DE102010048335A1 - Method for production of portion of component e.g. turbine blade composed of individual powder layers, involves applying high energy beam to molten bath from downstream direction of post-heating zone, to reheat the molten bath - Google Patents

Method for production of portion of component e.g. turbine blade composed of individual powder layers, involves applying high energy beam to molten bath from downstream direction of post-heating zone, to reheat the molten bath Download PDF

Info

Publication number
DE102010048335A1
DE102010048335A1 DE102010048335A DE102010048335A DE102010048335A1 DE 102010048335 A1 DE102010048335 A1 DE 102010048335A1 DE 102010048335 A DE102010048335 A DE 102010048335A DE 102010048335 A DE102010048335 A DE 102010048335A DE 102010048335 A1 DE102010048335 A1 DE 102010048335A1
Authority
DE
Germany
Prior art keywords
molten bath
energy beam
preheating
component
radiation source
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Ceased
Application number
DE102010048335A
Other languages
German (de)
Inventor
Dr. Bayer Erwin
Dr. Broichhausen Klaus
Dr. Dusel Karl-Heinz
Markus Eisen
Dr. Hertter Manuel
Thomas Hess
Andreas Jakimov
Dr. Kopperger Bertram
Wilhelm Meir
Hans-Christian Melzer
Wilhelm Satzger
Siegfried Sikorski
Josef Wärmann
Michael Weiss
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
MTU Aero Engines AG
Original Assignee
MTU Aero Engines GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by MTU Aero Engines GmbH filed Critical MTU Aero Engines GmbH
Priority to DE102010048335A priority Critical patent/DE102010048335A1/en
Publication of DE102010048335A1 publication Critical patent/DE102010048335A1/en
Ceased legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22CFOUNDRY MOULDING
    • B22C7/00Patterns; Manufacture thereof so far as not provided for in other classes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F10/00Additive manufacturing of workpieces or articles from metallic powder
    • B22F10/20Direct sintering or melting
    • B22F10/28Powder bed fusion, e.g. selective laser melting [SLM] or electron beam melting [EBM]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F10/00Additive manufacturing of workpieces or articles from metallic powder
    • B22F10/30Process control
    • B22F10/36Process control of energy beam parameters
    • B22F10/362Process control of energy beam parameters for preheating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F10/00Additive manufacturing of workpieces or articles from metallic powder
    • B22F10/30Process control
    • B22F10/36Process control of energy beam parameters
    • B22F10/364Process control of energy beam parameters for post-heating, e.g. remelting
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F12/00Apparatus or devices specially adapted for additive manufacturing; Auxiliary means for additive manufacturing; Combinations of additive manufacturing apparatus or devices with other processing apparatus or devices
    • B22F12/10Auxiliary heating means
    • B22F12/13Auxiliary heating means to preheat the material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F12/00Apparatus or devices specially adapted for additive manufacturing; Auxiliary means for additive manufacturing; Combinations of additive manufacturing apparatus or devices with other processing apparatus or devices
    • B22F12/40Radiation means
    • B22F12/44Radiation means characterised by the configuration of the radiation means
    • B22F12/45Two or more
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/02Positioning or observing the workpiece, e.g. with respect to the point of impact; Aligning, aiming or focusing the laser beam
    • B23K26/06Shaping the laser beam, e.g. by masks or multi-focusing
    • B23K26/0604Shaping the laser beam, e.g. by masks or multi-focusing by a combination of beams
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/34Laser welding for purposes other than joining
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/60Preliminary treatment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K35/00Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
    • B23K35/02Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by mechanical features, e.g. shape
    • B23K35/0222Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by mechanical features, e.g. shape for use in soldering, brazing
    • B23K35/0244Powders, particles or spheres; Preforms made therefrom
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2101/00Articles made by soldering, welding or cutting
    • B23K2101/001Turbines
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/25Process efficiency

Abstract

The respective powder layers are heated locally to a predetermined melting temperature upon impingement of a high energy beam (12), to form a molten bath (28). A high energy beam (16) is applied to the molten bath from the downstream direction of a post-heating zone (34) to reheat the molten bath. A high energy beam (14) is applied to the preheated molten bath from the upstream of the preheating zone (32), such that the molten bath is reheated. An independent claim is included for device for production of portion of component composed of individual powder layers.

Description

Die Erfindung betrifft ein Verfahren zur generativen Herstellung zumindest eines Bereichs eines Bauteils nach dem Oberbegriff des Patentanspruchs 1 und eine Vorrichtung zur Durchführung eines derartigen Verfahrens nach dem Oberbegriff des Patentanspruchs 5.The invention relates to a method for the generative production of at least one region of a component according to the preamble of patent claim 1 and an apparatus for carrying out such a method according to the preamble of patent claim 5.

Ein Verfahren und eine Vorrichtung zur generativen Herstellung eines Bauteils sind z. B. in dem deutschen Patent DE 196 49 865 C1 offenbart. Das Bauteil wird aus einzelnen Pulverschichten aufgebaut, die über einen gemäß einer jeweiligen Querschnittsgeometrie eines Modells des Bauteils über die jeweilige Pulverschicht geführten Laserstrahl an der vorhergehenden Pulverschicht fixiert werden. Ein derart hergestelltes Bauteil zeichnet sich durch eine homogene Werkstoffstruktur und eine verhältnismäßig raue Bauteiloberfläche aus, da die jeweilige Pulverschicht durch den Laserstrahl raupenartig aufgeschmolzen und zudem durch den schichtweisen Aufbau und den Anstellwinkel des Laserstrahls im Randbereich eine Vielzahl von Stufen gebildet werden, was zur Beseitigung dieses Stufeneffekts meist eine intensive abtragende Nachbearbeitung erfordert.A method and a device for the generative production of a component are, for. In the German patent DE 196 49 865 C1 disclosed. The component is constructed from individual powder layers, which are fixed to the preceding powder layer via a laser beam guided via the respective powder layer in accordance with a respective cross-sectional geometry of a model of the component. A component produced in this way is distinguished by a homogeneous material structure and a comparatively rough component surface, since the respective powder layer is melted like a caterpillar by the laser beam and, in addition, a multiplicity of steps are formed by the layered structure and the angle of attack of the laser beam in the edge region, which eliminates this Stage effect usually requires an intensive erosion post-processing.

Zur lokalen Einstellung der Werkzeugstruktur wird in der DE 10 2007 059 865 A1 vorgeschlagen, die Pulverschicht mittels einer Wärmeeinbringung nach dem Aufschmelzen bzw. nach dem Verfestigen der Schmelze nachzubehandeln. Hierdurch kann eine lokale Vergütung des Werkstoffs erfolgen und somit beispielsweise die Härte, Zähigkeit oder die Festigkeit des Werkstoffs gezielt eingestellt werden. Der typische Stufeneffekt lässt sich jedoch mit diesem Verfahren nicht beseitigen. Zudem erfolgt keine ausreichende Reduzierung der Heißrissbildung.For local adjustment of the tool structure is in the DE 10 2007 059 865 A1 proposed to post-treat the powder layer by means of a heat input after melting or after solidification of the melt. In this way, a local compensation of the material can take place and thus, for example, the hardness, toughness or strength of the material can be adjusted specifically. However, the typical step effect can not be eliminated with this method. In addition, there is no sufficient reduction in hot cracking.

