DE102011054122A1 - Elektrochemische Zelle - Google Patents

Elektrochemische Zelle

Info

Publication number
DE102011054122A1
DE102011054122A1 DE102011054122A DE102011054122A DE102011054122A1 DE 102011054122 A1 DE102011054122 A1 DE 102011054122A1 DE 102011054122 A DE102011054122 A DE 102011054122A DE 102011054122 A DE102011054122 A DE 102011054122A DE 102011054122 A1 DE102011054122 A1 DE 102011054122A1
Authority
DE
Germany
Prior art keywords
lithium
preferably
electrochemical cell
electrode
carbonate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
DE102011054122A
Other languages
English (en)
Inventor
Simon Lux
Peter Bieker
Hinrich-Wilhelm Meyer
Tobias Placke
Stefano Passerini
Martin Winter
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Westfaelische Wilhelms Universitaet Muenster
Original Assignee
Westfaelische Wilhelms Universitaet Muenster
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Westfaelische Wilhelms Universitaet Muenster filed Critical Westfaelische Wilhelms Universitaet Muenster
Priority to DE102011054122A priority Critical patent/DE102011054122A1/de
Publication of DE102011054122A1 publication Critical patent/DE102011054122A1/de
Application status is Pending legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M12/00Hybrid cells; Manufacture thereof
    • H01M12/005Hybrid cells; Manufacture thereof composed of a half-cell of the capacitor type and of a half-cell of the primary or secondary battery type
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of or comprising active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/485Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of mixed oxides or hydroxides for inserting or intercalating light metals, e.g. LiTi2O4 or LiTi2OxFy
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of or comprising active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/583Carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0568Liquid materials characterised by the solutes

Abstract

Die Erfindung betrifft eine elektrochemische Zelle umfassend eine Lithiumionen reversibel aufnehmende und abgebende Elektrode, eine Anionen reversibel aufnehmende und abgebende Elektrode und einen Elektrolyten umfassend ein Lithiumsalz und ein Lösungsmittel, wobei die Lithiumionen reversibel aufnehmende und abgebende Elektrode Lithiumtitanat als Lithiumionen reversibel aufnehmendes und abgebendes Elektrodenmaterial umfasst.

