DE102011101476A1 - Method for 3D measurement of objects - Google Patents

Method for 3D measurement of objects Download PDF

Info

Publication number
DE102011101476A1
DE102011101476A1 DE102011101476A DE102011101476A DE102011101476A1 DE 102011101476 A1 DE102011101476 A1 DE 102011101476A1 DE 102011101476 A DE102011101476 A DE 102011101476A DE 102011101476 A DE102011101476 A DE 102011101476A DE 102011101476 A1 DE102011101476 A1 DE 102011101476A1
Authority
DE
Germany
Prior art keywords
measurement
light source
optical pattern
statistical
projection
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
DE102011101476A
Other languages
German (de)
Other versions
DE102011101476B4 (en
Inventor
Richard Kowarschik
Marcus Große
Martin Schaffer
Bastian Harendt
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Cognex Ireland Ltd
Original Assignee
Friedrich Schiller Universtaet Jena FSU
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=46489133&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=DE102011101476(A1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Friedrich Schiller Universtaet Jena FSU filed Critical Friedrich Schiller Universtaet Jena FSU
Priority to DE102011101476.8A priority Critical patent/DE102011101476B4/en
Priority to PCT/DE2012/000511 priority patent/WO2012152261A1/en
Publication of DE102011101476A1 publication Critical patent/DE102011101476A1/en
Application granted granted Critical
Publication of DE102011101476B4 publication Critical patent/DE102011101476B4/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/24Measuring arrangements characterised by the use of optical techniques for measuring contours or curvatures
    • G01B11/25Measuring arrangements characterised by the use of optical techniques for measuring contours or curvatures by projecting a pattern, e.g. one or more lines, moiré fringes on the object
    • G01B11/2518Projection by scanning of the object
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/24Measuring arrangements characterised by the use of optical techniques for measuring contours or curvatures
    • G01B11/25Measuring arrangements characterised by the use of optical techniques for measuring contours or curvatures by projecting a pattern, e.g. one or more lines, moiré fringes on the object
    • G01B11/2513Measuring arrangements characterised by the use of optical techniques for measuring contours or curvatures by projecting a pattern, e.g. one or more lines, moiré fringes on the object with several lines being projected in more than one direction, e.g. grids, patterns

Abstract

Aufgabe war es, Objekte mit geringem Aufwand, schnellstmöglich und hochgenau dreidimensional zu vermessen. Erfindungsgemäß wird zumindest ein statistisches optisches Muster, vorzugsweise eines Lichtbilds (3) von einem Projektor (4), zur standortunterschiedlichen Detektion und dreidimensionalen Auswertung auf die zu vermessende Oberfläche (2) eines Objekt (1) abgebildet und dort in Lage und/oder Form, beispielsweise durch einen motorisch (6) bewegten Umlenkspiegel (5) beliebig verändert. Das Verfahren wird zur schnellen und hochauflösenden optische Oberflächenvermessung, wie der Qualitätskontrolle, eingesetzt.The task was to measure objects with little effort, as quickly as possible and with high accuracy in three dimensions. According to the invention, at least one statistical optical pattern, preferably a light image (3) from a projector (4), is imaged on the surface (2) of an object (1) to be measured for location-different detection and three-dimensional evaluation and there in position and / or shape, for example, changed as required by a motorized (6) moving deflection mirror (5). The method is used for fast and high-resolution optical surface measurement, such as quality control.

Description

Die Erfindung betrifft ein Verfahren zur schnellstmöglichen und hochgenauen 3D-Messung von Objekten, bei dem statistische Muster auf das zu vermessende Objekt projiziert werden, die von im Standort unterschiedlichen Bildansichten als korrespondierende Bildmuster des Objekts, beispielsweise durch Kameras, detektiert werden. Aus dem Vergleich dieser unterschiedlichen Bildmuster werden Rauminformationen für die dreidimensionale Rekonstruktion des Objektes gewonnen.The invention relates to a method for the fastest possible and highly accurate 3D measurement of objects, in which statistical patterns are projected onto the object to be measured, which are detected by different image views in the image as corresponding image pattern of the object, for example by cameras. From the comparison of these different image patterns, spatial information for the three-dimensional reconstruction of the object is obtained.

In vielen Bereichen sind schnell messende optische 3D-Messsysteme erforderlich. So werden zur Analyse von Airbag-Entfaltungen, Schadensanalyse von Unfallszenarien, und Fahrzeugcrashs bereits optische Verfahren eingesetzt, wobei jedoch nur wenige Zielmarken und damit 3D-Punkte der Szene verfolgt werden bzw. bei dicht messenden Verfahren nur sehr ungenaue 3D-Daten gewonnen werden können. Für die Qualitätskontrolle von Industriegütern im Fließbandbetrieb sind eine hohe Messrate, sowie die Toleranz gegenüber Objektbewegungen entscheidend. Hochgenaue Verfahren zur 3D-Vermessung konnten für diese Messaufgaben bisher nicht eingesetzt werden, da die geforderten, kurzen Messzeiten technisch nicht realisierbar waren. Für medizinische Zwecke ist die Vermessung von bewegten Körperteilen zur Diagnose von Fehlstellungen hilfreich. Im Bereich der Sportwissenschaft kann die Analyse der Bewegung von Körperteilen und/oder Personen zur Optimierung von Bewegungsabläufen eingesetzt werden, wobei bisher lediglich Zielmarken eingesetzt werden konnten, und damit nur vereinfachte Modelle mit Daten gespeist werden konnten. Das gleiche Problem besteht bei der Digitalisierung bewegter Szenen für die multimediale Nutzung, sei es die Bewegung von Schauspielern oder von bewegten Gegenständen. Insbesondere durch die immer stärkere Verbreitung von 3D-Fernsehen wird die 3D-Digitalisierung in der nahen Zukunft an Bedeutung gewinnen, und damit die Anforderungen an die Qualität von 3D-Aufnahmen zunehmen. Weiterhin werden in den nächsten Jahren hochauflösende Hochgeschwindigkeitskameras verfügbar sein, da die aktuelle Schnittstellengeneration (z. B. USB 3.0, LightPeak) höhere Aufnahmeraten zulässt (bis 1000 Hz bei VGA-Auflösung), und damit die bisher hohen Kamerasystemkosten deutlich sinken werden. In diesem Kontext ist daher die Entwicklung eines schnell und hochgenau messenden Systems für viele Anwendungsbereiche gewünscht.Many areas require fast 3D optical measurement systems. Thus, for the analysis of airbag deployments, damage analysis of accident scenarios, and vehicle crashes already optical methods are used, but only a few targets and thus 3D points of the scene are tracked or densely measuring methods only very inaccurate 3D data can be obtained. For the quality control of industrial goods in assembly line operation, a high measuring rate and the tolerance to object movements are decisive. High-precision methods for 3D measurement could not be used for these measuring tasks until now because the required, short measuring times were not technically feasible. For medical purposes, the measurement of moving parts of the body is helpful for diagnosing malpositions. In the field of sports science, the analysis of the movement of body parts and / or persons can be used to optimize movement sequences, whereby so far only targets could be used, and thus only simplified models could be fed with data. The same problem exists with the digitization of moving scenes for multimedia use, be it the movement of actors or moving objects. In particular, the increasing use of 3D television will increase the importance of 3D digitization in the near future and thus increase the quality requirements of 3D recordings. Furthermore, high-resolution, high-speed cameras will be available over the next few years, since the current interface generation (eg USB 3.0, LightPeak) allows higher recording rates (up to 1000 Hz with VGA resolution), and thus the previously high camera system costs will drop significantly. In this context, therefore, the development of a fast and highly accurate measuring system is desired for many applications.