Zudem ist es aus der Patentanmeldung der Anmelderin WO 2008/071165 A1 bekannt, die jeweilige Pulverschicht bzw. das Pulverbett global vorzuwärmen. Eine ausreichende Reduzierung der Heißrissbildung lässt sich jedoch auch mit diesem Verfahren nicht erreichen.Moreover, it is from the Applicant's patent application WO 2008/071165 A1 known to preheat the respective powder layer or the powder bed globally. However, a sufficient reduction in hot cracking can not be achieved with this method.

Aufgabe der Erfindung ist es, ein Verfahren zur generativen Herstellung zumindest eines Bereichs eines Bauteils, das die vorgenannten Nachteile beseitigt und insbesondere eine Heißrissbildung verhindert bzw. stark reduziert, sowie eine Vorrichtung zur Durchführung eines derartigen Verfahrens zu schaffen.The object of the invention is to provide a method for the generative production of at least one region of a component which eliminates the aforementioned disadvantages and in particular prevents or greatly reduces hot cracking, and to provide a device for carrying out such a method.

Diese Aufgabe wird gelöst durch ein Verfahren mit den Schritten des Patentanspruchs 1 und durch eine Vorrichtung mit den Merkmalen des Patentanspruchs 5.This object is achieved by a method having the steps of patent claim 1 and by a device having the features of patent claim 5.

Bei einem erfindungsgemäßen Verfahren zur generativen Herstellung zumindest eines Bereichs eines Bauteils, der aus einzelnen Pulverschichten aufgebaut wird, wobei die jeweilige Pulverschicht beim Auftreffen eines Hochenergiestrahls lokal auf eine Schmelztemperatur erwärmt wird und ein Schmelzbad entsteht, und wobei beim Auftreffen eines Hochenergiestrahl auf eine dem Schmelzbad nachgelagerte Nachwärmzone auf eine Nachwärmtemperatur nachgewärmt wird, wird erfindungsgemäß eine dem Schmelzbad vorgelagerte Vorwärmzone definiert, die mittels eines Hochenergiestrahls auf eine Vorwärmtemperatur vorgewärmt wird. Durch die erfindungsgemäße Lösung werden die Temperaturen vor und hinter dem Schmelzbad an die Temperatur des Schmelzbades angeglichen, so dass im Bereich des Schmelzbades nur ein kleines Temperaturgefälle zur Pulverbettumgebung entsteht und somit die Gefahr einer Heißrissbildung verhindert bzw. zumindest merklich reduziert wird. Zudem kann das Temperaturgefälle bzw. der Temperaturverlauf zwischen den Zonen durch die einzelnen Hochenergiestrahlen, die beispielsweise Laserstrahlen, Elektronenstrahlen oder UV-Strahlen sind, individuell vor und hinter dem Schmelzbad eingestellt werden. Ferner erstreckt sich das Temperaturgefälle über einen gegenüber dem Schmelzbad vergrößerten Bereich, was ebenfalls einer Heißrissbildung wirkungsvoll entgegenwirkt. Insbesondere eignet sich das erfindungsgemäße Verfahren auch zur Reparatur von Bauteilen wie Turbinen- oder Verdichterschaufeln, da durch das erfindungsgemäße Vor- und die Nachwärmen der zu bearbeitende Bauteilbereich lokal mit einem optimalen Temperaturverlauf eingestellt werden kann. Darüber können die Hochenergiestrahlen so angestellt werden, dass der Stufen- bzw. Treppeneffekt und eine diesbezügliche Nachbearbeitung vermieden bzw. erheblich reduziert wird.In a method according to the invention for the generative production of at least one region of a component which is built up from individual powder layers, wherein the respective powder layer is locally heated to a melting temperature upon impact of a high energy beam and a molten bath is formed, and wherein upon impact of a high energy beam downstream of the molten bath Nachwärmzone is reheated to a Nachwärmtemperatur, according to the invention a pre-heating zone upstream of the molten bath is defined, which is preheated by means of a high energy beam to a preheating temperature. By means of the solution according to the invention, the temperatures in front of and behind the molten bath are adjusted to the temperature of the molten bath, so that only a small temperature gradient to the powder bed environment arises in the region of the molten bath and thus the risk of hot cracking is prevented or at least markedly reduced. In addition, the temperature gradient or the temperature profile between the zones can be adjusted individually in front of and behind the molten bath by the individual high-energy beams, which are, for example, laser beams, electron beams or UV rays. Furthermore, the temperature gradient extends over a region enlarged with respect to the molten bath, which also effectively counteracts hot cracking. In particular, the inventive method is also suitable for repair of components such as turbine or compressor blades, as can be set locally with an optimal temperature profile by the inventive pre-heating and the reheating of the component area to be machined. In addition, the high-energy beams can be hired so that the step or staircase effect and related reworking is avoided or significantly reduced.

Die Heißrissbildung lässt sich insbesondere dann wirkungsvoll verhindern, wenn die vorgelagerte Vorwärmzone und die nachgelagerte Nachwärmzone unmittelbar an das Schmelzbad angrenzen, da dann ein Temperaturverlauf ohne wesentliche Temperatursprünge eingestellt werden kann.The hot cracking can be effectively prevented, in particular, when the upstream preheating zone and the downstream reheating zone directly adjoin the molten bath, since then a temperature profile can be set without significant temperature jumps.

Zur Erhöhung der Fertigungsgeschwindigkeit ist es vorteilhaft, wenn die jeweilige Pulverschicht bzw. das Pulverbett global auf eine Basistemperatur vorgewärmt wird.To increase the production speed, it is advantageous if the respective powder layer or the powder bed is preheated globally to a base temperature.

Bei einem Ausführungsbeispiel werden mehrere Pulverschichten gleichzeitig gebildet, was die Fertigungsdauer des Bauteils bzw. deren Reparaturdauer erheblich reduziert.In one embodiment, multiple powder layers are formed simultaneously, which significantly reduces the manufacturing life of the component or its repair time.

