DE102009042354A1 - Verfahren und Vorrichtung zur sicherheitsgerichteten Kommunikation im Kommunikations-Netzwerk einer Automatisierungs-Anlage - Google Patents

Verfahren und Vorrichtung zur sicherheitsgerichteten Kommunikation im Kommunikations-Netzwerk einer Automatisierungs-Anlage Download PDF

Info

Publication number
DE102009042354A1
DE102009042354A1 DE102009042354A DE102009042354A DE102009042354A1 DE 102009042354 A1 DE102009042354 A1 DE 102009042354A1 DE 102009042354 A DE102009042354 A DE 102009042354A DE 102009042354 A DE102009042354 A DE 102009042354A DE 102009042354 A1 DE102009042354 A1 DE 102009042354A1
Authority
DE
Germany
Prior art keywords
modules
security
communication
safety
master
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
DE102009042354A
Other languages
English (en)
Other versions
DE102009042354C5 (de
DE102009042354B4 (de
Inventor
Joachim Schmidt
Steffen Horn
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Phoenix Contact GmbH and Co KG
Original Assignee
Phoenix Contact GmbH and Co KG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=43038115&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=DE102009042354(A1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Phoenix Contact GmbH and Co KG filed Critical Phoenix Contact GmbH and Co KG
Priority to DE102009042354.0A priority Critical patent/DE102009042354C5/de
Priority to US12/878,496 priority patent/US8923286B2/en
Priority to ES10009765.8T priority patent/ES2377186T5/es
Priority to AT10009765T priority patent/ATE542334T1/de
Priority to EP10009765.8A priority patent/EP2302841B2/de
Priority to CN201010290447.9A priority patent/CN102025610B/zh
Publication of DE102009042354A1 publication Critical patent/DE102009042354A1/de
Publication of DE102009042354B4 publication Critical patent/DE102009042354B4/de
Application granted granted Critical
Publication of DE102009042354C5 publication Critical patent/DE102009042354C5/de
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L12/00Data switching networks
    • H04L12/28Data switching networks characterised by path configuration, e.g. LAN [Local Area Networks] or WAN [Wide Area Networks]
    • H04L12/40Bus networks
    • H04L12/403Bus networks with centralised control, e.g. polling
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L12/00Data switching networks
    • H04L12/28Data switching networks characterised by path configuration, e.g. LAN [Local Area Networks] or WAN [Wide Area Networks]
    • H04L12/46Interconnection of networks
    • H04L12/4604LAN interconnection over a backbone network, e.g. Internet, Frame Relay
    • H04L12/462LAN interconnection over a bridge based backbone
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L45/00Routing or path finding of packets in data switching networks

Abstract

Die Erfindung betrifft die Kommunikation zwischen sicherheitsgerichteten Modulen im Kommunikations-Netzwerk einer solchen Automatisierungs-Anlage. Der Erfindung liegt dabei die Aufgabe zugrunde, die Installation und Projektierung sicherheitsgerichteter Module in einem Automatisierungs-Netzwerk zu vereinfachen. Dazu werden die Sicherheitsfunktionen einer Anlage in kleine, überschaubare, lokal begrenzbare und einfach verifizierbare Modulgruppen aufgeteilt.

