DE10114932A1 - Dreidimensionale Umfelderfassung - Google Patents

Dreidimensionale Umfelderfassung

Info

Publication number
DE10114932A1
DE10114932A1 DE10114932A DE10114932A DE10114932A1 DE 10114932 A1 DE10114932 A1 DE 10114932A1 DE 10114932 A DE10114932 A DE 10114932A DE 10114932 A DE10114932 A DE 10114932A DE 10114932 A1 DE10114932 A1 DE 10114932A1
Authority
DE
Germany
Prior art keywords
distance
dimensional
relative position
vehicle
profiles
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
DE10114932A
Other languages
English (en)
Other versions
DE10114932B4 (de
Inventor
Uwe Regensburger
Alexander Schanz
Thomas Stahs
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mercedes Benz Group AG
Original Assignee
DaimlerChrysler AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by DaimlerChrysler AG filed Critical DaimlerChrysler AG
Priority to DE20105340U priority Critical patent/DE20105340U1/de
Priority to DE10114932A priority patent/DE10114932B4/de
Priority to GB0206817A priority patent/GB2379111B/en
Priority to IT2002MI000603A priority patent/ITMI20020603A1/it
Priority to FR0203685A priority patent/FR2822547B1/fr
Priority to ES200200698A priority patent/ES2197807B1/es
Priority to US10/106,599 priority patent/US7230640B2/en
Publication of DE10114932A1 publication Critical patent/DE10114932A1/de
Application granted granted Critical
Publication of DE10114932B4 publication Critical patent/DE10114932B4/de
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/88Radar or analogous systems specially adapted for specific applications
    • G01S13/93Radar or analogous systems specially adapted for specific applications for anti-collision purposes
    • G01S13/931Radar or analogous systems specially adapted for specific applications for anti-collision purposes of land vehicles
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S17/00Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
    • G01S17/88Lidar systems specially adapted for specific applications
    • G01S17/89Lidar systems specially adapted for specific applications for mapping or imaging
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S17/00Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
    • G01S17/88Lidar systems specially adapted for specific applications
    • G01S17/93Lidar systems specially adapted for specific applications for anti-collision purposes
    • G01S17/931Lidar systems specially adapted for specific applications for anti-collision purposes of land vehicles
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V20/00Scenes; Scene-specific elements
    • G06V20/50Context or environment of the image
    • G06V20/56Context or environment of the image exterior to a vehicle by using sensors mounted on the vehicle
    • G06V20/58Recognition of moving objects or obstacles, e.g. vehicles or pedestrians; Recognition of traffic objects, e.g. traffic signs, traffic lights or roads
    • G06V20/586Recognition of moving objects or obstacles, e.g. vehicles or pedestrians; Recognition of traffic objects, e.g. traffic signs, traffic lights or roads of parking space
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T2201/00Particular use of vehicle brake systems; Special systems using also the brakes; Special software modules within the brake system controller
    • B60T2201/10Automatic or semi-automatic parking aid systems
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/88Radar or analogous systems specially adapted for specific applications
    • G01S13/93Radar or analogous systems specially adapted for specific applications for anti-collision purposes
    • G01S13/931Radar or analogous systems specially adapted for specific applications for anti-collision purposes of land vehicles
    • G01S2013/9314Parking operations
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/88Radar or analogous systems specially adapted for specific applications
    • G01S13/93Radar or analogous systems specially adapted for specific applications for anti-collision purposes
    • G01S13/931Radar or analogous systems specially adapted for specific applications for anti-collision purposes of land vehicles
    • G01S2013/9323Alternative operation using light waves
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/88Radar or analogous systems specially adapted for specific applications
    • G01S13/93Radar or analogous systems specially adapted for specific applications for anti-collision purposes
    • G01S13/931Radar or analogous systems specially adapted for specific applications for anti-collision purposes of land vehicles
    • G01S2013/9327Sensor installation details
    • G01S2013/93271Sensor installation details in the front of the vehicles
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/88Radar or analogous systems specially adapted for specific applications
    • G01S13/93Radar or analogous systems specially adapted for specific applications for anti-collision purposes
    • G01S13/931Radar or analogous systems specially adapted for specific applications for anti-collision purposes of land vehicles
    • G01S2013/9327Sensor installation details
    • G01S2013/93272Sensor installation details in the back of the vehicles
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/88Radar or analogous systems specially adapted for specific applications
    • G01S13/93Radar or analogous systems specially adapted for specific applications for anti-collision purposes
    • G01S13/931Radar or analogous systems specially adapted for specific applications for anti-collision purposes of land vehicles
    • G01S2013/9327Sensor installation details
    • G01S2013/93274Sensor installation details on the side of the vehicles
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/88Radar or analogous systems specially adapted for specific applications
    • G01S13/93Radar or analogous systems specially adapted for specific applications for anti-collision purposes
    • G01S13/931Radar or analogous systems specially adapted for specific applications for anti-collision purposes of land vehicles
    • G01S2013/9327Sensor installation details
    • G01S2013/93277Sensor installation details in the lights

Abstract

Eine fahrzeugtaugliche, hochaufgelöste 3-D-Erfassung des Umfelds eines Straßenfahrzeugs mit umgebungserfassenden Sensoren ist heute nicht möglich. Je nach Anwendung bedürfen erste am Markt erhältliche Fahrerassistenzsysteme eines Kompromisses zwischen Auflösung der Abtastung und Größe des erfaßten Bereichs. Durch die neuartige Ausgestaltung einer zweidimensional entfernungsauflösenden Sensoranordnung wird es im Gegensatz zu dem bekannten möglich, ein System zu schaffen, welches installiert in einem Straßenfahrzeug komplexe, dynamische Szenario, wie beispielsweise den Straßenverkehr, aus Sicht des aktiv dynamisch agierenden Fahrzeugs erfassen und zu dessen Vorteil auswerten kann. Dabei wird mittels eines Entfernungssensors, welcher ein zweidimensionales Entfernungsprofil (Tiefenprofil) erzeugt, zum anderen aus einer Datenverarbeitung und einer Speichereinheit, welche aufeinander folgende Entfernungsprofile verarbeitet und speichert und aus einer Aneinanderreihung einer aufeinander folgenden Menge von Entfernungsprofilen ein dreidimensionales Abbild der Umgebung erzeugt.