Eine erfindungsgemäße Vorrichtung zur Durchführung eines derartigen Verfahrens hat eine erste Strahlungsquelle zum Aussenden eines relativ zu einem generativ herzustellenden Bereich eines Bauteils verfahrbaren Hochenergiestrahls zur lokalen Erwärmung einer Pulverschicht auf eine Schmelztemperatur zur Erzeugung eines Schmelzbades und eine zweite Strahlungsquelle zum Aussenden eines relativ zum Bauteilbereich verfahrbaren Hochenergiestrahls zum Nachwärmen einer dem Schmelzbad nachgelagerten Nachwärmzone auf eine Nachwärmtemperatur. Erfindungsgemäß weist die Vorrichtung eine Strahlungsquelle zum Aussenden eines relativ zum Bauteilbereich verfahrbaren Hochenergiestrahls zum Vorwärmen einer dem Schmelzbad vorgelagerten Vorwärmzone auf eine Vorwärmtemperatur auf.A device according to the invention for carrying out such a method has a first radiation source for emitting a region of a region to be produced relative to a region to be generative Component traversable high-energy beam for locally heating a powder layer to a melting temperature for generating a molten bath and a second radiation source for emitting a relative to the component area movable high-energy beam for reheating a molten bath downstream Nachwärmzone to a Nachwärmtemperatur. According to the invention, the device has a radiation source for emitting a high-energy beam movable relative to the component region for preheating a preheating zone disposed upstream of the molten bath to a preheating temperature.

Zur optimalen Einstellung des sich über die Zonen und des Schmelzbads erstreckenden Temperaturverlaufs können die Hochenergiestrahlen unterschiedliche Strahlintensitäten aufweisen.For optimum adjustment of the temperature profile extending over the zones and the molten bath, the high-energy beams may have different beam intensities.

Zur Verkürzung der Fertigungszeit und um bei der Ansteuerung der Vorrichtung eine größtmögliche Flexibilität bezüglich der Vorschubrichtung zu erhalten, kann die vordere und hintere Strahlungsquelle jeweils die Funktion der anderen Strahlungsquelle übernehmen, so dass das erfindungsgemäße Verfahren sowohl bei einer Hin- als auch bei einer entgegengesetzten Rückbewegung der Hochenergiestrahlen bzw. des Bauteils durchgeführt werden kann.To shorten the production time and to obtain the greatest possible flexibility with respect to the feed direction in the control of the device, the front and rear radiation source can each take over the function of the other radiation source, so that the inventive method both in a forward and in an opposite return movement the high-energy beams or the component can be performed.

Zur Erhöhung der Vorschubgeschwindigkeit bzw. zur weiteren Nivellierung des Temperaturverlaufes im Bereich des Schmelzbades weist ein Ausführungsbeispiel eine Heizeinrichtung zum globalen Vorwärmen der jeweiligen Pulverschicht bzw. des Pulverbettes auf.To increase the feed rate or to further level the temperature profile in the region of the molten bath, an exemplary embodiment has a heating device for global preheating of the respective powder layer or of the powder bed.

Sonstige vorteilhafte Ausführungsbeispiele der Erfindung sind Gegenstand weiterer Unteransprüche.Other advantageous embodiments of the invention are the subject of further subclaims.

Im Folgenden werden bevorzugte Ausführungsbeispiele der Erfindung anhand schematischer Darstellungen näher erläutert. Es zeigen:In the following preferred embodiments of the invention will be explained in more detail with reference to schematic representations. Show it:

1 einen schematischen Aufbau einer erfindungsgemäßen Vorrichtung, 1 a schematic structure of a device according to the invention,

2 eine Draufsicht auf ein Pulverbett des in 1 gezeigten Bauteils, 2 a plan view of a powder bed of in 1 shown component,

3 eine Darstellung einer ersten Hochenergiestrahlführung, und 3 a representation of a first high-energy beam guide, and

4 eine Darstellung einer zweiten Hochenergiestrahlführung. 4 a representation of a second high-energy beam guide.

Gemäß der vereinfachten Darstellung in 1 hat eine erfindungsgemäße Vorrichtung 1 zur generativen Herstellung eines Bauteils 2 ein Pulverbecken 4 zur Aufnahme eines Pulvers und drei Strahlungsquellen 6, 8, 10 zur Aussendung jeweils eines Hochenergiestrahls 12, 14, 16 in Richtung des zu fertigenden Bauteils 2.According to the simplified illustration in 1 has a device according to the invention 1 for the generative production of a component 2 a powder basin 4 for receiving a powder and three radiation sources 6 . 8th . 10 for the emission of one high-energy beam each 12 . 14 . 16 in the direction of the component to be manufactured 2 ,

Das Pulverbecken 4 wird von einer Seitenwandung 18 und einem Hubtisch 20 begrenzt, der gemäß dem Doppelpfeil in Vertikalrichtung z verfahrbar ist. Zur Einfüllen des Pulvers in das Pulverbecken 4 weist die Vorrichtung 1 eine nicht gezeigte Befüllungseinrichtung auf. Zudem hat die Vorrichtung 1 einen nicht gezeigten Schieber zur Bildung von Pulverschichten 24a, 24b, 24c und zur Einstellung deren Schichtdicken. Aus Gründen der Übersichtlichkeit sind lediglich drei Pulverschichten 24a, 24b, 24c mit einem Bezugszeichen versehen.The powder basin 4 is from a side wall 18 and a lift table 20 limited, which is movable according to the double arrow in the vertical direction z. For filling the powder in the powder basin 4 has the device 1 a filling device, not shown. In addition, the device has 1 a slider, not shown, for forming powder layers 24a . 24b . 24c and for adjusting their layer thicknesses. For clarity, only three layers of powder 24a . 24b . 24c provided with a reference numeral.

Die Strahlungsquellen 6, 8, 10 sind vorzugsweise Laserstrahlen 12, 14, 16 aussendende Laser. Die Laserstrahlen 12, 14, 16 sind gemäß 2 jeweils auf eine lokale Zone 28, 32, 34 eines Pulverbettes 26 des Bauteils 2 gerichtet und relativ in Längsrichtung x und Querrichtung y des Pulverbettes 26 verfahrbar. Ausgehend von einem ersten bzw. mittleren Laser 6 zur Bildung eines Schmelzbades 28 ist ein in Vorschubrichtung 30 betrachtet vorderer Laser 8 zum Vorwärmen des Pulvers in einer an das Schmelzbad 28 angrenzenden vorderen Vorwärmzone 32 und ein hinterer Laser 10 zum Nachwärmen des Pulvers in einer an das Schmelzbad 28 angrenzenden hinteren Nachwärmzone 34 vorgesehen.The radiation sources 6 . 8th . 10 are preferably laser beams 12 . 14 . 16 emitting lasers. The laser beams 12 . 14 . 16 are according to 2 each on a local zone 28 . 32 . 34 a powder bed 26 of the component 2 directed and relatively in the longitudinal direction x and transverse direction y of the powder bed 26 traversable. Starting from a first or middle laser 6 to form a molten bath 28 is a feed direction 30 considered front laser 8th for preheating the powder in one to the molten bath 28 adjacent front preheat zone 32 and a rear laser 10 for reheating the powder in a to the molten bath 28 adjacent rear reheating zone 34 intended.