Description

  • Die Erfindung betrifft allgemein Automatisierungs-Anlagen und deren Automatisierungs-Bussysteme. Im Speziellen betrifft die Erfindung die Kommunikation zwischen sicherheitsgericheten Modulen im Kommunikations-Netzwerk einer solchen Automatisierungs-Anlage.
  • Zur Reduzierung eines Risikos für Mensch oder Umwelt ist es häufig erforderlich, Sicherheitsfunktionen in Automatisierungs-Bussystemen, beziehungsweise den daran angeschlossenen Teilnehmern vorzusehen. Ein Beispiel ist die Abschaltung einer an das Automatisierungs-Bussystem angeschlossenen Maschine nach der Betätigung eines Not-Aus-Schalters. Zu diesem Zweck werden zunehmend fehlersichere Automatisierungssysteme eingesetzt. Im Allgemeinen realisieren diese fehlersicheren Automatisierungssysteme einerseits die eigentliche Sicherheitsfunktion, wie zum Beispiel Zweihand-Schaltung, Muting, Betriebsarten-Wahlschalter, usw., und andererseits auch fehlererkennende und fehlerbeherrschende Massnahmen, wie sie zum Beispiel in den Standards IEC 61508 und ISO 13849 festgelegt sind.
  • In derzeitigen Automatisierungs-Systemen werden abhängig vom Automatisierungsgrad und von der Ausdehnung der Anlagen Kommunikationssysteme verwendet, die dezentrale Eingabe-/Ausgabe-Geräte (E/AGeräte) und Steuerungen verbinden. Für den Transport von sicherheitstechnischen Daten ist es dabei bekannt, das Netzwerk durch sichere Netzwerkprotokolle zu unterstützen. Der verwendete Signalfluss geht bisher von einer zentralen Sicherheitstechnik aus, in der die sicheren Eingangssignale zur sicheren Steuerung transportiert, dort verarbeitet und dann zu den entsprechenden Aktoren transportiert werden. Die sichere Verarbeitung wird auch als sichere Applikation bezeichnet.
  • Fehler in der Kommunikation können in der Hardware und der Firmware der Automatisierungsgeräte, in Infrastrukturkomponenten der Netzwerke, beispielsweise Feldbus- oder Ethernet-Komponenten und während der Datenübertragung durch äußere Einflüsse vorhanden sein oder entstehen. Äußere Einflüsse können beispielsweise Störungen der Datenübertragung durch elektromagnetische Felder sein.
  • In der Automatisierungstechnik lassen sich derzeit zwei Tendenzen erkennen. Zum einen existieren Bestrebungen, die Steuerungsfunktionen zu dezentralisieren. Weiterhin besteht Interesse an der Integration der Sicherheitstechnik in die Steuerungs- und Netzwerktechnik.
  • Bei der Dezentralisierung wird die Steuerungsfunktion immer weiter in die Ausgangsebene verlagert. So kann zum Beispiel in Antrieben in begrenztem Umfang die Steuerungsfunktion mit integriert werden.
  • Mit der Integration der Sicherheitstechnik in Steuerungen und Netzwerke werden allerdings starke Abhängigkeiten im Applikationsprozess erzeugt. Diese Abhängigkeiten führen zu einer komplexeren Projektierung und Programmierung der Systeme. Dies steht in gewissem Widerspruch zu dem Wunsch nach einer Einfachheit in der Handhabung der Sicherheitstechnik. Die Komplexität in der Projektierung sicherheitsgerichteter Applikationen ist bisher einer der wesentlichen Gründe dafür, dass der Übergang von konventioneller, fest verdrahteter Sicherheitstechnik, insbesondere auf der Basis von Sicherheitsrelais nur schleppende Akzeptanz findet. Auch kann es bei bisherigen sicheren Automatisierungsbussystemen aufgrund der vorstehend genannten Schwierigkeiten zu fehlerbehafteter Nutzung und mangelnder Verfügbarkeit der gesteuerten Anlage durch sogenannte Fehlauslösungen kommen.
  • Der Erfindung liegt mithin die Aufgabe zugrunde, die Installation und Projektierung sicherheitsgerichteter Module in einem Automatisierungs-Netzwerk zu vereinfachen.
  • Eine grundlegende Idee der Erfindung zur Lösung dieser Aufgabe liegt darin die Sicherheitsfunktionen einer Anlage in kleine, überschaubare, lokal begrenzbare und einfach verifizierbare Modulgruppen aufzuteilen. Die Gruppen von Modulen, die zur Ausführung einer sicherheitsgerichteten Aktion vorgesehen sind, stellen somit mehr oder weniger autarke Inseln innerhalb des gesamten Kommunikations-Netzwerks dar.
  • Diese Architektur entspricht der Denkweise der heute mit der Sicherheitstechnik vertrauten Personen bei der Anlagenautomatisierung. Zudem sind auf diese Weise Modifikationen und Erweiterungen der Anlage einfacher möglich, ohne dass schon verifizierte Anlagenteile nochmals nachverifiziert werden müssen. Zudem kommt die Modularisierung und Trennung der Sicherheitsfunktion von Standard-Funktionen den Anforderungen aktueller Sicherheitsstandards, wie den oben genannten Normen IEC 61508 und ISO 13849 in höchstem Masse entgegen.
  • Ein weiterer Vorteil für den Anwender ergibt sich in der Möglichkeit, die dezentralen Sicherheitsmodule gegebenenfalls netzwerkunabhängig und steuerungsunabhängig zu gestalten. Hierdurch ergibt sich auch eine Unabhängigkeit vom Anbieter der Steuerung. Das bedeutet auch, dass bei einem Wechsel der Standard-Steuerung oder des Netzwerks, etwa bedingt durch nicht sicherheitsrelevante Anforderungen bei der eingesetzten Sicherheitstechnik und den verifizierten Sicherheitsmodulen bleiben können.
  • Erfindungsgemäß sollen die dezentralen Sicherheitsmodule für die Sicherstellung der Gesamt-Sicherheitsfunktion miteinander zumindest in begrenztem Umfang miteinander fehlersicher kommunizieren können. Um dies unabhängig vom zugrundeliegenden physikalischen Medium zu ermöglichen, wird die Überprüfung der den Sicherheitsanforderungen gerechten Übertragung auf den empfangenden Teilnehmer übertragen. Damit entfällt ein in einigen bekannten Systemen vorgesehene Sicherheits-Master.
  • Für die Kommunikation der Module einer Insel, beziehungsweise einer Gruppe von Modulen zur Ausführung einer sicherheitsgerichteten Aktion werden die Telegramme an einen Kommunikations-Master gesendet und dort an den Empfänger geroutet. Das automatische Routing des Datenflusses wird realisiert, indem die fehlersicheren Kommunikationsprotokolle und/oder die fehlersicheren Kommunikationsteilnehmer Informationen oder Mittel zur Verfügung stellen, welche von den Routing-Schichten ausgewertet werden können. Auswerten heißt hierbei, dass sich die Kopier- oder Routingtabelle in einer Initialisierungsphase eigenständig aufbauen kann, ohne dass der Anwender mittels eines Netzwerkkonfigurationstools die Adressen der Kommunikationsteilnehmer vorgeben muss. Die Mittel oder Informationen können dabei sowohl einmalig während einer Initialisierungsphase, als auch zur Laufzeit des Systems zur Verfügung gestellt und ausgewertet werden.
  • Die Erfindung sieht im Speziellen zur Lösung der oben genannten Aufgabe eine Automatisierungs-Anlage mit einem insbesondere nicht sicheren Kommunikations-Master und mehreren dezentralen Modulen, wobei
    • – die dezentralen Module als Netzwerkteilnehmer ausgebildet sind und
    • – mit dem Kommunikations-Master mittels eines Kommunikationsnetzwerkes vernetzt sind, wobei
    • – die Kommunikation zwischen den dezentralen Modulen im Kommunikationsnetzwerk über Telegramme realisiert wird, wobei
    • – zumindest zwei der Module Sicherheitsmodule sind, zwischen denen sicherheitsgerichtete Daten übermittelt werden und
    • – die eine logische Gruppe von Modulen zur Ausführung einer sicherheitsgerichteten Funktion bilden, und wobei
    • – der vorzugsweise nicht sichere Kommunikations-Master eine Routing-Tabelle hält, in welcher logische Verbindungen zwischen den dezentralen Sicherheitsmodulen entsprechend der sicherheitsgerichteten Funktion abgelegt sind, wobei
    • – der Kommunikations-Master dazu eingerichtet ist, gesteuert anhand der Routing-Tabelle ein automatisches Routing der Daten vom sendenden Sicherheitsmodul zum empfangenden Sicherheitsmodul vorzunehmen,
    • – so dass eine Kommunikation zwischen den zu einer logischen Gruppe gehörenden Sicherheitsmodulen jeweils über zwei Punkt-zu-Punkt Verbindungen, nämlich vom sendenden Sicherheitsmodul zum Kommunikations-Master und weiter vom Kommunikations-Master zum empfangenden Sicherheitsmodul erfolgt,
    • – wobei das empfangende Sicherheitsmodul dazu eingerichtet ist, eine sicherheitsgerichete Aktion entsprechend den empfangenden Daten auszuführen, und wobei das Kommunikationsnetzwerk eine Einrichtung aufweist, um Informationen für das Erstellen einer Routing-Tabelle von den Sicherheitsmodulen abzufragen und die Routing-Tabelle anhand dieser Information zu erstellen.
  • Vorzugsweise ist die Einrichtung für das Erstellen der Routing-Tabelle im Kommunikations-Master selbst implementiert. Es ist aber auch denkbar, dass die Routing-Tabelle von einer externen Einrichtung, beispielsweise einem zusätzlichen am Netzwerk angeschlossenen Modul erzeugt und dann an den Kommunikations-Master übermittelt wird.
  • Mit diesen Merkmale einer Automatisierungs-Anlage wird dann entsprechend ein Verfahren zum Überwachen von Sicherheitsfunktionen in der Anlage mit einem insbesondere nicht sicheren Kommunikations-Master und mehreren dezentralen Modulen ermöglicht, wobei
    • – die dezentralen Module als Netzwerkteilnehmer ausgebildet sind und
    • – mit dem Kommunikations-Master mittels eines Kommunikationsnetzwerkes vernetzt sind, wobei
    • – die Kommunikation zwischen den dezentralen Modulen im Kommunikationsnetzwerk über Telegramme realisiert wird, wobei
    • – zumindest zwei der Module Sicherheitsmodule sind, zwischen denen sicherheitsgerichtete Daten übermittelt werden und
    • – die eine logische Gruppe von Modulen zur Ausführung einer sicherheitsgerichteten Funktion bilden, und wobei
    • – der vorzugsweise nicht sichere Kommunikations-Master eine Routing-Tabelle hält, in welcher logische Verbindungen zwischen den dezentralen Sicherheitsmodulen entsprechend der sicherheitsgerichteten Funktion abgelegt sind, wobei
    • – der Kommunikations-Master anhand der Routing-Tabelle ein automatisches Routing der Daten vom sendenden Sicherheitsmodul zum empfangenden Sicherheitsmodul vorzunehmen,
    • – so dass eine Kommunikation zwischen den zu einer logischen Gruppe gehörenden Sicherheitsmodulen jeweils über zwei Punkt-zu-Punkt Verbindungen, nämlich vom sendenden Sicherheitsmodul zum Kommunikations-Master und weiter vom Kommunikations-Master zum empfangenden Sicherheitsmodul durchgeführt wird,
    • – wobei das empfangende Sicherheitsmodul eine sicherheitsgerichete Aktion entsprechend den empfangenden Daten ausführt, und wobei von einer Einrichtung des Kommunikationsnetzwerkes, vorzugsweise vom Kommunikations-Master Informationen für das Erstellen der Routing-Tabelle von den Sicherheitsmodulen abgefragt werden und die Routing-Tabelle anhand dieser Information erstellt wird.
  • Der Begriff einer Routing-Tabelle bezieht sich nicht auf eine strikte Zuordnung in tabellarischer Form. Vielmehr ist im Sinne der Erfindung unter diesem Begriff eine in beliebiger Form vorhandene Zuordnungsvorschrift zu verstehen, in welcher die Sicherheitsmodule, beziehungsweise deren Adressen entsprechend der aufzubauenden logischen Verbindungen verknüpft werden.
  • Eine Routing-Tabelle kann gemäß einer Ausführungsform der Erfindung in Gestalt einer Kopierliste vorliegen. Das Kopieren kann insbesondere in Form eines Kopierens vollständiger Telegramme oder deren Daten innerhalb des Anwenderprogramms oder einer Kommunikations-Firmware des Kommunikations-Masters erfolgen.
  • Das Merkmal eines nicht sicheren Kommunikations-Masters bedeutet, dass der Kommunikations-Master nicht selbst für eine fehlersichere Kommunikation mittels eines sicheren Netzwerkprotokolls ausgebildet sein braucht und/oder spezielle redundante Hardware aufweisen muss.
  • Ein großer Vorteil der Erfindung liegt unter anderem darin, dass ein zentrales Konfigurationstool, mit welchem die Sicherheitsmodule und deren sicherheitsgerichtete Aktionen konfiguriert werden, vollständig entfallen kann.