Description

Die Erfindung betrifft eine Vorrichtung und ein Verfahren nach den Oberbegriffen der Patentansprüche 1 und 12.
Eine fahrzeugtaugliche, hochaufgelöste 3D-Erfassung des Umfelds eines Straßenfahrzeugs mit umgebungserfassenden Sensoren ist heute nicht möglich. Je nach Anwendung bedürfen erste am Markt erhältliche Fahrerassistenzsysteme eines Kompromisses zwischen Auflösung der Abtastung und Größe des erfaßten Bereichs. So muß sich z. B. die Radarsensorik für eine ACC-Anwendung auf wenige Grad Erfassungsbereich horizontal beschränken, während sich für eine Einparkhilfefunktion bei der Erfassung der Umgebung vor, hinter und neben dem Fahrzeug mit Ultraschall nur eine geringe Reichweite und Auflösung realisieren lassen. Videobasierte Systeme bieten zwar eine hohe Auflösung jedoch keine Entfernungsinformation.
Aus der Robotik sind Infrarot-Laserscanner bekannt, welche in der Lage sind mittels beweglicher und rotierender Spiegel dreidimensional Umgebungsinformation zu erfassen. Für den Einsatz in Straßenfahrzeugen sind solche Sensoren jedoch nur bedingt geeignet, da zum einen die komplexe Mechanik für den Alltagseinsatz bei unterschiedlichsten Straßenzuständen nicht robust genug ist und zum anderen solche Sensoren auf Grund ihrer Komplexität noch relativ teuer sind.
Aus diesem Grunde werden im Automobilsektor hauptsächlich Laserscanner verwandt, welche in der Lage sind eine dünne Scheibe (2D) einer dreidimensionalen Umwelt abzutasten und ein Tiefenprofil der abgetasteten Szene zu liefern. So wird in DE 38 32 720 A1 eine Abstandsmeßeinrichtung zur berührungslosen Abstands- und Winkelerkennung von Gegenständen beschrieben. Wobei das Vorhandensein eines Gegenstandes mittels eines schmal gebündelten Infrarot-Strahls detektiert und dessen Entfernung durch eine Ultraschalleinrichtung ermittelt wird. Die Schrift US 6151539 A1 zeigt ein autonomes Fahrzeug, welches über mehrere Laserscanner zur Objektdetektion verfügt. Hierbei wird insbesondere ein Laserscannersensor zur Rückraumüberwachung des Fahrzeugs aufgezeigt, bei welchem dessen gesamter theoretischer Erfassungsbereich von 360°, durch nicht näher erläuterte Mittel, in zwei sich parallel überlagernde Erfassungsbereiche von jeweils 180° und 30° für eine sogenannte quasi­ dreidimensionale Aufnahme aufgespaltet wird.
Schneider (Schneider et al., "Millimeter Wave Imaging of Traffic Scenarios", Intelligent vehicles Symosium, Proc. IEEE, pp. 327-332) zeigt die Möglichkeit auf aus dreidimensionalen Datensätzen, hier speziell von einem hochauflösenden Radarsystem, zweidimensionale Ansichten zu generieren. Ziel hierbei ist es Fahrzeuge aufgrund Ihrer zweidimensionalen Ansicht zu klassifizieren und deren Fahrspur zu verfolgen, sowie den Straßenrand aus den zweidimensionalen Ansichten zu extrahieren. Ein ähnliches Verfahren für den Einsatz in Straßenfahrzeugen für die Erkennung des freien Fahrraums ist auch aus der nachveröffentlichten Schrift DE 10 04 9229 A1 bekannt.
Systeme um von zweidimensionalen Tiefenprofildaten unter Ausnutzung der Fahrzeugeigenbewegung auf dreidimensionale Umgebungsdaten zu gelangen, wird zum einen in den Schriften US 4 179 216 A1 und US 4 490 038 A1 für die Kontrolle von Eisenbahntunnel und den fehlerfreien Verlauf von Schienenwegen aufgezeigt und zum anderen in US 5 278 423 A1 im Zusammenhang mit der gezielten Ausbringung von Pestiziden und der Erfassung des Baumbestandes von Plantagen beschrieben. In all diesen Systemen wird in einer Datenverarbeitungseinheit durch die Aneinanderreihung einer aufeinanderfolgenden Menge von Entfernungsprofilen ein dreidimensionales Abbild der Umgebung erzeugt. Um die Abstände der einzelnen sequentiell aufgenommenen Profile zueinander zu ermitteln sind an den Rädern der die Systeme tragenden Fahrzeuge jeweils Entfernungsaufnehmer angeordnet.
Eine Vorrichtung zur Lageerfassung eines einen abtastenden Sensor tragenden landwirtschaftlichen Fahrzeugs wird in US 5 809 440 A1 beschrieben. Hierbei wird die Spur des Fahrzeugs mittels eines globalen Navigationssystems (GPS) verfolgt. Da der zur Aufnahme des Bewuchses verwandte abtastende optische Sensor jedoch keine Entfernungsinformation liefert, wird durch Aneinanderreihung der Sensorinformation nur eine zweidimensionale Kartographie des Untergrundes erreicht.