Bekannt sind Verfahren zur hochgenauen (relative Messunsicherheit < 10–4) und dichten 3D-Vermessung von Objekten unter Verwendung strukturierter Beleuchtung. Dazu zählen beispielsweise Verfahren der Streifenprojektion ( W. Schreiber and G. Notni: Theory and arrangements of self-calibrating whole-body three-dimensional measurement systems using fringe projection technique, Optical Engineering 39, 2000, 159–169 ; J. Gühring, Dense 3-D surface acquisition by structured light using off-the-shelf components, videometrics and optical methods for 3D shape measurement 4309, 2001, 220–231 ) oder Verfahren unter Verwendung statistischer Muster ( DE 196 23 172 C1 ; A. Wiegmann, H. Wagner, R. Kowarschik: Human face measurement by projecting bandlimited random patterns, Optics Express 14, 2006, 7692–7698 ).Methods are known for high-precision (relative measurement uncertainty <10 -4 ) and dense 3D measurement of objects using structured illumination. These include, for example, strip projection methods ( W. Schreiber and G. Notni: Theory and arrangements of self-calibrating whole-body three-dimensional measurement systems using the fringe projection technique, Optical Engineering 39, 2000, 159-169 ; J. Gühring, Dense 3-D surface acquisition by structured light using off-the-shelf components, videometrics and optical methods for 3D shape measurement 4309, 2001, 220-231 ) or methods using statistical patterns ( DE 196 23 172 C1 ; A. Wiegmann, H. Wagner, R. Kowarschik: Human Face Measurement by Projecting Bandlimited Random Patterns, Optics Express 14, 2006, 7692-7698 ).

Die Verfahren, welche höchsten Genauigkeitsanforderungen genügen, benötigen zur Realisierung der Messgenauigkeit für beliebige also auch unstetige und getrennte Objekte längere Bildsequenzen (zwischen zehn und 50 Bildern pro Kamera). Aus der Literatur sind keine hochgenau und dicht messenden Verfahren bekannt, welche mit mehr als 15 Hz Aufnahme- und Projektionsrate betrieben werden können, wobei der limitierende Faktor die Projektionstechnik darstellt ( M. Schaffer, M. Große, and R. Kowarschik: High-speed pattern projection for three-dimensional shape measurement using laser speckles, Applied Optics 49(18), 2010, 3622–3629 ; S. Zhang: Recent progresses an real-time 3d shape measurement using digital fringe projection techniques, Optics and Lasers in Engineering 48, 2010, 149–158 ).The methods, which meet the highest accuracy requirements, require longer image sequences (between ten and 50 images per camera) for the realization of the measurement accuracy for any and also unsteady and separate objects. From the literature, no highly accurate and tightly measuring methods are known, which can be operated with more than 15 Hz recording and projection rate, the limiting factor is the projection technique ( M. Schaffer, M. Große, and R. Kowarschik: High-speed pattern projection for three-dimensional shape measurement using laser speckles, Applied Optics 49 (18), 2010, 3622-3629 ; S. Zhang: Recent progress on real-time 3d shape measurement using digital fringe projection techniques, Optics and Lasers in Engineering 48, 2010, 149-158 ).

Bekannt sind auch Verfahren zur genauen 3D-Vermessung (relative Messunsicherheit 10–3 bis 10–4), welche mit Sequenzlängen von fünf bis zwanzig Bildern dichte Rekonstruktionen erlauben. Durch speziell angepasste Hardware wurden hier Projektionsraten von bis zu 180 Hz ( S. König and S. Gumhold: Image-based motion compensation for structured light scanning of dynamic surfaces, EG Workshop an Dynamic 3D Imaging, 2007 ; Z. Wang, H. Du, S. Park and H. Xie: Three-dimensional shape mea-surement with a fast and accurate approach, Appl. Opt. 48(6), 2009, 1052–1061 )realisiert, da bei der genannten relativen Unsicherheit Einbußen in der Qualität der Musterstruktur tolerierbar sind.Also known are methods for accurate 3D measurement (relative measurement uncertainty 10 -3 to 10 -4 ), which allow dense reconstructions with sequence lengths of five to twenty images. Due to specially adapted hardware, projection rates of up to 180 Hz ( S. König and S. Gumhold: Image-based motion compensation for structured light scanning of dynamic surfaces, EG Workshop on Dynamic 3D Imaging, 2007 ; Z. Wang, H. Du, S. Park and H. Xie: Three-dimensional shape mea-surement with a fast and accurate approach, Appl. Opt. 48 (6), 2009, 1052-1061 ), because losses in the quality of the pattern structure can be tolerated with the stated relative uncertainty.

