEG4-alkan-3',5'-bisphosphat-cytidin (AmP4A-3',5'-pCp, 13)
  • Figure DE102011123079B3_0044
  • Azido-PEG4-alkan-3',5'-bisphosphat-cytidin (3,56 µmol, 1,00 Äquiv., Verbindung 10) wurde in 200 mM Tris/HCI, pH 7,5 (800 µl), gelöst. Tris(2-carboxyethyl)-phosphin-Hydrochlorid (TCEP) (17,54 mg, etwa 5,00 Äquiv.) wurde in 200 mM Tris/HCI, pH 7,5 (688 µl), gelöst. Die TCEP-Lösung (200 µl) wurde zu der Lösung der Säure gegeben, und die Reaktion wurde bei Umgebungstemperatur gemischt. Nach 1-3 h wurde das Reaktionsgemisch durch FPLC gereinigt, und die produkthaltigen Fraktionen wurden direkt mit DyLight-550-NHS-Ester behandelt, was zu Amino-PEG4-alkan-3',5'-bisphosphat-cytidin (Verbindung 13) führte.
  • Herstellung von DyLight550-PEG4-alkan-3',5'-bisphosphat-cytidin (Dy550P4A-3',5'-pCp, 14)
  • Figure DE102011123079B3_0045
  • Der pH-Wert einer FPLC-Fraktion (2 ml), die Amino-PEG4-alkan-3',5'-bisphosphat-cytidin (Verbindung 13) enthielt, wurde auf pH 7,0 eingestellt, indem man 1 M HEPES, pH 7,3, hinzufügte. Getrennt davon wurde eine 1 mM Lösung von DyLight-550-NHS-Ester hergestellt, indem man DyLight-550-NHS-Ester (MW = 1040,05, 1 mg) in ultrareinem Wasser (960 µl) löste. Amino-PEG4-alkan-3',5'-bisphosphat-cytidin (0,25 ml) und DyLight-550-NHS-Ester (0,25 ml) wurden in einem getrennten Reaktionsgefäß miteinander kombiniert und wurden 1 h lang bei Umgebungstemperatur unter Rotation gemischt. Das Reaktionsgemisch wurde durch FPLC (MonoQ-10/100GL-Kolonne, GE) gereinigt, wobei ein pH- und Salzgradient verwendet wurde. Produkthaltige Fraktionen wurden dialysiert und anschließend lyophilisiert, was DyLight550-PEG4-alkan-3',5'-cytidinbisphosphat (Verbindung 14) als dunkelrosafarbenen Rückstand ergab.
  • Weitere beispielhafte Verbindungen folgen. Beispiele für fluoreszierende Verbindungen sind unter Anderem die folgenden:
    Figure DE102011123079B3_0046
    Figure DE102011123079B3_0047
    Figure DE102011123079B3_0048
    Figure DE102011123079B3_0049
    Figure DE102011123079B3_0050
    Figure DE102011123079B3_0051
  • Beispiele für Verbindungen mit Massenmarkern sind unter Anderem die folgenden:
    Figure DE102011123079B3_0052
    Figure DE102011123079B3_0053
    Figure DE102011123079B3_0054
  • Beispiele für Verbindungen mit einem Spin-Label sind unter Anderem die folgenden:
    Figure DE102011123079B3_0055
    Figure DE102011123079B3_0056
  • Ein Beispiel für eine Desthiobiotin-enthaltende Verbindung ist:
    Figure DE102011123079B3_0057
  • Beispiele für Verbindungen mit alternativer Spaltung sind unter Anderem die folgenden:
    Figure DE102011123079B3_0058
    Figure DE102011123079B3_0059
    Figure DE102011123079B3_0060
    Figure DE102011123079B3_0061
  • Eine Ausführungsform ist ein Kit zur Markierung von RNA mit der oben beschriebenen Verbindung. In einer Ausführungsform enthält der Kit die Verbindung(en), Ligase, Ligasepuffer und Markierungsanweisungen. In einer Ausführungsform enthält der Kit zusätzliche Kitkomponenten zur Erhöhung der Ligationseffizienz einschließlich Polyethylenglycol als Größenausschlussreagens und DMSO zur Entspannung der Sekundärstruktur. In einer Ausführungsform enthält der Kit auch eine Kontroll-RNA, die mit einer Effizienz von mehr als 75% ligiert, und eine synthetische biotinylierte RNA-Kontrolle zur Bewertung der Ligationseffizienz. Zu den Anweisungen gehören Verfahren für eine typische Ligationsreaktion unter Verwendung der aufgeführten Reagentien und/oder Anweisungen zur Verwendung einer Nucleinsäure, die das markierte Nucleotid umfasst, in einem Verfahren wie Mobilitäts-Shift-Assay, Northern Blot, Pulldown-Assay oder in-situ-Hybridisierung. In einer Ausführungsform enthält der Kit eine beschriebene Verbindung, bei der es sich bei dem Zucker um Ribose und bei der Purin- oder Pyrimidinbase um C handelt, m = 3 ist, Lnk
    Figure DE102011123079B3_0062
    ist, n = 4 ist,
    Figure DE102011123079B3_0063
    ist,
    Figure DE102011123079B3_0064
    ist und A3, falls vorhanden,
    Figure DE102011123079B3_0065
    ist und Obs aus der Gruppe ausgewählt ist, die aus Biotin, einem Fluorophor und einem Azid besteht.
  • Für Mobilitäts-Shift-Assays wurde ein Überschuss der markierten RNA mit einer Lösung, die das interessierende Protein, RNA oder DNA in einem optimierten Bindungspuffer enthält, inkubiert. Die Inkubationsbedingungen wurden empirisch bestimmt; die Inkubationszeit lag typischerweise in einem Bereich von 5 Minuten bis 1 Stunde, die Inkubationstemperaturen lagen typischerweise in einem Bereich von 4°C bis Raumtemperatur (19°C bis 22°C). Dann wurde die Bindungsreaktion einer Elektrophorese unterzogen, um RNA-Bindungskomplexe von freier Sonde zu trennen. Dann wurde der verschobene RNA-Komplex noch im Gel nachgewiesen oder aber auf eine positiv geladene Membran übertragen und mit Hilfe von sekundären Nachweisreagentien (d.h. mit einem Chromogen oder durch Chemilumineszenz) nachgewiesen.
  • Für das Northern Blotting wurde die markierte RNA zum Nachweis von RNA verwendet, die durch Elektrophorese abgetrennt und auf eine Membran übertragen wurde. Die markierte RNA wurde 5-10 Minuten lang bei 95°C denaturiert und auf Eis schnell auf weniger als 10 °C abgekühlt. Dann wurde die denaturierte Sonde zu einer optimierten Hybridisierungslösung gegeben und wenigstens eine Stunde lang, aber im Höchstfall auch über Nacht, bei einer empirisch bestimmten Temperatur mit der Membran inkubiert. Dann wurde die Membran gewaschen, und RNA wurde mit Hilfe von sekundären Nachweisreagentien (d.h. Chromogen, durch Chemilumineszenz) nachgewiesen.
  • Für einen Assay unter Verwendung einer markierten RNA zur Anreicherung einer Komponente unabhängig davon, ob die Substanz, die die Komponente enthielt, an einen Chip, ein Harz usw. gebunden war (z.B. ein „Pulldown“-Assay), wurde markierte RNA in einer Bindungsreaktion, die das interessierende Protein, RNA oder DNA, einen optimierten Bindungspuffer und ein Affinitätsharz enthielt, inkubiert. Dann wurde das Harz gewaschen, der RNA-Komplex wurde eluiert, und das interessierende Protein, DNA oder RNA wurde mit Hilfe von Techniken nachgewiesen, die unter Anderem PCR, RT-PCR, Western Blot oder Mikroarray umfassen.