Im Zusammenhang mit einem Straßenverkehrsszenario wir in US 5 896 190 A1 ein stationäres System zur Erfassung und Klassifikation von das System passierenden Fahrzeugen aufgezeigt. Hierbei werden zur Erzeugung dreidimensionaler Daten zweidimensionalen Tiefenprofildaten eines Laserscanners zusammengefügt. Dabei befinden sich die Laserscanner an einer bekannten festen Position über der Fahrbahn und überwacht einen darunter liegenden Bereich. Hindurch fahrende Fahrzeuge werden mittels sequentieller Abtastung erfaßt, wobei das System sequentiell Tiefenprofile ausmißt. Die Geschwindigkeitsinformation um aus den zweidimensionalen Tiefenprofildaten ein bewegtes dreidimensionales Verkehrsobjekt korrekt zu rekonstruieren, wird durch die Verwendung zweier separierter vom Laserscanner erzeugter Lichtschleier gewonnen. Dabei werden die Lichtschleier im Sinne einer Lichtschranke zur Geschwindigkeitsmessung verwandt, wobei beim Eintritt eines Objekts in den ersten Lichtschleier eine Uhr gestartet und bei Eintritt des selben Objekts in den zweiten Lichtschleier die Uhr gestoppt wird. Aus dem Zeitverlauf und der bekannten Distanz zwischen beiden Lichtschleiern kann sodann auf die Geschwindigkeit des Objekts geschlossen werden und so ein für die Klassifikation der vorbeifahrenden Fahrzeuge notwendiges dreidimensionales Abbild desselben geschaffen werden.
Die aus dem Stand der Technik bekannten Vorrichtungen dienen in Bezug auf den Aspekt der dreidimensionalen Erfassung des Umfeldes der Analyse von statischen Szenarien, wie Innenwänden von Tunnelanlagen und Lage von Gleisanlagen oder Zustand des Bewuchses von Feldern oder Plantagen. Die dreidimensionale Abbilder der Umgebung werden hierbei nicht in direktem Zusammenhang mit Aktionen des den Sensor tragenden Fahrzeuges verwandt, sondern eher für Dokumentationszwecke oder spätere statistische Auswertung (Bestimmung der Bewuchsdichte oder Planung notwendiger Reparaturarbeiten) benötigt. Auch in der aus US 5 896 190 A1 bekannten Vorrichtung wird im wesentlichen ein statisches Szenario ausgewertet, indem ein fixer Punkt eines Verkehrsweges ausgeleuchtet und dort lokal auftretende Zustandsänderungen (Vorbeifahrt von Fahrzeugen) erfasst und ausgewertet werden. Aufgabe der Erfindung ist es eine neuartige Vorrichtung und ein neuartiges Verfahren zur Gewinnung von dreidimensionaler Umgebungsinformation aus zweidimensionalen Entfernungsinformationen gemäß den Oberbegriffen der Patentansprüche 1 und 12 zu gewinnen.
Die Aufgabe wird durch eine Vorrichtung und ein Verfahren mit den Merkmalen der Patentansprüche 1 und 12 gelöst. Vorteilhafte Ausgestaltung und Weiterbildungen der Erfindung sind in Unteransprüchen aufgezeigt.
Die erfindungsgemäße Vorrichtung zur dreidimensionalen Erfassung der Umgebung um ein Straßenfahrzeug, insbesondere zur Detektion von Parkflücken, besteht zum einen aus einem Entfernungssensor, welcher ein zweidimensionales Entfernungsprofil (Tiefenprofil) erzeugt, zum anderen aus einer Datenverarbeitung und einer Speichereinheit, welche aufeinander folgende Entfernungsprofile verarbeitet und speichert und aus einer Aneinanderreihung einer aufeinanderfolgenden Menge von Entfernungsprofilen ein dreidimensionales Abbild der Umgebung erzeugt. Dabei umfaßt die Vorrichtung auch ein Mittel zur Bestimmung des zurückgelegten Weges des Straßenfahrzeugs zwischen jedem einzelnen erzeugten Entfernungsprofil.
Im Rahmen dieser Anmeldung wird unter dem Begriff des zweidimensionalen Entfernungsprofils bzw. des zweidimensionalen Tiefenprofils, wie es von einem Entfernungssensor geliefert wird, dessen punktweise entfernungs-aufgelöste Abtastung einer dreidimensionalen Umgebung in einer dünnen Scheibe verstanden.
Durch diese neuartige Ausgestaltung des Erfindungsgegenstandes wird es im Gegensatz zu dem aus dem Stand der Technik bekannten, erst möglich ein System zu schaffen, welches installiert in einem Straßenfahrzeug komplexe, dynamische Szenario, wie beispielsweise den Straßenverkehr, aus Sicht des aktiv dynamisch agierenden Fahrzeugs erfassen und zu dessen Vorteil auswerten kann.
Im nachfolgenden wird die Erfindung anhand von Ausführungsbeispielen und Figuren im Detail erläutert.
Fig. 1 zeigt ein Straßenfahrzeug, welches den senkrecht zur Fahrtrichtung stehenden Raum mittels eines Laserscanners abtastet.
Fig. 2 zeigt die Fahrspur eines sich dynamisch bewegenden Straßenfahrzeugs mit den resultierenden Strahlrichtung eines senkrecht zur Fahrtrichtung ausgerichteten Laserscanners.
Fig. 3 zeigt einen in zwei Raumrichtungen aufgespaltenen Erfassungsbereich eines zweidimensional abtastenden Laserscanner.
Fig. 4 zeigt ein Einparkszenario unter Einsatz der erfindungsgemäßen Vorrichtung.
Beispielhaft Zeit Fig. 1 die Integration der erfindungsgemäßen Vorrichtung zur dreidimensionalen Erfassung der Umgebung in einem Straßenfahrzeug (10). Dabei ist der Strahlengang (20) des Entfernungssensors so ausgerichtet, dass er den Bereich seitlich des Fahrzeuges abtastet. Dabei wird, in dem aufgezeigten Beispiel, durch den Strahlengang (20) eine senkrecht zur Fahrtrichtung und Straßenoberfläche stehende Fläche abgetastet (gescannt) und somit durch die Erstellung eines zweidimensionalen Entfernungsprofils vermessen. Durch die Bewegung des Fahrzeugs (10) werden von dem Bereich neben dem Fahrzeug in Folge regelmäßig neue Tiefenprofile erstellt, welche kombiniert zu einem dreidimensionalen Abbild führen. In dem in Fig. 1 aufgezeigten Beispiel ist der Entfernungssensor in vorteilhafter Weise in einem Rücklicht (30) des Straßenfahrzeugs (10) integriert. Die Integration des Entfernungssensors in ein bereits am Straßenfahrzeug (10) vorhandenen optischen Elementes bietet den Vorteil, dass der optische Gesamteindruck des Fahrzeugs durch die erfinderische Vorrichtung im wesentlichen nicht verändert wird. In Abhängigkeit von der gewünschten Anwendung ist es denkbar den Entfernungssensor im Front-, Seiten- oder Heckbereich des Straßenfahrzeugs (10) unterzubringen. Es muss nur sichergestellt werden, dass die Möglichkeit gegeben ist, die abzutastende Umgebung unter einem Winkel nicht parallel zur Fahrtrichtung zu erfassen. Der Winkelbereich den der Entfernungssensor erfasst ist dabei von der Anwendung abhängig und wird im wesentlichen durch den Einbauort im Fahrzug und der Form des Fahrzeugs bestimmt.