Das Pulver in dem Schmelzbad 28 wird über den Laserstrahl 12 auf eine Schmelztemperatur T1 erwärmt, so dass das Pulver aufgeschmolzen und an der darunter liegenden Pulverschicht 24a, 24b, 24c bzw. dem vorhergehenden Pulverschichtabschnitt fixiert wird. Das Pulver in der Vorwärmzone 32 wird über den Laserstrahl 14 auf eine Vorwärmtemperatur T2 vorgewärmt und das Pulver in der Nachwärmzone 34 wird über den Laserstrahl 16 auf eine Nachwärmtemperatur T3 nachgewärmt.The powder in the molten bath 28 is over the laser beam 12 heated to a melting temperature T1, so that the powder is melted and at the underlying powder layer 24a . 24b . 24c or the preceding powder layer section is fixed. The powder in the preheating zone 32 is over the laser beam 14 preheated to a preheating temperature T2 and the powder in the reheating zone 34 is over the laser beam 16 reheated to a reheating temperature T3.

Zusätzlich weist die Vorrichtung 1 eine nicht gezeigte Heizeinrichtung zur globalen Erwärmung des Pulverbettes 26 auf eine Basistemperatur T4 auf, die kleiner als die Temperaturen T1, T2 und T3 ist.In addition, the device 1 a heater not shown for global warming of the powder bed 26 to a base temperature T4 which is smaller than the temperatures T1, T2 and T3.

Gemäß den in 3 und 4 gezeigten Führungen der Laserstrahlen 12, 14, 16 wird das Pulverbett 26 in sich in Längsrichtung x erstreckenden parallelen Bahnen 36a, 36b, 36c, 36d nacheinander aufgeschmolzen, die sich im Längsbereich jeweils überlappen. Die Laserstrahlen 12, 14, 16 sind dabei jeweils in Längsrichtung x hintereinander positioniert, wobei gemäß 3 die Bahnen 36a, 36b, 36c, 36d von links nach rechts (Vorschubpfeile 38a, 38b, 38c, 38d) gezogen werden. Gemäß der in 4 gezeigten alternativen Laserstrahlführung können die Bahnen auch alternierend von links nach rechts (Vorschubpfeile 38a, 38c) und von rechts nach links (Vorschubpfeile 38b, 38d) gezogen werden. Zur Realisierung der alternierenden bzw. richtungswechselnden Laserstrahlführung können der vordere Laser 8 und der hintere Laser 10 so angesteuert werden, dass sie die Funktion des jeweils anderen Lasers 8, 10 übernehmen. D. h., bei Bildung der Bahnen 36b und 36d ist der ursprünglich hintere Laser 10 auf die Vorwärmzone 32 zum Vorwärmen dieser auf die Vorwärmtemperatur T2 und der ursprünglich vordere Laser 8 auf die Nachwärmzone 34 zum Nachwärmen dieser auf die Nachwärmtemperatur T3 gerichtet.According to the in 3 and 4 shown guides the laser beams 12 . 14 . 16 becomes the powder bed 26 in parallel paths extending in the longitudinal direction x 36a . 36b . 36c . 36d melted in succession, each overlapping in the longitudinal area. The laser beams 12 . 14 . 16 are each positioned one behind the other in the longitudinal direction x, wherein according to 3 the railways 36a . 36b . 36c . 36d from left to right (feed arrows 38a . 38b . 38c . 38d ) to be pulled. According to the in 4 shown alternative laser beam guidance, the webs can also alternate from left to right (feed arrows 38a . 38c ) and from right to left (feed arrows 38b . 38d ) to be pulled. to Realization of the alternating or direction-changing laser beam guidance, the front laser 8th and the back laser 10 be controlled so that they are the function of the other laser 8th . 10 take. That is, in formation of the webs 36b and 36d is the original rear laser 10 on the preheating zone 32 for preheating this to the preheating T2 and the original front laser 8th to the reheating zone 34 to reheat this directed to the reheating temperature T3.

Offenbart ist ein Verfahren zur generativen Herstellung zumindest eines Bauteilbereichs bzw. generativen Reparatur eines Bauteils, wobei die in Vorschubrichtung betrachtet einem Schmelzbad vorgelagerte Zone lokal vorgewärmt und eine dem Schmelzbad nachgelagerte Zone lokal nachgewärmt wird, sowie eine Vorrichtung zur Durchführung eines derartigen Verfahrens durch Aussendung von zumindest drei Hochenergiestrahlen.Disclosed is a method for the generative production of at least one component area or generative repair of a component, wherein the upstream of a molten pool upstream zone locally preheated and a melt downstream of the zone is reheated locally, and an apparatus for performing such a method by emitting at least three high-energy beams.

BezugszeichenlisteLIST OF REFERENCE NUMBERS

11
Vorrichtungcontraption
22
Bauteilcomponent
44
Pulverbeckenpowder basin
66
Strahlungsquelleradiation source
88th
Strahlungsquelleradiation source
1010
Strahlungsquelleradiation source
1212
HochenergiestrahlHigh energy beam
1414
HochenergiestrahlHigh energy beam
1616
HochenergiestrahlHigh energy beam
1818
Seitenwandungsidewall
2020
HubtischLift table
2222
Kolbenpiston
24a, b, c24a, b, c
Pulverschichtpowder layer
2626
Pulverbettpowder bed
2828
Schmelzbadmelting bath
3030
Vorschubrichtungfeed direction
3232
Vorwärmzonepreheating
3434
Nachwärmzonereheating
36a, b, c, d36a, b, c, d
Bahntrain
38a, b, c, d38a, b, c, d
Vorschubpfeilfeed arrow
T1T1
Schmelzbadtemperaturmelt temperature
T2T2
Nachwärmtemperaturpost-heat
T3T3
Vorwärmtemperatur T4 BasistemperaturPreheating temperature T4 base temperature

ZITATE ENTHALTEN IN DER BESCHREIBUNG QUOTES INCLUDE IN THE DESCRIPTION

Diese Liste der vom Anmelder aufgeführten Dokumente wurde automatisiert erzeugt und ist ausschließlich zur besseren Information des Lesers aufgenommen. Die Liste ist nicht Bestandteil der deutschen Patent- bzw. Gebrauchsmusteranmeldung. Das DPMA übernimmt keinerlei Haftung für etwaige Fehler oder Auslassungen.This list of the documents listed by the applicant has been generated automatically and is included solely for the better information of the reader. The list is not part of the German patent or utility model application. The DPMA assumes no liability for any errors or omissions.

