DE10200908A1 - Infrared gas sensor, used in environmental and process measuring technology, has an infrared detector onto which infrared radiation is deviated via an imaging lens as a parallel light bundle in the direction of its optical axis - Google Patents

Infrared gas sensor, used in environmental and process measuring technology, has an infrared detector onto which infrared radiation is deviated via an imaging lens as a parallel light bundle in the direction of its optical axis

Info

Publication number
DE10200908A1
DE10200908A1 DE10200908A DE10200908A DE10200908A1 DE 10200908 A1 DE10200908 A1 DE 10200908A1 DE 10200908 A DE10200908 A DE 10200908A DE 10200908 A DE10200908 A DE 10200908A DE 10200908 A1 DE10200908 A1 DE 10200908A1
Authority
DE
Germany
Prior art keywords
infrared
gas sensor
sensor according
detector
infrared gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Ceased
Application number
DE10200908A
Other languages
German (de)
Inventor
Gerhard Wiegleb
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to DE10200908A priority Critical patent/DE10200908A1/en
Publication of DE10200908A1 publication Critical patent/DE10200908A1/en
Ceased legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/28Investigating the spectrum
    • G01J3/42Absorption spectrometry; Double beam spectrometry; Flicker spectrometry; Reflection spectrometry
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/31Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry
    • G01N21/35Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light
    • G01N21/3504Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light for analysing gases, e.g. multi-gas analysis

Abstract

Infrared gas sensor comprises an infrared radiator (1), an infrared detector (2) and a wavelength-selective element (3). The optical axes of the radiator and detector are in the same direction. Infrared radiation (8) is deviated via an imaging lens (6) by 90 degrees as a parallel light bundle in the direction of the optical axis (5) of the detector, and focussed onto the detector via a further imaging lens (7) over a path (S). Preferred Features: The imaging lens consists of a spherical or parabolic surface with a focal point containing the infrared radiator. The sensor has a holder (9) and a cap (10) both made from plastic. All surfaces in contact with the radiation and the lenses are coated with an infrared-reflecting layer. The wavelength-selective element has a transmission maximum of 3.4 microns for measuring hydrocarbons and a transmission maximum of 4.3 microns for measuring carbon dioxide.

Description

Infrarotgassensoren eignen sich hervorragend für Anwendungen in der Umwelt- und Prozessmesstechnik und werden in diesem Anwendungsfeld seit vielen Jahrzehnten sehr erfolgreich eingesetzt. Infrared gas sensors are ideal for applications in the environmental and Process measurement technology and have been in this field of application for many decades used very successfully.

Im Bereich der Massenanwendung (Gebäudesystemtechnik und Automobilindustrie) konnte diese Technologie bisher nicht eingesetzt werden, da die Fertigungstechnik sehr aufwendig ist und somit die Herstellungskosten zu hoch waren. Insbesondere für die Erdgaskontrolle (Explosionsschutz) und die bedarfsgesteuerte Raumlüftung über den Kohlendioxidgehalt in der Raumluft ergeben sich in der Gebäudesystemtechnik aber interessante und vielversprechende Anwendungen. Im Bereich der Fahrzeugtechnik sind dies die Kohlendioxidüberwachung von schadhaften Klimaanlagen und der Innenluftqualität zur Steuerung der Frischluftzufuhr In the area of mass application (building system technology and automotive industry) So far this technology could not be used because the manufacturing technology is very complex and thus the manufacturing costs were too high. In particular for natural gas control (explosion protection) and demand-controlled room ventilation about the carbon dioxide content in the room air result in the Building system technology but interesting and promising applications. In the field of Vehicle technology, these are the carbon dioxide monitoring of defective Air conditioning and indoor air quality to control the fresh air supply

Die Aufgabe der Erfindung besteht nun darin, einen kompakten, aus wenigen Komponenten aufgebauten Infrarotgassensor vorzuschlagen, der für eine Leiterkartenmontage geeignet ist. The object of the invention is now a compact, from a few Propose components built infrared gas sensor that for a PCB assembly is suitable.