Die mögliche Ausrichtung des Strahlengangs (20) beschränkt sich jedoch nicht auf die senkrecht zur Fahrtrichtung stehende Ausrichtung, sondern kann auch auf jegliche andere zu erfassende Bereiche hin ausgerichtet werden. In vorteilhafter Weise, insbesondere zur besseren Erfassung von senkrecht stehenden Objekten (beispielsweise: Pfosten, Verkehrsschildern oder Straßenbeleuchtungen) kann der Strahlengang (20) auch bezüglich der Normalen der Straßenoberfläche, vorzugsweise um 45°, geneigt werden.
Die Fahrspur (11) eines sich dynamisch bewegenden Straßenfahrzeugs (10) mit der aus der Ausrichtung des Straßenfahrzeugs (10) resultierenden Strahlrichtung (21) des Strahlengangs (20) eines senkrecht zur Fahrtrichtung ausgerichteten Laserscanners wird beispielhaft in Fig. 2 gezeigt. Das Fahrzeug (10) bewegt sich auf der Bahn (12) in Fahrtrichtung (13) wobei zu unterschiedlichsten Zeit­ punkten tn+5, . . ., tn+9 an einzelnen Meßpunkten (12) Tiefenprofile erzeugt werden. Die Strahlrichtung (21) des Entfernungssensors, welche hier beispielhaft senkrecht zur Fahrtrichtung (13) steht zeigt zu jedem einzelnen Zeitpunkt in Abhängigkeit von der Ausrichtung des Fahrzeugs (10) in unterschiedlichste Richtungen. Aus diesem Grunde ist es besonders vorteilhaft wenn erfindungsgemäß die Vorrichtung zur dreidimensionalen Erfassung des Umfeldes um ein Mittel ergänzt wird, welches zumindest in zwei Raumdimensionen die Relativlage und die Ausrichtung (Winkellage und/oder Kipp- und Nickwinkel) des Fahrzeugs innerhalb seines Umfelds erfasst. Auf diese Weise wird es gewinnbringend möglich, im Rahmend des erfindungsgemäßen Verfahrens die durch die Eigenbewegung des Fahrzeugs verursachte Variation der Ausrichtung des Entfernungssensors in bezug auf die Umgebung bei der Erzeugung des dreidimensionalen Abbildes zu korrigieren. In gewinnbringender Weise kann diese Relativlage auf Grundlage der Daten eines Radars (beispielsweise: optisches Lidar oder Millimeterwellen-Radar), einer Kameraanordnung mit zugeordneter Bildverarbeitung oder eines Navigationssystems erfasst werden.
In Fig. 3 wird eine besonders erfinderische Ausgestaltung der Vorrichtung zur Erfassung der Relativlage des Straßenfahrzeugs (10) aufgezeigt. Dabei wird der Entfernungssensor dergestalt ausgebildet, dass ein Teil des durch die Strahlen des Entfernungssensors aufgespannten Lichtfächer in eine anderen Raumbereich abgelenkt wird, als in denjenigen welcher dreidimensional durch Aneinanderreihung von Entfernungsprofilen erfasst werden soll. Auf diese erfinderische Weise verfügt der Entfernungssensor quasi über zwei unabhängige Strahlengänge (20) und (40). Mit dem Strahlengang (20) wird wie zuvor das zur Erzeugung des dreidimensionalen Abbildes der Umgebung notwendige Tiefenprofil erzeugt, während die mittels des Strahlenganges (40) gewonnene Tiefeninformation dazu benutzt wird, um die Relativlage des Straßenfahrzeugs (10) bezüglich seiner Umgebung zu ermitteln. Durch die Erfassung der Relativlage des Straßenfahrzeugs (10) bezüglich seiner Umgebung wird es möglich, die durch die Eigenbewegung des Fahrzeugs (10) verursachte dynamische Variation der Ausrichtung des Entfernungssensors bei der Erzeugung des dreidimensionalen Abbildes der Umgebung zu korrigieren.
In besonders gewinnbringender Weise, läßt sich die Ablenkung der Strahlung des Entfernungssensors durch das Einbringen zumindest eines Spiegels in dessen Strahlengang bewerkstelligen. Es ist sehr wohl auch denkbar die Strahlablenkung mit anderen Mitteln oder in Kombination mit diesen zu erzielen, wie beispielsweise Linsen oder Prismenanordnungen.
Das in Fig. 3 aufgezeigte orthogonale Ausrichtungsverhältnis zwischen den Strahlengängen (20) und (40) ist rein beispielhaft und im wesentlichen nur abhängig von Aufgabe, Einbauort und Geometrie des Straßenfahrzeugs (10). Auch der Erfassungsbereich der beiden Strahlengänge (20) und (40) ist im wesentlichen von der jeweiligen Aufgabe und nur durch den gesamt möglichen Erfassungsbereich des Entfernungssensors begrenzt. Diese Begrenzung rührt von der Tatsache her, dass beide Strahlengänge durch geeignete Optik aus dem an sich einzigen Strahlengang des Entfernungssensor hergeleitet wird. Da typischer Weise jedoch von einem gesamt möglichen Erfassungsbereich von mindestens 270° ausgegangen werden kann, sind für die erfindungsgemäße Anordnung keine wesentlichen Einschränkungen zu erwarten.