  • Für die in-situ-Hybridisierung wird die markierte RNA als Sonde zum Nachweis der interessierenden RNA oder des interessierenden RNA-Komplexes in Zellen verwendet. Die markierte RNA kann verwendet werden, nachdem Zellen auf einem Träger (d.h. einem Objektträger, Deckglas, einer Gewebeschale, einem Mikrowell usw.) fixiert wurden, oder sie kann für eine durchflusscytometrische Analyse in Suspension verwendet werden. Ähnlich kann die markierte RNA auch durch Transfektion in lebende Zellen eingebracht und direkt oder mit Hilfe von sekundären Reagentien nachgewiesen werden. Die RNA oder der RNA-Komplex wird mit Techniken sichtbar gemacht, die unter Anderem Licht- oder Fluoreszenzmikroskopie, durchflusscytometrische Analyse oder Mikroarray umfassen.
  • In den anschließend beschriebenen Experimenten wurde T4-RNA-Ligase verwendet, um RNA mit biotinyliertem Cytidin-3',5'-bisphosphat zu markieren. Mehrere Moleküle wurden synthetisiert, um das Nucleotid in Bezug auf eine optimale Ligationseffizienz und Funktionalität zu optimieren, zum Beispiel durch Konservierung der Wechselwirkung der markierten RNA mit anderer RNA oder zellulären Proteinen. Drei verschiedene Alkylbindungen einschließlich Alkin-, Alken- und Alkanbindungen wurden in Kombination mit sowohl LC(Langketten)-, SC(Kurzketten)- als auch PEG-Spacern getestet, wie es in den 1 bis 3 gezeigt ist. Die Moleküle wurden auf Ligationseffizienz und Funktionalität getestet, wobei etablierte elektrophoretische Mobilitäts-Shift(EMSA)-Kontrollen verwendet wurden. In einem Mobilitäts-Shift-Assay wird markierte RNA-Sonde mit einem Zelllysat, das das bzw. die interessierenden Proteine enthält, in einer Bindungsreaktion inkubiert. Dann wird die Reaktion einer Elektrophorese auf einem nichtdenaturierenden Gel unterzogen. Ungebundene Sonde wandert zum Boden des Gels, während proteingebundene Sonde langsamer migriert, was zu einer Bandenverschiebung führt. Die Alkin-LC- und die Alkin-SC-haltigen Nucleotide ligierten mit guter Effizienz; die Alkinbindung war jedoch in Zelllysaten reaktiv.
  • In einem gereinigten System unter Verwendung einer RNA-Polymerase-Matrize und gereinigter RNA-Polymerase erzeugten die Alkinverbindungen einen funktionellen Gel-Shift (4A), während die Alkinverbindung mit der Kontrolle aus Iron-Responsive-Element (IRE)/Iron-Responsive-Protein (IRP) unter Verwendung von cytosolischem Leberextrakt keinen funktionellen Gel-Shift erzeugte ( 4B). Als der Leberextrakt mit gereinigter RNA-Polymerase gemischt wurde, wurde die Bandenverschiebung beeinflusst, was vermuten lässt, dass die Alkinverbindung gegenüber Leberextrakt reaktiv ist (4C). Ähnliche Ergebnisse wurden mit den Alkenverbindungen erhalten, wobei die IRE-IRP-Kontrolle ligierte, aber keine funktionelle Bandenverschiebung erzeugte (5). Das Nucleotid, das die Alkanbindung und den PEG-Spacer enthält, war die beste Verbindung sowohl in Bezug auf Ligationseffizienz als auch Funktionalität ( 6).
  • Unter Verwendung des Biotin-PEG4-alkan-3,5-cytidinbisphosphat-Moleküls wurden optimale Ligationsbedingungen bestimmt. Die beschriebenen Bedingungen führten je nach der Sekundärstruktur der RNA und den Ligationsbedingungen zu Ligationseffizienzen von mehr als 70% und in einigen Fällen mehr als 90%. Eine Standardreaktion hatte ein Donor-Akzeptor-Ligationsverhältnis von mehr als 20:1. Der Reaktionspuffer enthielt 20 E bis 40 E T4-RNA-Ligase, 40 E RNase-Inhibitor, 50 mM Tris-HCI, 10 mM MgCl2, 10 mM DTT, 1 mM ATP (pH 7,8 bei 25°C) und 15% Polyethylenglycol (PEG, MW 20 000). Um Ligationseffizienzen von mehr als 70% zu erreichen, wurden Reaktionen je nach RNA-Länge und -Sekundärstruktur 30 Minuten lang bei 37°C oder 30 Minuten bis 24 Stunden lang bei 16 °C inkubiert. In einer Ausführungsform enthielten die Reaktionen 25 pmol bis 50 pmol RNA, 1 nmol biotinyliertes Nucleotid und 20 E bis 40 Einheiten T4-RNA-Ligase in einem Reaktionsvolumen von 30 µl. Ein Überschuss an biotinyliertem Nucleotid beeinflusste die Ligationseffizienzen nicht, und in der Ligationsreaktion wurde ein Bereich von 1 pmol RNA bis 200 pmol RNA getestet. Die Konzentration von PEG lag im Bereich von 5% bis 20%.
  • Wie in der folgenden Tabelle gezeigt, wurden die Ligationsbedingungen unter Verwendung mehrerer RNA-Spezies mit unterschiedlicher Länge, Komplexität und Funktion bewertet, um die Effizienz der Ligationsreaktion bei Verwendung von RNA unterschiedlicher Komplexität und Länge nachzuweisen. RNA stammte von den 3'-untranslatierten Bereichen (UTR) von mRNA (28-42 Nucleotide), miRNA (22-80 Nucleotide) und katalytischer RNA (451 Nucleotide). RNA wurde synthetisch hergestellt oder stammte aus in-vitro-Transcriptionsreaktionen.
    Beschreibung RNA-Quelle Länge (Basen) Optimale Reaktionsbedingungen
    IRE (Iron-Responsive-Element) 5'- oder 3'-UTR-Element synthetisch 28 2 h 16 °C
    RNA-Polymerase-Matrizen-RNA RNA synthetisch 42 30 min 37 °C > 1 h 16 °C
    mir-16-1 reife Mikro-RNA synthetisch 22 über Nacht 16 °C
    TNF ARE 3'-UTR-Element synthetisch 37 2 h 16 °C
    Let-7 Prä-miRNA in-vitrotranscribiert ~70 über Nacht 16 °C
    hTR katalytische RNA in-vitrotranscribiert 451 über Nacht 16 °C
    COX-76 ARE 3'-UTR-Element in-vitrotranscribiert ~70 über Nacht 16 °C
    mir-16-1 Prä-miRNA in-vitrotranscribiert ~70 über Nacht 16 °C