Weiterhin sind neuere Arbeiten zur Hochgeschwindigkeitsvermessung bekannt ( Y. Gong and S. Zhang: Ultrafast 3-d shape measurement with an off-the-shelf dlp projector, Optics Express 18(19), 2010, 19743–19754 ; Y. Wang and S. Zhang: Superfast multifrequency phase-shifting technique with optimal pulse width modulation, Optics Express 19, 2011, 5149–5155 ; S. S. Gorthi and P. Rastogi: Fringe projection techniques: Whither we are?, Optics and Lasers in Engineering 48, 2010, 133–140 ; J. Salvi, S. Fernandez, T. Pribanic, and X. Llado: A state of the art in structured light patterns for surface profilometry. Pattern Recognition 43(8), 2010, 2666–2680 ), welche durch Verwendung spezieller Ansteuersoftware und/oder Mustererzeugungseinheiten Projektionsraten von bis zu 10.000 Hz ermöglichen. Aufgrund der eingesetzten Technik sind bei diesen Projektionsraten nur Binärbilder darstellbar, so dass herkömmliche Verfahren angepasst oder komplett neue Verfahren zur strukturierten Beleuchtung entwickelt werden müssen. Die bisher realisierten relativen Messgenauigkeiten (10–2 bis 10–3) sind allerdings für viele Anwendungen zu ungenau, und oftmals sind unstetige Objekte nicht in ihrer kompletten Form vermessbar.Furthermore, recent work on high-speed surveying are known ( Y. Gong and S. Zhang: Ultrafast 3-d shape measurement with an off-the-shelf dlp projector, Optics Express 18 (19), 2010, 19743-19754 ; Y. Wang and S. Zhang: Superfast multifrequency phase-shifting technique with Optimal Pulse Width Modulation, Optics Express 19, 2011, 5149-5155 ; SS Gorthi and P. Rastogi: Fringe projection techniques: Whither we are ?, Optics and Lasers in Engineering 48, 2010, 133-140 ; J. Salvi, S. Fernandez, T. Pribanic, and X. Llado: A state-of-the-art in structured light patterns for surface profilometry. Pattern Recognition 43 (8), 2010, 2666-2680 ), which enable projection rates of up to 10,000 Hz by using special control software and / or pattern generation units. Due to the At this projection rate, only binary images can be displayed, so that conventional methods have to be adapted or completely new methods for structured illumination have to be developed. However, the relative measurement accuracies (10 -2 to 10 -3 ) realized so far are too inaccurate for many applications, and often unsteady objects can not be measured in their complete form.

Alle beschriebenen Verfahren benötigen für die Signalisierung der Objektoberfläche bei komplexen Objekten verschiedene Musterstrukturen, so dass der Einsatz von digitalen Projektoren wie DMD oder LCD-Projektoren zwingend ist, und folglich die maximale Projektionsrate für hohe Messgenauigkeiten technisch auf 255 Hz sowie für schlechtere Messgenauigkeiten durch Projektion von Binärbildern auf 10.000 Hz begrenzt ist. Mit diesem bekannten Stand der Technik sind deshalb hochgenaue, dichte 3D-Vermessungen mit kurzen Messzeiten bisher nicht realisierbar.All of the described methods require different pattern structures for the signaling of the object surface in complex objects, so that the use of digital projectors such as DMD or LCD projectors is mandatory, and consequently the maximum projection rate for high measurement accuracies technically to 255 Hz and for worse measurement accuracies by projection of Binary images is limited to 10,000 Hz. With this known state of the art, therefore, highly accurate, dense 3D measurements with short measuring times have not been possible up to now.

Der Erfindung liegt die Aufgabe zu Grunde, das Objekt mit geringem Aufwand, schnellstmöglich und hochgenau dreidimensional zu vermessen.The invention is based on the object to measure the object with little effort, as quickly as possible and highly accurate three-dimensional.

Dabei sollen bei hohen Messgenauigkeiten (relative Messgenauigkeit besser als 1.0·10–4) sehr schnelle 3D Aufnahmeraten (höher als 200 Hz, d. h. mehr als 200 3D Aufnahmen pro Sekunde) erzielbar sein.At high measurement accuracies (relative measurement accuracy better than 1.0 · 10 -4 ), very fast 3D acquisition rates (higher than 200 Hz, ie more than 200 3D images per second) should be achievable.

Diese Aufgabe wird gelöst durch ein Verfahren zur 3D-Vermessung von Objekten, bei dem mindestens ein statistisches optisches Muster zur standortunterschiedlichen Detektion und dreidimensionalen Auswertung auf das Objekt abgebildet und dort in Lage und/oder Form beliebig verändert wird.This object is achieved by a method for 3D measurement of objects, in which at least one statistical optical pattern for location-differentiated detection and three-dimensional evaluation is imaged onto the object, where it is arbitrarily changed in position and / or shape.

Bei einer Vorrichtung zur Durchführung dieses Verfahrens ist zumindest eine Lichtquelle (Konstantlichtquelle oder steuerbare Pulslichtquelle) zur Erzeugung des zumindest einen statistischen und standortunterschiedlich zu dektektierenden optischen Musters vorgesehen, wobei im Strahlengang der Lichtquelle zum Objekt wenigstens ein den Strahlengang veränderndes Element angeordnet ist.In an apparatus for carrying out this method, at least one light source (constant light source or controllable pulsed light source) is provided for generating the at least one random optical pattern to be locally differentiated, wherein at least one element changing the beam path is arranged in the beam path of the light source.