Die Lösung dieser Aufgabe erhält man mit den Merkmalen von Anspruch 1. Die Unteransprüche geben vorteilhafte Ausbildungen der Erfindung nach Anspruch 1 an. Ein wesentlicher Vorteil des Infrarotgassensors nach Anspruch 1 besteht darin, das ein Großteil der Infrarotstrahlung (8) über eine abbildende Optik (6) parallel zur Leiterkarte (15) um 90° umgelenkt wird, um die Infrarotstrahlung (8) dann über eine zweite abbildende Optik (7) auf den Detektor (2) zu konzentrieren. Ein solcher Übertragungsweg ist sehr effektiv, so daß die Strahlungsintensitäten am Ort des Detektors (2) auch sehr hoch sind, so das die Nachweisgrenze und das Stabilitätsverhalten des Gassensors ebenfalls sehr gut sind. Die elektrische Kontaktierung erfolgt dabei fertigungstechnisch wie bei allen anderen elektronischen Bauteilen auf der Leiterkarte über eine automatische Bestückung. Die Halterung (9) und die Kappe (10) werden nach der Fertigstellung der Leiterkarte per Hand montiert, ohne das eine zusätzliche optische Justierung erfolgen muss. Das wellenlängenselektivierende Element (3) besteht aus einem Interferenzfilter bei 3,4 µm für die Erdgaskontrolle und 4,3 µm für die Kohlendioxidüberwachung und ist integraler Bestandteil des Infrarotdetektors (2). Sämtliche Oberflächen, die mit der Infrarotstrahlung in Berührung kommen könnten, lassen sich durch eine Reflexionsschicht beschichten, so daß auch Streustrahlung (16) zu dem Detektor (2) gelangen kann. Die Streustrahlung, die sich aus dem nicht idealen Abbildungsverhalten einer sphärischen Oberfläche ergibt, kann durch eine parabolische Oberfläche reduziert werden. Der Gasaustausch zwischen der Umgebungsluft und dem Sensorinnenraum erfolgt über Diffusion durch Öffnungen (13), die außen an der Kappe (10) integriert sind. The solution to this problem is obtained with the features of claim 1. The subclaims indicate advantageous developments of the invention according to claim 1. A major advantage of the infrared gas sensor according to claim 1 is that a large part of the infrared radiation ( 8 ) is deflected by 90 ° via an imaging optics ( 6 ) parallel to the printed circuit board ( 15 ), then around the infrared radiation ( 8 ) via a second imaging optics ( 7 ) to focus on the detector ( 2 ). Such a transmission path is very effective, so that the radiation intensities at the location of the detector ( 2 ) are also very high, so that the detection limit and the stability behavior of the gas sensor are also very good. In terms of production technology, the electrical contacting is carried out via an automatic assembly, as is the case with all other electronic components on the circuit board. The holder ( 9 ) and the cap ( 10 ) are assembled by hand after completion of the circuit board, without the need for additional optical adjustment. The wavelength-selective element ( 3 ) consists of an interference filter at 3.4 µm for natural gas control and 4.3 µm for carbon dioxide monitoring and is an integral part of the infrared detector ( 2 ). All surfaces that could come into contact with the infrared radiation can be coated with a reflective layer so that scattered radiation ( 16 ) can also reach the detector ( 2 ). The scattered radiation, which results from the non-ideal imaging behavior of a spherical surface, can be reduced by a parabolic surface. The gas exchange between the ambient air and the sensor interior takes place via diffusion through openings ( 13 ) which are integrated on the outside of the cap ( 10 ).

Die mittlere Strecke zwischen der Strahlungsquelle und dem Detektor auf der die selektive Absorption stattfindet ist L = S + 2R. Nach dem Lambert Beerschen Gesetz ergibt sich dabei folgende Signaländerung:

I(c) = I0e- α cL
I(c) = Intensität bei einer Gaskonzentration c
I0 = Intensität bei c = 0
c = Gaskonzentration
α = Absorptionskoeffizient
L = Abstand (optischer Weg in der Messküvette) zwischen der Strahlungsquelle und dem Empfangsdetektor
The mean distance between the radiation source and the detector on which the selective absorption takes place is L = S + 2R. According to the Lambert Beer law, the following signal change results:

I (c) = I 0 e - α cL
I (c) = intensity at a gas concentration c
I 0 = intensity at c = 0
c = gas concentration
α = absorption coefficient
L = distance (optical path in the measuring cell) between the radiation source and the reception detector

Für unterschiedliche Konzentrationsbereiche muss der optische Weg L durch Änderung der Strecke S angepasst werden, um vergleichbare Sensorkennlinien zu erhalten. The optical path L must pass through for different concentration ranges Change in distance S can be adjusted to comparable sensor characteristics receive.