  • Die Ligationseffizienzen waren bei Reaktionen unter Verwendung von 25-50 pmol RNA, 1 nmol biotinyliertem Nucleotid, 20-40 E T4-RNA-Ligase, 40 E RNase-Inhibitor, 50 mM Tris-HCI, 10 mM MgCl2, 10 mM DTT, 1 mM ATP (pH 7,8 bei 25°C) und 15% PEG (MW 20 000) größer als 70%. Die Ligationseffizienzen wurden bei RNAs mit ausgedehnter RNA-Sekundärstruktur oder Länge verbessert, indem man sie vor der Ligationsreaktion kurz erhitzte; die Temperaturen beim Erhitzen lagen im Bereich von 80°C bis 90°C während 1-5 Minuten, gefolgt von schnellem Abkühlen auf Eis während wenigstens 1 Minute bis mehrere Stunden. In einigen Fällen erhöhte die Zugabe von 25% DMSO vor dem Erhitzen die Ligationseffizienz. Die Reihenfolge der Zugabe der Reaktionskomponenten spielte keine Rolle, außer bei PEG, das als letztes hinzugefügt wurde. Mehrere PEG-Varietäten wurden getestet, die Molekulargewichte von 1500, 6000, 8500 und 20000 aufwiesen. Obwohl das PEG mit MW 20000 die Ligationseffizienz am besten erhöhte, waren auch andere PEG-Moleküle annehmbar, und andere Größenausschlussmoleküle wären ebenfalls annehmbar. Eine PEG-Konzentration von 15% war optimal. Andere PEG-Konzentrationen konnten ebenfalls verwendet werden; sie lagen im Bereich von 5% bis 20%.
  • Die Ligationseffizienzen wurden mit Hilfe von Dot Blot und quantitativer Spot-Densitometrie bewertet. Eine synthetisch biotinylierte RNA wurde als Kontrolle verwendet, wobei eine Biotinylierung von 100% angenommen wurde. Markierte RNA aus der Ligationsreaktion und die synthetisch markierte RNA wurden zuerst bezüglich der Konzentration normiert und dann zur Herstellung einer Verdünnungsreihe verwendet, um die Effizienz zu bestimmen. Ein kleines Volumen wurde auf eine positiv geladene Nylonmembran aufgetragen (getüpfelt). Die Membran wurde mit Hilfe von ultravioletter (UV) Strahlung vernetzt. Biotinylierte RNA wurde mit Hilfe eines Streptavidin-Meerrettich-Peroxidase(HRP)-Substrats und Chemilumineszenznachweis nachgewiesen. Die nichtsättigenden Tüpfel, also Tüpfel, bei denen die densitometrische Intensität nicht gesättigt war, wurden densitometrisch quantifiziert. Um die Ligationseffizienz zu bestimmen, wurde markierte RNA mit dem Kontrollstandard verglichen, um die Effizienz zu bestimmen. Um die Reproduzierbarkeit der Markierung zu bestimmen, wurden Proben bei zweien der RNA-Proben wegen der Variabilität innerhalb des Assays in dreifachen Ansätzen aufgetragen (getüpfelt), und jede Ligation mit den optimierten Bedingungen wurde wegen der Variabilität zwischen den Assays wenigstens dreimal unabhängig wiederholt. Um die Markierungsintegrität zu bestimmen, wurde markierte RNA durch Elektrophorese auf einem Gel, das 5% Acrylamid/8 M Harnstoff enthielt (denaturierendes Gel), abgetrennt, die RNA wurde auf eine Nylonmembran übertragen und mit Hilfe von Chemilumineszenz nachgewiesen. Die Ergebnisse wiesen darauf hin, dass die markierten Sonden von hoher Qualität und der richtigen Größe waren und entweder einen minimalen Abbau oder keinen Abbau aufwiesen.
  • In-vitro-transcribierte RNA wurde durch Transcription von einem verdauten Plasmid abgeleitet, das die interessierende Sequenz enthielt, die von einer T7-Polymerase-Bindungsstelle und Restriktionsenzymstelle flankiert war, so dass nur die interessierende RNA transcribiert wird. In-vitro-transcribierte RNA wurde auch durch Transcription von komplementären Primern, die ein T7-RNA-Polymerase-bindendes Sequenzelement enthielten, abgeleitet. Verdautes Plasmid wurde durch Extraktion mit Phenol:Chloroform und Ethanolfällung gereinigt. Komplementäre Primer wurden in einer Reaktion, die 25 µM von jedem Primer in 10 mM HEPES-Puffer (pH 7,3) enthielt, assoziieren gelassen. Die Reaktionen wurden zehn Minuten lang bei 95°C inkubiert und dann langsam wenigstens zehn Minuten lang auf Raumtemperatur abgekühlt, danach auf Eis inkubiert. Transcriptionsreaktionen enthielten typischerweise 500 ng bis 1 µg DNA, jeweils 0,5 mM ATP, CTP, UTP und GTP, 1X-Transcriptionspuffer, 30 E T7-RNA-Polymerase und 40 Einheiten RNAse-Inhibitor. Die Reaktionen wurden 30 Minuten bis 1 Stunde lang bei 37 °C inkubiert. DNA wurde zehn Minuten lang bei 37°C mit RNase-freier DNase I verdaut, die dann mit EDTA inaktiviert wurde. Dann wurde RNA selektiv mit Ethanol ausgefällt, und die Reinheit des Transcripts wurde entweder durch Agarose- oder durch nichtdenaturierende Polyacrylamid-Gel-Elektrophorese bestimmt. Dann wurde die gefällte RNA durch UV-Spektroskopie quantifiziert (Extinktion bei 260 nm/280 nm), und in jeder Ligationsreaktion wurden 25 pmol bis 50 pmol RNA verwendet.
  • Die Funktionalität der markierten RNA wurde bestimmt, indem man eine bekannte Wechselwirkung der RNA bewertete, um zu gewährleisten, dass das 3'-Ende die Sekundärstruktur nur minimal störte. Die Funktionalität des markierten Iron-Responsive-Elements (IRE), der RNA-Polymerase-Matrize und der let-7-Mikro-RNA wurden durch RNA-Elektrophorese-Mobilitäts-Shift-Assay (EMSA) bestimmt. Zu den Proteinquellen gehörten cytosolischer Leberextrakt, der Iron-Responsive-Element/Iron-Responsive-Protein (IRE-IRO) enthält, lin-28-Überexpressionslysat (let-7-lin28) und gereinigte RNA-Kern-Polymerase (Epicentre). Verdünnungen von jeder RNA (nM) wurden 15-30 Minuten lang bei Raumtemperatur (etwa 20°C bis etwa 22 °C) in einer 1X-Bindungsreaktion, die 10 mM HEPES (pH 7,3), 20 mM KCl, 1 mM MgCl2, 1 mM DTT, 2,5-10 µg tRNA und 5% Glycerin enthielt, mit dem interessierenden Protein inkubiert. Optimale Bindungsbedingungen für die RNA-Polymerase-Matrize wurden erreicht, indem man tRNA durch Rinderserumalbumin (BSA) ersetzte und für die let-7-lin28-Wechselwirkung die DTT-Konzentration auf 3 mM und die KCI-Konzentration auf 40 mM erhöhte. Die Zusammensetzung der Bindungsreaktionen wurde durch Elektrophorese auf nativen 6%-Acrylamid-DNA-Retardierungsgelen während einer Stunde bei 100 V entweder bei Raumtemperatur oder 4°C aufgetrennt. Dann wurde die RNA auf eine positiv geladene Nylonmembran übertragen, vernetzt (UV-Strahlung) und dann mit Hilfe von Chemilumineszenz nachgewiesen. Für jede markierte RNA wurden drei Bindungsreaktionen bewertet: 1) Migration und Intensität der freien Sonde, die zum Boden des Gels migrierte; 2) Intensität der markierten RNA mit Protein, die zu einer Bandenverschiebung des RNA-Protein-Komplexes führte; und 3) die Konkurrenzreaktion der markierten RNA und der unmarkierten RNA mit Protein (6). Jede Bandenverschiebungsreaktion wurde dreimal mit drei unabhängig markierten RNAs wiederholt. Jede der am 3'-Ende markierten Sonden konnte ihre jeweiligen Proteine funktionell binden und eine robuste Bandenverschiebung erzeugen, wie für die RNA-Matrize-RNA-Polymerase-Wechselwirkung (6A), die IRE-IRP-Wechselwirkung (6B) und die let-7-lin28-Wechselwirkung (6C) gezeigt wurde. Jede Sonde war auch auf dem nanomolaren Niveau funktionsfähig, was darauf hindeutete, dass die 50-pmol-Markierungsreaktion für EMSA-Studien ausreichend war.