Im Gegensatz zu allen im Stand der Technik beschriebenen Verfahren wird die Messgenauigkeit unter Verwendung einer einzigen statistischen Musterstruktur, welche in Form und/oder Lage auf dem Objekt kontinuierlich verändert wird, realisiert. Durch den Verzicht auf die Verwendung einer definierten Mustersequenz verschiedenartiger Musterstrukturen wird keine flexible Projektionseinheit benötigt. Damit werden alle Limitierungen, welche durch den Bildaufbau sowie die Projektionsrate üblicher Projektionseinheiten bestehen, umgangen. Das heißt insbesondere, dass mit beliebiger Aufnahmerate gearbeitet werden kann, da sich zum Beispiel eine Bewegung des Musters über das Objekt mit hinreichender großer Geschwindigkeit realisieren lässt, und somit das größte momentane Problem schnell messender Systeme behoben wird. Weiterhin wird durch die Art der Projektion auch im Fall schnell messender Systeme stets eine grauwertige Musterstruktur erzeugt, und somit die Messgenauigkeit bisheriger schnell messender Verfahren unter Verwendung hochfrequenter Binärbilder deutlich verbessert (in etwa um den Faktor 10). Des Weiteren ist die übliche Synchronisierung zwischen den Kameras und der Projektionseinheit nicht notwendig, da keine exakte Bildreihenfolge und/oder Lage des Musters eingehalten werden muss. Lediglich die Synchronisierung der Kameras untereinander muss sichergestellt werden. Dies erhöht die Flexibilität möglicher Messanordnungen, da keine Verbindung und kein direkter Informationsaustausch zwischen der Projektionsquelle und den Aufnahmegeräten mehr bestehen muss. Da zur Projektion des festen Musters hochwertige Projektionsgeräte, beispielsweise Dia-Projektoren, verwendet werden können, die im Vergleich mit anderen Projektoren, insbesondere modernen DLP-Projektoren, noch immer den höchsten Kontrastumfang sowie die größte Auflösung realisieren, ließen sich mit dem beschriebenen Verfahren auch langsam messende Verfahren bzgl. ihrer Messgenauigkeit verbessern. Darüber hinaus ist keine Korrektur der Gammafunktion des Projektionsgerätes notwendig, wie es bei digitalen Projektionsgeräten erforderlich ist. Weiterhin werden kein Ansteuerungsrechner und keine Ansteuerelektronik für die Projektionseinheit benötigt, was den Verfahrensaufwand weiter reduziert.In contrast to all methods described in the prior art, the measurement accuracy is realized using a single statistical pattern structure which is continuously changed in shape and / or position on the object. By eliminating the use of a defined pattern sequence of various pattern structures, no flexible projection unit is needed. Thus, all limitations that exist through the image structure and the projection rate of conventional projection units, bypassed. This means, in particular, that it is possible to work with any desired acquisition rate, since, for example, a movement of the pattern over the object can be realized with sufficient high speed, and thus the largest current problem of fast measuring systems is eliminated. Furthermore, the type of projection, even in the case of fast measuring systems, always produces a gray-scale pattern structure, and thus significantly improves the measurement accuracy of previous fast-measuring methods using high-frequency binary images (approximately by a factor of 10). Furthermore, the usual synchronization between the cameras and the projection unit is not necessary, since no exact picture order and / or position of the pattern must be maintained. Only the synchronization of the cameras with each other must be ensured. This increases the flexibility of possible measurement arrangements, since no connection and no direct exchange of information between the projection source and the recorders must exist. Since the projection of the fixed pattern high-quality projection equipment, such as slide projectors can be used, which still in comparison with other projectors, especially modern DLP projectors, realize the highest contrast range and the largest resolution, could be slow with the described method improve measuring procedures with regard to their measuring accuracy. In addition, no correction of the gamma function of the projection device is necessary, as is required in digital projection devices. Furthermore, no control computer and no control electronics for the projection unit are needed, which further reduces the processing costs.

Die Erfindung soll nachstehend anhand einer in der Zeichnung dargestellten Vorrichtung zur schnellen und hochgenauen 3D-Messung von Objekten als Ausführungsbeispiel näher erläutert werden.The invention will be explained below with reference to a device shown in the drawing for fast and high-precision 3D measurement of objects as an example.

Von einem Objekt 1 soll die Oberfläche 2 dreidimensional vermessen und rekonstruiert werden. Zu diesem Zweck wird ein statistisches Muster von einem Lichtbild 3 in einem Projektor 4 über einen Umlenkspiegel 5 auf die Oberfläche 2 projiziert. Der Umlenkspiegel 5 ist an einem Motor 6 befestigt, und zwar derart, dass dessen Achse 7 die Ebene des Umlenkspiegels 5 nahezu, aber nicht ganz, senkrecht schneidet. Durch Rotation des Motors 6 wird der Umlenkspiegel 5 in Bewegung versetzt, und durch die leichte Verkippung der Spiegelebenennormale zur Achse 7 des Motors 6 wird eine taumelnde Bewegung des Umlenkspiegels 5 erreicht. Aufgrund dieser taumelnden Bewegung des Umlenkspiegels 5 bewegt sich das projizierte Bild des Lichtbilds 3 nun ebenfalls in taumelnder Art und Weise über die zu vermessende Oberfläche 2 des Objekts 1. Der dabei während einer vollständigen Umdrehung des Spiegels stets beleuchtete Bereich stellt dabei die Begrenzung des Messvolumens dar.From an object 1 should the surface 2 measured and reconstructed three-dimensionally. For this purpose, a statistical pattern of a photograph is created 3 in a projector 4 via a deflection mirror 5 on the surface 2 projected. The deflection mirror 5 is on an engine 6 attached, in such a way that its axis 7 the plane of the deflecting mirror 5 almost, but not quite, vertical cuts. By rotation of the engine 6 becomes the deflection mirror 5 set in motion, and by the slight tilting of the mirror plane normal to the axis 7 of the motor 6 becomes a tumbling movement of the deflecting mirror 5 reached. Because of this tumbling movement of the deflecting mirror 5 the projected image of the photograph moves 3 now also in a tumbling manner over the surface to be measured 2 of the object 1 , The area which is always illuminated during a complete rotation of the mirror represents the limitation of the measuring volume.