Claims (12)

1. Infrarotgassensor mit mindestens einem Infrarotstrahler (1) und mindestens einem Infrarotdetektor (2) und mindestens einem wellenlängenselektivierenden Element (3), wobei die optischen Achsen des Infrarotstrahlers (1) und des Infrarotdetektors (2) in die gleiche Richtung zeigen und die optischen Achsen (4, 5) um den Betrag (S + R) versetzt zueinander angeordnet sind, dadurch gekennzeichnet, daß die Infrarotstrahlung (8) über eine abbildende Optik (6) um 90° als paralleles Lichtbündel in Richtung der optischen Achse (5) des Infrarotdetektors (2) umgelenkt wird und nach der Strecke S wiederum um 90° über eine weitere abbildende Optik (7) auf den Infrarotdetektor (2) fokussiert wird. 1. infrared gas sensor with at least one infrared radiator ( 1 ) and at least one infrared detector ( 2 ) and at least one wavelength-selective element ( 3 ), the optical axes of the infrared radiator ( 1 ) and the infrared detector ( 2 ) pointing in the same direction and the optical axes ( 4 , 5 ) are offset from one another by the amount (S + R), characterized in that the infrared radiation ( 8 ) via an imaging optics ( 6 ) by 90 ° as a parallel light beam in the direction of the optical axis ( 5 ) of the infrared detector ( 2 ) is deflected and after the distance S is again focused through 90 ° via a further imaging optics ( 7 ) on the infrared detector ( 2 ). 2. Infrarotgassensor nach Anspruch 1, dadurch gekennzeichnet, daß die abbildende Optik (6) aus einer sphärischen Kugelfläche besteht, in dessen Brennpunkt (0,5R) sich der Infrarotstrahler (1) befindet. 2. Infrared gas sensor according to claim 1, characterized in that the imaging optics ( 6 ) consists of a spherical spherical surface, in the focal point (0.5 R) of which the infrared radiator ( 1 ) is located. 3. Infrarotgassensor nach Anspruch 1, dadurch gekennzeichnet, daß die abbildende Optik (7) aus einer sphärischen Kugelfläche besteht, in dessen Brennpunkt (0,5R) sich der Infrarotdetektor (2) befindet. 3. Infrared gas sensor according to claim 1, characterized in that the imaging optics ( 7 ) consists of a spherical spherical surface, in the focal point (0.5 R) of which the infrared detector ( 2 ) is located. 4. Infrarotgassensor nach Anspruch 1, dadurch gekennzeichnet, daß die abbildende Optik (6) aus einer parabolischen Fläche besteht, in dessen Brennpunkt sich der Infrarotstrahler (1) befindet. 4. Infrared gas sensor according to claim 1, characterized in that the imaging optics ( 6 ) consists of a parabolic surface, in the focus of which is the infrared radiator ( 1 ). 5. Infrarotgassensor nach Anspruch 1, dadurch gekennzeichnet, daß die abbildende Optik (7) aus einer parabolischen Fläche besteht, in dessen Brennpunkt sich der Infrarotdetektor (2) befindet. 5. Infrared gas sensor according to claim 1, characterized in that the imaging optics ( 7 ) consists of a parabolic surface, in the focal point of which is the infrared detector ( 2 ). 6. Infrarotgassensor nach Anspruch 1, dadurch gekennzeichnet, daß die Halterung (9) und die Kappe (10) aus Kunststoff bestehen. 6. Infrared gas sensor according to claim 1, characterized in that the holder ( 9 ) and the cap ( 10 ) consist of plastic. 7. Infrarotgassensor nach Anspruch 6, dadurch gekennzeichnet das alle strahlungsberührenden Oberflächen (11, 12) und die abbildenden Optiken (6, 7) mit einer infrarotreflektieren Schicht überzogen sind. 7. Infrared gas sensor according to claim 6, characterized in that all radiation-contacting surfaces ( 11 , 12 ) and the imaging optics ( 6 , 7 ) are coated with an infrared reflecting layer. 8. Infrarotgassensor nach mindestens einem der Ansprüche 1 bis 7, dadurch gekennzeichnet, daß in der Kappe (10) in Richtung der optischen Achse Öffnungen (13) zum Gasaustausch vorgehen sind. 8. Infrared gas sensor according to at least one of claims 1 to 7, characterized in that openings ( 13 ) for gas exchange in the cap ( 10 ) in the direction of the optical axis. 9. Infrarotgassensor nach mindestens einem der Ansprüche 1 bis 8, dadurch gekennzeichnet, daß sich der gesamte Sensoraufbau (14) auf einer Leiterkarte (15) befindet. 9. Infrared gas sensor according to at least one of claims 1 to 8, characterized in that the entire sensor structure ( 14 ) is on a circuit board ( 15 ). 10. Infrarotgassensor nach Anspruch 9, dadurch gekennzeichnet, daß die Auswerteelektronik für den Infrarotgassensor auf der Leiterkarte integriert ist. 10. Infrared gas sensor according to claim 9, characterized in that the Evaluation electronics for the infrared gas sensor is integrated on the circuit board. 11. Infrarotgassensor nach mindestens einem der Ansprüche 1 bis 10, dadurch gekennzeichnet, daß das wellenlängenselektivierende Element (3) ein Transmissionsmaximum bei 3,4 µm zur Messung von Kohlenwasserstoffen aufweist. 11. Infrared gas sensor according to at least one of claims 1 to 10, characterized in that the wavelength-selective element ( 3 ) has a transmission maximum at 3.4 microns for measuring hydrocarbons. 12. Infrarotgassensor nach mindestens einem der Ansprüche 1 bis 10, dadurch gekennzeichnet, daß das wellenlängenselektivierende Element (3) ein Transmissionsmaximum bei 4,3 µm zur Messung von Kohlendioxid aufweist. 12. Infrared gas sensor according to at least one of claims 1 to 10, characterized in that the wavelength-selective element ( 3 ) has a transmission maximum at 4.3 microns for measuring carbon dioxide.
DE10200908A 2002-01-12 2002-01-12 Infrared gas sensor, used in environmental and process measuring technology, has an infrared detector onto which infrared radiation is deviated via an imaging lens as a parallel light bundle in the direction of its optical axis Ceased DE10200908A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
DE10200908A DE10200908A1 (en) 2002-01-12 2002-01-12 Infrared gas sensor, used in environmental and process measuring technology, has an infrared detector onto which infrared radiation is deviated via an imaging lens as a parallel light bundle in the direction of its optical axis