  • In einer Ausführungsform dient Biotin oder eine andere geeignete Struktureinheit, die dem Fachmann bekannt ist, an dem markierten Nucleotid als Affinitätsanker zum Isolieren von RNA:Protein-Komplexen. Die Funktionalität einer beschriebenen biotinmarkierten RNA, um als Affinitätsanker zum Isolieren von RNA-Komplexen (die RNA, DNA, RNA und DNA oder Protein enthalten) mit Hilfe eines Affinitätsharzes, Beads oder Sensorchips (z.B. Pulldown) zu dienen, wurde mit Hilfe von Streptavidin-Agarose-Harz und Oberflächenplasmonenresonanz bestimmt.
  • IRE-RNA (SEQ ID Nr. 1) wurde mit Hilfe von biotinyliertem Cytidinbisphosphat und T4-RNA-Ligase markiert. Das IRP-Protein, das IRE-RNA-Sequenzen bindet, wurde in einen Vektor, der ein HA-Tag enthält, kloniert und einer in-vitro-Translation unter Verwendung eines humanzellfreien humanen in-vitro-Transcriptions-/-Translations-Systems unterzogen. Vor der Inkubation mit der biotinylierten RNA wurde das IRP-Lysat mit Streptavidin-Agarose-Harz inkubiert, um die unspezifische Bindung zu reduzieren und um endogenes Biotin zu entfernen. Dann wurde das IRP-Lysat 30 Minuten lang bei Raumtemperatur mit dem markierten IRE oder mit einer unspezifischen Kontroll-RNA (SEQ ID Nr. 2), die mit Biotin 3'-markiert war, in Bindungspuffer (10 mM HEPES pH 7,3, 20 mM KCl, 1 mM MgCl2, 1 mM DTT, 10% Glycerin, 40 E RNase-Inhibitor (RNasin®)) inkubiert und dann 10 Minuten lang auf Eis mit UV-Licht (254 nm) vernetzt. Dann wurden die Bindungsreaktionen mit PBS gewaschen, und der IRE-IRP-Komplex wurde von dem Harz herunter eluiert. Nach Trennung durch Elektrophorese und Übertragung auf eine Membran wurde IRP mit Hilfe von Maus-Anti-HA-Antikörper nachgewiesen. Die Ergebnisse sind in 7 gezeigt. Spur 1 ist 5 µl HA-IRP-IVT-Lysat, Spur 2 ist 25 µl Durchflussfraktion, Spur 3 ist 50 µl Waschfraktion, und Spur 4 ist 25 µl eluierte Fraktion.
  • Die Fähigkeit der biotinmarkierten RNA, RNA:Protein-Komplexe unter Verwendung eines Sensorchips mit immobilisiertem Streptavidin anzureichern, wurde mit Hilfe von Biacore™ Surface Plasmon Resonance (SPR) untersucht. Die Ergebnisse sind in 8 gezeigt, wo die durchgezogene Linie Kontroll-mRNA entspricht und die gestrichelte Linie einer Referenz (Durchflusszelle 1) entspricht; und wobei A = biotinylierte RNA-Matrize als Kontrollbeladung; B = RNA-Pol-II-Injektion; C = RNA-Pol-II, gebunden an Kontroll-RNA; und D = Injektion von unmarkierter Kontroll-RNA. Biotin markierte Kontroll-RNA wurde auf einem streptavidinbeschichteten Sensorchip abgefangen, und danach wurde bakterielle RNA-Polymerase injiziert. Eine Bindungsreaktion von RNA-Polymerase II wurde auf der aktiven RNA-Oberfläche nachgewiesen, und die Spezifität wurde durch den Verlust der Bindung nach Injektion der unmarkierten Kontroll-RNA bestätigt. 20 pmol markierte RNA wurden in nucleasefreiem HEPES-Puffer (pH 7,3) verdünnt, vier Minuten lang mit einer Geschwindigkeit von 5 µl/min injiziert und auf einem im Handel erworbenen streptavidinbeschichteten Sensorchip für Biacore 3000® abgefangen. Dann wurde bakterielle RNA-Polymerase (0,1 E/µl) zwei Minuten lang injiziert. Wie in 8 gezeigt, wurde auf der aktiven RNA-Oberfläche eine Bindungsreaktion von RNA-Polymerase II nachgewiesen, und die Spezifität wurde durch den Verlust der Bindung nach Injektion der unmarkierten Kontroll-RNA bestätigt. Die Spezifität wurde durch Konkurrenz der Bindung von RNA-Polymerase mit einem 50-100-fachen Überschuss an unmarkierter RNA-Polymerase-Matrizen-RNA, die vier Minuten lang injiziert wurde, bestimmt.
  • Eine Ausführungsform ist ein Verfahren zur Bestimmung von RNA mit Hilfe einer RNA-Sonde, die mit der oben beschriebenen Verbindung markiert war, und unter Verwendung des oben beschriebenen Verfahrens. Die markierte RNA kann so synthetisiert werden, wie es oben beschrieben ist. Die markierte RNA-Sonde wird unter Bedingungen, die eine Hybridisierung der markierten RNA mit RNA in der Probe und den Nachweis der Hybridisierung in einem Assay, zum Beispiel Mobilitäts-Shift-Assay, Northern Blot, in-situ-Hybridisierung, Pulldown-Assay usw., ermöglichen, mit der zu bestimmenden Probe in Kontakt gebracht, wobei zum Beispiel ein streptavidinkonjugiertes Reportermolekül, wie ein Enzym, eine fluoreszierende Verbindung, ein Isotop, ein Goldteilchen usw., verwendet wird.
  • Die gezeigten und in der Beschreibung beschriebenen Ausführungsformen sind nur spezielle Ausführungsformen von Erfindern, die auf dem Fachgebiet bewandert sind, und in keiner Weise einschränkend. Daher können im Umfang der folgenden Ansprüche verschiedene Änderungen, Modifikationen oder Abänderungen dieser Ausführungsformen vorgenommen werden, ohne vom Wesen der Erfindung abzuweichen.
  • Sequenzprotokoll
    • <110> Opperman, Kay     Etienne, Christopher     Kaboord, Barbara     Schultz, Jean-Samuel
    • <120> Modifizierte Nucleotide
    • <130> 073986.191
    • <150> US 61/326,450 <151> 2010-04-21
    • <160> 2
    • <170> PatentIn Version 3.5
    • <210> 1 <211> 27 <212> RNA <213> künstliche Sequenz
    • <220> <223> künstliches Oligonucleotid
    • <400> 1 uccugcuuca acagugcuug gacggaa    27
    • <210> 2 <211> 43 <212> RNA <213> künstliche Sequenz
    • <220> <223> künstliches Oligonucleotid
    • <400> 2 ccugguuuuu aaggaguguc gccagagugc cgcgaaugaa aaa    43