Description

  • Die Erfindung betrifft eine elektrochemische Zelle, insbesondere eine sekundäre elektrochemische Zelle, die auf dem Dual-Ionen Insertions Prinzip beruht.
  • Sekundäre elektrochemische Zellen werden gängig auch als Akkumulatoren bezeichnet und unterscheiden sich von primären elektrochemischen Zellen durch ihre Wiederaufladbarkeit. Die Lithium-Ionen-Technologie ist derzeit die führende Technologie auf dem Gebiet der wiederaufladbaren Batteriespeichersysteme, insbesondere für Anwendungen in der portablen Elektronik. Lithium-Ionen-Batterien umfassen zwei Elektroden, die durch einen Separator voneinander getrennt sind. Der Ladungstransport erfolgt über einen Elektrolyten, der ein Lithiumsalz enthält, das in einem nicht-wässrigen, organischen Lösungsmittel gelöst ist. In Lithium-Ionen-Batterien werden Lithiumionen reversibel in die Elektrodenaktivmaterialien eingelagert bzw. ausgelagert. Beim Ladevorgang einer Lithium-Ionen-Batterie werden Li+-Ionen hierbei von der Kathode zur Anode transportiert und beim Entladevorgang wechseln die Li+-Ionen wieder von der Anode zur Kathode zurück.
  • Gängige Lithium-Ionen-Batterien weisen jedoch diverse Nachteile auf. So werden in Lithium-Ionen-Batterien als Elektrodenmaterial häufig Metalloxide aus Mischungen von Nickel und Cobalt verwendet, wobei durch die Verwendung von Nickel und vor allem durch Cobalt die Herstellungskosten stark erhöht werden. Zudem weisen die Schwermetalle Nickel und Cobalt eine hohe Toxizität auf.
  • Eine Alternative zu gängigen Lithium-Ionen-Batterien bilden die sogenannten Dual Graphit-Systeme, die auf einer Einlagerung von Lithium in eine Graphit-Anode und einer Einlagerung von Anionen in eine Graphit-Kathode beruhen. Die Graphit-Elektroden sind auch in Dual Graphit-Systemen durch einen Separator voneinander getrennt und der Ladungstransport erfolgt über einen Elektrolyten, der ein Lithiumsalz enthält. Beim Ladevorgang eines Dual Graphit-Systems wird jedoch das Lithiumion aus dem Elektrolyten in das Anodenaktivmaterial und parallel ein Anion, meist des Lithiumsalzes, in das Kathodenaktivmaterial eingelagert. Daher wird dieser Vorgang auch als duale Einlagerung oder Dual-Ionen Insertions Prinzip bezeichnet. Im geladenen Zustand ist der Elektrolyt des Dual Graphit-Systems somit an Li+ und Anion verarmt, da sich diese als Ladungsträger in den beiden Elektrodenaktivmaterialien befinden. Beim Entladen werden die Ionen gleichzeitig wieder an den Elektrolyten abgegeben und somit die Ionenkonzentration wieder erhöht.
  • Nachteilig bei Dual Graphit-Systemen ist jedoch, dass diese sehr hohe Lithiumsalz-Konzentrationen verwenden. Diese hohen Konzentrationen verringern bei niedrigen Temperaturen die Leitfähigkeit und damit die Kapazität der Zellen. Aufgrund der dualen Einlagerung von Li+ und Anion ist die Funktion einer solchen Zelle besonders stark von dem Zusammenspiel der einzelnen Komponenten, insbesondere den Elektroden und dem Lithiumsalz und dessen Konzentration abhängig. Weiterhin nachteilig bei Dual Graphit-Systemen ist, dass diese einen hohen Kapazitätsverlust beim ersten Zyklus aufweisen.
  • Der vorliegenden Erfindung lag daher die Aufgabe zu Grunde, eine elektrochemische Zelle zur Verfügung zu stellen, die mindestens einen der vorgenannten Nachteile des Standes der Technik überwindet. Insbesondere lag der vorliegenden Erfindung die Aufgabe zu Grunde, eine elektrochemische Zelle zur Verfügung zu stellen, die innerhalb des thermodynamischen Stabilitätsfensters organischer Elektrolyte arbeitet.
  • Diese Aufgabe wird gelöst durch eine elektrochemische Zelle, insbesondere eine sekundäre elektrochemische Zelle, umfassend eine Lithium reversibel aufnehmende und abgebende Elektrode, eine Anionen reversibel aufnehmende und abgebende Elektrode und einen Elektrolyten umfassend ein Lithiumsalz und ein Lösungsmittel, wobei die Lithium reversibel aufnehmende und abgebende Elektrode Lithiumtitanat als Lithium reversibel aufnehmendes und abgebendes Elektrodenmaterial umfasst.
  • Ein weiterer Gegenstand der Erfindung betrifft die Verwendung von Lithiumtitanat als Lithium reversibel aufnehmendes und abgebendes Elektrodenmaterial in einer elektrochemischen Zelle, insbesondere einer sekundären elektrochemischen Zelle, umfassend eine Lithium reversibel aufnehmende und abgebende Elektrode und eine Anionen reversibel aufnehmende und abgebende Elektrode.
  • Weitere vorteilhafte Ausgestaltungen der Erfindung ergeben sich aus den Unteransprüchen.
  • Überraschend wurde gefunden, dass eine elektrochemische Zelle beruhend auf dem Dual-Ionen Insertions Prinzip, umfassend eine Lithium reversibel aufnehmende und abgebende Lithiumtitanat-Elektrode, bei relativ geringen Konzentrationen des Lithiumsalzes von 1 M auch bei niedrigen Temperaturen eine gute Leitfähigkeit und damit gute Kapazität aufweisen kann.
  • Von Vorteil ist dabei, dass die, insbesondere sekundäre, elektrochemische Zelle reversibel innerhalb des thermodynamischen Stabilitätsfensters des organischen Elektrolyten mit guter Kapazität operieren kann. Von großem Vorteil ist, dass die, insbesondere sekundäre, elektrochemische Zelle eine hohe Effizienz des Lade/Entladevorgangs nach dem ersten Zyklus und nur einen sehr geringen Kapazitätsverlust aufweist. Insbesondere ist weiter von Vorteil, dass die elektrochemische Zelle eine erhöhte Sicherheit zur Verfügung stellen kann.
  • Von besonderem Vorteil ist, dass die insbesondere sekundäre elektrochemische Zelle eine gute Schnelllade- und insbesondere Entladefähigkeit aufweist. Die elektrochemische Zelle zeigt insbesondere den weiteren Vorteil, auch bei tiefen Temperaturen, beispielsweise in einem Temperaturbereich von –40°C bis +55°C, betrieben werden zu können. Dies ist insbesondere für eine Verwendung in der portablen Elektronik vorteilhaft. Weiterhin weist die insbesondere sekundäre elektrochemische Zelle mit Lithiumtitanat-Elektrode eine hohe Lebensdauer auf. Insbesondere ist dieses System weniger toxisch als Nickel- und Cobalt-haltige Lithium-Ionensysteme und daher umweltfreundlicher. Die Umweltfreundlichkeit dieser Zelle, die ohne Kobalt-und Nickel-haltige Verbindungen auskommt, ist ein großer Vorteil gegenüber gängigen Lithium-Ionen Batterien.
  • Unter dem Begriff "Lithiumtitanat" werden im Sinne der vorliegenden Erfindung Spinelle der Formel LixTiyO4, wobei 0,8 ≤ x ≤ 1,4 und 1,6 ≤ y ≤ 2,2 verstanden. Ein bevorzugtes Lithiumtitanat ist Li4Ti5O12.
  • Die Elektroden der elektrochemischen Zelle können Lithium oder Anionen reversibel aufnehmen und abgeben. Unter dem Begriff "reversibel aufnehmen und abgeben" wird im Sinne der vorliegenden Erfindung verstanden, dass die Aktivmaterialien der Elektroden Lithiumionen oder Anionen jeweils reversibel einlagern und auslagern, interkalieren und deinterkalieren, oder durch Verbindungsbildung oder Legierungsbildung aufnehmen und abgeben können. Unter dem Begriff reversibel "interkalieren und deinterkalieren" wird im Sinne der vorliegenden Erfindung insbesondere verstanden, dass eine Graphit- oder eine kohlenstoffbasierte Elektrode Lithiumionen oder Anionen aufnehmen und abgeben kann.
  • Die Elektroden sind üblicher Weise Kompositelektroden, die neben den die jeweiligen Ionen reversibel aufnehmenden und abgebenden bzw. interkalierenden und deinterkalierenden Materialien Binder und Additive enthalten können. Diese Elektrodenmaterialien werden meist auf eine Metallfolie oder eine kohlenstoffbasierte Stromsammlerfolie, die als Stromableiter fungiert, aufgebracht.