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE10200908A DE10200908A1 (en) 2002-01-12 2002-01-12 Infrared gas sensor, used in environmental and process measuring technology, has an infrared detector onto which infrared radiation is deviated via an imaging lens as a parallel light bundle in the direction of its optical axis

Publications (1)

Publication Number Publication Date
DE10200908A1 true DE10200908A1 (en) 2003-07-31

Family

ID=7711948

Family Applications (1)

Application Number Title Priority Date Filing Date
DE10200908A Ceased DE10200908A1 (en) 2002-01-12 2002-01-12 Infrared gas sensor, used in environmental and process measuring technology, has an infrared detector onto which infrared radiation is deviated via an imaging lens as a parallel light bundle in the direction of its optical axis

Country Status (1)

Country Link
DE (1) DE10200908A1 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102004015439A1 (en) * 2004-03-30 2005-06-23 Robert Bosch Gmbh Apparatus for detecting gas (especially carbon dioxide) concentration has a reflector together with a single chip carrying both the radiation source and the receiver
WO2006111433A1 (en) * 2005-04-21 2006-10-26 Robert Bosch Gmbh Optical ga s sensor
DE102006002870B3 (en) * 2006-01-19 2007-06-28 Tyco Electronics Raychem Gmbh Gas sensor for e.g. motor vehicle air conditioner, has holder fixing lamp body of light source in play free and stationary manner, where holder is formed by setting adhesive suppressed in fluid condition against lamp body
WO2007091043A1 (en) * 2006-02-06 2007-08-16 Gas Sensing Solutions Limited Dome gas sensor
EP2261618A1 (en) * 2009-06-08 2010-12-15 Leister Process Technologies Miniature infrared light source
EP2309250A1 (en) * 2009-08-05 2011-04-13 Dräger Safety AG & Co. KGaA Infra-red optical gas-measuring device
EP2743677A1 (en) * 2012-12-14 2014-06-18 Nxp B.V. IR COx sensor and integrated circuit comprising the same
WO2018024840A1 (en) * 2016-08-05 2018-02-08 Osram Opto Semiconductors Gmbh Detection assembly and method for producing detection assemblies
EP1697724B1 (en) * 2003-12-20 2020-03-04 Robert Bosch Gmbh Gas sensor