  • Bei sicherheitsgerichteter Kommunikation wird eine schnelle Übertragung der Daten gefordert. Hier erscheint das erfindungsgemäße Verfahren mit einem Routing über einen nicht sicheren Kommunikations-Master zunächst umständlich, da jedes Telegramm über zwei Punk-zu-Punkt Verbindungen transportiert und dabei auch noch geroutet werden muss. Es hat sich aber gezeigt, dass die Kommunikation in der Geschwindigkeit anderen Sicherheitssystemen mit einer Kommunikation über den Bus vergleichbar ist, so dass der Anforderung einer schnellen Reaktionszeit genügt wird.
  • Als Basis für den Datenverkehr im Kommunikationsnetzwerk kann Standard-Netzwerkkommunikation verwendet werden. Genannt seien hier unter anderem die INTERBUS-, PROFIBUS-, PROFINET-, DeviceNet-, und Ethernet IP-Systeme. Für die sichere Kommunikation zwischen den Sicherheitsmodulen können die zugehörigen sicheren Netzwerkprotokolle INTERBUS-Safety, PROFIsafe oder CIP-Safety verwendet werden. Diese fehlersicheren Netzwerkprotokolle funktionieren nach dem „Black-Channel”-Prinzip, bei welchem das fehlersichere Telegramm in ein Standard-Telegramm eingebettet wird. Ein Kommunikationsteilnehmer übernimmt dabei die Rolle des sicheren Kommunikationsmasters, z. B. mittels einer Master-Safety-Layer, oder in Form eines F-Hosts.
  • Die Erfindung wird nachfolgend genauer anhand der beigeschlossenen Zeichnungen erläutert. Dabei verweisen gleiche Bezugszeichen auf gleiche oder entsprechende Elemente. Es zeigen:
  • 1: ein schematisches Schaltbild eines Automatisierungs-Netzwerks einer automatisierten Fertigungsanlage,
  • 2: ein Ausführungsbeispiel einer Routing-Tabelle für das in 1 gezeigte Automatisierungs-Netzwerk,
  • 3 ein Ausführungsbeispiel mit Eingabe- und Ausgabemodulen.
  • In 1 ist ein Blockschaltbild des Kommunikationsnetzwerks einer Automatisierungs-Anlage 1, vorzugsweise einer automatisierten Fertigungsanlage dargestellt.
  • Eine Automatisierungs-Anlage 1 gemäß der Erfindung umfasst einen Kommunikations-Master, beispielsweise als Bestandteil einer zentralen Steuerung und mehrere dezentrale Module. Im Beispiel der 1 ist ein Kommunikations-Master 3 als zentrale Steuerung oder als Bestandteil derselben vorgesehen. An das Kommunikationsnetzwerk 2 sind dezentrale Module 70, 80, 81, 82, 83, 90, 91 angeschlossen.
  • Die dezentralen Module 70, 80, 81, 82, 83, 90, 91 sind als Netzwerkteilnehmer ausgebildet und mit dem Kommunikations-Master 3 mittels des Kommunikationsnetzwerkes 2 vernetzt. Die Kommunikation zwischen den dezentralen Modulen 70, 80, 81, 82, 83, 90, 91 im Kommunikationsnetzwerk 2 wird über Telegramme realisiert. Beispielsweise kann das Kommunikationsnetzwerk 2 ein Ethernet-Netzwerk als physikalische Schicht aufweisen und die Kommunikation entsprechend mit Ethernet-Telegrammen realisiert werden.
  • Weiterhin sind zumindest zwei der Module Sicherheitsmodule, zwischen denen sicherheitsgerichtete Daten übermittelt werden. Im Beispiel der 1 sind im Speziellen die Module 80, 81, 82, 83, 90, 91 als Sicherheitsmodule ausgebildet. Die Sicherheitsmodule bilden eine oder mehrere logische Gruppen von Modulen zur Ausführung einer sicherheitsgerichteten Funktion.
  • Der Kommunikationsmaster 3 hält eine Routing-Tabelle, in welcher logische Verbindungen zwischen den dezentralen Sicherheitsmodulen 80, 81, 82, 83, 90, 91 entsprechend der sicherheitsgerichteten Funktion abgelegt sind. Der Kommunikations-Master 3 ist dazu eingerichtet, gesteuert anhand der Routing-Tabelle ein automatisches Routing der Daten vom jeweiligen sendenden Sicherheitsmodul zum empfangenden Sicherheitsmodul vorzunehmen. Das empfangende Sicherheitsmodul ist dazu eingerichtet, eine sicherheitsgerichete Aktion entsprechend den empfangenden Daten auszuführen.
  • Der Kommunikations-Master 3 muss insbesondere selbst nicht sicher im Sinne der oben genannten Normen sein. Vielmehr kann die zentrale Steuerung eine Standard-Steuerung darstellen.
  • Bei dem in 1 gezeigten Beispiel existieren Punkt-zu-Punkt Verbindungen 10, 11, 12, 13, 14, 15 zwischen dem Kommunikations-Master 3 und den Sicherheitsmodulen 80, 81, 82, 83, 90, 91. In der Routing-Tabelle sind weiterhin die zur Durchführung der verschiedenen sicherheitsgerichteten Funktionen verwendeten logischen Verbindungen 16, 17, 18, 19 abgelegt. Mittels dieser Routing-Tabelle routet der Kommunikations-Master 3 die Daten, welche von den jeweils sendenden Sicherheitsmodulen versendet werden, automatisch an die zugeordneten empfangenden Sicherheitsmodule. Die mit einer logischen Verbindung verknüpften Sicherheitsmodule bilden jeweils eine logische Gruppe von Modulen zur Ausführung einer sicherheitsgerichteten Funktion. Bei dem in 1 gezeigten Beispiel wird demgemäß eine logische Gruppe mit den Sicherheitsmodulen 80, 81, 82, 83 gebildet, in welcher durch die logischen Verbindungen 16, 17, 18 die Sicherheitsmodule 81, 82, 83 jeweils mit dem Sicherheitsmodul 80 verknüpft sind. Weiterhin wird eine logische Gruppe der Sicherheitsmodule 90, 91 über die logische Verbindung 19 verknüpft.
  • Beispielsweise kann eines der Sicherheitsmodule die Daten einer Lichtschranke auswerten. Es kann dann etwa vorgesehen sein, dass eine Vorrichtung, deren Zugang mit der Lichtschranke überwacht wird, abzuschalten ist. Eine entsprechende Abschalt-Einrichtung wird dann von einem weiteren Sicherheitsmodul unter Ansprechen auf ein vom Sicherheitsmodul, an welchem die Lichtschranke angeschlossen ist, gesendetes und vom Kommunikations-Master 3 an das weitere Sicherheitsmodul geroutete Telegramm betätigt.
  • Die logischen Verbindungen sind damit aufgegliedert in jeweils zwei Punkt-zu-Punkt-Verbindungen vom und zum Kommunikations-Master 3. Beispielsweise wird die logische Verbindung 16 des in 1 gezeigten Ausführungsbeispiels durch die Punkt-zu-Punkt-Verbindungen 10 und 11 realisiert. Für die zugrundeliegende Kommunikation kann somit ein beliebiges Punkt-zu-Punkt Protokoll verwendet werden. Eine bevorzugte Basis ist ein Ethernet-Netzwerk.
  • Die Übermittlung der sicherheitsgerichteten Daten in Telegrammen kann insbesondere über einen nicht sicheren Kanal über das Telekommunikations-Netzwerk erfolgen. Mit anderen Worten wird das gleiche Kommunikationsmedium wie für die Standard-Daten zur Prozesssteuerung verwendet. Dies ist besonders von Vorteil, um den Hardware-Aufwand zu reduzieren und die Implementierung in bestehende Automatisierungs-Anlagen zu vereinfachen. Um hier eine hohe Verlässlichkeit in der Übertragung der sicherheitsgerichteten Daten zu erzielen, wird ein „Black-Channel”-Prinzip verwendet. Damit wird die Erkennung von Telegrammfehlern vollständig auf das empfangende Sicherheitsmodul übertragen. Demgemäß ist in dieser Weiterbildung der Erfindung zur fehlersicheren Übertragung der sicherheitsgerichteten Daten das empfangende Sicherheitsmodul zur Erkennung von Fehlern hinsichtlich einer Vertauschung, Verfälschung, Fehlleitung oder Zerstörung von Telegrammen ausgebildet.
  • Dazu können vom empfangenden Sicherheitsmodul bei einem empfangenen Telegramm zumindest eines der nachfolgenden Merkmale, vorzugsweise alle der nachfolgenden Merkmale überprüft werden:
    • – der Zeitstempel,
    • – Redundanz,
    • – eine Prüfsumme,
    • – eine laufende Telegrammnummer,
    • – eine Senderkennung
    • – eine Empfängerkennung.
  • Anhand der Sender- und Empfängerkennung der Telegramme kann insbesondere durch das empfangende Sicherheitsmodul festgestellt werden, ob die Zuordnung von Quelle und Ziel des Telegramms korrekt und eindeutig ist.
  • Das Prinzip des „Black Channels” geht von beliebigen Fehlern, wie Vertauschen, Zerstören und Verfälschen von Telegrammen im Kommunikationsnetzwerk 2 aus. Die fehlererkennenden Maßnahmen des verwendeten fehlersicheren Kommunikationsprotokolls für die Kommunikation zwischen den Sicherheitsmodulen nehmen dabei insbesondere keinen Kredit an den im Standard-Verkehr gegebenenfalls ebenfalls vorhandenen fehlererkennenden Massnahmen.
  • Eine beispielhafte Routing-Tabelle 20 für die in 1 gezeigten logischen Verbindungen ist in 2 dargestellt.
  • In der ersten Spalte sind die logischen Verbindungen abgelegt. Die zweite Spalte ordnet die Master-Adresse und die dritte Spalte die Slawe-Adresse an. Als Master- und Slawe-Adressen werden hier die Adressen des jeweiligen Ausgabe- und Eingabemoduls bezeichnet. Vorzugsweise wird ein Ausgabemodul als Master verwendet, eine umgekehrte Konfiguration ist aber ebenso möglich. Die Aufteilung in Master- und Slawe-Sicherheitsmodule bezieht sich dabei insbesondere auf die fehlersichere Kommunikation. So kann der Master beispielsweise dazu eingerichtet sein, die fortlaufenden Nummern der Telegramme zu überprüfen und anhand dessen feststellen, ob die Slawe-Module und die Kommunikation dieser Module mit dem Master-Sicherheitsmodul ordnungsgemäß funktioniert.
  • Da bei dem in 1 gezeigten Beispiel mit dem Sicherheitsmodul 80 mehrere logische Verbindungen bestehen, werden diesem Sicherheitsmodul auch mehrere Adressen in Form von Ports zugeordnet. Im Speziellen ist die Adresse 80:0 mit Port 0 für die logische Verbindung 16 zum Sicherheitsmodul 82, die Adresse 80:1 mit Port 1 für die logische Verbindung 17 zum Sicherheitsmodul 83, und die Adresse 80:2 mit Port 2 für die logische Verbindung 18 zum Sicherheitsmodul 83 zugeordnet.
  • Um den Aufwand bei der Initialisierung oder Projektierung der Sicherheits-Funktionen zu reduzieren, ist es weiterhin sinnvoll, wenn die zentrale Steuerung dazu eingerichtet ist, Informationen für das Erstellen einer Routing-Tabelle von den Sicherheitsmodulen abzufragen und die Routing-Tabelle anhand dieser Information zu erstellen. Entsprechend sind dabei auch die Sicherheitsmodule dazu eingerichtet, die benötigte Information zur Verfügung zu stellen.
  • Die sicherheitsgerichtete Kommunikation erfolgt erfindungsgemäß also jeweils über den Kommunikations-Master, wobei die sendenden Sicherheitsmodule, im Beispiel der 1 also die Sicherheitsmodule 80 und 90 immer an den Kommunikations-Master 3, beziehungsweise die zentrale Steuerung senden und von dieser Telegramme mit der erhaltenen Information dann an das Sicherheitsmodul mit der in der Routing-Tabelle definierten Zieladresse gesendet werden. Dies bietet den Vorteil, dass weder die sendenden noch die empfangenden Sicherheitsmodule Informationen benötigen, welches andere Sicherheitsmodul diesem zur Durchführung einer sicherheitsgerichteten Funktion innerhalb einer logischen Gruppe zugeordnet ist.
  • Eine Ausführungsform der Initialisierung der nicht sicheren zentralen Steuerung in Bezug auf die Erstellung der Routing-Tabelle ist wie folgt:
    • – Zunächst wird die angeschlossene Netzwerkkonfiguration ermittelt.
    • – Dann erfolgt eine Ermittlung der Adressen, beziehungsweise allgemeiner von Identifikations-Information der angeschlossenen Sicherheitsmodul.
    • – Gegebenenfalls wird eine Plausibilitätsprüfung vorgenommen.
    • – Anhand der Information aus den ersten beiden Schritten wird eine Anweisungs- oder Kopierliste für das Telegrammrouting im zyklischen Betrieb vorgenommen.
  • Als Identifikations-Information des Sicherheitsmoduls zur automatischen Erstellung der Routingtabelle oder Kopierliste kann insbesondere verwendet werden:
    • – ein Identifikations-Code,
    • – eine Geräte-ID,
    • – ein Geräte-Name,
    • – eine Sicherheits-Adresse, die beispielsweise am Sicherheitsmodul auch mittels Schalter einstellbar sein kann.
  • Generell kann die Initialisierung mittels eines im Kommunikations-Master implementierten Algorithmus damit wie folgt ablaufen: Zuerst erkennt der Algorithmus im Netzwerk die Sicherheitsmodule, beispielsweise an ihren ID-Codes und liest dann aus diesen Modulen die Sicherheitsadressen aus. Nun kann anhand der Sicherheitsadressen erkannt werden, dass ein automatisches Routen innerhalb der Inseln oder logischen Gruppen, also bei dem Beispiel nach 1 zwischen den Modulen 8083 einerseits und den Modulen 90, 91 andererseits erfolgen soll. Es werden Referenzen oder Kopieraufträge entsprechend den logischen Verbindungen 16 bis 18 innerhalb der ersten Insel und eine Referenz oder Kopierauftrag gemäß der logischen Verbindung 19 der zweiten Insel hergestellt.