  • In bevorzugten Ausführungsformen umfasst die Lithium reversibel aufnehmende und abgebende Elektrode Lithiumtitanat im Bereich von ≥ 50 Gew.-% bis ≤ 98 Gew.-%, vorzugsweise im Bereich von ≥ 75 Gew.-% bis ≤ 95 Gew.-%, bevorzugt im Bereich von ≥ 80 Gew.-% bis ≤ 95 Gew.-%, bezogen auf das Gesamtgewicht der Elektrode.
  • In vorteilhafter Weise können Zellen mit einer Lithiumionen reversibel aufnehmenden und abgebenden Elektrode umfassend Lithiumtitanat in einem derartigen Bereich eine besonders gute Schnelllade- und Entladefähigkeit aufweisen.
  • In bevorzugten Ausführungsformen umfasst die Lithiumionen reversibel aufnehmende und abgebende Elektrode Lithiumtitanatpartikel mit einer Größe oder einem mittleren Durchmesser im Bereich von ≥ 0,1 nm bis ≤ 10 µm, vorzugsweise im Bereich von ≥ 0,5 nm bis ≤ 5 µm, besonders bevorzugt im Bereich von ≥ 1 nm bis ≤ 800 nm, ganz besonders bevorzugt im Bereich von ≥ 100 nm bis ≤ 500 nm.
  • Typische weitere Bestandteile einer Elektrode sind neben dem Lithiumionen reversibel aufnehmenden und abgebenden Elektroden- oder Aktivmaterial Additive und Binder. Das Gesamtgewicht der Lithiumtitanat-Elektrode umfasst daher das Lithiumionen reversibel aufnehmende und abgebende Elektrodenmaterial Lithiumtitanat, und weiterhin Additive und/oder Binder.
  • Geeignete Binder sind beispielsweise Polytetrafluorethylen (PTFE), Polyvinylidendifluorid-Hexafluorpropylen-Copolymer (PVDF-HFP), Styrol-Butadien Elastomer (SBR), Carboxymethylcellulosen (CMC) insbesondere Natrium-Carboxymethylcellulose (Na-CMC), oder Polyvinylidendifluorid (PVDF). Geeignete Additive sind insbesondere Leitfähigkeitszusätze wie Metallpartikel, beispielsweise Kupferpartikel, insbesondere Metallpartikel mit einer Größe im Nanometerbereich, sowie leitfähige Kohlenstoffmaterialien insbesondere Ruße, Kohlenstofffasern, Graphite, Kohlenstoffnanoröhrchen oder deren Mischungen. Geeignete Ruße sind beispielsweise die unter der englischen Bezeichnung Carbon Black bekannten feinteiligen Industrie-Ruße.
  • Die positive Elektrode, die Kathode, der elektrochemischen Zelle kann Anionen reversibel aufnehmen und abgeben.
  • Bei den erfindungsgemäßen Zellen umfasst die positive Elektrode bevorzugt eine Verbindung, in die das Anion eingelagert werden kann. Insbesondere eignen sich Kohlenstoff- oder Metallverbindungen insbesondere Alkali-, Erdalkali- oder Übergangsmetallverbindungen wie Oxide, Halogenide, Phosphate, Chalkogenide wie Sulfide und Selenide, Silikate, Aluminate oder Hydroxide. Diese Verbindungen insbesondere auch Aluminate und Hydroxide sind häufig schichtförmige Verbindungen, die Anionen zwischen die Schichten einlagern können.
  • Vorzugsweise ist das Anionen reversibel aufnehmende und abgebende Elektrodenmaterial ausgewählt aus der Gruppe umfassend
    • – Kohlenstoff, Graphit, Graphen, oder Kohlenstoffnanoröhrchen,
    • – fluorierte Kohlenstoffe der Formel (CFx)n wobei x im Bereich von 0,01 bis 1,24 liegt und n im Bereich von 1 bis 1000 liegt,
    • – Kohlenstoffoxide der Formel (COy)m, die bei Raumtemperatur fest sind und wobei y im Bereich von 0,01 bis 1 liegt und m im Bereich von 1 bis 100 liegt,
    • – Sulfide MzSy von Übergangsmetallen M ausgewählt aus der Gruppe umfassend Ti, V, Cr, Mn, Fe, Co, Cd, Ta, Ni, Cu, Zn, Zr, Nb, Mo, Sn und/oder Al wobei y im Bereich von 1 bis 10 liegt und z im Bereich von 1 bis 3 liegt,
    • – Selenide MzSey von Übergangsmetallen M ausgewählt aus der Gruppe umfassend Ti, V, Cr, Mn, Fe, Co, Cd, Ta, Ni, Cu, Zn, Zr, Nb, Mo, Sn und/oder Al wobei y im Bereich von 1 bis 10 liegt und z im Bereich von 1 bis 3 liegt,
    • – Telluride MzTey von Übergangsmetallen M ausgewählt aus der Gruppe umfassend Ti, V, Cr, Mn, Fe, Co, Cd, Ta, Ni, Cu, Zn, Zr, Nb, Mo, Sn und/oder Al wobei y im Bereich von 1 bis 10 liegt und z im Bereich von 1 bis 3 liegt,
    • – komplexe Halogenide von Metallen ausgewählt aus der Gruppe umfassend Na, Mg, Al, Si, P, S, K, Ca, Ti, Zn, Cu, Ni, Co, Fe, Mn, Cr, V, Zr, Nb, Mo und/oder Sn,
    • – anioneninsertierende Metall-Oxide der Übergangsmetalle, bevorzugt ausgewählt aus der Gruppe umfassend W, Mo, Cr, V und/oder Ti,
    • – Metall-Silikate der Formel Men[(SixOy)4x-2y] wobei Me ausgewählt ist aus der Gruppe umfassend Fe, Li, Ni, Ti, Na, K, Ba, Ca, Mg, Mn, Co, Al, Sn, Ag, Au, Cu und/oder Sb, und 1 ≤x ≤ 65, 1 ≤y ≤ 130 und 1 ≤n ≤ 12, wobei Si bis zu einem Verhältnis von 1:1 durch Al ersetzt werden kann,
    • – Metall-Aluminate der Formel (MeAl(OH)x) wobei Me ausgewählt ist aus der Gruppe umfassend Fe, Li, Ni, Ti, Na, K, Ba, Ca, Mg, Mn, Co, Al, Sn, Ag, Au, Cu und/oder Sb und 2 ≤ x ≤ 7, und/oder
    • – schichtförmige, gemischte Metallhydroxide entsprechend im Wesentlichen der allgemeinen Formel: MmDdT(OH)(3+m+d), worin M ist ein Metallkation ausgewählt aus der Gruppe der Erdalkali- und Alkalimetalle, bevorzugt Li, Na, Mg, Ca, und/oder K, besonders bevorzugt Li und Ca und insbesondere bevorzugt Ca, und m liegt im Bereich von 0 bis 8, D ist wenigstens ein zweiwertiges Metallkation aus der Gruppe umfassend Mg, Ca, Mn, Fe, Co, Ni, Cu und/oder Zn, und d im Bereich von 0 bis 8 liegt, T ist eine Einheitsmenge von wenigstens einem dreiwertigen Metallkation ausgewählt aus der Gruppe umfassend Al, Ga, Fe und/oder Cr, und (3 + m + d) entspricht der Anzahl von OH-Gruppen, die im Wesentlichen die Wertigkeitserfordernisse von M, D und T erfüllt, wobei m+d nicht gleich null ist.
  • Eine Gruppe von vorteilhaft verwendbaren Anionen reversibel aufnehmenden und abgebenden Verbindungen sind Übergangsmetall-Chalkogenide. Bevorzugt sind Sulfide, Selenide und Telluride der Formeln MzSy, MzSey und MzTey von Übergangsmetallen M ausgewählt aus der Gruppe umfassend Ti, V, Cr, Mn, Fe, Co, Cd, Ta, Ni, Cu, Zn, Zr, Nb, Mo, Sn und/oder Al, wobei y im Bereich von 1 bis 10 liegt und z im Bereich von 1 bis 3 liegt. Bevorzugte Übergangsmetalle M sind ausgewählt aus der Gruppe umfassend Ti, V, Cr, Ni und/oder Mo. Besonders vorteilhaft verwendbar sind Sulfide wie TiS2 und NiS. Auch verwendbar sind Selenide wie TiSe2.
  • Auch bevorzugt verwendbar sind komplexe Halogenide von Metallen ausgewählt aus der Gruppe umfassend Na, Mg, Al, Si, P, S, K, Ca, Ti, Zn, Cu, Ni, Co, Fe, Mn, Cr, V, Zr, Nb, Mo und/oder Sn. Unter dem Begriff „komplexe Halogenide“ sind im Sinne der vorliegenden Erfindung Verbindungen zu verstehen, bei denen die Halogenide als Komplexliganden vorliegen. Insbesondere sind die komplexen Halogenide im Elektrolyten nicht löslich und liegen bei Raumtemperatur (20 ± 2°C) festförmig vor. Beispiele für bevorzugt verwendbare komplexe Halogenide sind ausgewählt aus der Gruppe umfassend Chiolith (Na5Al3F14), Usovit (Ba2CaMgAl2F14) und/oder Kryptophalit ((NH4)2SiF6).
  • Weiter besonders gut verwendbare Verbindungen sind anioneninsertierende Metall-Oxide der Übergangsmetalle, bevorzugt von Übergangsmetallen ausgewählt aus der Gruppe umfassend W, Mo, Cr, V und/oder Ti. Insbesondere bevorzugt verwendbar sind Metall-Oxide ausgewählt aus der Gruppe umfassend MoO, MoO2, TiO2 und/oder WO2.
  • Auch gut verwendbare Verbindungen sind insbesondere schichtförmige Metall-Silikate der Formel Men[(SixOy)4x-2y], wobei Me ausgewählt ist aus der Gruppe umfassend Fe, Li, Ni, Ti, Na, K, Ba, Ca, Mg, Mn, Co, Al, Sn, Ag, Au, Cu und/oder Sb, 1 ≤ n ≤ 12 und 1 ≤x ≤ 65 und 1 ≤y ≤ 130. Bei den Metall-Silikaten der Formel Men[(SixOy)4x-2y] kann Si bis zu einem Verhältnis von 1:1 durch Al ersetzt sein. Bevorzugte Metalle Me sind ausgewählt aus der Gruppe umfassend Li, Na, Ca, Ba und/oder Fe, insbesondere bevorzugt sind Li, Na und Fe. Besonders vorteilhaft verwendbar sind Metall-Silikate ausgewählt aus der Gruppe umfassend Li2FeSiO4, Li2CoSiO4, Li2MnSiO4 und/oder NaFeSiO4.