Claims (22)

  1. Verfahren zur Markierung einer Nucleinsäure mit einem modifizierten Nucleotid, wobei das Verfahren Folgendes umfasst: In-Kontakt-Bringen einer Probe, die die Nucleinsäure enthält, mit dem modifizierten Nucleotid unter Bildung eines Gemischs; Hinzufügen einer Ligase unter Bildung eines Reaktionsgemischs; Inkubieren des Reaktionsgemischs unter Bedingungen, die ausreichen, damit die Ligase das modifizierte Nucleotid an die Nucleinsäure ligiert, was zu einer markierten Nucleinsäure führt; wobei das modifizierte Nucleotid die Struktur (II)
    Figure DE102011123079B3_0066
    aufweist oder ein Salz, eine konjugierte Base, ein Tautomer oder eine dissoziierte Form davon ist, wobei Base* eine Purin- oder Pyrimidinbase ist; R = H, OH, CH3 oder eine Hydroxy-Schutzgruppe ist; Alk eine Verbindungsgruppe ist, die die Struktur -//-(CH2)m-Y-//- aufweist, wobei m eine ganze Zahl im Bereich von 3 bis 6 einschließlich ist, Y eine bindungsbildende Gruppe, die aus
    Figure DE102011123079B3_0067
    ausgewählt ist, ist und die am weitesten links gelegene Bindung zur Base* geht und die am weitesten rechts gelegene Bindung zu Lnk geht; Lnk eine Verknüpfungsgruppe mit der Struktur
    Figure DE102011123079B3_0068
    Figure DE102011123079B3_0069
    oder
    Figure DE102011123079B3_0070
    ist, wobei n eine ganze Zahl im Bereich von 2 bis 48 einschließlich ist; A1 eine bindungsbildende Gruppe ist, die aus
    Figure DE102011123079B3_0071
    Figure DE102011123079B3_0072
    ausgewählt ist, A2 eine bindungsbildende Gruppe ist, die aus
    Figure DE102011123079B3_0073
    Figure DE102011123079B3_0074
    ausgewählt ist, A3 eine bindungsbildende Gruppe ist, die aus
    Figure DE102011123079B3_0075
    Figure DE102011123079B3_0076
    ausgewählt ist, und X eine abspaltbare Gruppe ist, die einer Silicium-Kohlenstoff-Spaltung, einer nucleophilen Spaltung, einer Redoxspaltung, einer photochemischen Spaltung, einer enzymatischen Spaltung oder einer Austausch-basierten Spaltung unterzogen werden kann, Z eine Verzweigungsgruppe ist, die ein modifizierendes Molekül (Mod) enthält; und die am weitesten links gelegene Bindung zu Alk geht und die am weitesten rechts gelegene Bindung zu Obs geht und Obs ein beobachtbarer Marker ist.
  2. Verfahren gemäß Anspruch 1, wobei der Zucker Ribose ist und die Purin- oder Pyrimidinbase aus Cytosin (C), Uracil (U), Adenin (A), Guanin (G) oder Inosin (I) ausgewählt ist, wobei die Purin- oder Pyridinbase zum Beispiel aus 1-Methyladenin, N6-Methyladenin, N6-Isopentyladenin, N,N-Dimethyladenin, 7-Desazaadenin, 2-Thiocytosin, 3-Methylcytosin, N4-Acetylcytosin, 2-Thiocytosin, 1-Methylguanin, 2-Methylguanin, 7-Methylguanin, N2,N2-Dimethylguanin, 7-Desazaguanin, 2-Thiouracil, 6-Thiopurin oder 2,6-Diaminopurin ausgewählt ist.
  3. Verfahren gemäß Anspruch 1, wobei der beobachtbare Marker ein Chromogen, ein Fluorophor, ein Massenmarker, ein Spin-Label, ein Streptavidin-bindender Marker oder ein sekundärer Nachweismarker ist.
  4. Verfahren gemäß einem der Ansprüche 1 bis 3, wobei n eine ganze Zahl im Bereich von 2 bis 24 einschließlich ist, zum Beispiel m = 3 ist, n = 4 ist und der beobachtbare Marker eine Streptavidin-bindende Verbindung ist, die aus Biotin, Desthiobiotin oder Iminobiotin ausgewählt ist.
  5. Verfahren gemäß Anspruch 1, wobei der Zucker Ribose ist, die Purin- oder Pyrimidinbase Cytosin (C) ist, m = 3 ist, Lnk
    Figure DE102011123079B3_0077
    Figure DE102011123079B3_0078
    oder
    Figure DE102011123079B3_0079
    ist, wobei n = 4 ist,
    Figure DE102011123079B3_0080
    ist,
    Figure DE102011123079B3_0081
    ist und A3, falls vorhanden,
    Figure DE102011123079B3_0082
    ist und Z eine Verzweigungsgruppe ist, die ein modifizierendes Molekül (Mod) enthält, und Obs aus der Gruppe ausgewählt ist, die aus Biotin, einem Fluorophor und einem Azid besteht.
  6. Verfahren gemäß Anspruch 1, wobei es sich bei der Ligase um T4-Ligase handelt, wie einzelsträngige T4-Ligase, doppelsträngige T4-Ligase, thermostabile T4-Ligase, T4-RNA-Ligase 1, T4-RNA-Ligase 2, verkürzte T4-RNA-Ligase 2 und verkürzte T4-RNA-Ligase 2 mit K227Q.
  7. Verfahren gemäß Anspruch 1, wobei die Probe, die die Nucleinsäure enthält, vor dem Schritt des In-Kontakt-Bringens auf eine Temperatur von etwa 75°C bis etwa 95 °C erhitzt und dann auf eine Temperatur von etwa 2 °C bis etwa 10°C abgekühlt wird, wobei die Probe gegebenenfalls Dimethylsulfoxid (DMSO) in einer Konzentration im Bereich von 0% bis etwa 25% enthält.
  8. Verfahren gemäß Anspruch 1, wobei die Bedingungen, die ausreichen, damit die Ligase das modifizierte Nucleotid an die Nucleinsäure ligiert, das Inkubieren des Reaktionsgemischs zwischen 30 Minuten und 16 Stunden bei einer Temperatur im Bereich zwischen 16 °C und 37 °C umfassen.
  9. Verfahren gemäß Anspruch 1, wobei es sich bei der Nucleinsäure um RNA handelt.
  10. Verfahren zum Nachweisen eines nucleinsäurebindenden Biomoleküls, wobei das Verfahren Folgendes umfasst: Bilden einer markierten Nucleinsäure durch Markieren einer Nucleinsäure mit einem modifizierten Nucleotid, wobei das Verfahren Folgendes umfasst: In-Kontakt-Bringen einer Probe, die die Nucleinsäure enthält, mit dem modifizierten Nucleotid unter Bildung eines Gemischs; Hinzufügen einer Ligase unter Bildung eines Reaktionsgemischs; und Inkubieren des Reaktionsgemischs unter Bedingungen, die ausreichen, damit die Ligase das modifizierte Nucleotid an die Nucleinsäure ligiert, was zu einer markierten Nucleinsäure führt; Inkubieren der markierten Nucleinsäure mit einer biologischen Probe, von der man annimmt, dass sie das nucleinsäurebindende Biomolekül enthalten könnte, unter Bildung eines Komplexes; und Nachweisen des Komplexes aus dem nucleinsäurebindenden Biomolekül, das an die markierte Nucleinsäure gebunden ist; wobei das modifizierte Nucleotid die Struktur (II)
    Figure DE102011123079B3_0083
    aufweist oder ein Salz, eine konjugierte Base, ein Tautomer oder eine dissoziierte Form davon ist, wobei Base* eine Purin- oder Pyrimidinbase ist; R = H, OH, CH3 oder eine Hydroxy-Schutzgruppe ist; Alk eine Verbindungsgruppe ist, die die Struktur -//-(CH2)m-Y-//- aufweist, wobei m eine ganze Zahl im Bereich von 3 bis 6 einschließlich ist, Y eine bindungsbildende Gruppe, die aus
    Figure DE102011123079B3_0084
    ausgewählt ist, ist und die am weitesten links gelegene Bindung zur Base* geht und die am weitesten rechts gelegene Bindung zu Lnk geht; Lnk eine Verknüpfungsgruppe mit der Struktur
    Figure DE102011123079B3_0085
    Figure DE102011123079B3_0086
    oder
    Figure DE102011123079B3_0087
    ist, wobei n eine ganze Zahl im Bereich von 2 bis 48 einschließlich ist; A1 eine bindungsbildende Gruppe ist, die aus
    Figure DE102011123079B3_0088
    ausgewählt ist, A2 eine bindungsbildende Gruppe ist, die aus
    Figure DE102011123079B3_0089
    Figure DE102011123079B3_0090
    ausgewählt ist, A3 eine bindungsbildende Gruppe ist, die aus
    Figure DE102011123079B3_0091
    Figure DE102011123079B3_0092
    ausgewählt ist, und X eine abspaltbare Gruppe ist, die einer Silicium-Kohlenstoff-Spaltung, einer nucleophilen Spaltung, einer Redoxspaltung, einer photochemischen Spaltung, einer enzymatischen Spaltung oder einer Austausch-basierten Spaltung unterzogen werden kann, Z eine Verzweigungsgruppe ist, die ein modifizierendes Molekül (Mod) enthält; und die am weitesten links gelegene Bindung zu Alk geht und die am weitesten rechts gelegene Bindung zu Obs geht; und Obs ein beobachtbarer Marker ist.