  • Eine Zuordnung der Sicherheitsmodule kann gemäß einer weiteren Ausführungsform der Erfindung auch über die Einstellung einer Adressinformation des Kommunikations-Masters an den Sicherheitsmodulen erfolgen. Dies ist dann günstig, wenn mehrere Kommunikations-Master 3 im Kommunikations-Netzwerk vorhanden sind und jedem Kommunikations-Master 3 eine Insel, beziehungsweise eine logische Gruppe von Sicherheitsmodulen werden soll.
  • Übertragen auf das in 3 gezeigte Beispiel hat in diesem Fall beispielsweise der Kommunikations-Master 3 die Nummer 8 oder eine entsprechende Adresse. Diese wird an den Adress-Wahlschaltern 21 der Sicherheitsmodule 80, 81 eingestellt. Der Kommunikations-Master 3 fragt dann in der Initialisierungsphase die an den Sicherheitsmodulen eingestellten Nummern, beziehungsweise die entsprechenden Adressen ab und erkennt so, dass die Module 80, 81 ihm zugeordnet sind und eine logische Gruppe zur Ausführung einer Sicherheitsfunktion bilden sollen.
  • Die Anweisungs- oder Kopierliste stellt dabei eine mögliche Form einer Routingtabelle dar. Das Weiterleiten der Information an das empfangende Sicherheitsmodul kann gemäß einer Ausführungsform der Erfindung durch Kopieren der kompletten Telegramme im Anwenderprogramm oder innerhalb der Kommunikationsfirmware des Kommunikations-Masters 3 erfolgen. Hierfür können Kopierlisten (Tabellen, etc.) aufgebaut werden, die dann im zyklischen Betrieb abgearbeitet werden.
  • Ob die im Kommunikations-Master gehaltene Routing-Tabelle korrekt ist und damit auch, ob die Nachrichten an die richtigen Teilnehmer geroutet werden, kann ebenfalls durch das jeweils empfangende Sicherheitsmodul mittels des fehlersicheren Netzwerkprotokolls ermittelt werden.
  • Die Kopierlisten enthalten für die Kopieraufträge vorzugsweise immer eine Quelladresse (Quellzeiger), eine Zieladresse (Zielzeiger) und die Länge der zu kopierenden Daten.
  • Beim automatischen Erstellen der Routing-Tabelle, wie sie beispielhaft in 2 dargestellt ist, ist es wichtig, dass keine überflüssigen oder gar falschen Verbindungen, beziehungsweise dass nur richtige Verbindungen eingetragen werden. Falsche Verbindungen wären etwa solche zwischen Sicherheitsmodulen verschiedener logischer Gruppen. Dies könnte dazu führen, dass ein Signal eines Not-Aus-Schalters für eine Maschine eine andere Maschine ausgeschaltet wird.
  • Um die richtige Zuordnung der zu einer logischen Gruppe von Sicherheitsmodulen gehörenden Verbindungen beim Aufbau der Routing-Tabelle zu treffen, ist der Kommunikations-Master 3 in Weiterbildung der Erfindung dazu eingerichtet, Informationen der am Kommunikations-Netzwerk angeschlossenen Sicherheitsmodule abzufragen und anhand der abgefragten Information festzustellen, welche der Sicherheitsmodule zu einer logischen Gruppe gehören und in der Routing-Tabelle die Verbindungen entsprechend der Zuordnung der Sicherheitsmodule vorzunehmen.
  • Hierzu ergeben sich mehrere Möglichkeiten. Eine einfache Möglichkeit besteht darin, die Adress-Information der Sicherheitsmodule auszuwerten. Dazu können die Adressen der Sicherheitsmodule so konfiguriert werden, dass diese jeweils bereits die Zusammengehörigkeit zu einer logischen Gruppe reflektieren, beziehungsweise darstellen. Eine Möglichkeit dazu besteht darin, dass der Kommunikations-Master logische Gruppen jeweils bestimmten Adressräumen zuordnet. Eine andere Möglichkeit besteht darin, dass die Sicherheitsmodule dazu eingerichet sind, über das Kommunikationsnetzwerk auf Anforderung eine Information bereitstellen, welche die Zugehörigkeit zu einer bestimmten logischen Gruppe kennzeichnet. Diese Information kann auch als Bestandteil der Adresse aufgefasst werden.
  • Bei dem in 1 dargestellten Beispiel können die Sicherheitsmodule beispielsweise Adressen entsprechend den zugeordneten Bezugszeichen aufweisen. So kann der Kommunikations-Master dazu eingerichet sein, in der Routing-Tabelle logische Gruppen entsprechend den Adressräumen 5059, 6069, 7079, 8089, 9099, etc. durch entsprechende Verbindungseinträge abzubilden.
  • Wie anhand von 1 ersichtlich ist, weisen beispielsweise die Module der einen logischen Gruppe alle eine Adresse im Adressraum 80 bis 89, die Sicherheitsmodule der weiteren logischen Gruppe Adressen im Adressraum 9099 auf. Entsprechend werden in der Routing-Tabelle dann Verbindungen zwischen den Modulen 80, 81, 82, 83 einerseits und eine Verbindung zwischen den Modulen 90 und 91 andererseits eingetragen.
  • Zur Realisierung vieler Sicherheitsfunktionen, wie beispielsweise der Ausgabe eines Ausschalt-Signals unter Ansprechen auf ein Eingangssignal ist es sinnvoll, wenn von den Sicherheitsmodulen einer Gruppe mindestens ein Sicherheitsmodul ein Eingabemodul und mindestens ein Sicherheitsmodul ein Ausgabemodul umfasst. Das Eingabemodul sendet dann über eine logische Verbindung mit den beiden Punkt-zu-Punkt Verbindungen unter Beteiligung des Kommunikations-Masters ein Telegramm an das Ausgabemodul, welches dann unter Ansprechen auf das Telegramm eine sicherheitsgerichtete Aktion auslöst.
  • Um nun beispielsweise bei der Installation der Automatisierungs-Anlage die zu einer logischen Gruppe zusammengehörigen Sicherheitsmodule zu kennzeichnen, können die Sicherheitsmodule mit einem Adress-Wählschalter versehen sein. Geeignet sind beispielsweise am Gehäuse angebrachte Dip-Schalter.
  • Die so eingestellte oder auf andere Weise für die sichere Kommunikation festgelegte Adresse muss nicht mit der generellen Netzwerkadresse identisch sein. Vielmehr kann es sich hier um eine spezielle Safety-Adresse handeln. Wie weiter unten anhand von 3 beispielhaft erläutert wird, kann die Vergabe der Sicherheits-Adresse oder auch einer anderen individuellen Adressinformation so erfolgen, dass ein im Kommunikations-Master implementierter Algorithmus die Zugehörigkeit von Sicherheitsmodule zu einer logischen Gruppe erkennt und die Routing-Tabelle entsprechend unter Eintrag einer Verbindung dieser Sicherheitsmodule aufbaut. Ein Ausführungsbeispiel mit Sicherheitsmodulen in Form von Eingabe- und Ausgabemodulen zeigt dazu 3.
  • Von der logischen Gruppe der Sicherheitsmodule 80, 81, 82 und 83 des in 1 gezeigten Beispiels sind der Einfachheit halber nur die Sicherheitsmodule 80 und 81 dargestellt. Das Sicherheitsmodul 80 ist ein Ausgabemodul und empfängt Nachrichten vom sendenden Sicherheitsmodul 81, das als Eingabemodul ausgebildet ist.
  • Beide Sicherheitsmodule 80, 81 weisen einen Anschluss 23 zur Verbindung mit Sensoren, beziehungsweise Aktoren auf. Das Sicherheitsmodul 81 als Eingabemodul ist dabei mit einem Sensor 27 und das Sicherheitsmodul 80 als Ausgabemodul mit einem Aktor 29 jeweils über ein Kabel 26 verbunden. Bei dem in 3 gezeigten Beispiel ist der Sensor 27 der Sensor einer Lichtschranke 30. Der Aktor 29 ist in diesem Beispiel ein Sicherheitsrelais, welches eine vom Automatisierungs-Netzwerk gesteuerten Maschine 31, beispielsweise einer Drehbank abschaltet.
  • Die sicherheitsgerichtete Aktion ist in diesem Beispiel demgemäß das automatische Abschalten der Maschine 31 im Falle dass die Lichtschranke 30 unterbrochen wird. Damit soll sichergestellt werden, dass sich Personen der laufenden Maschine 31 nicht nähern und sich in Gefahr bringen können.
  • Kommt es zu einer Unterbrechung der Lichtschranke 30 wird dann ausgelöst durch das Signal des Sensors 27 vom Sicherheitsmodul 81 ein Telegramm an den Kommunikations-Master 3 gesendet. Dieser bestimmt anhand seiner Routing-Tabelle, dass das Telegramm an das Sicherheitsmodul 80 weiterzuleiten ist und routet das Telegramm entsprechend. Das empfangende Sicherheitsmodul 80 aktiviert unter Ansprechen auf die im Telegramm enthaltene Information über das Auslösen der Lichtschranke über den Anschluss 23 den Aktor 29, beziehungsweise hier speziell einen Aktor 29 in Form eines Relais, welches unter Ansprechen auf ein Signal am Anschluss 23 schaltet und damit die Maschine 31 in einen sicheren Zustand überführt.
  • Es soll nun ein aufwändiges Konfigurieren der sicherheitsgerichteten Aktion bei der Installation der Anlage vermieden werden. Insbesondere soll es in einfacher Weise ermöglicht werden, die einzelnen zu einer logischen Gruppe gehörenden Sicherheitsmodule mit ihren Funktionen zusammenzuschalten. In der traditionellen Sicherheitstechnik geschieht dies durch Verkabelung der einzelnen Module.
  • Um für eine erfindungsgemäße Automatisierungs-Anlage die Konfiguration vorzunehmen, können die Sicherheitsmodule jeweils einen Adressschalter 21 aufweisen. Die Zusammengehörigkeit der Sicherheitsmodule zu einer logischen Gruppe kann dann in einfacher Weise durch eine Adressvergabe nach einem vorbestimmten Schema erfolgen. Bei dem Beispiel gemäß 3 können mit den Adressschaltern 21 jeweils Adressräume ausgewählt werden, wobei die Zuordnung zu einer logischen Gruppe durch Auswahl des gleichen Adressraums erzielt wird. Mit den Adress-Wahlschaltern 21 können im gezeigten Beispiel die Adressräume 4049 (Schalterstellung 4), 5059 (Schalterstellung 5), 6069, 7079, 8089 und 9099 ausgewählt werden. Um beide Sicherheitsmodule 80 und 81 logisch zu einer Gruppe zusammenzuschalten, wurde im dargestellten Beispiel bei beiden Sicherheitsmodulen der Adressraum 8089 durch Setzen des Adress-Wählschalters 21 auf Ziffer „8” ausgewählt.
  • In einer Initialisierungsphase werden die am Kommunikations-Netzwerk angeschlossenen Sicherheitsmodule nach ihrer Adresse abgefragt. Diese senden dann Adressinformation zurück. Anhand der erkannten Zuordnung der Sicherheitsmodule zu einer logischen Gruppe kann der Kommunikations-Master dann die Routing-Tabelle mit den entsprechenden Verknüpfungen aufbauen.
  • Die Adressinformation muss nicht notwendigerweise vollständig sein. Beispielsweise können die beiden Sicherheitsmodule 80, 81 den ihnen zugewiesenen Adressraum 8089 dem Kommunikations-Master mitteilen. Dieser kann dann in einem zweiten Schritt den Sicherheitsmodulen 80, 81 eine vollständige Adresse zuweisen. Vorzugsweise werden allerdings vollständige Safety-Adressen abgefragt, wobei die per Adress-Wählschalter 21 eingestellte Adresse zusätzlich zur vollständigen Safety-Adresse vergeben wird oder Bestandteil der vollständigen Adresse ist.
  • Ähnlich zu der oben beschriebenen Adressvergabe kann auch beispielsweise die Einstellung der vom empfangenden Sicherheitsmodul 80 verwendeten Ports erfolgen. Hierzu können entsprechende Wählschalter vorgesehen werden, mit welchen die Ports für die Kommunikation der Sicherheitsmodule untereinander eingestellt werden. Sofern eine Zuordnung eines bestimmten Ports zu einem bestimmten Eingabemodul nicht notwendig für die Erkennung und Ausführung der sicherheitsgerichteten Aktion ist, kann die Vergabe der Port-Adressen auch in der Initialisierungsphase automatisch erfolgen.
  • Es ist dem Fachmann ersichtlich, dass die Erfindung nicht auf die in den Figuren gezeigten Beispiele beschränkt ist, sondern vielmehr in vielfältiger Weise im Rahmen der nachstehenden Ansprüche variiert werden kann.
  • ZITATE ENTHALTEN IN DER BESCHREIBUNG
  • Diese Liste der vom Anmelder aufgeführten Dokumente wurde automatisiert erzeugt und ist ausschließlich zur besseren Information des Lesers aufgenommen. Die Liste ist nicht Bestandteil der deutschen Patent- bzw. Gebrauchsmusteranmeldung. Das DPMA übernimmt keinerlei Haftung für etwaige Fehler oder Auslassungen.
  • Zitierte Nicht-Patentliteratur
    • Standards IEC 61508 [0002]
    • ISO 13849 [0002]
    • Normen IEC 61508 [0010]
    • ISO 13849 [0010]