Mit zwei zueinander synchronisierten Kameras 8, 9, welche vorab bezüglich der inneren und äußeren Parameter des Stereosystems kalibriert worden sind, wird von unterschiedlichen Standorten eine Anzahl von beispielsweise 12 Bildern aufgenommen. Diese Stereobildsequenz wird an einen Rechner (aus Gründen der Übersichtlichkeit nicht dargestellt) übertragen. Bei der rechentechnischen Auswertung der besagten Stereobildsequenz werden unter Verwendung der etablierten Methode der Zeitkorrelation homologe Punkte in bekannter Weise einander zugeordnet und aus diesen mit Hilfe der ebenfalls bekannten Kalibrierparameter 3D-Punkte im Raum bestimmt, welche nun je nach Anwendung weiterverarbeitet werden können. Durch die motorgesteuerte Bewegung des Umlenkspiegels 5 kann eine sehr schnelle Veränderung des projizierten statistischen Musters auf der zu vermessenden Oberfläche 2 und damit eine sehr schnelle hochauflösende Rekonstruktion der Oberfläche 2 erreicht werden. Anstatt des motorgesteuerten Spiegels könnten zur Mustervariation beispielsweise ein automatisches Zoomobjektiv, eine Dia-verschiebende Mechanik oder ein lichtveränderndes Element, beispielsweise ein lichtbeugendes oder lichtbrechendes Element, zum Einsatz kommen. Insbesondere könnten Diffraktiv-Optische Elemente (DOE) als lichtbeugendes Element verwendet werden, sei es durch Verwendung von digital schaltbaren Spatial-Light-Modulatoren oder im einfachsten Fall durch mechanische Verschiebung des DOE, wobei hier jeweils eine kohärente Lichtquelle verwendet werden sollte. Zur Realisierung einer Strahlablenkung mittels lichtbrechendem Element könnte beispielsweise ein drehbarer Keil Verwendung finden. With two synchronized cameras 8th . 9 , which have been previously calibrated with respect to the inner and outer parameters of the stereo system, a number of, for example, 12 images are taken from different locations. This stereo image sequence is transmitted to a computer (not shown for reasons of clarity). In the computational evaluation of the said stereo image sequence, homologous points are assigned to one another in a known manner using the established method of time correlation and 3D points in space are determined therefrom with the aid of the likewise known calibration parameters, which can now be further processed depending on the application. Due to the motor-controlled movement of the deflecting mirror 5 can be a very fast change of the projected statistical pattern on the surface to be measured 2 and thus a very fast high-resolution reconstruction of the surface 2 be achieved. Instead of the motor-controlled mirror, for example, an automatic zoom lens, a slide-shifting mechanism or a light-changing element, for example a light-diffractive or refractive element, could be used for the pattern variation. In particular, Diffractive Optical Elements (DOE) could be used as a diffractive element, either by using digitally switchable spatial light modulators or, in the simplest case, by mechanical displacement of the DOE, in which case a coherent light source should be used. To realize a beam deflection by means of refractive element, for example, a rotatable wedge could be used.

BezugszeichenlisteLIST OF REFERENCE NUMBERS

11
Objektobject
22
Oberfläche des Objekts 1 Surface of the object 1
33
Lichtbildphotograph
44
Projektorprojector
55
Umlenkspiegeldeflecting
66
Motorengine
77
Achse des Motors 6 Axis of the motor 6
8, 98, 9
Kameracamera

ZITATE ENTHALTEN IN DER BESCHREIBUNG QUOTES INCLUDE IN THE DESCRIPTION

Diese Liste der vom Anmelder aufgeführten Dokumente wurde automatisiert erzeugt und ist ausschließlich zur besseren Information des Lesers aufgenommen. Die Liste ist nicht Bestandteil der deutschen Patent- bzw. Gebrauchsmusteranmeldung. Das DPMA übernimmt keinerlei Haftung für etwaige Fehler oder Auslassungen.This list of the documents listed by the applicant has been generated automatically and is included solely for the better information of the reader. The list is not part of the German patent or utility model application. The DPMA assumes no liability for any errors or omissions.

Zitierte PatentliteraturCited patent literature

  • DE 19623172 C1 [0003] DE 19623172 C1 [0003]

Zitierte Nicht-PatentliteraturCited non-patent literature

  • W. Schreiber and G. Notni: Theory and arrangements of self-calibrating whole-body three-dimensional measurement systems using fringe projection technique, Optical Engineering 39, 2000, 159–169 [0003] W. Schreiber and G. Notni: Theory and arrangements of self-calibrating whole-body three-dimensional measurement systems using the fringe projection technique, Optical Engineering 39, 2000, 159-169 [0003]
  • J. Gühring, Dense 3-D surface acquisition by structured light using off-the-shelf components, videometrics and optical methods for 3D shape measurement 4309, 2001, 220–231 [0003] J. Guhring, Dense 3-D surface acquisition by structured light using off-the-shelf components, videometrics and optical methods for 3D shape measurement 4309, 2001, 220-231 [0003]
  • A. Wiegmann, H. Wagner, R. Kowarschik: Human face measurement by projecting bandlimited random patterns, Optics Express 14, 2006, 7692–7698 [0003] A. Wiegmann, H. Wagner, R. Kowarschik: Human Face Measurement by Projecting Bandlimited Random Patterns, Optics Express 14, 2006, 7692-7698 [0003]
  • M. Schaffer, M. Große, and R. Kowarschik: High-speed pattern projection for three-dimensional shape measurement using laser speckles, Applied Optics 49(18), 2010, 3622–3629 [0004] M. Schaffer, M. Grosse, and R. Kowarschik: High-speed pattern projection for three-dimensional shape measurement using laser speckles, Applied Optics 49 (18), 2010, 3622-3629 [0004]
  • S. Zhang: Recent progresses an real-time 3d shape measurement using digital fringe projection techniques, Optics and Lasers in Engineering 48, 2010, 149–158 [0004] S. Zhang: Recent progress in real-time 3d shape measurement using digital fringe projection techniques, optics and lasers in Engineering 48, 2010, 149-158 [0004]
  • S. König and S. Gumhold: Image-based motion compensation for structured light scanning of dynamic surfaces, EG Workshop an Dynamic 3D Imaging, 2007 [0005] S.King and S.Gumhold: Image-based motion compensation for Structured Light Scanning of Dynamic Surfaces, EC Workshop on Dynamic 3D Imaging, 2007 [0005]
  • Z. Wang, H. Du, S. Park and H. Xie: Three-dimensional shape mea-surement with a fast and accurate approach, Appl. Opt. 48(6), 2009, 1052–1061 [0005] Z. Wang, H. Du, S. Park and H. Xie: Three-dimensional shape mea-surement with a fast and accurate approach, Appl. Opt. 48 (6), 2009, 1052-1061 [0005]
  • Y. Gong and S. Zhang: Ultrafast 3-d shape measurement with an off-the-shelf dlp projector, Optics Express 18(19), 2010, 19743–19754 [0006] Y. Gong and S. Zhang: Ultrafast 3-d shape measurement with an off-the-shelf dlp projector, Optics Express 18 (19), 2010, 19743-19754 [0006]
  • Y. Wang and S. Zhang: Superfast multifrequency phase-shifting technique with optimal pulse width modulation, Optics Express 19, 2011, 5149–5155 [0006] Y. Wang and S. Zhang: Superfast multifrequency phase-shifting technique with Optimal Pulse Width Modulation, Optics Express 19, 2011, 5149-5155 [0006]
  • S. S. Gorthi and P. Rastogi: Fringe projection techniques: Whither we are?, Optics and Lasers in Engineering 48, 2010, 133–140 [0006] SS Gorthi and P. Rastogi: Fringe projection techniques: Whither we are ?, Optics and Lasers in Engineering 48, 2010, 133-140 [0006]
  • J. Salvi, S. Fernandez, T. Pribanic, and X. Llado: A state of the art in structured light patterns for surface profilometry. Pattern Recognition 43(8), 2010, 2666–2680 [0006] J. Salvi, S. Fernandez, T. Pribanic, and X. Llado: A state-of-the-art in structured light patterns for surface profilometry. Pattern Recognition 43 (8), 2010, 2666-2680 [0006]