In einer gewinnbringenden Ausführungsform der Erfindung ist es denkbar, insbesondere zur Verringerung der zur Datenverarbeitung notwendigen Rechenleistung, ein Mittel vorzusehen welches die Bestimmung der Relativlage des Straßenfahrzeugs (10) bezüglich seiner Umgebung unterdrückt. Hierzu ist es auch denkbar die Bestimmung der Relativlage in Abhängigkeit einer einstellbaren Geschwindigkeit oder in Abhängigkeit der Aufgabe, für welche eine dreidimensionale Erfassung des Umfelds benötigt wird, durchzuführen. So ist beispielsweise anzunehmen, daß bei der Suche nach freiem Parkraum, durch die im allgemeinen reduzierte Fahrgeschwindigkeit und die sicherheits-technisch relativ unkritische Aufgabe, eine Auswertung der Relativlage des Straßenfahrzeuges (10) unterbleiben kann.
Der Erfindungsgegenstand kann in besonders vorteilhafter Weise mit dem Ziel der Detektion von Parklücken verwandt werden. Dabei wird durch kontinuierliche Analyse der potentielle Parkraum neben dem Straßenfahrzeug (10) erfasst. Hierbei werden freie Räume im Rahmen der Analyse der dreidimensionalen Umgebungsdaten mit den physikalischen und dynamischen Maßen des Straßenverkehrsfahrzeugs verglichen.
Unter dynamischen Maßen eines Straßenfahrzeugs werden hierbei diejenigen geometrischen Abmaße des Ausenbereichs eines solchen Fahrzeugs verstanden, welche notwendig sind um ein unfallfreies dynamisches agieren desselben zu ermöglichen (beispielsweise kann ein Fahrzeug i. a. nicht einfach Einparken indem es sich einfach quer zu seiner sonstigen Fahrtrichtung bewegt, sondern muß durch dynamisches Lenken und Gegenlenken in die Parkposition geführt werden, wodurch der notwendige Platzbedarf die physikalischen Abmaße des Straßenfahrzeugs übersteigt).
Sollte der Freiraum für das Einparken des Straßenfahrzeugs (10) ausreichend groß sein, ist es denkbar diese Tatsache dem Fahrzeugführer auf Wunsch zu signalisieren, so dass dieser das Fahrzeug parken kann oder ein autonomes Einparken des Fahrzeugs veranlassen kann. In Fig. 4 ist ein Einparkszenario unter Rückgriff auf den Erfindungsgegenstand dargestellt. Hierbei wird in vorteilhafter Weise der Abstand zur Fahrbahnbegrenzung (50) durch den Strahlengang (20) überwacht, während der Strahlengang (40) zur Lageerfassung des Fahrzeugs (10) und zur Abstandsüberwachung zum geparkten Fahrzeug (51) benutzt wird. In besonders gewinnbringender Weise ist es denkbar, insbesondere zur Nahbereichsnavigation, Sensorinformation von bereits im Straßenfahrzeug (10) vorhandenen Umgebungssensoren (52) und (53) zur Verbesserung bzw. Absicherung des Einparkens mit einzubeziehen.
Ein Entfernungssensor, wie er im Rahmen des erfindungsgemäßen Verfahrens eingesetzt wird, liefert im Rahmen seiner Abtastung über den gesamten Winkelbereich für jedes abgetastete Winkelsegment, entsprechend seiner Winkelauflösung, ein Entfernungsprofil mit mehreren, seiner Entfernungsauflösung entsprechenden, Werten. Dabei entsprechen diese Werte im allgemeinen den Intensitäten der rückgestreuten Signale und geben im ersten Ansatz Auskunft über das Vorhandensein eines Objekts innerhalb einer Entfernungszelle. Es ist nun in vorteilhafter Weise denkbar, das erfindungsgemäße Verfahren, insbesondere zur Datenreduktion, dahingehend auszugestalten, dass im wesentlichen entsprechend dem in der nachveröffentlichten Anmeldung DE 10 04 9229 A1 beschriebenen Vorgehen für jede Entfernungszelle innerhalb des vom Entfernungssensor vermessenen Bereichs nur der dort vorherrschende am höchsten erhabene Punkt gespeichert und weiterverarbeitet wird. Diesem Vorgehen liegt die Überlegung zu Grunde, dass es bei der Erkennung eines Objekts ausreichend ist dessen Höhe abzuschätzen, dessen genaue Ausbildung unterhalb dieser höchsten Erhebung aber in bezug auf eine Abschätzung des freien Fahrraums aber unerheblich ist. Entsprechend diesem Verfahren besteht das durch die Erfindung generierte dreidimensionale Abbild der Umgebung einer Vogelperspektive in welcher sich an den einzelnen Ortspunkten die maximalen Höhenwerte erheben. In der Robotik wird eine solche Darstellung auch als 2.5-dimensionale Abbildung des Raumes bezeichnet. Es ist nun in gewinnbringender Weise denkbar diese Darstellung weiter zu quantisieren und damit unter anderem die Datenmenge weiter reduziert beziehungsweise die Verarbeitungsgeschwindigkeit zusätzlich erhöht wird. Hierzu können beispielsweise, insbesondere aufgaben-spezifische Quantisierungsstufen, wie sie für Straßenfahrzeuge insbesondere bei Einparkvorgängen von hoher Relevanz sind, eingeführt werden (beispielsweise: "Kein Objekt" "Überfahrbares Objekt", "Nicht­ überfahrbares Objekt"). Ein Beispiel für ein "Überfahrbares Objekt" ist beispielsweise ein Bordstein bei der Verwendung der Erfindung beim Einparken. Die Quantisierung kann dabei beispielsweise auf der Grundlage eines Schwellwertvergleichs erfolgen.