  • Weiter verwendbare Verbindungen sind insbesondere schichtförmige Metall-Aluminate der Formel (MeAl(OH)x) wobei Me ausgewählt ist aus der Gruppe umfassend Fe, Li, Ni, Ti, Na, K, Ba, Ca, Mg, Mn, Co, Al, Sn, Ag, Au, Cu und/oder Sb und 2 ≤ x ≤ 7. Bevorzugt sind NaAl(OH)4 und KAl(OH)4.
  • Weiter verwendbare Verbindungen sind insbesondere schichtförmige Metallhydroxide entsprechend im Wesentlichen der allgemeinen Formel MmDdT(OH)(3+m+d), worin M ist ein Metallkation ausgewählt aus der Gruppe der Erdalkali- und Alkalimetalle, und m liegt im Bereich von 0 bis 8, D ist wenigstens ein zweiwertiges Metallkation aus der Gruppe umfassend Mg, Ca, Mn, Fe, Co, Ni, Cu und/oder Zn, und d im Bereich von 0 bis 8 liegt, T ist eine Einheitsmenge von wenigstens einem dreiwertigen Metallkation ausgewählt aus der Gruppe umfassend Al, Ga, Fe und/oder Cr, und (3+m+d) entspricht der Anzahl von OH-Gruppen, die im Wesentlichen die Wertigkeitserfordernisse von M, D und T erfüllt, wobei m+d nicht gleich null ist.
  • Diese Metallhydroxide werden aufgrund der verschiedenen Metallkationen M, D und T auch als „gemischte“ Metallhydroxide bezeichnet. Der Begriff entsprechend „im Wesentlichen“ hat im Sinne der vorliegenden Erfindung in Bezug auf die allgemeine Formel MmDdT(OH)(3+m+d) die Bedeutung, dass sich die Summe der Valenzen der elektropositiven und elektronegativen Elemente ausgleichen.
  • Bevorzugt sind Metallhydroxide von Erdalkali- und Alkalimetallen ausgewählt aus der Gruppe umfassend Li, Na, Mg, Ca und/oder K, besonders bevorzugt von Lithium und/oder Calcium und insbesondere bevorzugt von Calcium. Ein weiter bevorzugtes Metallhydroxid ist [MgdAl(OH)3+d] wobei d zwischen 0,5 und 4 liegt.
  • Bevorzugt ist das Anionen reversibel aufnehmende und abgebende Elektrodenmaterial kohlenstoffbasiert. Unter dem Begriff "kohlenstoffbasiert" ist im Sinne der vorliegenden Erfindung ein kohlenstoffhaltiges bzw. -reiches Material wie Graphit, Pech bzw. Teer, Pechkohle, Koks, synthetischer Graphit, Russ, lamellarer Graphit, oder Mischungen davon zu verstehen.
  • Weitere bevorzugt verwendbare Kohlenstoffverbindungen sind fluorierte Kohlenstoffe der Formel (CFx)n wobei x im Bereich von 0,01 bis 1,24 liegt und n im Bereich von 1 bis 1000 liegt, sowie Kohlenstoffoxide der Formel (COy)m, die bei Raumtemperatur fest sind, und wobei y im Bereich von 0,01 bis 1 liegt und m im Bereich von 1 bis 100 liegt. Ein Beispiel für derartige Kohlenstoffoxide sind temperatur- und sauerstoffbehandelte Graphite.
  • Bevorzugt ist das Anionen reversibel aufnehmende und abgebende Elektrodenmaterial kohlenstoffbasiert. Die Einlagerung von Anionen oder auch Lithiumionen in ein kohlenstoffbasiertes Elektrodenmaterial wird auch als Interkalation bezeichnet. Unter dem Begriff "kohlenstoffbasiert" ist im Sinne der vorliegenden Erfindung ein kohlenstoffhaltiges bzw. -reiches Material wie Graphit, Pech bzw. Teer, Pechkohle, Koks, synthetischer Graphit, Russ, lamellarer Graphit, oder Mischungen davon zu verstehen.
  • In bevorzugten Ausführungsformen ist das Anionen reversibel aufnehmende und abgebende Elektrodenmaterial ausgebildet aus einem Material ausgewählt aus der Gruppe umfassend Kohlenstoff, Graphit, Graphen oder Kohlenstoffnanoröhrchen.
  • Kohlenstoff und Graphit weisen besonders gute interkalierende und deinterkalierende Eigenschaften für Anionen auf.
  • Die Anionen aus dem Elektrolyt können zwischen die Schichtgitterebenen des Graphits interkalieren und/oder an Graphitschichten von ungeordneten Kohlenstoffen an- oder einlagern. Kohlenstoffmaterialien sind besonders gut geeignet, wenn sie eine teilweise graphitische Struktur aufweisen. Aber auch poröses kohlenstoffhaltiges bzw. -reiches Material kann innerhalb seines Kristallgitters reversibel Anionen interkalieren. Die interkalierenden Kohlenstoffe oder Graphite interkalieren die Anionen vorzugsweise ohne ihre Solvathülle.
  • Verwendbar sind insbesondere bei der technischen Verarbeitung anfallende Kohlenstoffe wie Ruß, Aktivkohle, amorpher Kohlenstoff, Kohlenstofffasern, Graphite, Graphene, Graphitoxide, sowie Kohlenstoffnanoröhren, Kohlenstoffnanoschaum, amorpher Kohlenstoff oder Mischungen davon.
  • Kohlenstoffpartikel können amorph, kristallin, oder teilkristallin sein, sogenannte soft oder hard carbons. Beispiele für amorphen Kohlenstoff sind beispielsweise Ketjenblack, Acetylenschwarz oder Ruß. Bevorzugt verwendbar sind kristalline Kohlenstoffmodifikationen, beispielesweise Graphit, Kohlenstoffnanoröhrchen, sogenannte Kohlenstoffnanotubes, sowie Fullerene oder Mischungen davon. Ebenso bevorzugt verwendbar wie kristalline Kohlenstoffmodifikationen ist sogenannter VGCF Kohlenstoff (vapour grown carbon fibers).
  • Weiter bevorzugt verwendbar sind temperaturbehandelte Kohlenstoffe wie Graphenoxide. Eine Wärmebehandlung kohlenstoffhaltiger bzw. -reicher Materialien erhöht deren Kristallinität und kann die Fähigkeit Anionen einzulagern erhöhen. Temperaturbehandelte Kohlenstoffe sind vorzugsweise bei Raumtemperatur fest.
  • Bevorzugt sind Graphen, Graphit und/oder teilweise graphitierte Kohlenstoffe. Graphit und teilweise graphitierte Kohlenstoffe können besonders gut Anionen zwischen die Schichtgitterebenen des Graphits interkalieren.
  • Verwendbare Graphit- oder Kohlenstoffpartikel weisen vorzugsweise einen mittleren Durchmesser im Bereich von ≥ 2 nm bis ≤ 50 µm, bevorzugt im Bereich von ≥ 10 nm bis ≤ 30 µm, besonders bevorzugt im Bereich von ≥ 30 nm bis ≤ 30 µm, auf.
  • Verwendbar sind diskrete Partikel, beispielsweise in Form von Kugeln, wie Kugelgraphit, Flocken, Körnern oder Stäbchen, sogenannten Nanotubes. Das Graphit- oder Kohlenstoffmaterial ist insbesondere in Pulverform verwendbar. Insbesondere pulverförmiger Kohlenstoff und Graphit kann mit einem Binder gut zu einer Kompositelektrode verarbeitet werden.
  • Vorzugsweise ist das Anionen reversibel interkalierende und deinterkalierende Elektrodenmaterial kohlenstoffbasiert. Vorzugsweise umfasst die Anionen reversibel interkalierende und deinterkalierende Elektrode Kohlenstoff und/oder Graphit im Bereich von ≥ 70 Gew.-% bis ≤ 100 Gew.-%, vorzugsweise im Bereich von ≥ 80 Gew.-% bis ≤ 98 Gew.-%, bevorzugt im Bereich von ≥ 90 Gew.-% bis ≤ 97 Gew.-%, bezogen auf das Gesamtgewicht der Elektrode.
  • Der Anteil von ≥ 70 Gew.-% der Elektrode, der in einer dualen Einlagerungszelle aus der aus Kohlenstoff und/oder Graphit ausgebildeten Anioneninterkalationsverbindung ausgebildet wird, macht einen wesentlichen Unterschied zu üblichen Lithium-Ionen Batterie-Kathoden aus, die Kohlenstoff und Graphit als Additiv lediglich in geringen Mengen von ca. 10 Gew.-% enthalten.
  • Die elektrochemische Zelle weist weiterhin insbesondere einen Separator auf. Der Separator trennt die Elektroden voneinander. Vorzugsweise ist der Separator zwischen den Elektroden angeordnet. Die insbesondere sekundäre elektrochemische Zelle umfasst vorzugsweise eine Lithiumionen reversibel aufnehmende und abgebende Elektrode, eine Anionen reversibel aufnehmende und abgebende Elektrode, einen Separator und einen Elektrolyten umfassend ein Lithiumsalz und ein Lösungsmittel. Der Separator ist für die Ionen des Elektrolyten durchlässig. Geeignete Materialien für den Separator sind beispielsweise mikroporöse Kunststoffe, beispielsweise Poly-Ethylen-Tetrafluorethylen, Vliese aus Glasfasern oder Polyethylen. Bevorzugt sind mikroporöse Folien beispielsweise poröse Ethylen-Tetrafluorethylen-Folie oder Vliesstoffe, Insbesondere geeignet sind Vliese aus Glasfasern, insbesondere nichtgewebtes Glasfaservlies.