Claims (9)

  1. Automatisierungs-Anlage mit einem insbesondere nicht sicheren Kommunikations-Master (3) und mehreren dezentralen Modulen (70, 8083, 90, 91), wobei – die dezentralen Module (70, 8083, 90, 91) als Netzwerkteilnehmer ausgebildet sind und – mit dem Kommunikations-Master (3) mittels eines Kommunikationsnetzwerkes vernetzt sind, wobei – die Kommunikation zwischen den dezentralen Modulen im Kommunikationsnetzwerk über Telegramme realisiert wird, wobei – zumindest zwei der Module Sicherheitsmodule sind, zwischen denen sicherheitsgerichtete Daten übermittelt werden und – die eine logische Gruppe von Modulen zur Ausführung einer sicherheitsgerichteten Funktion bilden, und wobei – der vorzugsweise nicht sichere Kommunikations-Master (3) eine Routing-Tabelle hält, in welcher logische Verbindungen zwischen den dezentralen Sicherheitsmodulen entsprechend der sicherheitsgerichteten Funktion abgelegt sind, wobei – der Kommunikations-Master dazu eingerichtet ist, gesteuert anhand der Routing-Tabelle ein automatisches Routing der Daten vom sendenden Sicherheitsmodul zum empfangenden Sicherheitsmodul vorzunehmen, – so dass eine Kommunikation zwischen den zu einer logischen Gruppe gehörenden Sicherheitsmodulen jeweils über zwei Punkt-zu-Punkt Verbindungen, nämlich vom sendenden Sicherheitsmodul zum Kommunikations-Master (3) und weiter vom Kommunikations-Master (3) zum empfangenden Sicherheitsmodul erfolgt, – wobei das empfangende Sicherheitsmodul dazu eingerichtet ist, eine sicherheitsgerichete Aktion entsprechend den empfangenden Daten auszuführen, und – wobei das Kommunikationsnetzwerk eine Einrichtung aufweist, um Informationen für das Erstellen einer Routing-Tabelle von den Sicherheitsmodulen abzufragen und die Routing-Tabelle anhand dieser Information zu erstellen.
  2. Automatisierungs-Anlage gemäß vorstehendem Anspruch, wobei der Kommunikations. Master dazu eingerichtet ist, zur Initialisierung der Routing-Tabelle folgende Schritte durchzuführen: a) Ermittlung der angeschlossenen Netzwerkkonfiguration, b) Ermittlung von Identifikations-Information der angeschlossenen Sicherheitsmodule, c) gegebenenfalls Durchführung einer Plausibilitätsprüfung, d) Erstellung einer Anweisungs- oder Kopierliste für das Telegrammrouting im zyklischen Betrieb anhand der Information aus den Schritten a) und b).
  3. Automatisierungs-Anlage gemäß einem der vorstehenden Ansprüche, bei welcher der Kommunikations-Master (3) dazu eingerichtet ist, Informationen der am Kommunikations-Netzwerk angeschlossenen Sicherheitsmodule abzufragen und anhand der abgefragten Information festzustellen, welche der Sicherheitsmodule zu einer logischen Gruppe gehören und in der Routing-Tabelle die Verbindungen entsprechend der Zuordnung der Sicherheitsmodule vorzunehmen.
  4. Automatisierungs-Anlage gemäß einem der vorstehenden Ansprüche, dadurch gekennzeichnet, dass die Adressen der Sicherheitsmodule so konfiguriert sind, dass diese jeweils die Zusammengehörigkeit zu einer logischen Gruppe reflektieren.
  5. Automatisierungs-Anlage gemäß einem der vorstehenden Ansprüche, wobei die Übermittlung der sicherheitsgerichteten Daten in Telegrammen über einen nicht sicheren Kanal erfolgt und zur fehlersicheren Übertragusng der sicherheitsgerichteten Daten das empfangende Sicherheitsmodul zur Erkennung von Fehlern hinsichtlich einer Vertauschung, Verfälschung, Fehlleitung oder Zerstörung von Telegrammen ausgebildet ist.
  6. Automatisierungs-Anlage gemäß vorstehendem Anspruch, dadurch gekennzeichnet, dass vom empfangenden Sicherheitsmodul bei einem empfangenen Telegramm zumindest eines der nachfolgenden Merkmale, vorzugsweise alle der nachfolgenden Merkmale überprüft werden: – der Zeitstempel, – Redundanz, – eine Prüfsumme, – eine laufende Telegrammnummer, – eine Senderkennung – eine Empfängerkennung.
  7. Automatisierungs-Anlage gemäß dem vorstehenden Anspruch, dadurch gekennzeichnet dass der Kommunikations-Master (3) dazu eingerichtet ist, logische Gruppen jeweils bestimmten Adressräumen zuzuordnen.
  8. Automatisierungs-Anlage gemäß einem der vorstehenden Ansprüche, wobei von den Sicherheitsmodulen einer logischen Gruppe mindestens ein Sicherheitsmodul ein Eingabemodul und mindestens ein Sicherheitsmodul ein Ausgabemodul umfasst, wobei das Ausgabemodul eingerichtet ist, unter Ansprechen auf ein Telegramm eines Eingabemoduls eine Sicherheitsfunktion auszulösen.
  9. Verfahren zum Überwachen von Sicherheitsfunktionen in einer Automatisierungs-Anlage mit einem insbesondere nicht sicheren Kommunikations-Master (3) und mehreren dezentralen Modulen, wobei – die dezentralen Module als Netzwerkteilnehmer ausgebildet sind und – mit dem Kommunikations-Master mittels eines Kommunikationsnetzwerkes vernetzt sind, wobei – die Kommunikation zwischen den dezentralen Modulen im Kommunikationsnetzwerk über Telegramme realisiert wird, wobei – zumindest zwei der Module Sicherheitsmodule sind, zwischen denen sicherheitsgerichtete Daten übermittelt werden und – die eine logische Gruppe von Modulen zur Ausführung einer sicherheitsgerichteten Funktion bilden, und wobei – der vorzugsweise nicht sichere Kommunikations-Master (3) eine Routing-Tabelle hält, in welcher logische Verbindungen zwischen den dezentralen Sicherheitsmodulen entsprechend. der sicherheitsgerichteten Funktion abgelegt sind, wobei – der Kommunikations-Master anhand der Routing-Tabelle ein automatisches Routing der Daten vom sendenden Sicherheitsmodul zum empfangenden Sicherheitsmodul vorzunehmen, – so dass eine Kommunikation zwischen den zu einer logischen Gruppe gehörenden Sicherheitsmodulen jeweils über zwei Punkt-zu-Punkt Verbindungen, nämlich vom sendenden Sicherheitsmodul zum Kommunikations-Master (3) und weiter vom Kommunikations-Master (3) zum empfangenden Sicherheitsmodul durchgeführt wird, – wobei das empfangende Sicherheitsmodul eine sicherheitsgerichete Aktion entsprechend den empfangenden Daten ausführt, und wobei – von einer Einrichtung des Kommunikationsnetzwerkes, vorzugsweise vom Kommunikations-Master Informationen für das Erstellen der Routing-Tabelle von den Sicherheitsmodulen abgefragt werden und die Routing-Tabelle anhand dieser Information erstellt wird.
DE102009042354.0A 2009-09-23 2009-09-23 Verfahren und Vorrichtung zur sicherheitsgerichteten Kommunikation im Kommunikations-Netzwerk einer Automatisierungs-Anlage Active DE102009042354C5 (de)