Zitierte PatentliteraturCited patent literature

  • DE 19649865 C1 [0002] DE 19649865 C1 [0002]
  • DE 102007059865 A1 [0003] DE 102007059865 A1 [0003]
  • WO 2008/071165 A1 [0004] WO 2008/071165 A1 [0004]

Claims (9)

Verfahren zur generativen Herstellung zumindest eines Bereichs eines Bauteils (2), der aus einzelnen Pulverschichten (24a, 24b, 24c) aufgebaut wird, wobei beim Auftreffen eines Hochenergiestrahls (12) die jeweilige Pulverschicht (24a, 24b, 24c) lokal auf eine Schmelztemperatur erwärmt wird und ein Schmelzbad (28) entsteht, und wobei beim Auftreffen eines Hochenergiestrahls (16) eine dem Schmelzbad (28) nachgelagerte Nachwärmzone (34) auf eine Nachwärmtemperatur nachgewärmt wird, dadurch gekennzeichnet, dass eine dem Schmelzbad vorgelagerte Vorwärmzone (32) definiert wird, die mittels eines Hochenergiestrahls (14) auf eine Vorwärmtemperatur vorgewärmt wird.Method for the generative production of at least one region of a component ( 2 ) consisting of individual powder layers ( 24a . 24b . 24c ), wherein upon impact of a high-energy beam ( 12 ) the respective powder layer ( 24a . 24b . 24c ) is locally heated to a melting temperature and a molten bath ( 28 ), and wherein upon impact of a high-energy beam ( 16 ) a the molten bath ( 28 ) downstream reheating zone ( 34 ) is reheated to a Nachwärmtemperatur, characterized in that a pre-heating zone upstream of the molten bath ( 32 ) defined by means of a high-energy beam ( 14 ) is preheated to a preheating temperature. Verfahren nach Anspruch 1, wobei die vorgelagerte Vorwärmzone (32) und die nachgelagerte Nachwärmzone (34) an das Schmelzbad (28) angrenzen.Method according to claim 1, wherein the upstream preheating zone ( 32 ) and the downstream reheating zone ( 34 ) to the molten bath ( 28 ). Verfahren nach Anspruch 1 oder 2, wobei die jeweilige Pulverschicht (24a, 24b, 24c) global auf eine Basistemperatur global vorgewärmt wird.Method according to claim 1 or 2, wherein the respective powder layer ( 24a . 24b . 24c ) is globally preheated to a base temperature globally. Verfahren nach Anspruch 1, 2 oder 3, wobei mehrere Pulverschichten (24a, 24b, 24c) gleichzeitig aneinander fixiert werden.Method according to claim 1, 2 or 3, wherein a plurality of powder layers ( 24a . 24b . 24c ) are fixed together at the same time. Vorrichtung (1) zur Durchführung eines Verfahrens nach einem der vorhergehenden Ansprüche, mit einem ersten Strahlungsquelle (6) zum Aussenden eines relativ zu einem generativ herzustellenden Bereich eines Bauteils (2) verfahrbaren Hochenergiestrahl (12) zur lokalen Erwärmung einer Pulverschicht (24a, 24b, 24c) auf eine Schmelztemperatur zur Erzeugung eines Schmelzbades (28), und mit einer Strahlungsquelle (10) zum Aussenden eines relativ zum Bauteilbereich verfahrbaren Hochenergiestrahl (14) zum Nachwärmen einer dem Schmelzbad (28) nachgelagerten Nachwärmzone (34) auf eine Nachwärmtemperatur, gekennzeichnet durch eine Strahlungsquelle (8) zum Aussenden eines relativ zum Bauteilbereich verfahrbaren Hochenergiestrahls (14) zum Vorwärmen einer der Schmelzbad (28) vorgelagerten Vorwärmzone (34) auf eine Vorwärmtemperatur.Contraption ( 1 ) for carrying out a method according to one of the preceding claims, having a first radiation source ( 6 ) for emitting a relative to a generatively produced region of a component ( 2 ) movable high-energy beam ( 12 ) for local heating of a powder layer ( 24a . 24b . 24c ) to a melting temperature for producing a molten bath ( 28 ), and with a radiation source ( 10 ) for emitting a movable relative to the component area high-energy beam ( 14 ) for reheating a molten bath ( 28 ) downstream reheating zone ( 34 ) to a reheating temperature, characterized by a radiation source ( 8th ) for emitting a movable relative to the component area high-energy beam ( 14 ) for preheating one of the molten baths ( 28 ) upstream preheating zone ( 34 ) to a preheating temperature. Vorrichtung nach Anspruch 5, wobei die Hochenergiestrahlen (12, 14, 16) unterschiedliche Strahlintensitäten aufweisen.Apparatus according to claim 5, wherein the high energy beams ( 12 . 14 . 16 ) have different beam intensities. Vorrichtung nach Anspruch 5 oder 6, wobei die vordere Strahlungsquelle (8) als die hintere Strahlungsquelle (10) betreibbar und die hintere Strahlungsquelle (10) als die vordere Strahlungsquelle (8) betreibbar ist.Apparatus according to claim 5 or 6, wherein the front radiation source ( 8th ) as the rear radiation source ( 10 ) and the rear radiation source ( 10 ) as the front radiation source ( 8th ) is operable. Vorrichtung nach Anspruch 5, 6 oder 7, wobei eine Heizeinrichtung zum globalen Vorwärmen der jeweiligen Pulverschicht (24a, 24b, 24c) vorgesehen ist.Apparatus according to claim 5, 6 or 7, wherein a heater for global preheating the respective powder layer ( 24a . 24b . 24c ) is provided. Vorrichtung nach mindestens einem der vorherigen Ansprüche, wobei der Laser pulsartig und/oder stetig zum Vor- und/oder Nachwärmen austauschbar ist.Device according to at least one of the preceding claims, wherein the laser is pulse-like and / or continuously exchangeable for preheating and / or reheating.
DE102010048335A 2010-10-13 2010-10-13 Method for production of portion of component e.g. turbine blade composed of individual powder layers, involves applying high energy beam to molten bath from downstream direction of post-heating zone, to reheat the molten bath Ceased DE102010048335A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
DE102010048335A DE102010048335A1 (en) 2010-10-13 2010-10-13 Method for production of portion of component e.g. turbine blade composed of individual powder layers, involves applying high energy beam to molten bath from downstream direction of post-heating zone, to reheat the molten bath

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE102010048335A DE102010048335A1 (en) 2010-10-13 2010-10-13 Method for production of portion of component e.g. turbine blade composed of individual powder layers, involves applying high energy beam to molten bath from downstream direction of post-heating zone, to reheat the molten bath

Publications (1)

Publication Number Publication Date
DE102010048335A1 true DE102010048335A1 (en) 2012-04-19

Family

ID=45895719

Family Applications (1)

Application Number Title Priority Date Filing Date
DE102010048335A Ceased DE102010048335A1 (en) 2010-10-13 2010-10-13 Method for production of portion of component e.g. turbine blade composed of individual powder layers, involves applying high energy beam to molten bath from downstream direction of post-heating zone, to reheat the molten bath

Country Status (1)

Country Link
DE (1) DE102010048335A1 (en)