  • Der Separator kann weiterhin ein Gel-Polymerseparator sein. Ein Gel-Polymerseparator ist beispielsweise durch Beimengen eines Polymers, insbesondere ausgewählt aus der Gruppe umfassend Polypropylen, Polytetrafluorethylen und/oder Polyvinylidendifluoride, bevorzugt Polyethyleneoxide, in den Elektrolyten herstellbar.
  • Der Ladungstransport in elektrochemischen Energiespeichern erfolgt über einen Elektrolyten. Ein flüssiger Elektrolyt wird üblicherweise im Wesentlichen aus einem in einem Lösungsmittel oder einem Gemisch mehrerer Lösungsmittel gelösten Lithiumleitsalz ausgebildet.
  • Geeignete Lithiumsalze sind in bevorzugten Ausführungsformen ausgewählt aus der Gruppe umfassend LiF, LiCl, LiBr, LiI, LiNO3, LiSO4, LiPF6, LiAsF6, LiClO4, LiSbF6, LiPtCl6, Li(CF3)SO3(LiTf), LiC(SO2CF3)3, LiPF3(CF3)3(LiFAP), LiPF4(C2O4)(LiTFOB), LiBF4, LiB(C2O4)2(LiBOB), LiBF2(C2O4)(LiDFOB), LiB(C2O4)(C3O4)(LiMOB), Li(C2F5BF3)(LiFAB), Li2B12F12(LiDFB), LiN(SO2F)2(LiFSI), LiN(SO2CF3)2(LiTFSI) und/oder LiN(SO2C2F5)2(LiBETI).
  • Bevorzugte Lithiumsalze sind ausgewählt aus der Gruppe umfassend LiPF6, LiN(SO2F)2(LiFSI), LiN(SO2CF3)2(LiTFSI) und/oder LiB(C2O4)2(LiBOB). In vorteilhafter Weise können insbesondere LiN(SO2F)2(LiFSI), LiN(SO2CF3)2(LiTFSI) und LiB(C2O4)2(LiBOB) dazu führen, dass die elektrochemische Zelle eine verbesserte Kapazität und Temperaturbeständigkeit aufweist.
  • Vorzugsweise zersetzt sich das Anion des Lithiumsalzes bis zu einem Potential von wenigstens 3,5 V, vorzugsweise von wenigstens 4 V, bevorzugt von 5 V über dem Potential von Lithium nicht. Dies ist insbesondere vorteilhaft, da die erfindungsgemäße elektrochemische Zelle, die auf dem Dual-Ionen Insertions Prinzip beruht, vorzugsweise bei hohen Zellspannungen von wenigstens 3,5 V, vorzugsweise von wenigstens 4 V, bevorzugt von 5 V über dem Potential von Lithium betrieben wird.
  • Vorzugsweise ist das Anion ausgewählt aus der Gruppe umfassend F, Cl, Br, I, NO3 , SO4 , PF6 , BF4 , B(C2O4)2 (BOB), BF2(C2O4)(DFOB), B(C2O4)(C3O4)(MOB), (C2F5BF3)(FAB), (CF3)SO3 , B12F12 2–(DFB), N(SO2F)2 (FSI), N(SO2CF3)2 (TFSI) und/oder N(SO2C2F5)2 (LiBETI). Bevorzugt ist das Anion aus der Gruppe umfassend PF6 , N(SO2F)2 (FSI), N(SO2CF3)2 (TFSI) und/oder B(C2O4)2 (BOB).
  • In vorteilhafter Weise konnte festgestellt werden, dass in dem erfindungsgemäßen dualen Einlagerungssystem umfassend eine Lithiumtitanat-Anode auch große Anionen wie N(SO2F)2 , N(SO2CF3)2 und B(C2O4)2 eingelagert werden können. Dies ist insbesondere vorteilhaft, da bislang angenommen wurde, dass lediglich sehr kleine oder kleinere Anionen wie Fluorid, PF6 oder BF4 reversibel in Graphit-Elektroden interkaliert werden. Hierdurch kann die elektrochemische Zelle eine verbesserte Kapazität und Temperaturbeständigkeit aufweisen.
  • Vorzugsweise liegt das Lithiumsalz in dem Lösungsmittel gelöst vor. Vorzugsweise liegt die Konzentration des Lithiumsalzes im Elektrolyten im Bereich von ≥ 0,5 M bis ≤ 19 M, vorzugsweise im Bereich von ≥ 0,65 M bis ≤ 12 M, besonders bevorzugt im Bereich von ≥ 1 M bis ≤ 5 M. Vorzugsweise liegt die Konzentration des Lithiumsalzes, insbesondere eines Lithiumsalzes umfassend ein organisches Anion ausgewählt aus der Gruppe umfassend B(C2O4)2 (BOB), BF2(C2O4)(DFOB), B(C2O4)(C3O4)(MOB), (C2F5BF3)(FAB), (CF3)SO3 , B12F12 2–(DFB), N(SO2F)2 (FSI), N(SO2CF3)2 (TFSI) und/oder N(SO2C2F5)2 (LiBETI), im Elektrolyten im Bereich von ≥ 0,5 M bis ≤ 2,5 M, vorzugsweise im Bereich von ≥ 0,65 M bis ≤ 2 M, besonders bevorzugt im Bereich von ≥ 1 M bis ≤ 1,5 M.
  • Durch die Verwendung von Lithiumtitanat als Anodenmaterial sinkt die Gefahr, dass sich die Salze und/oder Lösungsmittel zersetzen und zu einer exothermen Zersetzung der Zelle führen. Dies vermindert das Sicherheitsrisiko beim Betrieb der Zelle. Insbesondere ist vorteilhaft, dass sich auf Lithiumtitanatanoden keine Passivierungschichten bilden, die zu einem irreversiblen Salzverlust führen würden. Zudem werden durch geringere Salzkonzentrationen die Kosten für die Herstellung der Zelle reduziert.
  • Vorzugsweise ist der Elektrolyt ein im Wesentlichen wasserfreier, organischer flüssigförmiger oder Flüssigkeitselektrolyt. Vorzugsweise ist das Lösungsmittel ein organisches Lösungsmittel. Geeignete organische Lösungsmittel sind beispielsweise ausgewählt ist aus der Gruppe umfassend aliphatische Kohlenwasserstoffe insbesondere Pentan, aromatische Kohlenwasserstoffe insbesondere Toluol, Alkene insbesondere Hexen, Alkine insbesondere Heptin, halogenierte Kohlenwasserstoffe insbesondere Chloroform oder Fluormethan, Alkohole insbesondere Ethanol, Glycole insbesondere Ethylenglycol und Diethylenglykol, Ether insbesondere Diethylether und Tetrahydrofuran, Ester insbesondere Ethylacetat, Carbonate insbesondere Diethylcarbonat, Lactone insbesondere gamma-Butyrolacton und gamma-Valerolacton, Acetate insbesondere Natriumacetat, Sulfone insbesondere Sulfolan, Sulfoxide insbesondere Dimethylsulfoxid, Amide insbesondere Essigsäure(trimethylsilyl)amid, Nitrile insbesondere Acetonitril, Amine insbesondere Dimethylamin, Ketone insbesondere Aceton, Aldehyde insbesondere Hexanal, Sulfide insbesondere Kohlenstoffdisulfid, Kohlensäureester insbesondere Dimethylcarbonat und Ethylencarbonat, Carbonsäuren insbesondere Ameisensäure, und/oder Harnstoffderivate insbesondere Dimethylpropylenharnstoff.
  • Bevorzugte organische Lösungsmittel sind ausgewählt aus der Gruppe umfassend Ethylencarbonat, Fluorethylencarbonat, Propylencarbonat, Diethylcarbonat, Dimethylcarbonat, Ethylmethylcarbonat, Acetonitril, Glutaronitril, Adiponitril, Pimelonitril, gamma-Butyrolacton, gamma-Valerolacton, Dimethoxyethan, 1,3-Dioxalan, Dimethylsulfoxid, Vinylencarbonat, Vinylenethylencarbonat, Methylacetat und/oder Mischung davon, vorzugsweise aus der Gruppe umfassend Ethylencarbonat, Diethylcarbonat, Dimethylcarbonat und/oder deren Mischungen.
  • Bevorzugt sind Mischungen von Ethylencarbonat und wenigstens einem weiteren Lösungsmittel, besonders bevorzugt mit Diethylcarbonat oder Dimethylcarbonat. In bevorzugten Ausführungsformen ist das Lösungsmittel eine Mischung aus Ethylencarbonat und Dimethylcarbonat. Besonders bevorzugt als Lösungsmittel ist eine Mischung aus Ethylencarbonat und Dimethylcarbonat in gleichen Gewichtsanteilen. In einem Lösungsmittelgemisch Ethylencarbonat und Dimethylcarbonat im Verhältnis 1:1 kann in vorteilhafter Weise eine gute Leitfähigkeit in einem Temperaturbereich von –20°C bis +60°C erreicht werden.
  • Ein weiterer Gegenstand der Erfindung betrifft die Verwendung von Lithiumtitanat als Lithiumionen reversibel aufnehmendes und abgebendes Elektrodenmaterial in einer elektrochemischen Zelle, insbesondere einer sekundären elektrochemischen Zelle, umfassend eine Lithiumionen reversibel aufnehmende und abgebende Elektrode und eine Anionen reversibel aufnehmende und abgebende Elektrode und einen Elektrolyten umfassend ein Lithiumsalz und ein Lösungsmittel.