Priority Applications (6)

Application Number Priority Date Filing Date Title
DE102009042354.0A DE102009042354C5 (de) 2009-09-23 2009-09-23 Verfahren und Vorrichtung zur sicherheitsgerichteten Kommunikation im Kommunikations-Netzwerk einer Automatisierungs-Anlage
US12/878,496 US8923286B2 (en) 2009-09-23 2010-09-09 Method and apparatus for safety-related communication in a communication network of an automation system
EP10009765.8A EP2302841B2 (de) 2009-09-23 2010-09-17 Vorrichtung zur sicherheitsgerichteten Kommunikation im Kommunikations-Netzwerk einer Automatisierungs-Anlage
AT10009765T ATE542334T1 (de) 2009-09-23 2010-09-17 Verfahren und vorrichtung zur sicherheitsgerichteten kommunikation im kommunikations-netzwerk einer automatisierungs- anlage
ES10009765.8T ES2377186T5 (es) 2009-09-23 2010-09-17 Procedimiento y dispositivo para una comunicación orientada a la seguridad en la red de comunicaciones de una instalación de automatización
CN201010290447.9A CN102025610B (zh) 2009-09-23 2010-09-20 自动化设备的通信网络中涉及安全的通信的方法和装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE102009042354.0A DE102009042354C5 (de) 2009-09-23 2009-09-23 Verfahren und Vorrichtung zur sicherheitsgerichteten Kommunikation im Kommunikations-Netzwerk einer Automatisierungs-Anlage