Claims (22)

1. Vorrichtung zur dreidimensionalen Erfassung der Umgebung um Straßenfahrzeug, insbesondere zur Detektion von Parklücken, bestehend aus
einem Entfernungssensor, welcher eine Abfolge von zweidimensionalen Entfernungsprofilen erzeugt,
einer Datenverarbeitungseinheit und einer Speichereinheit, welche aufeinander folgende Entfernungsprofile verarbeitet, speichert und aus einer Aneinanderreihung einer aufeinanderfolgenden Menge von Entfernungsprofilen ein dreidimensionales Abbild der Umgebung erzeugt,
und ein Mittel zur Bestimmung des zurückgelegten Weges des Straßenfahrzeugs zwischen jedem einzelnen erzeugten Entfernungsprofil.
2. Vorrichtung nach Anspruch 1, dadurch gekennzeichnet, dass ein zusätzliches Mittel vorhanden ist, welches zumindest in zwei Raumdimensionen die Relativlage und die Ausrichtung des Fahrzeugs innerhalb seines Umfelds erfasst.
3. Vorrichtung nach Anspruch 2, dadurch gekennzeichnet, dass zur Erfassung der Relativlage ein Radar, insbesondere ein Millimeterwellen-Radar oder ein Lidar, vorgesehen ist.
4. Vorrichtung nach Anspruch 2, dadurch gekennzeichnet, dass zur Erfassung der Relativlage eine Kameraanordnung mit zugeordneter Videobildverarbeitung vorgesehen ist.
5. Vorrichtung nach Anspruch 2, dadurch gekennzeichnet, dass zur Erfassung der Relativlage ein Navigationssystem vorgesehen ist.
6. Vorrichtung nach Anspruch 2, dadurch gekennzeichnet, dass ein Mittel in Verbindung mit dem Entfernungssensor vorgesehen ist, damit ein Teil des durch die Strahlen des Entfernungssensors aufgespannten Lichtfächer in eine anderen Raumbereich abgelenkt wird, als derjenige der dreidimensional durch Aneinanderreihung von Entfernungsprofilen erfasst werden soll, so dass die aus diesem Teil des Lichtfächers gewonnene Entfernungsinformation und deren Varianz über die Zeit zur Ermittlung der Relativlage herangezogen werden kann.
7. Vorrichtung nach Anspruch 6, dadurch gekennzeichnet, dass das Mittel für die Strahlablenkung ein Spiegel ist.
8. Vorrichtung nach einem der Ansprüche 2 bis 6, dadurch gekennzeichnet, dass ein Mittel vorgesehen ist, mittels welchem die Bestimmung der Relativlage unterdrückt werden kann.
9. Vorrichtung nach einem der Ansprüche 1 bis 8, dadurch gekennzeichnet, dass der Entfernungssensor so angeordnet ist, dass der Entfernungssensor so positioniert wird, dass das Entfernungsprofil um einen Winkel, vorzugsweise 45°, in Bezug auf eine auf der Fahrbahnoberfläche stehenden Normalen geneigt aufgenommen wird.
10. Vorrichtung nach einem der Ansprüche 1 bis 9, dadurch gekennzeichnet, dass die Vorrichtung in einem am Straßenfahrzeug vorhandenen optischen Element integriert wird.
11. Vorrichtung nach Anspruch 10, dadurch gekennzeichnet, dass das optische Element ein Rücklicht oder ein Scheinwerfer ist.
12. Verfahren zur dreidimensionalen Erfassung der Umgebung um ein Straßenfahrzeug, insbesondere zur Detektion von Parklücken, bei welcher
mittels eines Entfernungssensors ein zweidimensionales Entfernungsprofil erzeugt wird,
mittels einer Datenverarbeitungseinheit und einer Speichereinheit, aufeinander folgende Entfernungsprofile verarbeitet, gespeichert und aus einer Aneinanderreihung einer aufeinanderfolgenden Menge von Entfernungsprofilen ein dreidimensionales Abbild der Umgebung erzeugt wird,
und durch ein Mittel der zurückgelegte Weg zwischen jedem einzelnen der erzeugten Entfernungsprofile bestimmt wird.
13. Verfahren nach Anspruch 12, dadurch gekennzeichnet, dass zumindest in zwei Raumdimensionen die Relativlage und die Ausrichtung des Fahrzeugs innerhalb seines Umfelds erfasst wird, so dass die durch die Eigenbewegung des Fahrzeugs verursachte Variation der Ausrichtung des Entfernungssensors bei der Erzeugung des dreidimensionalen Abbildes der Umgebung korrigiert werden kann.
14. Verfahren nach Anspruch 13, dadurch gekennzeichnet, dass das die Relativlage mittels eines Radars mit zugeordneter Radarsignalverarbeitung erfasst wird.
15. Verfahren nach Anspruch 13, dadurch gekennzeichnet, dass das die Relativlage mittels eines Kameraanordnung mit zugeordneter Videobildverarbeitung erfasst wird.
16. Verfahren nach Anspruch 13, dadurch gekennzeichnet, dass ein Teil des durch die Strahlen des Entfernungssensors aufgespannten Lichtfächer in eine anderen Raumbereich abgelenkt wird, als derjenige der dreidimensional durch Aneinanderreihung von Entfernungsprofilen erfasst werden soll, und dass die aus diesem Teil des Lichtfächers gewonnene Entfernungsinformation und deren Varianz über die Zeit zur Ermittlung der Relativlage herangezogen wird.
17. Verfahren nach einem der Ansprüche 13 bis 16, dadurch gekennzeichnet, dass die Bestimmung der Relativlage nur bei Überschreiten einer einstellbaren Geschwindigkeit erfolgt und ansonsten unterbleibt.
18. Verfahren nach einem der Ansprüche 12 bis 17, dadurch gekennzeichnet, dass für jede Entfernungszelle innerhalb des vom Entfernungssensor vermessenen Bereichs nur der dort vorherrschende am höchsten erhabene Punkt gespeichert und weiterverarbeitet wird, so dass sich das durch die Erfindung generierte dreidimensionale Abbild der Umgebung einer Vogelperspektive, in welcher sich an den einzelnen Ortspunkten die maximalen Höhenwerte erheben.
19. Verfahren nach Anspruch 18, dadurch gekennzeichnet, dass zur weiteren Quantisierung insbesondere aufgaben-spezifische Quantisierungsstufen eingeführt werden.
20. Verfahren nach Anspruch 19, dadurch gekennzeichnet, dass drei aufgaben­ spezifische Quantisierungsstufen, wie "Kein Objekt" "Überfahrbares Objekt", "Nicht­ überfahrbares Objekt" eingeführt werden.
21. Verfahren nach Anspruch 20, dadurch gekennzeichnet, dass die Quantisierung auf der Grundlage eines Schwellwertvergleichs erfolgt.
22. Verfahren nach einem der Ansprüche 12 bis 21, dadurch gekennzeichnet, dass die Detektion von Parklücken durch kontinuierliche Analyse des potentiellen Parkraumes neben dem Fahrzeug erfolgt, wobei freie Räume im Rahmen der Analyse der dreidimensionalen Umgebungsdaten mit den physikalischen und dynamischen Maßen des Straßenverkehrsfahrzeugs verglichen werden.
DE10114932A 2001-03-26 2001-03-26 Dreidimensionale Umfelderfassung Expired - Fee Related DE10114932B4 (de)