Claims (10)

Verfahren zur 3D-Messung von Objekten, bei dem zumindest ein statistisches optisches Muster zur standortunterschiedlichen Detektion und dreidimensionalen Auswertung auf das Objekt abgebildet und dort in Lage und/oder Form beliebig verändert wird.Method for the 3D measurement of objects, in which at least one statistical optical pattern for location-differentiated detection and three-dimensional evaluation is imaged onto the object where it is arbitrarily changed in position and / or shape. Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass das zumindest eine statistische optische Muster auf das Objekt projiziert und über dieses verschoben wird.A method according to claim 1, characterized in that the at least one statistical optical pattern is projected onto the object and moved over this. Verfahren nach Anspruch 2, dadurch gekennzeichnet, dass das zumindest eine statistische optische Muster in Rotationsbewegung auf dem Objekt verschoben wird.A method according to claim 2, characterized in that the at least one statistical optical pattern is moved in rotational movement on the object. Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass das zumindest eine statistische optische Muster auf das Objekt projiziert und auf diesem beliebig und ohne vorgegebene Koordinatenrichtung bewegt wird.A method according to claim 1, characterized in that the at least one statistical optical pattern is projected onto the object and moved on this arbitrarily and without predetermined coordinate direction. Verfahren nach Anspruch 4, dadurch gekennzeichnet, dass das zumindest eine statistische optische Muster auf dem Objekt hin und her bewegt wird.A method according to claim 4, characterized in that the at least one statistical optical pattern is moved back and forth on the object. Vorrichtung zur Durchführung des Verfahrens gemäß einem oder mehreren der Ansprüche 1 bis 6, dadurch gekennzeichnet, dass zumindest eine Lichtquelle zur Erzeugung des zumindest einen statistischen und standortunterschiedlich zu dektektierenden optischen Musters vorgesehen ist, wobei im Strahlengang der Lichtquelle zum Objekt wenigstens ein den Lichtstrahl veränderndes Element angeordnet ist.Apparatus for carrying out the method according to one or more of claims 1 to 6, characterized in that at least one light source for generating the at least one random and different location to be decoded optical pattern is provided, wherein in the beam path of the light source to the object at least one light beam changing element is arranged. Vorrichtung nach Anspruch 6, dadurch gekennzeichnet, dass als wenigstens ein den Lichtstrahl veränderndes Element ein rotierender oder vibrierender Spiegel vorgesehen ist.Apparatus according to claim 6, characterized in that as at least one light beam changing element, a rotating or vibrating mirror is provided. Vorrichtung nach Anspruch 6, dadurch gekennzeichnet, dass als wenigstens ein den Lichtstrahl veränderndes Element ein veränderliches lichtbeugendes oder lichtbrechendes Element, vorgesehen ist.Apparatus according to claim 6, characterized in that as at least one light beam changing element, a variable light-diffractive or refractive element is provided. Vorrichtung nach Anspruch 6, dadurch gekennzeichnet, dass als zumindest eine Lichtquelle eine steuerbare Pulslichtquelle vorgesehen ist.Apparatus according to claim 6, characterized in that a controllable pulsed light source is provided as at least one light source. Vorrichtung nach Anspruch 6, dadurch gekennzeichnet, dass als zumindest eine Lichtquelle eine Konstantlichtquelle vorgesehen ist.Apparatus according to claim 6, characterized in that a constant light source is provided as at least one light source.
DE102011101476.8A 2011-05-11 2011-05-11 Process for 3D measurement of objects Active DE102011101476B4 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
DE102011101476.8A DE102011101476B4 (en) 2011-05-11 2011-05-11 Process for 3D measurement of objects
PCT/DE2012/000511 WO2012152261A1 (en) 2011-05-11 2012-05-10 Method for the 3d-measurement of objects

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE102011101476.8A DE102011101476B4 (en) 2011-05-11 2011-05-11 Process for 3D measurement of objects

Publications (2)

Publication Number Publication Date
DE102011101476A1 true DE102011101476A1 (en) 2012-11-15
DE102011101476B4 DE102011101476B4 (en) 2023-05-25

Family

ID=46489133

Family Applications (1)

Application Number Title Priority Date Filing Date
DE102011101476.8A Active DE102011101476B4 (en) 2011-05-11 2011-05-11 Process for 3D measurement of objects

Country Status (2)

Country Link
DE (1) DE102011101476B4 (en)
WO (1) WO2012152261A1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102011121696A1 (en) 2011-12-16 2013-06-20 Friedrich-Schiller-Universität Jena Method for 3D measurement of depth-limited objects
DE102015001365A1 (en) 2015-02-03 2016-08-04 EnShape GmbH METHOD FOR 3D-MEASUREMENT OF LIQUIDS AND GELS
DE102017113475A1 (en) 2016-06-20 2017-12-21 Cognex Corporation Device for projecting a temporally variable optical pattern onto an object to be measured three-dimensionally
WO2017220598A1 (en) * 2016-06-20 2017-12-28 Cognex Corporation Method for the three dimensional measurement of moving objects during a known movement
DE102017007191A1 (en) 2017-07-27 2019-01-31 Friedrich-Schiller-Universität Jena Method and device for pattern generation for the 3D measurement of objects

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103017680B (en) * 2012-12-05 2016-03-16 长春工业大学 A kind of checkout equipment of automobile primary air bag assembling overall size