Publications (3)

Publication Number Publication Date
DE102009042354A1 true DE102009042354A1 (de) 2011-03-31
DE102009042354B4 DE102009042354B4 (de) 2011-07-07
DE102009042354C5 DE102009042354C5 (de) 2017-07-13

Family

ID=43038115

Family Applications (1)

Application Number Title Priority Date Filing Date
DE102009042354.0A Active DE102009042354C5 (de) 2009-09-23 2009-09-23 Verfahren und Vorrichtung zur sicherheitsgerichteten Kommunikation im Kommunikations-Netzwerk einer Automatisierungs-Anlage

Country Status (6)

Country Link
US (1) US8923286B2 (de)
EP (1) EP2302841B2 (de)
CN (1) CN102025610B (de)
AT (1) ATE542334T1 (de)
DE (1) DE102009042354C5 (de)
ES (1) ES2377186T5 (de)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102012102187B3 (de) * 2012-03-15 2013-07-11 Phoenix Contact Gmbh & Co. Kg Steuerungsvorrichtung zum Steuern von sicherheitskritischen Prozessen in einer automatisierten Anlage und Verfahren zur Parametrierung der Steuerungsvorrichtung
WO2014101925A1 (de) 2012-12-24 2014-07-03 Festo Ag & Co. Kg Feldeinheit und verfahren zum betreiben eines automatisierungssystems
DE102013003166A1 (de) * 2013-02-26 2014-08-28 Festo Ag & Co. Kg Sicherheitsmodul für einen Feldbusteilnehmer und Automatisierungssystem
DE102021204679A1 (de) 2021-05-10 2022-11-10 Robert Bosch Gesellschaft mit beschränkter Haftung Verfahren zum Erkennen von Kommunikationsstörungen in einem Master-Slave-System

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2233991A1 (de) * 2009-03-25 2010-09-29 Siemens Aktiengesellschaft Sicherheitsgerichtetes Automatisierungssystem mit automatischer Adresswiederherstellung
DE102009042354C5 (de) * 2009-09-23 2017-07-13 Phoenix Contact Gmbh & Co. Kg Verfahren und Vorrichtung zur sicherheitsgerichteten Kommunikation im Kommunikations-Netzwerk einer Automatisierungs-Anlage
JP2014030168A (ja) * 2012-06-27 2014-02-13 Murata Mach Ltd 中継通信システム、及び中継通信装置
WO2015128341A1 (de) * 2014-02-26 2015-09-03 Bernecker + Rainer Industrie-Elektronik Ges.M.B.H Verfahren zur betätigung eines sicheren schaltelements einer anlage
CN107431689A (zh) * 2014-09-10 2017-12-01 通用电气智能平台有限公司 黑信道通信设备和方法
US9582376B2 (en) 2014-11-14 2017-02-28 Invensys Systems, Inc. Unified communications module (UCM)
US10432754B2 (en) 2015-09-16 2019-10-01 Profire Energy, Inc Safety networking protocol and method
US10514683B2 (en) 2015-09-16 2019-12-24 Profire Energy, Inc. Distributed networking system and method to implement a safety state environment
EP3267636B1 (de) * 2016-07-06 2018-10-31 Siemens Aktiengesellschaft Modulares industrielles automatisierungsgerät und verfahren zur konfiguration eines modularen industriellen automatisierungsgeräts
DE102017119578A1 (de) * 2017-08-25 2019-02-28 Phoenix Contact Gmbh & Co. Kg Verfahren zur Übertragung von Daten zwischen einer zentralen Steuereinrichtung und einer Mehrzahl dezentraler Geräte und entsprechende Vorrichtungen
JP2019179476A (ja) * 2018-03-30 2019-10-17 オムロン株式会社 サポート装置、サポートプログラム、設定方法
US10805262B1 (en) * 2019-06-10 2020-10-13 Banner Engineering Corp. Modbus system having actual and virtual slave addresses and slave sensors
DE102019121929A1 (de) * 2019-08-14 2021-02-18 Beckhoff Automation Gmbh Netzwerkverteiler, Automatisierungsnetzwerk und Verfahren zur Datenübertragung in einem Automatisierungsnetzwerk
CN111834025B (zh) * 2020-07-07 2022-08-23 广东核电合营有限公司 核电厂安全相关仪表校验类监督项目周期延长的评价方法
CN112255959B (zh) * 2020-10-30 2021-09-21 合肥未来计算机技术开发有限公司 一种基于大数据的智能化建筑安全管理系统

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5957985A (en) 1996-12-16 1999-09-28 Microsoft Corporation Fault-resilient automobile control system