Priority Applications (7)

Application Number Priority Date Filing Date Title
DE20105340U DE20105340U1 (de) 2001-03-26 2001-03-26 Dimensionale Umfelderfassung
DE10114932A DE10114932B4 (de) 2001-03-26 2001-03-26 Dreidimensionale Umfelderfassung
IT2002MI000603A ITMI20020603A1 (it) 2001-03-26 2002-03-22 Dispositivo e procedimento per la rilevazione tridimensionale del campo circostante un veicolo
GB0206817A GB2379111B (en) 2001-03-26 2002-03-22 On-board monitoring of a vehicle environment
FR0203685A FR2822547B1 (fr) 2001-03-26 2002-03-25 Releve en trois dimensions de l'environnement, notamment d'un vehicule routier
ES200200698A ES2197807B1 (es) 2001-03-26 2002-03-25 Dispositivo para la deteccion tridimiensional del entorno de un vehiculo.
US10/106,599 US7230640B2 (en) 2001-03-26 2002-03-26 Three-dimensional perception of environment

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE20105340U DE20105340U1 (de) 2001-03-26 2001-03-26 Dimensionale Umfelderfassung
DE10114932A DE10114932B4 (de) 2001-03-26 2001-03-26 Dreidimensionale Umfelderfassung

Publications (2)

Publication Number Publication Date
DE10114932A1 true DE10114932A1 (de) 2002-10-24
DE10114932B4 DE10114932B4 (de) 2005-09-15

Family

ID=26008916

Family Applications (2)

Application Number Title Priority Date Filing Date
DE20105340U Expired - Lifetime DE20105340U1 (de) 2001-03-26 2001-03-26 Dimensionale Umfelderfassung
DE10114932A Expired - Fee Related DE10114932B4 (de) 2001-03-26 2001-03-26 Dreidimensionale Umfelderfassung

Family Applications Before (1)

Application Number Title Priority Date Filing Date
DE20105340U Expired - Lifetime DE20105340U1 (de) 2001-03-26 2001-03-26 Dimensionale Umfelderfassung

Country Status (6)

Country Link
US (1) US7230640B2 (de)
DE (2) DE20105340U1 (de)
ES (1) ES2197807B1 (de)
FR (1) FR2822547B1 (de)
GB (1) GB2379111B (de)
IT (1) ITMI20020603A1 (de)