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5416319A (en) * 1993-12-03 1995-05-16 Hughes Aircraft Company Optical scanner with dual rotating wedge mirrors
DE19623172C1 (en) 1996-06-10 1997-10-23 Univ Magdeburg Tech Three-dimensional optical measuring method for object surface
DE102006001634B3 (en) * 2006-01-11 2007-03-01 Tropf, Hermann Creation of distance-image from correspondence between pixels from two cameras, by illuminating with random grid, and comparing brightness ratios of pixels
DE102006061712A1 (en) * 2006-12-28 2008-07-03 Tropf, Hermann Distance image generating method for use in e.g. robotics, involves illuminating scene with random- or pseudo random pattern i.e. stripe pattern, and modulating pattern in displacement direction and in direction of epipolar lines
DE102008002725A1 (en) * 2008-06-27 2009-12-31 Robert Bosch Gmbh Distance image generating method for three-dimensional reconstruction of object surface from correspondence of pixels of stereo image, involves pixelwisely setting object surface in proportional to relative image
EP2175303A1 (en) * 2008-10-08 2010-04-14 SELEX COMMUNICATIONS S.p.A. Laser scanning device
EP2199737A1 (en) * 2008-12-18 2010-06-23 Sick Ag 3d camera illumination unit
DE102009040981A1 (en) * 2009-09-10 2011-03-17 Friedrich-Schiller-Universität Jena Method for three-dimensional reconstruction of objects for projecting pattern sequences on reconstructing object, involves detecting pattern sequences in form of pattern views, which are compared with each other in different image views

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3625618A (en) * 1969-10-23 1971-12-07 Infrared Ind Inc Optical contour device and method
DE4218219C2 (en) * 1992-06-03 1998-05-07 Geyer Medizin Und Fertigungste Device for the contactless measurement of a difficult to access, three-dimensional medical or dental object
US6700669B1 (en) 2000-01-28 2004-03-02 Zheng J. Geng Method and system for three-dimensional imaging using light pattern having multiple sub-patterns
US6754370B1 (en) 2000-08-14 2004-06-22 The Board Of Trustees Of The Leland Stanford Junior University Real-time structured light range scanning of moving scenes
US7103212B2 (en) 2002-11-22 2006-09-05 Strider Labs, Inc. Acquisition of three-dimensional images by an active stereo technique using locally unique patterns
JP2006528770A (en) 2003-07-24 2006-12-21 コグニテンス リミテッド Method and system for three-dimensional surface reconstruction of an object
DE102007007192A1 (en) * 2006-09-13 2008-03-27 Micro-Epsilon Optronic Gmbh Measuring arrangement for detecting surface of e.g. pipe, has mirror arrangement with mirrors that are arranged such that part of measuring area is guided to surface of object to be detected through mirrors
DE102007019267A1 (en) * 2007-04-24 2008-10-30 Degudent Gmbh Measuring arrangement and method for three-dimensional measuring of an object
ATE442570T1 (en) 2007-07-20 2009-09-15 Sick Ag METHOD FOR OPERATING A 3D SENSOR
DE102007054906B4 (en) * 2007-11-15 2011-07-28 Sirona Dental Systems GmbH, 64625 Method for optical measurement of the three-dimensional geometry of objects
DE102008064104B4 (en) 2008-12-19 2014-06-18 Aimess Services Gmbh Device and method for the three-dimensional optical measurement of highly reflective or transparent objects
FR2940831B1 (en) * 2009-01-06 2011-09-30 Peugeot Citroen Automobiles Sa DEVICE FOR LIGHTING AN ENTITY OF AT LEAST ONE MOTOR VEHICLE
US7866558B2 (en) * 2009-04-07 2011-01-11 Metrologic Instruments, Inc. Laser scanner

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5416319A (en) * 1993-12-03 1995-05-16 Hughes Aircraft Company Optical scanner with dual rotating wedge mirrors
DE19623172C1 (en) 1996-06-10 1997-10-23 Univ Magdeburg Tech Three-dimensional optical measuring method for object surface
DE102006001634B3 (en) * 2006-01-11 2007-03-01 Tropf, Hermann Creation of distance-image from correspondence between pixels from two cameras, by illuminating with random grid, and comparing brightness ratios of pixels
DE102006061712A1 (en) * 2006-12-28 2008-07-03 Tropf, Hermann Distance image generating method for use in e.g. robotics, involves illuminating scene with random- or pseudo random pattern i.e. stripe pattern, and modulating pattern in displacement direction and in direction of epipolar lines
DE102008002725A1 (en) * 2008-06-27 2009-12-31 Robert Bosch Gmbh Distance image generating method for three-dimensional reconstruction of object surface from correspondence of pixels of stereo image, involves pixelwisely setting object surface in proportional to relative image
EP2175303A1 (en) * 2008-10-08 2010-04-14 SELEX COMMUNICATIONS S.p.A. Laser scanning device
EP2199737A1 (en) * 2008-12-18 2010-06-23 Sick Ag 3d camera illumination unit
DE102009040981A1 (en) * 2009-09-10 2011-03-17 Friedrich-Schiller-Universität Jena Method for three-dimensional reconstruction of objects for projecting pattern sequences on reconstructing object, involves detecting pattern sequences in form of pattern views, which are compared with each other in different image views

Non-Patent Citations (11)

* Cited by examiner, † Cited by third party
Title
A. Wiegmann, H. Wagner, R. Kowarschik: Human face measurement by projecting bandlimited random patterns, Optics Express 14, 2006, 7692-7698
J. Gühring, Dense 3-D surface acquisition by structured light using off-the-shelf components, videometrics and optical methods for 3D shape measurement 4309, 2001, 220-231
J. Salvi, S. Fernandez, T. Pribanic, and X. Llado: A state of the art in structured light patterns for surface profilometry. Pattern Recognition 43(8), 2010, 2666-2680
M. Schaffer, M. Grobetae, and R. Kowarschik: High-speed pattern projection for three-dimensional shape measurement using laser speckles, Applied Optics 49(18), 2010, 3622-3629
S. König and S. Gumhold: Image-based motion compensation for structured light scanning of dynamic surfaces, EG Workshop an Dynamic 3D Imaging, 2007
S. S. Gorthi and P. Rastogi: Fringe projection techniques: Whither we are?, Optics and Lasers in Engineering 48, 2010, 133-140
S. Zhang: Recent progresses an real-time 3d shape measurement using digital fringe projection techniques, Optics and Lasers in Engineering 48, 2010, 149-158
W. Schreiber and G. Notni: Theory and arrangements of self-calibrating whole-body three-dimensional measurement systems using fringe projection technique, Optical Engineering 39, 2000, 159-169
Y. Gong and S. Zhang: Ultrafast 3-d shape measurement with an off-the-shelf dlp projector, Optics Express 18(19), 2010, 19743-19754
Y. Wang and S. Zhang: Superfast multifrequency phase-shifting technique with optimal pulse width modulation, Optics Express 19, 2011, 5149-5155
Z. Wang, H. Du, S. Park and H. Xie: Three-dimensional shape mea-surement with a fast and accurate approach, Appl. Opt. 48(6), 2009, 1052-1061