Cited By (39)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2737964A1 (en) * 2012-11-30 2014-06-04 MBDA France Method for melting powder by heating the area adjacent to the bath
DE102013205029A1 (en) * 2013-03-21 2014-09-25 Siemens Aktiengesellschaft Method for laser melting with at least one working laser beam
DE102013011676A1 (en) * 2013-07-11 2015-01-15 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Device and method for generative component production
DE102013011675A1 (en) * 2013-07-11 2015-01-15 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Method for additive component production with reduced thermal gradients
WO2015065655A1 (en) * 2013-11-04 2015-05-07 Caterpillar Inc. Laser cladding with a laser scanning head
DE102013226298A1 (en) * 2013-12-17 2015-06-18 MTU Aero Engines AG Exposure to generative production
DE102014222302A1 (en) * 2014-10-31 2016-05-04 Siemens Aktiengesellschaft Producing a component by selective laser melting
DE102015214994A1 (en) * 2015-08-06 2017-02-09 MTU Aero Engines AG A method of manufacturing or repairing a component and apparatus for manufacturing and repairing a component
US9573225B2 (en) 2014-06-20 2017-02-21 Velo3D, Inc. Apparatuses, systems and methods for three-dimensional printing
US9662840B1 (en) 2015-11-06 2017-05-30 Velo3D, Inc. Adept three-dimensional printing
DE102016107058A1 (en) * 2015-12-17 2017-07-06 Lilas Gmbh 3D printing device for the production of a spatially extended product
EP3238863A1 (en) * 2016-04-27 2017-11-01 MTU Aero Engines GmbH Method for producing a rotor blade for a fluid flow engine
DE102016209084A1 (en) * 2016-05-25 2017-11-30 MTU Aero Engines AG Method and device for the additive production of at least one component region of a component
US9919360B2 (en) 2016-02-18 2018-03-20 Velo3D, Inc. Accurate three-dimensional printing
US9962767B2 (en) 2015-12-10 2018-05-08 Velo3D, Inc. Apparatuses for three-dimensional printing
US20180126649A1 (en) 2016-11-07 2018-05-10 Velo3D, Inc. Gas flow in three-dimensional printing
GB2531625B (en) * 2014-06-20 2018-07-25 Velo3D Inc Apparatuses, systems and methods for three-dimensional printing
DE102017105056A1 (en) 2017-03-09 2018-09-13 Cl Schutzrechtsverwaltungs Gmbh Device for the additive production of three-dimensional objects
WO2018200771A1 (en) * 2017-04-26 2018-11-01 Sabic Global Technologies B.V. Enhanced layer adhesion additive in manufacturing by use of multiple heating steps
DE102017213762A1 (en) * 2017-08-08 2019-02-14 Siemens Aktiengesellschaft Method and device for the generative production of a component or a component section
DE102017118831A1 (en) * 2017-08-17 2019-02-21 Eos Gmbh Electro Optical Systems Method and device for the additive production of at least one component layer of a component and storage medium
EP3408051A4 (en) * 2016-01-28 2019-03-06 Lawrence Livermore National Security, LLC Heat treatment to anneal residual stresses during additive manufacturing
US10252336B2 (en) 2016-06-29 2019-04-09 Velo3D, Inc. Three-dimensional printing and three-dimensional printers
US10272525B1 (en) 2017-12-27 2019-04-30 Velo3D, Inc. Three-dimensional printing systems and methods of their use
US10315252B2 (en) 2017-03-02 2019-06-11 Velo3D, Inc. Three-dimensional printing of three-dimensional objects
DE102018202506A1 (en) * 2018-02-19 2019-08-22 Eos Gmbh Electro Optical Systems Controlled solidification additive manufacturing process and associated apparatus
US10449696B2 (en) 2017-03-28 2019-10-22 Velo3D, Inc. Material manipulation in three-dimensional printing
DE102018112126A1 (en) * 2018-05-18 2019-11-21 Volkswagen Aktiengesellschaft Method for the generative production of a component, device for carrying out the method and motor vehicle
DE102018212480A1 (en) * 2018-07-26 2020-01-30 Siemens Aktiengesellschaft Additive manufacturing process with selective irradiation and simultaneous application as well as heat treatment
CN110869195A (en) * 2017-06-23 2020-03-06 应用材料公司 Additive manufacturing using a multi-mirror scanner
CN110891768A (en) * 2017-06-23 2020-03-17 应用材料公司 Additive manufacturing using polygon mirror scanner and galvanometer mirror scanner
US10611092B2 (en) 2017-01-05 2020-04-07 Velo3D, Inc. Optics in three-dimensional printing
WO2021123744A1 (en) * 2019-12-17 2021-06-24 Renishaw Plc Powder bed fusion additive manufacturing methods
DE102020001399A1 (en) 2020-03-04 2021-09-09 Amsis Gmbh Process for additive manufacturing of a three-dimensional component and system for repair
DE102020206161A1 (en) 2020-05-15 2021-11-18 Siemens Aktiengesellschaft Process for additive manufacturing by means of dual selective irradiation of a powder bed and preheating
WO2022000865A1 (en) * 2020-07-03 2022-01-06 华南理工大学 In-situ energy controlled selective laser melting apparatus and method
US11518100B2 (en) 2018-05-09 2022-12-06 Applied Materials, Inc. Additive manufacturing with a polygon scanner
US11691343B2 (en) 2016-06-29 2023-07-04 Velo3D, Inc. Three-dimensional printing and three-dimensional printers
US11701819B2 (en) 2016-01-28 2023-07-18 Seurat Technologies, Inc. Additive manufacturing, spatial heat treating system and method

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5508489A (en) * 1993-10-20 1996-04-16 United Technologies Corporation Apparatus for multiple beam laser sintering
DE19649865C1 (en) 1996-12-02 1998-02-12 Fraunhofer Ges Forschung Shaped body especially prototype or replacement part production
DE19953000A1 (en) * 1999-11-04 2001-05-17 Horst Exner Rapid e.g. tool, prototype, mold and undercut section production by stereolithographic powder processing employs two beams for welding or sintering
US20060157892A1 (en) * 2002-12-19 2006-07-20 Arcam Ab Arrangement and method for producing a three-dimensional product
WO2008071165A1 (en) 2006-12-14 2008-06-19 Mtu Aero Engines Gmbh Device and method for the repair or production of blade tips of blades of a gas turbine, in particular of an aircraft engine
DE102007059865A1 (en) 2007-12-12 2009-06-18 Bayerische Motoren Werke Aktiengesellschaft Producing a mold body by structuring powder forming metallic material in layered manner, comprises subjecting layers one upon the other and melting each powder layer before bringing the powder layer with a wave like high energy radiation

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5508489A (en) * 1993-10-20 1996-04-16 United Technologies Corporation Apparatus for multiple beam laser sintering
DE19649865C1 (en) 1996-12-02 1998-02-12 Fraunhofer Ges Forschung Shaped body especially prototype or replacement part production
DE19953000A1 (en) * 1999-11-04 2001-05-17 Horst Exner Rapid e.g. tool, prototype, mold and undercut section production by stereolithographic powder processing employs two beams for welding or sintering
US20060157892A1 (en) * 2002-12-19 2006-07-20 Arcam Ab Arrangement and method for producing a three-dimensional product
WO2008071165A1 (en) 2006-12-14 2008-06-19 Mtu Aero Engines Gmbh Device and method for the repair or production of blade tips of blades of a gas turbine, in particular of an aircraft engine
DE102007059865A1 (en) 2007-12-12 2009-06-18 Bayerische Motoren Werke Aktiengesellschaft Producing a mold body by structuring powder forming metallic material in layered manner, comprises subjecting layers one upon the other and melting each powder layer before bringing the powder layer with a wave like high energy radiation