  11. Verfahren gemäß Anspruch 10, wobei die biologische Probe ein gereinigtes Protein, eine Gewebeprobe, ein ganzes Gewebe, ein ganzes Organ, eine Zellkultur, ein Zellextrakt, ein Zelllysat oder ein in-vitro-translatiertes Proteinlysat ist.
  12. Verfahren gemäß Anspruch 10, wobei die markierte Nucleinsäure eine RNA ist und das nucleinsäurebindende Biomolekül ein RNA-bindendes Protein ist und wobei der Komplex aus der markierten RNA und dem RNAbindenden Protein dadurch stabilisiert ist, dass das RNA-bindende Protein mit der markierten RNA vernetzt ist, entweder durch das modifizierende Molekül des modifizierten Nucleotids oder dadurch, dass man Vernetzer hinzufügt, nachdem der Komplex aus markierter RNA/RNA-bindendem Protein gebildet ist.
  13. Verfahren gemäß Anspruch 10, wobei der Nachweis des Komplexes das Assoziieren des Komplexes mit einem festen Träger, das Eluieren des Komplexes von dem festen Träger und das Nachweisen des eluierten Komplexes umfasst, wobei der feste Träger zum Beispiel ein Kügelchen, eine Platte oder eine Säule sein kann.
  14. Verfahren gemäß Anspruch 13, wobei es sich bei dem Obs des modifizierten Nucleotids um Biotin, Desthiobiotin oder Iminobiotin handelt und der feste Träger ein Streptavidin umfasst.
  15. Verfahren gemäß Anspruch 10, wobei der Nachweis einen Mobilitäts-Shift-Assay umfasst, der das Durchführen einer Elektrophorese mit dem Komplex und das Nachweisen einer Verschiebung des Molekulargewichts des Komplexes im Vergleich zu dem nucleinsäurebindenden Biomolekül allein umfasst, oder wobei der Nachweis das Durchführen einer Elektrophorese mit der biologischen Probe, das Übertragen der elektrophoresierten biologischen Probe auf eine Membran, das Sondieren der Membran mit der markierten Nucleinsäure und das Nachweisen des Komplexes umfasst oder wobei der Nachweis in-situ-Hybridisierung umfasst.
  16. Verfahren zum Quantifizieren einer Nucleinsäure oder eines Oligonucleotids, umfassend: a) Hinzufügen eines nachweisbaren modifizierten Nucleotids der Struktur (I)
    Figure DE102011123079B3_0093
    oder eines Salzes, einer konjugierten Base, eines Tautomers oder einer dissoziierten Form davon zu einer Nucleinsäure oder einem Oligonucleotid, wobei P1 eine Phosphatgruppe ist; P2 eine Phosphatgruppe ist; Nus eine Nucleosid-Struktureinheit ist, die einen an eine Purin- oder Pyrimidinbase gebundenen Zucker umfasst; Alk eine Verbindungsgruppe ist, die die Struktur -//-(CH2)m-Y-//- aufweist, wobei m eine ganze Zahl im Bereich von 3 bis 6 einschließlich ist, Y eine Bindung oder eine bindungsbildende Gruppe, die aus
    Figure DE102011123079B3_0094
    ausgewählt ist, ist und die am weitesten links gelegene Bindung zu Nus geht und die am weitesten rechts gelegene Bindung zu Lnk geht; Lnk eine Verknüpfungsgruppe mit der Struktur
    Figure DE102011123079B3_0095
    oder
    Figure DE102011123079B3_0096
    ist, wobei n eine ganze Zahl im Bereich von 2 bis 48 einschließlich ist; A1 eine bindungsbildende Gruppe ist, die aus
    Figure DE102011123079B3_0097
    ausgewählt ist, A2 eine bindungsbildende Gruppe ist, die aus
    Figure DE102011123079B3_0098
    Figure DE102011123079B3_0099
    ausgewählt ist, A3, falls vorhanden, eine bindungsbildende Gruppe ist, die aus
    Figure DE102011123079B3_0100
    Figure DE102011123079B3_0101
    ausgewählt ist, und X eine abspaltbare Gruppe ist, die einer Silicium-Kohlenstoff-Spaltung, einer nucleophilen Spaltung, einer Redoxspaltung, einer photochemischen Spaltung, einer enzymatischen Spaltung oder einer Austausch-basierten Spaltung unterzogen werden kann; und die am weitesten links gelegene Bindung zu Alk geht und die am weitesten rechts gelegene Bindung zu Obs geht und Obs ein beobachtbarer Marker ist; b) Quantifizieren der Nucleinsäure auf der Basis einer Quantifizierung des nachweisbaren modifizierten Nucleotids.
  17. Verfahren gemäß Anspruch 16, wobei pro Oligonucleotid oder Nucleinsäure genau ein Molekül des beobachtbaren nachweisbaren Markers hinzugefügt wird und wobei der beobachtbare Marker zum Beispiel ein Chromogen, ein Fluorophor, ein Massenmarker, ein Spin-Label, ein Masse-Tag, ein Streptavidin-bindender Marker, Biotin, ein Derivat von Biotin, Desthiobiotin, ein Azid, ein Alkin, ein Aldehyd, ein Dien, ein Amin, ein Hydrazid, ein Disulfid, ein Polyethylenglycol (PEG) oder ein sekundärer Nachweismarker ist.
  18. Verfahren gemäß Anspruch 16, wobei die Nucleinsäure eine RNA ist und das Oligonucleotid ein Ribonucleotid ist.
  19. Verfahren gemäß Anspruch 16, wobei das Hinzufügen des nachweisbaren modifizierten Nucleotids zu dem Oligonucleotid oder der Nucleinsäure durch Ligation, Nick-Translation, zufällige Primerassoziation, Polymerase-Kettenreaktion (PCR), Markierung am 3'-Ende oder durch Transkribieren von RNA unter Verwendung von SP6-, T3- oder T7-RNA-Polymerase erfolgt oder wobei die Nucleinsäure eine RNA ist und das nachweisbare modifizierte Nucleotid hinzugefügt wird durch: Erhitzen von RNA in einer Lösung, wobei die Lösung gegebenenfalls Dimethylsulfoxid in einer Konzentration von bis zu 25% enthält, auf wenigstens 75°C bis zu 95 °C, dann Abkühlen der erhitzten RNA während wenigstens einer Minute auf weniger als 10°C; und In-Kontakt-Bringen der erhitzten und wieder abgekühlten RNA mit dem nachweisbaren modifizierten Nucleotid der Struktur (I) unter Reaktionsbedingungen, bei denen eine T4-RNA-Ligase verwendet wird und die PEG mit einem Molekulargewicht zwischen etwa 1500 und 24 000 einschließlich und mit einer Konzentration im Bereich von 5% PEG bis 20% PEG einschließlich umfassen, wobei die Verbindung gemäß Anspruch 1 an die RNA ligiert wird, was zu einer nachweisbaren modifizierten RNA führt.
  20. Verfahren gemäß Anspruch 19, wobei die Konzentration des PEG etwa 15% beträgt oder wobei das Molekulargewicht von PEG 20 000 beträgt.
  21. Verfahren gemäß Anspruch 1, weiterhin umfassend das Bestimmen eines Ribonucleinsäure(RNA)-Analyten, umfassend: a) Markieren einer RNA mit dem nachweisbaren modifizierten Nucleotid der Struktur (I) unter Bildung einer modifizierten RNA-Sonde; b) In-Kontakt-Bringen der modifizierten RNA-Sonde mit einer Probe, die den RNA-Analyten enthält, unter Bedingungen, bei denen die modifizierte RNA-Sonde mit dem RNA-Analyten hybridisiert; und c) Nachweisen des mit der modifizierten RNA-Sonde hybridisierten RNA-Analyten, wobei der RNA-Analyt durch die Hybridisierung und den Nachweis der modifizierten RNA-Sonde bestimmt wird, wobei das Bestimmen zum Beispiel wenigstens einer aus einem Mobilitäts-Shift-, Northern-Blot-, Pull-down-Assay, Protein-RNA-Wechselwirkungs- oder in-situ-Hybridisierungsassay sein kann und wobei zum Nachweis zum Beispiel ein streptavidinkonjugiertes Reportermolekül verwendet werden kann und wobei es sich weiterhin bei dem Reportermolekül zum Beispiel um Enzyme, fluoreszierende Verbindungen, Isotope, Goldteilchen und Kombinationen davon handeln kann.
  22. Verfahren gemäß Anspruch 16, wobei die Nucleinsäure oder das Oligonucleotid an ein Protein gebunden ist oder damit wechselwirkt, zum Beispiel ein RNA-bindendes Protein oder ein Protein, das mit einer RNA wechselwirken kann.
DE102011123079.7A 2010-04-21 2011-04-21 Modifizierte Nucleotide Active DE102011123079B3 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US32645010P 2010-04-21 2010-04-21
US61/326,450 2010-04-21