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102011121696A1 (en) 2011-12-16 2013-06-20 Friedrich-Schiller-Universität Jena Method for 3D measurement of depth-limited objects
WO2013087065A1 (en) 2011-12-16 2013-06-20 Friedrich-Schiller-Universität Jena Method for the 3d measurement of depth-limited objects
DE102015001365A1 (en) 2015-02-03 2016-08-04 EnShape GmbH METHOD FOR 3D-MEASUREMENT OF LIQUIDS AND GELS
CN109791044A (en) * 2016-06-20 2019-05-21 康耐视公司 Method for carrying out three-dimensional measurement to the object of movement in the case where known movement
WO2017220598A1 (en) * 2016-06-20 2017-12-28 Cognex Corporation Method for the three dimensional measurement of moving objects during a known movement
WO2017220595A1 (en) 2016-06-20 2017-12-28 Cognex Corporetion Apparatus for projecting a time-variable optical pattern onto an object to be measured in three dimensions
KR20190020087A (en) * 2016-06-20 2019-02-27 코그넥스코오포레이션 Method for three-dimensional measurement of moving objects during known movements
DE102017113475A1 (en) 2016-06-20 2017-12-21 Cognex Corporation Device for projecting a temporally variable optical pattern onto an object to be measured three-dimensionally
US10502557B2 (en) 2016-06-20 2019-12-10 Cognex Corporation Method for the three dimensional measurement of a moving objects during a known movement
US10823552B2 (en) 2016-06-20 2020-11-03 Cognex Corporation Method for the three dimensional measurement of moving objects during a known movement
CN109791044B (en) * 2016-06-20 2021-03-16 康耐视公司 Method for three-dimensional measurement of a moving object with known movement
KR20210076205A (en) * 2016-06-20 2021-06-23 코그넥스코오포레이션 Method for the three-dimensional measuring of moving objects during known movement
KR102268151B1 (en) * 2016-06-20 2021-06-23 코그넥스코오포레이션 Method for three-dimensional measurement of moving objects during known movement
KR102345886B1 (en) * 2016-06-20 2022-01-03 코그넥스코오포레이션 Method for the three-dimensional measuring of moving objects during known movement
US11243072B2 (en) 2016-06-20 2022-02-08 Cognex Corporation Method for the three dimensional measurement of moving objects during a known movement
DE102017007191A1 (en) 2017-07-27 2019-01-31 Friedrich-Schiller-Universität Jena Method and device for pattern generation for the 3D measurement of objects

Also Published As

Publication number Publication date
DE102011101476B4 (en) 2023-05-25
WO2012152261A1 (en) 2012-11-15

Similar Documents

Publication Publication Date Title
EP2791619B1 (en) Method and device for the 3d measurement of depth-limited objects
EP2079981B1 (en) Device and method for the contactless detection of a three-dimensional contour
DE102011101476A1 (en) Method for 3D measurement of objects
DE102016002398B4 (en) Optical 3D sensor for fast and dense shape detection
EP2400261A1 (en) Optical measurement method and system for determining 3D coordination in a measuring object surface
WO2017220598A1 (en) Method for the three dimensional measurement of moving objects during a known movement
WO2002014845A1 (en) Optical measuring system
DE102006042311B4 (en) Three-dimensional measurement of objects in an extended angle range
WO2015048830A1 (en) Display or projection apparatus for a video signal, and light-emiting module and calibration method therefor
DE102016217628A1 (en) Movement of a surgical microscopy system
WO2009071611A2 (en) Recording method for the image of a recorded object and recording device
DE19919584A1 (en) 3D recording method and arrangement
DE10049103A1 (en) Correlating optical and x-ray images involves superimposing images in real time using devices for aligning source of x-ray energy through object, obtaining optical image of object
DE19846145A1 (en) Three-dimensional imaging device for shape measurement has transmitter array whose elements move in straight, parallel lines
DE10359104B3 (en) Method for dynamic, three-dimensional acquisition and display of a surface
EP2904988B1 (en) Method for intraoral three-dimensional measurement
DE102012001307A1 (en) Method for three dimensional measurement of objects, particularly under obstructive lighting conditions, involves detecting to be changed or multiple different patterns by detector, where patterns are projected on object surface
EP1808669B1 (en) Device and method for three dimensional optical measuring
DE19753246C2 (en) Device for determining three-dimensional data from objects
DE102007023920A1 (en) Method and device for surface detection of a spatial object
DE102015208442A1 (en) Method and device for determining at least one object image in an environment around a non-sensitive optical image sensor
EP0867689A2 (en) Microphotogrammatic measuring device
DE102017007189A1 (en) Method for 3D measurement of objects by coherent illumination
DE102018004078A1 (en) Method of structured illumination
WO2014114663A1 (en) Optical device and method for determining spatial coordinates of surfaces of macroscopic objects by triangulating two line-scan cameras

Legal Events

Date Code Title Description
R163 Identified publications notified
R012 Request for examination validly filed

Effective date: 20140106

R016 Response to examination communication
R016 Response to examination communication
R016 Response to examination communication
R016 Response to examination communication
R082 Change of representative

Representative=s name: MEISSNER BOLTE PATENTANWAELTE RECHTSANWAELTE P, DE

R081 Change of applicant/patentee

Owner name: COGNEX IRELAND LTD., IE

Free format text: FORMER OWNER: FRIEDRICH-SCHILLER-UNIVERSITAET JENA, 07743 JENA, DE

R082 Change of representative

Representative=s name: MEISSNER BOLTE PATENTANWAELTE RECHTSANWAELTE P, DE

R016 Response to examination communication
R016 Response to examination communication
R082 Change of representative

Representative=s name: BARDEHLE PAGENBERG PARTNERSCHAFT MBB PATENTANW, DE

R016 Response to examination communication
R018 Grant decision by examination section/examining division
R130 Divisional application to

Ref document number: 102011123158

Country of ref document: DE

R026 Opposition filed against patent