Family Cites Families (48)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1211582B (de) 1962-06-08 1966-03-03 Skrebba Werk Heftgeraet
US7761910B2 (en) * 1994-12-30 2010-07-20 Power Measurement Ltd. System and method for assigning an identity to an intelligent electronic device
US20040264402A9 (en) * 1995-06-01 2004-12-30 Padcom. Inc. Port routing functionality
US5943673A (en) * 1996-05-10 1999-08-24 General Signal Corporation Configuration programming system for a life safety network
US7103511B2 (en) * 1998-10-14 2006-09-05 Statsignal Ipc, Llc Wireless communication networks for providing remote monitoring of devices
DE19904893B4 (de) 1999-02-06 2007-10-18 Wratil, Peter, Dr. Verfahren zur Fehlerunterdrückung bei Steuerungseinrichtungen durch eine intelligente Überwachungseinheit
DE19922561A1 (de) 1999-05-17 2000-11-23 Sick Ag Verfahren und Vorrichtung zur sicheren Übertragung von Datensignalen über ein Bussystem
ES2441203T3 (es) * 1999-06-08 2014-02-03 The Trustees Of Columbia University In The City Of New York Aparato y sistema de telefonía de red para telefonía por inter/intranet
DE19928517C2 (de) 1999-06-22 2001-09-06 Pilz Gmbh & Co Steuerungssystem zum Steuern von sicherheitskritischen Prozessen
US6675055B1 (en) * 2000-06-16 2004-01-06 Mold Masters Ltd. Method and apparatus for an automated injection molding configuring and manufacturing system
CA2420907A1 (en) * 2000-08-31 2002-03-07 Padcom, Inc. Method and apparatus for routing data over multiple wireless networks
US8949471B2 (en) * 2000-11-02 2015-02-03 Oracle America, Inc. TCP/UDP acceleration
US7865596B2 (en) * 2000-11-02 2011-01-04 Oracle America, Inc. Switching system for managing storage in digital networks
EP1211582B1 (de) * 2000-11-30 2003-05-21 Siemens Building Technologies AG Anordnung zur Überwachung, Steuerung und Regelung einer betriebstechnischen Anlage eines Gebäudes
US7031666B2 (en) * 2001-03-28 2006-04-18 Qualcomm Incorporated. Method and apparatus for header compression in a wireless communication system
US7117270B2 (en) * 2001-08-15 2006-10-03 Precache, Inc. Method for sending and receiving a Boolean function over a network
US6915444B2 (en) * 2001-09-12 2005-07-05 Rockwell Automation Technologies, Inc. Network independent safety protocol for industrial controller using data manipulation techniques
DE10151119C2 (de) * 2001-10-15 2003-11-20 Siemens Ag Verfahren zum Erfassen von mehreren Feldgeräten in einer Gerätekonfiguration
US7958199B2 (en) * 2001-11-02 2011-06-07 Oracle America, Inc. Switching systems and methods for storage management in digital networks
DE10210664C1 (de) * 2002-03-12 2003-08-07 Daimler Chrysler Ag Vorrichtung zur Verwaltung von Netzwerken
US7006524B2 (en) * 2002-06-12 2006-02-28 Natis Communications Corporation Modular SCADA communication apparatus and system for using same
US7289861B2 (en) * 2003-01-28 2007-10-30 Fisher-Rosemount Systems, Inc. Process control system with an embedded safety system
CN100440665C (zh) * 2002-10-25 2008-12-03 S&C电力公司 控制电力系统以响应电路异常的方法和装置
US7293080B1 (en) * 2003-02-04 2007-11-06 Cisco Technology, Inc. Automatically discovering management information about services in a communication network
DE10344361A1 (de) * 2003-09-24 2005-04-28 Siemens Ag Einrichtung zur Kommunikation mit einer Anlage
DE10353950C5 (de) * 2003-11-18 2013-10-24 Phoenix Contact Gmbh & Co. Kg Steuerungssystem
DE102004018857A1 (de) * 2004-04-19 2005-11-10 Elektro Beckhoff Gmbh Unternehmensbereich Industrie Elektronik Sicherheitssteuerung
WO2006015245A2 (en) * 2004-07-29 2006-02-09 Modius, Inc. Universal configurable device gateway
EP1653308B1 (de) 2004-10-29 2011-07-27 Siemens Aktiengesellschaft System und Verfahren zur Speicherung und Bereitstellung von Informationen
US8542093B2 (en) * 2004-11-12 2013-09-24 Qmotion Incorporated Networked movable barrier operator system
DE102005004265B4 (de) * 2005-01-28 2014-11-27 Phoenix Contact Gmbh & Co. Kg Verfahren und Vorrichtung zur Vergabe von Netzwerk-Teilnehmergeräteadressen in Profinet-IO Netzwerk
JP2006352553A (ja) * 2005-06-16 2006-12-28 Nissan Motor Co Ltd 車載通信システム及び車載ゲートウェイ装置
DE102006017615A1 (de) 2006-04-12 2007-10-18 J. Eberspächer GmbH & Co. KG Brennstoffzellensytem
DE102006018163B4 (de) * 2006-04-19 2008-12-24 Siemens Ag Verfahren zur automatischen Adressvergabe
US20070248027A1 (en) * 2006-04-25 2007-10-25 Open Systems International Providing a configuration utility for a remote terminal unit
US20070297425A1 (en) * 2006-06-23 2007-12-27 George Chirco Systems and methods for establishing a network over a substation dc/ac circuit
US8294568B2 (en) * 2006-07-10 2012-10-23 Venture Corporation Limited Wireless mine tracking, monitoring, and rescue communications system
DE102006054124B4 (de) * 2006-11-15 2009-05-28 Phoenix Contact Gmbh & Co. Kg Verfahren und System zur sicheren Datenübertragung
DE202006017615U1 (de) * 2006-11-16 2007-02-08 Wago Verwaltungsgesellschaft Mbh Busteilnehmer
US20080225762A1 (en) * 2007-03-07 2008-09-18 Mark Patrick Soliman Municipal safety integrated infrastructure network for providing connectivity to public agencies, offices and fixed/mobile infrastructure elements
US20080240105A1 (en) * 2007-03-28 2008-10-02 Vmonitor, Inc. System and method for extending a serial protocol to create a network in a well monitoring environment
DE102007025892A1 (de) * 2007-06-01 2008-12-11 Phoenix Contact Gmbh & Co. Kg Werkzeugerkennung im Profinet
JP2008306425A (ja) * 2007-06-07 2008-12-18 Sumitomo Wiring Syst Ltd 車載ゲートウェイ装置
DE102007039428A1 (de) * 2007-08-21 2009-02-26 Beckhoff Automation Gmbh Programmiervorrichtung für ein Netzwerk aus Steuerknoten und Anlage mit einer solchen Programmiervorrichtung
DE102007050708B4 (de) * 2007-10-22 2009-08-06 Phoenix Contact Gmbh & Co. Kg System zum Betreiben wenigstens eines nicht-sicherheitskritischen und wenigstens eines sicherheitskritischen Prozesses
US8260487B2 (en) * 2008-01-08 2012-09-04 General Electric Company Methods and systems for vital bus architecture
DE202008003988U1 (de) * 2008-03-22 2009-08-06 Leuze Lumiflex Gmbh + Co. Kg Busknoten eines Profinet-Bussystems
DE102009042354C5 (de) * 2009-09-23 2017-07-13 Phoenix Contact Gmbh & Co. Kg Verfahren und Vorrichtung zur sicherheitsgerichteten Kommunikation im Kommunikations-Netzwerk einer Automatisierungs-Anlage

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5957985A (en) 1996-12-16 1999-09-28 Microsoft Corporation Fault-resilient automobile control system

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
ISO 13849
Normen IEC 61508
Standards IEC 61508

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102012102187B3 (de) * 2012-03-15 2013-07-11 Phoenix Contact Gmbh & Co. Kg Steuerungsvorrichtung zum Steuern von sicherheitskritischen Prozessen in einer automatisierten Anlage und Verfahren zur Parametrierung der Steuerungsvorrichtung
DE102012102187C5 (de) * 2012-03-15 2016-11-03 Phoenix Contact Gmbh & Co. Kg Steuerungsvorrichtung zum Steuern von sicherheitskritischen Prozessen in einer automatisierten Anlage und Verfahren zur Parametrierung der Steuerungsvorrichtung
US9709963B2 (en) 2012-03-15 2017-07-18 Phoenix Contact Gmbh & Co. Kg Control device for controlling safety-critical processes in an automated plant and method for parameterizing the control device
WO2014101925A1 (de) 2012-12-24 2014-07-03 Festo Ag & Co. Kg Feldeinheit und verfahren zum betreiben eines automatisierungssystems
DE102013003166A1 (de) * 2013-02-26 2014-08-28 Festo Ag & Co. Kg Sicherheitsmodul für einen Feldbusteilnehmer und Automatisierungssystem
DE102021204679A1 (de) 2021-05-10 2022-11-10 Robert Bosch Gesellschaft mit beschränkter Haftung Verfahren zum Erkennen von Kommunikationsstörungen in einem Master-Slave-System

Also Published As

Publication number Publication date
DE102009042354C5 (de) 2017-07-13
ES2377186T3 (es) 2012-03-23
US8923286B2 (en) 2014-12-30
CN102025610A (zh) 2011-04-20
DE102009042354B4 (de) 2011-07-07
CN102025610B (zh) 2016-04-27
EP2302841B2 (de) 2018-05-09
EP2302841B1 (de) 2012-01-18
ES2377186T5 (es) 2018-09-18
US20110069698A1 (en) 2011-03-24
ATE542334T1 (de) 2012-02-15
EP2302841A1 (de) 2011-03-30

Similar Documents

Publication Publication Date Title
DE102009042354B4 (de) Verfahren und Vorrichtung zur sicherheitsgerichteten Kommunikation im Kommunikations-Netzwerk einer Automatisierungs-Anlage
EP2302472B1 (de) Steuerungssystem zum Steuern von sicherheitskritischen Prozessen
DE19928517C2 (de) Steuerungssystem zum Steuern von sicherheitskritischen Prozessen
DE19934514C1 (de) Verfahren zum Konfigurieren eines an einen Feldbus angeschlossenen Busteilnehmers
EP2981868B1 (de) Steuer- und datenübertragungsanlage, prozesseinrichtung und verfahren zur redundanten prozesssteuerung mit dezentraler redundanz
EP2034668B1 (de) Hochverfügbares Kommunikationssystem
EP2838220B1 (de) Verfahren zur redundanten Nachrichtenübermittlung in einem industriellen Kommunikationsnetz und Kommunikationsgerät
EP2356528B1 (de) Verfahren zum übertragen von daten in einem automatisierten steuerungssystem
EP3098673B1 (de) Verfahren und vorrichtung zur automatischen validierung von sicherheitsfunktionen an einem modular aufgebauten sicherheitssystem
DE102014110017A1 (de) Steuer- und Datenübertragungssystem, Gateway-Modul, E/A-Modul und Verfahren zur Prozesssteuerung
EP2825921B1 (de) Steuerungsvorrichtung zum steuern von sicherheitskritischen prozessen in einer automatisierten anlage und verfahren zur parameterierung der steuerungsvorrichtung
EP2161638B2 (de) Automatisierungssystem, Gerät zur Verwendung in einem Automatisierungssystem und Verfahren zum Betreiben eines Automatisierungssystems
EP2203821B1 (de) Verfahren zur sicheren datenübertragung und gerät
WO2009156122A1 (de) Überwachungssystem
EP3632049B1 (de) Statussignalausgabe
EP2784988A1 (de) Kommunikationsschnittstellenmodul für ein modulares Steuerungsgerät eines industriellen Automatisierungssystems
EP2767877B1 (de) Steuerungs- und Datenübertragungssystem zum Übertragen von sicherheitsbezogenen Daten über einen Feldbus
EP3632054B1 (de) Bestimmung von datenbusteilnehmern eines lokalbusses
EP2750340A1 (de) Verfahren zur Nachrichtenübermittlung in einem redundant betreibbaren industriellen Kommunikationsnetz und Netzinfrastrukturgerät

Legal Events

Date Code Title Description
R018 Grant decision by examination section/examining division
OP8 Request for examination as to paragraph 44 patent law
R026 Opposition filed against patent

Effective date: 20111006

R006 Appeal filed
R008 Case pending at federal patent court
R034 Decision of examining division/federal patent court maintaining patent in limited form now final
R206 Amended patent specification