Publications (1)

Publication Number Publication Date
DE102011123079B3 true DE102011123079B3 (de) 2019-09-26

Family

ID=44147507

Family Applications (2)

Application Number Title Priority Date Filing Date
DE102011123079.7A Active DE102011123079B3 (de) 2010-04-21 2011-04-21 Modifizierte Nucleotide
DE102011018627.1A Active DE102011018627B4 (de) 2010-04-21 2011-04-21 Modifizierte Nucleotide

Family Applications After (1)

Application Number Title Priority Date Filing Date
DE102011018627.1A Active DE102011018627B4 (de) 2010-04-21 2011-04-21 Modifizierte Nucleotide

Country Status (4)

Country Link
US (1) US8536323B2 (de)
DE (2) DE102011123079B3 (de)
FR (1) FR2959228B1 (de)
GB (1) GB2479833B (de)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9206216B2 (en) 2010-04-21 2015-12-08 Pierce Biotechnology, Inc. Modified nucleotides methods and kits
US8536323B2 (en) * 2010-04-21 2013-09-17 Pierce Biotechnology, Inc. Modified nucleotides
EP2669291A1 (de) 2012-05-29 2013-12-04 Pierce Biotechnology, Inc. Modifizierte Nukleotidverfahren und Kits
EA034342B1 (ru) * 2012-09-04 2020-01-29 КАБУСИКИ КАЙСЯ ДиЭнЭйФОРМ Соединение, нуклеиновая кислота, вещество, несущее метку, и способ обнаружения
ES2622716T3 (es) * 2012-09-21 2017-07-07 Osaka University Oligonucleótido y nucleósido artificial en puente con guanidina
WO2014150845A1 (en) * 2013-03-15 2014-09-25 Ibis Biosciences, Inc. Photocleavable deoxynucleotides with high-resolution control of deprotection kinetics
WO2022257383A1 (zh) * 2021-06-10 2022-12-15 中国科学院上海有机化学研究所 一种修饰核酸的捕捉方法及其应用

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030165849A1 (en) * 2000-11-28 2003-09-04 Biliang Zhang Methods and reagents for introducing a sulfhydryl group into the 5'-terminus of RNA