Cited By (78)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014083292A1 (en) * 2012-11-30 2014-06-05 Mbda France Method for melting powder, comprising heating of the area adjacent to the bath
FR2998819A1 (en) * 2012-11-30 2014-06-06 Ass Pour La Rech Et Le Dev De Methodes Et Processus Ind Armines PROCESS FOR POWDER FUSION WITH HEATING OF THE AREA ADJACENT TO THE BATH
EP2737964A1 (en) * 2012-11-30 2014-06-04 MBDA France Method for melting powder by heating the area adjacent to the bath
US10549385B2 (en) 2013-03-21 2020-02-04 Siemens Aktiengesellschaft Method for laser melting with at least one working laser beam
DE102013205029A1 (en) * 2013-03-21 2014-09-25 Siemens Aktiengesellschaft Method for laser melting with at least one working laser beam
DE102013011676A1 (en) * 2013-07-11 2015-01-15 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Device and method for generative component production
DE102013011675A1 (en) * 2013-07-11 2015-01-15 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Method for additive component production with reduced thermal gradients
US9827632B2 (en) 2013-07-11 2017-11-28 Fraunhofer-Gesellschaft Zur Foerderung Der Angewandten Forschung E.V. Device and method for generative component production
US9381594B2 (en) 2013-11-04 2016-07-05 Caterpillar Inc. Laser cladding with a laser scanning head
WO2015065655A1 (en) * 2013-11-04 2015-05-07 Caterpillar Inc. Laser cladding with a laser scanning head
CN105682847A (en) * 2013-11-04 2016-06-15 卡特彼勒公司 Laser cladding with a laser scanning head
US9636769B2 (en) 2013-12-17 2017-05-02 MTU Aero Engines AG Irradiation in generative fabrication
DE102013226298A1 (en) * 2013-12-17 2015-06-18 MTU Aero Engines AG Exposure to generative production
US9573225B2 (en) 2014-06-20 2017-02-21 Velo3D, Inc. Apparatuses, systems and methods for three-dimensional printing
US9586290B2 (en) 2014-06-20 2017-03-07 Velo3D, Inc. Systems for three-dimensional printing
US10195693B2 (en) 2014-06-20 2019-02-05 Vel03D, Inc. Apparatuses, systems and methods for three-dimensional printing
GB2531625B (en) * 2014-06-20 2018-07-25 Velo3D Inc Apparatuses, systems and methods for three-dimensional printing
US9821411B2 (en) 2014-06-20 2017-11-21 Velo3D, Inc. Apparatuses, systems and methods for three-dimensional printing
US10493564B2 (en) 2014-06-20 2019-12-03 Velo3D, Inc. Apparatuses, systems and methods for three-dimensional printing
US10507549B2 (en) 2014-06-20 2019-12-17 Velo3D, Inc. Apparatuses, systems and methods for three-dimensional printing
US10603748B2 (en) 2014-10-31 2020-03-31 Siemens Aktiengesellschaft Production of a component by selective laser melting
DE102014222302A1 (en) * 2014-10-31 2016-05-04 Siemens Aktiengesellschaft Producing a component by selective laser melting
DE102015214994A1 (en) * 2015-08-06 2017-02-09 MTU Aero Engines AG A method of manufacturing or repairing a component and apparatus for manufacturing and repairing a component
US9676145B2 (en) 2015-11-06 2017-06-13 Velo3D, Inc. Adept three-dimensional printing
US10065270B2 (en) 2015-11-06 2018-09-04 Velo3D, Inc. Three-dimensional printing in real time
US9662840B1 (en) 2015-11-06 2017-05-30 Velo3D, Inc. Adept three-dimensional printing
US10357957B2 (en) 2015-11-06 2019-07-23 Velo3D, Inc. Adept three-dimensional printing
US9962767B2 (en) 2015-12-10 2018-05-08 Velo3D, Inc. Apparatuses for three-dimensional printing
US10286603B2 (en) 2015-12-10 2019-05-14 Velo3D, Inc. Skillful three-dimensional printing
US10071422B2 (en) 2015-12-10 2018-09-11 Velo3D, Inc. Skillful three-dimensional printing
US10207454B2 (en) 2015-12-10 2019-02-19 Velo3D, Inc. Systems for three-dimensional printing
US10688722B2 (en) 2015-12-10 2020-06-23 Velo3D, Inc. Skillful three-dimensional printing
US10183330B2 (en) 2015-12-10 2019-01-22 Vel03D, Inc. Skillful three-dimensional printing
DE102016107058A1 (en) * 2015-12-17 2017-07-06 Lilas Gmbh 3D printing device for the production of a spatially extended product
US10618111B2 (en) 2016-01-28 2020-04-14 Lawrence Livermore National Security, Llc Heat treatment to anneal residual stresses during additive manufacturing
US10898954B2 (en) 2016-01-28 2021-01-26 Lawrence Livermore National Security, Llc Heat treatment to anneal residual stresses during additive manufacturing
EP3408051A4 (en) * 2016-01-28 2019-03-06 Lawrence Livermore National Security, LLC Heat treatment to anneal residual stresses during additive manufacturing
US11701819B2 (en) 2016-01-28 2023-07-18 Seurat Technologies, Inc. Additive manufacturing, spatial heat treating system and method
US10252335B2 (en) 2016-02-18 2019-04-09 Vel03D, Inc. Accurate three-dimensional printing
US9931697B2 (en) 2016-02-18 2018-04-03 Velo3D, Inc. Accurate three-dimensional printing
US9919360B2 (en) 2016-02-18 2018-03-20 Velo3D, Inc. Accurate three-dimensional printing
US10434573B2 (en) 2016-02-18 2019-10-08 Velo3D, Inc. Accurate three-dimensional printing
EP3238863A1 (en) * 2016-04-27 2017-11-01 MTU Aero Engines GmbH Method for producing a rotor blade for a fluid flow engine
DE102016209084A1 (en) * 2016-05-25 2017-11-30 MTU Aero Engines AG Method and device for the additive production of at least one component region of a component
US10252336B2 (en) 2016-06-29 2019-04-09 Velo3D, Inc. Three-dimensional printing and three-dimensional printers
US10286452B2 (en) 2016-06-29 2019-05-14 Velo3D, Inc. Three-dimensional printing and three-dimensional printers
US10259044B2 (en) 2016-06-29 2019-04-16 Velo3D, Inc. Three-dimensional printing and three-dimensional printers
US11691343B2 (en) 2016-06-29 2023-07-04 Velo3D, Inc. Three-dimensional printing and three-dimensional printers
US20180126649A1 (en) 2016-11-07 2018-05-10 Velo3D, Inc. Gas flow in three-dimensional printing
US10661341B2 (en) 2016-11-07 2020-05-26 Velo3D, Inc. Gas flow in three-dimensional printing
US10611092B2 (en) 2017-01-05 2020-04-07 Velo3D, Inc. Optics in three-dimensional printing
US10442003B2 (en) 2017-03-02 2019-10-15 Velo3D, Inc. Three-dimensional printing of three-dimensional objects
US10315252B2 (en) 2017-03-02 2019-06-11 Velo3D, Inc. Three-dimensional printing of three-dimensional objects
US10357829B2 (en) 2017-03-02 2019-07-23 Velo3D, Inc. Three-dimensional printing of three-dimensional objects
US10369629B2 (en) 2017-03-02 2019-08-06 Veo3D, Inc. Three-dimensional printing of three-dimensional objects
US10888925B2 (en) 2017-03-02 2021-01-12 Velo3D, Inc. Three-dimensional printing of three-dimensional objects
DE102017105056A1 (en) 2017-03-09 2018-09-13 Cl Schutzrechtsverwaltungs Gmbh Device for the additive production of three-dimensional objects
US11911959B2 (en) 2017-03-09 2024-02-27 Concept Laser Gmbh Device for additive production of three-dimensional objects
US10449696B2 (en) 2017-03-28 2019-10-22 Velo3D, Inc. Material manipulation in three-dimensional printing
WO2018200771A1 (en) * 2017-04-26 2018-11-01 Sabic Global Technologies B.V. Enhanced layer adhesion additive in manufacturing by use of multiple heating steps
CN110891768A (en) * 2017-06-23 2020-03-17 应用材料公司 Additive manufacturing using polygon mirror scanner and galvanometer mirror scanner
CN110869195A (en) * 2017-06-23 2020-03-06 应用材料公司 Additive manufacturing using a multi-mirror scanner
US11065689B2 (en) 2017-06-23 2021-07-20 Applied Materials, Inc. Additive manufacturing with polygon and galvo mirror scanners
EP3642018A4 (en) * 2017-06-23 2021-04-28 Applied Materials, Inc. Additive manufacturing with polygon and galvo mirror scanners
EP3642017A4 (en) * 2017-06-23 2021-04-28 Applied Materials, Inc. Additive manufacturing with multiple mirror scanners
US11135773B2 (en) 2017-06-23 2021-10-05 Applied Materials, Inc. Additive manufacturing with multiple mirror scanners
DE102017213762A1 (en) * 2017-08-08 2019-02-14 Siemens Aktiengesellschaft Method and device for the generative production of a component or a component section
DE102017118831A1 (en) * 2017-08-17 2019-02-21 Eos Gmbh Electro Optical Systems Method and device for the additive production of at least one component layer of a component and storage medium
US10272525B1 (en) 2017-12-27 2019-04-30 Velo3D, Inc. Three-dimensional printing systems and methods of their use
DE102018202506A1 (en) * 2018-02-19 2019-08-22 Eos Gmbh Electro Optical Systems Controlled solidification additive manufacturing process and associated apparatus
US11518100B2 (en) 2018-05-09 2022-12-06 Applied Materials, Inc. Additive manufacturing with a polygon scanner
DE102018112126A1 (en) * 2018-05-18 2019-11-21 Volkswagen Aktiengesellschaft Method for the generative production of a component, device for carrying out the method and motor vehicle
DE102018212480A1 (en) * 2018-07-26 2020-01-30 Siemens Aktiengesellschaft Additive manufacturing process with selective irradiation and simultaneous application as well as heat treatment
WO2021123744A1 (en) * 2019-12-17 2021-06-24 Renishaw Plc Powder bed fusion additive manufacturing methods
DE102020001399A1 (en) 2020-03-04 2021-09-09 Amsis Gmbh Process for additive manufacturing of a three-dimensional component and system for repair
DE102020206161A1 (en) 2020-05-15 2021-11-18 Siemens Aktiengesellschaft Process for additive manufacturing by means of dual selective irradiation of a powder bed and preheating
WO2021228593A1 (en) 2020-05-15 2021-11-18 Siemens Aktiengesellschaft Method for additive manufacturing by means of dual selective irradiation of a powder bed and preheating
WO2022000865A1 (en) * 2020-07-03 2022-01-06 华南理工大学 In-situ energy controlled selective laser melting apparatus and method