  • Die elektrochemische Zelle ist insbesondere geeignet für einen Lithium-basierten Energiespeicher. Ein weiterer Gegenstand der Erfindung betrifft die Verwendung von Lithiumtitanat als Anodenmaterial in einem auf dem Dual-Ionen Insertions Prinzip beruhenden Lithium-basierten Energiespeicher. Lithium-basierte Energiespeicher sind vorzugsweise ausgewählt aus der Gruppe umfassend Lithium-Batterien, Lithium-Ionen-Batterien, Lithium-Ionen-Akkumulatoren, Lithium-Polymer-Batterien und/oder Lithium-Ionen-Kondensatoren, insbesondere Lithium-Ionen Batterien oder Lithium-Ionen Akkumulatoren.
  • Beispiele und Figuren, die der Veranschaulichung der vorliegenden Erfindung dienen, sind nachstehend angegeben.
  • Hierbei zeigen die Figuren:
  • 1 zeigt die Entladekapazität und Effizienz der elektrochemischen Zelle gegen die Anzahl der Lade/Entladezyklen.
  • 2 zeigt die Strom/Spannungskurve der elektrochemischen Zelle gegen die Zeit.
  • Beispiel 1
  • Herstellung einer elektrochemischen Zelle mit Lithiumtitanat-Anode
  • Zur Herstellung der Lithiumtitanat-Elektrode wurden, bezogen auf das Gesamtgewicht der Elektrode, 85 Gew.-% Lithiumtitanat Li4Ti5O12 (Batteriegrad/battery grade Reinheit, Südchemie, München, Deutschland), 10 Gew.-% Kohlenstoff (Super-P Li, TIMCAL®, Bodio, Schweiz) und als Binder 5 Gew.-% Polyvinylidendifluorid (Kynar® Flex 761, Arkema®, Frankreich) gelöst in N-methyl-2-pyrrolidone (Acros Organics, 99,5%, Extra Dry) als Lösungsmittel gemischt. Das Gemisch wurde mit Hilfe eines T25 digital Ultra-Turrax-Rührers und eines S 25 N – 18 G Dispergierwerkzeuges (beides IKA®, Staufen, Deutschland) bei 8000 rpm für 1,5 Stunden homogenisiert. Die Mischung wurde anschließend unter Verwendung eines Rakels auf eine Aluminiumfolie einer Dicke von 20 µm (99,88% rein, Evonik-Degussa®) als Stromableiter mit einer Schichtdicke von 175 μm aufgebracht. Die Elektrode wurde für 12 Stunden bei 80°C getrocknet. Anschließend wurde eine Elektrode eines Durchmessers von 12 mm ausgestanzt und für 24 Stunden bei 120°C unter Vakuum getrocknet. Die Flächenbeladung betrug > 3 mg/cm2. Die Ermittlung der Flächenbeladung erfolgte durch Wiegen der reinen Aluminiumfolie und der ausgestanzten Elektroden.
  • Zur Herstellung der Graphit-Elektrode wurden, bezogen auf das Gesamtgewicht der Elektrode, 90 Gew.-% Graphit (Graphit KS6, TIMCAL®, Bodio, Schweiz), 5 Gew.-% Kohlenstoff (Super-P Li, TIMCAL®, Bodio, Schweiz) und als Binder 5 Gew.-% Natrium-Carboxymethycellulose (Walocel® CRT 2000 PPA 12, Dow Wolff Cellulosics, The Dow Chemical Company, Midland, MI, USA) in deionisiertem Wasser als Lösungsmittel gemischt. Das Gemisch wurde mit Hilfe eines T25 digital Ultra-Turrax-Rührers und eines S 25 N – 18 G Dispergierwerkzeuges (beides IKA®, Staufen, Deutschland) bei 5000 rpm für 1 Stunde homogenisiert. Die Mischung wurde anschließend unter Verwendung eines Rakels auf eine Aluminiumfolie einer Dicke von 20 µm (99,88% rein, Evonik-Degussa®) als Stromableiter mit einer Schichtdicke von 200 μm aufgebracht. Die Elektrode wurde für 12 Stunden bei 80°C getrocknet. Anschließend wurde eine runde Elektrode mit einem Durchmesser von 12 mm, respektive einer Fläche von 1,13 cm2, ausgestanzt und für 24 Stunden bei 120°C unter Vakuum getrocknet. Die Flächenbeladung betrug 1,5 mg/cm2. Die Ermittlung der Flächenbeladung erfolgte durch Wiegen der reinen Aluminiumfolie und der ausgestanzten Elektroden.
  • Als Separator wurde ein Glasfaserseparator der Firma Whatman (Whatman GF/D, GE Healthcare®, Großbritannien) verwendet. Als Elektrolyt wurde eine Mischung aus Ethylencarbonat und Dimethylcarbonat in gleichen Gewichtsanteilen (1:1) verwendet. Beide Lösungsmittel wurden in einer „battery grade“ Reinheit bzw. Qualität von Ube®, Yamaguchi, Japan bezogen. Als Lithiumquelle wurde Lithiumhexafluorophosphat LiPF6 (Ube®, Yamaguchi, Japan) in einer Konzentration von 1 mol/l zugegeben
  • Beispiel 2
  • Elektrochemische Untersuchung der elektrochemischen Zelle mit Lithiumtitanat-Anode
  • Die elektrochemische Untersuchung der gemäß Beispiel 1 hergestellten elektrochemischen Zelle erfolgte in einer Zelle, hergestellt aus einem modifizierten Gasventil der Firma Swagelok® unter Ausschluss von Sauerstoff und Wasser. Als Potentiostat/Galvanostat wurde ein Gerät der Maccor 4000 Serie oder ein BaSyTec MDS Batterie Testsystem verwendet. Die verwendeten Elektroden in der Messzelle waren rund mit einem Durchmesser von 12 mm, respektive einer Fläche von 1,13 cm2.
  • Die Assemblierung der Zelle erfolgte in einer Glovebox gefüllt mit einer Inertgasatmosphäre an Argon und einem Sauerstoff- und Wassergehalt kleiner als 1 ppm. Nach dem Zusammenbau wurde die Zelle 24 Stunden bei Raumtemperatur (20 ± 2°C) äquilibriert.
  • Zum Laden der Zelle wurde anschließend ein galvanostatischer Strom angelegt, der einer spezifischen Stromdichte von 50 mA/g bezogen auf das Aktivmaterial der Graphit-Elektrode entsprach. Die Zelle wurde bis zu einer Ladeschlussspannung von 3,3 V geladen und anschließend bis 1,8 V mit demselben galvanostatischen Strom entladen, wobei die Angaben in V jeweils bezogen sind auf die Zellspannung zwischen der Graphit- und der Lithiumtitanat-Elektrode. Dieser Lade/Entlade-Vorgang entspricht einem Zyklus und wurde 20 Mal bei 20 ± 2°C wiederholt.
  • Die 1 zeigt die Entladekapazität und die Effizienz des Lade/Entladevorgangs der elektrochemischen Zelle in Abhängigkeit von der auf der x-Achse aufgetragenen Zyklenzahl. Hierbei zeigt die linke y-Achse den Wert der Entladekapazität, dargestellt als schwarzer Kreis, und die rechte y-Achse die Effizienz des Lade/Entladevorgangs, dargestellt als Dreieck.
  • Es konnte festgestellt werden, dass der Lade/Entladevorgang nach dem ersten Zyklus zu mehr als 97 %, bezogen auf eine maximale Effizienz von 100 %, reversibel war. Weiterhin konnte bezogen auf die Graphit-Elektrode eine Entladekapazität größer als 30 mAh/g erzielt werden.
  • Das zeigt, dass im Gegensatz zu gängigen Dual-Graphit Systemen eine sehr hohe Effizienz erreicht werden konnte und dies zusätzlich unter der Verwendung von relativ hohen Lade- und Entladeströmen in diesen Systemen, die bisher nicht realisierbar waren, da die Graphitanode unterhalb des thermodynamischen Stabilitätsfensters des Elektrolyten operiert.
  • Die 2 zeigt die Strom/Spannungskurve der Zelle gegen die auf der x-Achse aufgetragene Zeit. Die Spannung der Zelle ist in vollen Linien auf der linken y-Achse und der Strom in Strichlinien auf der rechten y-Achse dargestellt. Positive Ströme beziehen sich auf den Ladevorgang, wohingegen negative Ströme den Entladevorgang darstellen. In 2 sind die ersten 10 Lade/Entladevorgänge dargestellt.
  • Die Form des Potentials zeigt, dass die Ioneneinlagerung in einem begrenzten Potentialbereich erfolgte. Auch ist der Unterschied zwischen dem Potential des Lade- und Entladevorganges gering im Vergleich zu herkömmlichen Dual-Graphit Systemen und somit der elektrische Wirkungsgrad höher.
  • Die Ergebnisse zeigen, dass die Verwendung von Lithiumtitanat-Anoden in einer Dual Ionen Insertionszelle wesentliche Vorteile gegenüber der klassischen Dual-Graphite Zelle sowie einer Lithium-Ionen Batterie bietet. Insbesondere konnte durch Verwendung von Lithiumtitanat-Anoden in einem Potentialarbeitsbereich gearbeitet werden, in dem der organische Elektrolyt thermodynamisch stabil ist, die Gesamtzellspannung aber trotzdem über 3 V lag. Weiterhin erfolgte keine Ausbildung einer Passivierungsschicht auf der Anode. Weiterhin konnten hohen Lade- und Entladeströme realisiert werden.