Family Cites Families (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5151507A (en) 1986-07-02 1992-09-29 E. I. Du Pont De Nemours And Company Alkynylamino-nucleotides
CA1340806C (en) 1986-07-02 1999-11-02 James Merrill Prober Method, system and reagents for dna sequencing
US5047519A (en) 1986-07-02 1991-09-10 E. I. Du Pont De Nemours And Company Alkynylamino-nucleotides
US5242796A (en) 1986-07-02 1993-09-07 E. I. Du Pont De Nemours And Company Method, system and reagents for DNA sequencing
GB8720394D0 (en) 1987-08-28 1987-10-07 Ici Plc Nucleotide probes
US4914210A (en) 1987-10-02 1990-04-03 Cetus Corporation Oligonucleotide functionalizing reagents
US6013431A (en) 1990-02-16 2000-01-11 Molecular Tool, Inc. Method for determining specific nucleotide variations by primer extension in the presence of mixture of labeled nucleotides and terminators
GB9009980D0 (en) 1990-05-03 1990-06-27 Amersham Int Plc Phosphoramidite derivatives,their preparation and the use thereof in the incorporation of reporter groups on synthetic oligonucleotides
US6004744A (en) 1991-03-05 1999-12-21 Molecular Tool, Inc. Method for determining nucleotide identity through extension of immobilized primer
US5888819A (en) 1991-03-05 1999-03-30 Molecular Tool, Inc. Method for determining nucleotide identity through primer extension
EP0754240B1 (de) 1994-02-07 2003-08-20 Beckman Coulter, Inc. Ligase/polymerase-vermittelte analyse genetischer elemente von einzelnukleotid-polymorphismen und ihre verwendung in der genetischen analyse
US5684142A (en) 1995-06-07 1997-11-04 Oncor, Inc. Modified nucleotides for nucleic acid labeling
US7282327B2 (en) 1996-01-23 2007-10-16 Affymetrix, Inc. Nucleic acid labeling compounds
US20010018514A1 (en) 1998-07-31 2001-08-30 Mcgall Glenn H. Nucleic acid labeling compounds
US6114350A (en) 1999-04-19 2000-09-05 Nen Life Science Products, Inc. Cyanine dyes and synthesis methods thereof
US7504215B2 (en) 2002-07-12 2009-03-17 Affymetrix, Inc. Nucleic acid labeling methods
US20080103053A1 (en) * 2005-11-22 2008-05-01 Helicos Biosciences Corporation Methods and compositions for sequencing a nucleic acid
US7361465B2 (en) 2004-09-07 2008-04-22 Applera Corporation Methods and compositions for tailing and amplifying RNA
EP1959012A3 (de) 2004-12-29 2009-12-30 Exiqon A/S Neuartige Oligonukleotid-Zusammensetzungen und Probensequenzen für die Erkennung und Analyse von Mikro-RNAs und ihre Ziel-MRNAs
US7541144B2 (en) 2005-01-31 2009-06-02 Agilent Technologies, Inc. RNA labeling method
US20080045418A1 (en) 2005-02-04 2008-02-21 Xia Xueliang J Method of labeling and profiling rnas
US7524942B2 (en) 2006-07-31 2009-04-28 Agilent Technologies, Inc. Labeled nucleotide composition
US7572585B2 (en) 2006-07-31 2009-08-11 Agilent Technologies, Inc. Enzymatic labeling of RNA
US20090176732A1 (en) 2007-12-21 2009-07-09 Alios Biopharma Inc. Protected nucleotide analogs
US8536323B2 (en) * 2010-04-21 2013-09-17 Pierce Biotechnology, Inc. Modified nucleotides

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030165849A1 (en) * 2000-11-28 2003-09-04 Biliang Zhang Methods and reagents for introducing a sulfhydryl group into the 5'-terminus of RNA

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
HANNA, M.M. [u.a.]: Synthesis and characterization of a new photocrosslinking CTP analog and its use in photoaffinity labeling E. coli and T7 RNA polymerases. Nucleic Acids Res. (1993) 21 (9) 2073-9 *

Also Published As

Publication number Publication date
GB2479833A (en) 2011-10-26
FR2959228B1 (fr) 2018-11-30
GB2479833A8 (en) 2011-11-23
GB2479833B (en) 2019-01-02
US20110262917A1 (en) 2011-10-27
DE102011018627B4 (de) 2017-10-19
GB201106948D0 (en) 2011-06-01
US8536323B2 (en) 2013-09-17
FR2959228A1 (fr) 2011-10-28
DE102011018627A1 (de) 2011-11-17

Similar Documents

Publication Publication Date Title
DE69528839T2 (de) Reduzierung von nicht spezifischer hybridisierung unter verwendung neuer basenpaarschemata
DE102011123079B3 (de) Modifizierte Nucleotide
DE69333073T2 (de) Verwendungen von fluoreszierenden n-nukleosiden und dessen analogen
DE112007002932B4 (de) Vierfarben DNA-Sequenzierung mittels Synthese unter Verwendung von abspaltbaren, reversiblen, fluoreszierenden Nucleotidterminatoren
DE3486400T2 (de) Bestimmungsmethode unter Verwendung von Polynucleotidsequenzen.
EP0663922B1 (de) Infrarot-farbstoff-markierte nucleotide und ihre verwendung in der nucleinsäure-detektion
DE60108799T2 (de) Fluoreszente Nucleotide, enthaltend einen Cyanin, Merocyanin- oder Styryl-Farbstoff, zur Erkennung von Nucleinsäuren
DE3688931T2 (de) Arabinonukleinsäure-Sonden für DNS/RNS-Bestimmungen.
DE60101939T2 (de) Mit stickstoffheterozyklen substituierte elektronenmangel-fluoresceinfarbstoffe
US10526652B2 (en) Modified nucleotides methods and kits
US4898951A (en) Compounds used as intermediates in the preparations of non-radioactive biological probes
DE60214840T2 (de) Verfahren zur markierung und fragmentierung von dns
US20100092971A1 (en) Compound having structure derived from mononucleoside or mononucleotide, nucleic acid, labeling substance, and method and kit for detection of nucleic acid
US8753809B2 (en) Methods and compositions for detection and enrichment of target small RNAs
DE4302459A1 (de) Sulfocumarinhaltige Nukleotide und deren Verwendung in Nachweisverfahren für Nukleinsäuren
DE3446635A1 (de) Synthese von aminoderivaten von oligonukleotiden
EP0815117B1 (de) C-nukleosid-derivate und deren verwendung in der detektion von nukleinsäuren
EP2669291A1 (de) Modifizierte Nukleotidverfahren und Kits
DE60014028T2 (de) Funktionalisierte verbindung, gegebenenfalls markierte polynukleotide und verfahren zur detektion einer zielnukleinsäure
DE69912139T2 (de) Energieübertragungsfarbstoffe
DE69516415T2 (de) Porphyrin-markierung von polynukleotiden
DE69815370T2 (de) Fluoreszend-konjugaten von nukleosiden und von nukleotiden, ihrer verfahren zur herstellung und ihrer verwendungen
EP0829542A1 (de) Verfahren zur Amplifikation von Nukleinsäuren
DE69216498T2 (de) Fluoreszierendes Etikett
WO1990008838A1 (en) Labeling of nucleic acids with fluorescent markers

Legal Events

Date Code Title Description
R129 Divisional application from

Ref document number: 102011018627

Country of ref document: DE

R012 Request for examination validly filed
R083 Amendment of/additions to inventor(s)
R016 Response to examination communication
R018 Grant decision by examination section/examining division
R079 Amendment of ipc main class

Free format text: PREVIOUS MAIN CLASS: C12Q0001680000

Ipc: C12Q0001682000

R020 Patent grant now final