Similar Documents

Publication Publication Date Title
DE102010048335A1 (en) Method for production of portion of component e.g. turbine blade composed of individual powder layers, involves applying high energy beam to molten bath from downstream direction of post-heating zone, to reheat the molten bath
EP3235580B1 (en) Method and device for additive manufacture of at least one component area of a component
EP2913124A2 (en) Production of residual compressive stresses in generative production
DE102010050531A1 (en) Generatively producing portion of component, which is constructed from individual powder layers, comprises heating powder layer locally on melting temperature, forming molten bath, reheating zone downstream to the molten bath
EP1568472A1 (en) Method and device for producing parts by sintering and/or melting
EP3017895A1 (en) Manufacture of a component through selective laser melting
EP3621758B1 (en) Method for a component with a predetermined surface structure to be produced by additive manufacturing
EP2335848A1 (en) Optical irradiation unit for an assembly for producing workpieces by means of irradiating powder layers with laser radiation
DE102007059865A1 (en) Producing a mold body by structuring powder forming metallic material in layered manner, comprises subjecting layers one upon the other and melting each powder layer before bringing the powder layer with a wave like high energy radiation
EP3010673A2 (en) Device and method for additively producing at least one component region of a component
EP3956088A1 (en) Layer building process and layer building apparatus for the additive manufacture of at least one wall of a component, as well as computer program product and storage medium
DE102016207112A1 (en) Method for producing at least one component region of a component and induction auxiliary structure
DE102016213420A1 (en) Method and device for the generative production of a component
DE102013107484B4 (en) Process for joining a light sheet and a solid sheet
DE102014219656A1 (en) Process for the production of components for gas turbines, and their products
EP3381593B1 (en) Method for selective beam-based melting or sintering
DE102008003871A1 (en) Finishing thin metal sheet and/or products made of thin metal sheets later designed as semifinished sheet metal products using laser beam technology, by locally melting surface of products with laser beam up to in given sheet-metal depth
DE102014222526A1 (en) Method and device for the generative production of at least one component region of a component
DE102020206161A1 (en) Process for additive manufacturing by means of dual selective irradiation of a powder bed and preheating
EP3175941A1 (en) Method and apparatus for additive manufacture of at least one component area of a component
DE102019218377A1 (en) Method for selectively irradiating a powder layer in additive manufacturing with a first and a second irradiation pattern
DE102016205782A1 (en) Method and device for producing at least one component region of a component
EP4225523A1 (en) Irradiation strategy in additive manufacturing with pulsed irradiation
DE102017122088A1 (en) Additive manufacturing process
DE102020210403A1 (en) Manufacturing equipment and method for the additive manufacturing of components from a powder material

Legal Events

Date Code Title Description
R002 Refusal decision in examination/registration proceedings
R003 Refusal decision now final

Effective date: 20131015