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1697724B1 (en) * 2003-12-20 2020-03-04 Robert Bosch Gmbh Gas sensor
DE102004015439A1 (en) * 2004-03-30 2005-06-23 Robert Bosch Gmbh Apparatus for detecting gas (especially carbon dioxide) concentration has a reflector together with a single chip carrying both the radiation source and the receiver
WO2006111433A1 (en) * 2005-04-21 2006-10-26 Robert Bosch Gmbh Optical ga s sensor
DE102006002870B3 (en) * 2006-01-19 2007-06-28 Tyco Electronics Raychem Gmbh Gas sensor for e.g. motor vehicle air conditioner, has holder fixing lamp body of light source in play free and stationary manner, where holder is formed by setting adhesive suppressed in fluid condition against lamp body
EP1811286A2 (en) * 2006-01-19 2007-07-25 Tyco Electronics Raychem GmbH Gas sensor and method for the production thereof
EP1811286A3 (en) * 2006-01-19 2009-07-08 Tyco Electronics Raychem GmbH Gas sensor and method for the production thereof
KR101339076B1 (en) * 2006-02-06 2014-01-10 가스 센싱 솔루션즈 리미티드 Dome gas sensor
WO2007091043A1 (en) * 2006-02-06 2007-08-16 Gas Sensing Solutions Limited Dome gas sensor
AU2007213575B2 (en) * 2006-02-06 2012-06-07 Gas Sensing Solutions Limited Dome gas sensor
EP2261618A1 (en) * 2009-06-08 2010-12-15 Leister Process Technologies Miniature infrared light source
US8399839B2 (en) 2009-08-05 2013-03-19 Dräger Safety AG & Co. KGaA Infrared optical gas-measuring device
EP2309250A1 (en) * 2009-08-05 2011-04-13 Dräger Safety AG & Co. KGaA Infra-red optical gas-measuring device
EP2743677A1 (en) * 2012-12-14 2014-06-18 Nxp B.V. IR COx sensor and integrated circuit comprising the same
WO2018024840A1 (en) * 2016-08-05 2018-02-08 Osram Opto Semiconductors Gmbh Detection assembly and method for producing detection assemblies
US11486819B2 (en) 2016-08-05 2022-11-01 Osram Oled Gmbh Detection arrangement and method for producing detection arrangements

Similar Documents

Publication Publication Date Title
EP1697724B1 (en) Gas sensor
DE102005055860B3 (en) Gas sensor arrangement with light channel in the form of a conical section rotational body
DE102004044145B3 (en) Reflector module for a photometric gas sensor
DE102010026562A1 (en) Sensor arrangement for detecting environmental conditions
DE10200908A1 (en) Infrared gas sensor, used in environmental and process measuring technology, has an infrared detector onto which infrared radiation is deviated via an imaging lens as a parallel light bundle in the direction of its optical axis
DD245502A1 (en) PROJECTOR FOR FIXSTERN PROJECTION
WO2003101795A1 (en) Optoelectronic sensor device
DE102004031316B3 (en) Gas sensor module for the spectroscopic measurement of a gas concentration
DE10060964A1 (en) Rain sensor, in particular for a motor vehicle
EP0199081A2 (en) Luminescence detector
DE102006041338B3 (en) Plasma resonance sensor for biosensor, has partial area of metallic section illuminated in form of illuminated line on light source and comprising parallel illuminated lines all-over angular spectrum
DE19902903C1 (en) Arrangement for locating object entering monitored space has light scattering test zone on reception mirror outside effective zone for received light to deflect part of incident light to receiver
DE19815748C2 (en) Sensor device for detecting wetting of a pane
DE19835769C2 (en) Optoelectronic gas sensor based on optodes
DE10358647B4 (en) Sensor for transmission measurement
EP1148345A1 (en) Apparatus for localisation of objects penetrating a monitored space
DE3031685A1 (en) OPTICAL MEASURING DEVICE.
DE4300741A1 (en) Sensor arrangement for detecting degree of moisture on transparent screen caused by precipitation
EP3816123A1 (en) Gasochromic glass, method of manufacturing the same and target gas detecting apparatus
DE102019126050A1 (en) Miniaturized spectrometer device and method for making a miniaturized spectrometer device
WO2004097381A1 (en) Gas sensor for a motor vehicle air-conditioning unit
WO1997045706A1 (en) Optical sensor for finding the angle of rotation of a rotary axis
DE102007024334A1 (en) Optical measuring device for commercial fiber optic spectrometer, has measuring beam paths located symmetric to plane such that beam bundles exhibit common detection beam path to measure reflection and transmission of object in plane
DE4133126A1 (en) HUMIDITY SENSOR
DE102004010757A1 (en) Infrared sensor for measurement of gas concentration, has ellipsoidal reflector chamber with IR source and IR detector mounted on base plate at focii of ellipsoid

Legal Events

Date Code Title Description
OP8 Request for examination as to paragraph 44 patent law
8131 Rejection