Claims (9)

  1. Elektrochemische Zelle umfassend eine Lithiumionen reversibel aufnehmende und abgebende Elektrode, eine Anionen reversibel aufnehmende und abgebende Elektrode und einen Elektrolyten umfassend ein Lithiumsalz und ein Lösungsmittel, dadurch gekennzeichnet, dass die Lithiumionen reversibel aufnehmende und abgebende Elektrode Lithiumtitanat als Lithiumionen reversibel aufnehmendes und abgebendes Elektrodenmaterial umfasst.
  2. Elektrochemische Zelle nach Anspruch 1, dadurch gekennzeichnet, dass die Lithiumionen reversibel aufnehmende und abgebende Elektrode Lithiumtitanat im Bereich von ≥ 50 Gew.-% bis ≤ 98 Gew.-%, vorzugsweise im Bereich von ≥ 75 Gew.-% bis ≤ 95 Gew.-%, bevorzugt im Bereich von ≥ 80 Gew.-% bis ≤ 95 Gew.-%, bezogen auf das Gesamtgewicht der Elektrode, umfasst.
  3. Elektrochemische Zelle nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass das Anionen reversibel aufnehmende und abgebende Elektrodenmaterial ausgebildet ist aus einem Material ausgewählt aus der Gruppe umfassend Kohlenstoff, Graphit, Graphen oder Kohlenstoffnanoröhrchen.
  4. Elektrochemische Zelle nach einem der vorherigen Ansprüche, dadurch gekennzeichnet, dass das Lithiumsalz ausgewählt ist aus der Gruppe umfassend LiF, LiCl, LiBr, LiI, LiNO3, LiSO4, LiPF6, LiAsF6, LiClO4, LiSbF6, LiPtCl6, Li(CF3)SO3, LiC(SO2CF3)3, LiPF3(CF3)3, LiPF4(C2O4), LiBF4, LiB(C2O4)2, LiBF2(C2O4), LiB(C2O4)(C3O4), Li(C2F5BF3), Li2B12F12, LiN(SO2F)2, LiN(SO2CF3)2 und/oder LiN(SO2C2F5)2, bevorzugt ausgewählt aus der Gruppe umfassend LiPF6, LiN(SO2F)2, LiN(SO2CF3)2 und/oder LiB(C2O4)2.
  5. Elektrochemische Zelle nach einem der vorherigen Ansprüche, dadurch gekennzeichnet, dass sich das Anion des Lithiumsalzes bis zu einem Potential von wenigstens 3,5 V, vorzugsweise von wenigstens 4 V, bevorzugt von 5 V über dem Potential von Lithium nicht zersetzt, wobei das Anion vorzugsweise ausgewählt ist aus der Gruppe umfassend F, Cl, Br, I, PF6 , BF4 , B(C2O4)2 , BF2(C2O4), B(C2O4)(C3O4), (C2F5BF3), (CF3)SO3 , B12F12 2–, N(SO2F)2 , N(SO2CF3)2 und/oder N(SO2C2F5)2 .
  6. Elektrochemische Zelle nach einem der vorherigen Ansprüche, dadurch gekennzeichnet, dass das Anion des Lithiumsalzes ausgewählt ist aus der Gruppe umfassend PF6 , N(SO2F)2 , N(SO2CF3)2 und/oder B(C2O4)2 .
  7. Elektrochemische Zelle nach einem der vorherigen Ansprüche, dadurch gekennzeichnet, dass Lösungsmittel ein organisches Lösungsmittel ist, wobei das organische Lösungsmittel vorzugsweise ausgewählt ist aus der Gruppe umfassend Ethylencarbonat, Fluorethylencarbonat, Propylencarbonat, Diethylcarbonat, Dimethylcarbonat, Ethylmethylcarbonat, Acetonitril, Glutaronitril, Adiponitril, Pimelonitril, gamma-Butyrolacton, gamma-Valerolacton, Dimethoxyethan, 1,3-Dioxalan, Dimethylsulfoxid, Vinylencarbonat, Vinylenethylencarbonat, Methylacetat und/oder Mischung davon, vorzugsweise aus der Gruppe umfassend Ethylencarbonat, Diethylcarbonat, Dimethylcarbonat und/oder deren Mischungen.
  8. Verwendung von Lithiumtitanat als Lithiumionen reversibel aufnehmendes und abgebendes Elektrodenmaterial in einer elektrochemischen Zelle umfassend eine Lithiumionen reversibel aufnehmende und abgebende Elektrode und eine Anionen reversibel aufnehmende und abgebende Elektrode und einen Elektrolyten umfassend ein Lithiumsalz und ein Lösungsmittel.
  9. Verwendung von Lithiumtitanat als Anodenmaterial in einem auf dem Dual-Ionen Insertions Prinzip beruhenden Lithium-basierten Energiespeicher.
DE102011054122A 2011-09-30 2011-09-30 Elektrochemische Zelle Pending DE102011054122A1 (de)

Priority Applications (1)

Application Number Priority Date Filing Date Title
DE102011054122A DE102011054122A1 (de) 2011-09-30 2011-09-30 Elektrochemische Zelle

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102011054122A DE102011054122A1 (de) 2011-09-30 2011-09-30 Elektrochemische Zelle
PCT/EP2012/069115 WO2013045567A1 (de) 2011-09-30 2012-09-27 Elektrochemische zelle

Publications (1)

Publication Number Publication Date
DE102011054122A1 true DE102011054122A1 (de) 2013-04-04

Family

ID=46982564

Family Applications (1)

Application Number Title Priority Date Filing Date
DE102011054122A Pending DE102011054122A1 (de) 2011-09-30 2011-09-30 Elektrochemische Zelle

Country Status (2)

Country Link
DE (1) DE102011054122A1 (de)
WO (1) WO2013045567A1 (de)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102013210631A1 (de) * 2013-06-07 2014-12-11 Volkswagen Aktiengesellschaft Neue Elektrolytzusammensetzung für Hochenergieanoden
DE102014202180A1 (de) * 2014-02-06 2015-08-06 Volkswagen Aktiengesellschaft Elektrolytzusammensetzungen für Lithium-Schwefel-Batterien
EP3035417A1 (de) * 2014-12-18 2016-06-22 Ricoh Company, Ltd. Nichtwässriges elektrolytspeicherelement
DE102017219163A1 (de) * 2017-10-25 2019-04-25 Robert Bosch Gmbh Elektrochemische Zelle umfassend fluoriertes Graphen als Aktivmaterial

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3012260A1 (fr) * 2013-10-23 2015-04-24 Commissariat Energie Atomique Cellule electrochimique pour accumulateur au lithium et accumulateur au lithium comprenant une telle cellule electrochimique

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10154912A1 (de) * 2001-11-08 2003-06-05 Fraunhofer Ges Forschung Elektrolytmischungen für Lithiumbatterien und -akkumulatoren
DE10212609A1 (de) * 2002-03-21 2003-10-09 Epcos Ag Elektrolytlösung und deren Verwendung
DE102010019984A1 (de) * 2009-05-13 2010-12-16 GM Global Technology Operations, Inc., Detroit Ladezustandsmarkierer für Batteriesysteme
DE102010006082A1 (de) * 2010-01-28 2011-08-18 Süd-Chemie AG, 80333 Leitmittelzusatzfreie Elektrode für eine Sekundärlithiumionenbatterie

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU3656001A (en) * 2000-01-26 2001-08-07 Lion Compact Energy Inc Carbon fibers for dual graphite batteries
US7994686B2 (en) * 2004-06-14 2011-08-09 Massachusetts Institute Of Technology Electrochemical methods, devices, and structures
JP4275060B2 (ja) * 2004-12-20 2009-06-10 日立マクセル株式会社 補聴器
US20110129732A1 (en) * 2009-12-01 2011-06-02 Applied Materials, Inc. Compressed powder 3d battery electrode manufacturing

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10154912A1 (de) * 2001-11-08 2003-06-05 Fraunhofer Ges Forschung Elektrolytmischungen für Lithiumbatterien und -akkumulatoren
DE10212609A1 (de) * 2002-03-21 2003-10-09 Epcos Ag Elektrolytlösung und deren Verwendung
DE102010019984A1 (de) * 2009-05-13 2010-12-16 GM Global Technology Operations, Inc., Detroit Ladezustandsmarkierer für Batteriesysteme
DE102010006082A1 (de) * 2010-01-28 2011-08-18 Süd-Chemie AG, 80333 Leitmittelzusatzfreie Elektrode für eine Sekundärlithiumionenbatterie

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102013210631A1 (de) * 2013-06-07 2014-12-11 Volkswagen Aktiengesellschaft Neue Elektrolytzusammensetzung für Hochenergieanoden
US10069165B2 (en) 2013-06-07 2018-09-04 Volkswagen Aktiengesellschaft Electrolyte composition for a lithium-ion battery
DE102014202180A1 (de) * 2014-02-06 2015-08-06 Volkswagen Aktiengesellschaft Elektrolytzusammensetzungen für Lithium-Schwefel-Batterien
EP3035417A1 (de) * 2014-12-18 2016-06-22 Ricoh Company, Ltd. Nichtwässriges elektrolytspeicherelement
CN105720230A (zh) * 2014-12-18 2016-06-29 株式会社理光 非水电解质蓄电元件
US10090554B2 (en) 2014-12-18 2018-10-02 Ricoh Company, Ltd. Non-aqueous electrolyte storage element
DE102017219163A1 (de) * 2017-10-25 2019-04-25 Robert Bosch Gmbh Elektrochemische Zelle umfassend fluoriertes Graphen als Aktivmaterial

Also Published As

Publication number Publication date
WO2013045567A1 (de) 2013-04-04

Similar Documents

Publication Publication Date Title
JP5165258B2 (ja) 非水電解質二次電池
DE60120271T2 (de) Sekundärbatterie mit nichtwässrigem Elektrolyten
DE60029171T2 (de) Negative Elektrode für wiederaufladbare Batterien mit nichtwässrigem Elektrolyt
US20130164635A1 (en) Use of expanded graphite in lithium/sulphur batteries
JP5132941B2 (ja) 導電性物質で被覆した電極添加剤、及びそれを含んでなるリチウム二次電池
KR100786850B1 (ko) 리튬 이차 전지용 양극 및 이를 포함하는 리튬 이차 전지
EP2711338B1 (de) Verbundanodenaktivmaterial, Anode und Lithiumbatterie jeweils mit dem Verbundanodenaktivmaterial, Verfahren zur Herstellung des Verbundanodenaktivmaterials
JP4186507B2 (ja) リチウム二次電池正極活物質用炭素含有リチウム鉄複合酸化物およびその製造方法
EP0713256B1 (de) Lithium Sekundärbatterie und Verfahren zur Herstellung des Materials für die negative Elektrode zur Verwendung darin.
JP2004071542A (ja) 負極活物質、それを用いた負極、それを用いた非水電解質電池、ならびに負極活物質の製造方法
JP2007165108A (ja) 非水電解液二次電池
JP5202239B2 (ja) リチウム二次電池
JP5628469B2 (ja) 二次電池用非水系電解液及びそれを用いた非水系電解液二次電池
JP5549438B2 (ja) 非水系電解液及びそれを用いた非水系電解液二次電池
JP4929182B2 (ja) 蓄電素子
JP2010135329A (ja) カソード及びこれを採用したリチウム電池
WO2012039477A1 (ja) リチウムイオン電池、及びそれを利用した電池モジュール
JP2005085717A (ja) 非水電解質電池
US8518584B2 (en) Production method for electrode for battery, electrode produced by production method, and battery including electrode
JP2009295465A (ja) リチウム二次電池用正極活物質及びその製造方法
JP2000090916A (ja) 非水系炭素被覆リチウム二次電池用負極活物質
US20130164618A1 (en) Non-aqueous secondary battery
EP2712842B1 (de) Kohlenstoff-silizium-verbundstoff, verfahren zu seiner herstellung und kathodenaktivmaterial mit dem kohlenstoff-silizium-verbundstoff
JP2007214137A (ja) 非水系炭素被覆リチウム二次電池用負極活物質
US8932481B2 (en) Cathode active material, method of preparing the same, and cathode and lithium battery including the cathode active material

Legal Events

Date Code Title Description
R163 Identified publications notified
R012 Request for examination validly filed