Cited By (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10336681A1 (de) * 2003-08-09 2005-03-03 Audi Ag Kraftfahrzeug
WO2005033736A1 (de) 2003-09-12 2005-04-14 Valeo Schalter Und Sensoren Gmbh Verfahren und computerprogramm zum erfassen der kontur eines hindernisses in der umgebung eines fahrzeugs
DE102004021561A1 (de) * 2004-05-03 2005-12-08 Daimlerchrysler Ag Objekterkennungssystem für ein Kraftfahrzeug
EP1643271A1 (de) * 2004-09-30 2006-04-05 Robert Bosch Gmbh Verfahren und Vorrichtung zum Klassifizieren von Seitenbegrenzungen einer Parklücke für ein Einparkassistenzsystem eines Kraftfahrzeugs
DE102004047212A1 (de) * 2004-09-27 2006-04-13 Daimlerchrysler Ag Gabelstapler mit Sensoren zur Hinderniserkennung
DE102004047121A1 (de) * 2004-09-27 2006-04-13 Daimlerchrysler Ag Verfahren zum Betreiben verstellbarer Sensoren zur Hinderniserkennung durch ein Kraftfahrzeug
DE102004051690A1 (de) * 2004-10-23 2006-04-27 Volkswagen Ag Kraftfahrzeug mit einem Parklückendetektor
DE102004057296A1 (de) * 2004-11-26 2006-06-08 Daimlerchrysler Ag Lane-Departure-Warning mit Unterscheidung zwischen Fahrbahnrandmarkierung und baulicher Begrenzung des Fahrbahnrandes
DE102006007150A1 (de) * 2005-08-05 2007-02-08 Volkswagen Ag Verfahren und Vorrichtung zur Parklückenvermessung
DE102005056976A1 (de) * 2005-11-30 2007-06-06 GM Global Technology Operations, Inc., Detroit Einrichtung zur Umfelderfassung für ein Fahrzeug
DE102006011590A1 (de) * 2006-03-10 2007-09-13 Adc Automotive Distance Control Systems Gmbh Vorrichtung und Verfahren einer Parklücke
DE102007001103A1 (de) * 2007-01-04 2008-07-10 Siemens Ag Vertikale Ausrichtung eines Lidar-Sensors
WO2009077220A1 (de) * 2007-12-19 2009-06-25 Robert Bosch Gmbh Verfahren und vorrichtung zum anpassen der führung eines fahrzeuges
EP2081167A2 (de) 2008-01-16 2009-07-22 Robert Bosch Gmbh Verfahren und Vorrichtung zur Erkennung und/oder Vermessung einer Parklücke
DE102008004632A1 (de) 2008-01-16 2009-07-23 Robert Bosch Gmbh Vorrichtung und Verfahren zur Vermessung einer Parklücke
DE102010013341A1 (de) 2010-03-30 2011-01-05 Daimler Ag Vorrichtung mit zumindest einem Lasersensor zur Abtastung einer Umgebung eines Fahrzeuges
DE102009039085A1 (de) * 2009-08-27 2011-03-10 Valeo Schalter Und Sensoren Gmbh Verfahren zum Manövrieren eines Fahrzeugs sowie Fahrerassistenzsystem und Parkassistenzsystem für ein Fahrzeug
DE102011082475A1 (de) * 2011-09-12 2013-03-14 Robert Bosch Gmbh Fahrerassistenzsystem zur Unterstützung eines Fahrers in kollisionsrelevanten Situationen
DE102012201051A1 (de) * 2012-01-25 2013-07-25 Robert Bosch Gmbh Verfahren zur Fahrassistenz und Fahrassistenzsystem
DE102016120433A1 (de) * 2016-10-26 2018-04-26 Valeo Schalter Und Sensoren Gmbh Parkplatzerkennung mit Laserscanner
WO2021223920A1 (de) 2020-05-06 2021-11-11 Audi Ag Kraftfahrzeug mit einem optischen umgebungssensor und verfahren zum betrieb eines kraftfahrzeugs
DE102020211151A1 (de) 2020-09-04 2022-03-10 Robert Bosch Gesellschaft mit beschränkter Haftung LiDAR-Sensor mit vergrößertem Erfassungsbereich

Families Citing this family (90)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10148062A1 (de) * 2001-09-28 2003-04-10 Ibeo Automobile Sensor Gmbh Verfahren zur Verarbeitung eines tiefenaufgelösten Bildes
DE10146712A1 (de) * 2001-09-21 2003-04-10 Bayerische Motoren Werke Ag Einparkhilfsvorrichtung für Kraftfahrzeuge
DE10216346A1 (de) 2002-04-13 2003-10-23 Valeo Schalter & Sensoren Gmbh Einparkhilfesystem für Fahrzeuge und Verfahren
WO2004021546A2 (de) * 2002-08-09 2004-03-11 Conti Temic Microelectronic Gmbh Verkehrsmittel mit einer 3d-entfernungsbildkamera und verfahren zu dessen betrieb
DE10244148A1 (de) * 2002-09-23 2004-04-08 Daimlerchrysler Ag Verfahren und Vorrichtung zur videobasierten Beobachtung und Vermessung der seitlichen Umgebung eines Fahrzeugs
DE10245421A1 (de) * 2002-09-28 2004-04-08 Valeo Schalter Und Sensoren Gmbh System zum Vermessen einer Parklücke für ein Kraftfahrzeug
DE10305861A1 (de) * 2003-02-13 2004-08-26 Adam Opel Ag Vorrichtung eines Kraftfahrzeuges zur räumlichen Erfassung einer Szene innerhalb und/oder außerhalb des Kraftfahrzeuges
EP1467225A1 (de) * 2003-04-10 2004-10-13 IEE International Electronics & Engineering S.A.R.L. Einparkhilfe für ein Fahrzeug
DE10320723B4 (de) * 2003-05-08 2017-01-12 Robert Bosch Gmbh Messeinrichtung in Kraftfahrzeugen zur Vermessung von Parklücken und Verfahren zur Vermessung von Parklücken
DE10323483A1 (de) * 2003-05-23 2004-12-30 Robert Bosch Gmbh Vorrichtung zur Bestimmung einer Relativgeschwindigkeit zwischen einem Fahrzeug und einem Aufprallobjekt
US7263209B2 (en) * 2003-06-13 2007-08-28 Sarnoff Corporation Vehicular vision system
US6950733B2 (en) * 2003-08-06 2005-09-27 Ford Global Technologies, Llc Method of controlling an external object sensor for an automotive vehicle
GB0405014D0 (en) * 2004-03-05 2004-04-07 Qinetiq Ltd Movement control system
JP5405741B2 (ja) 2004-07-26 2014-02-05 オートモーティブ システムズ ラボラトリー インコーポレーテッド 道路使用弱者保護システム
DE102004046589A1 (de) * 2004-08-05 2006-02-23 Volkswagen Ag Vorrichtung für ein Kraftfahrzeug
DE102004042281A1 (de) * 2004-09-01 2006-03-02 Daimlerchrysler Ag Hilfsvorrichtung für das Handhaben eines Fahrzeugs
US8862379B2 (en) * 2004-09-20 2014-10-14 The Boeing Company Vehicle collision shield
DE102005046000A1 (de) 2004-09-28 2006-05-04 Continental Teves Ag & Co. Ohg Vorrichtung zum Erfassen eines seitlichen Umfelds eines Fahrzeugs
JP4724522B2 (ja) * 2004-10-28 2011-07-13 株式会社デンソー 車両周囲視界支援システム
DE102004054437B4 (de) * 2004-11-11 2012-01-26 Volkswagen Ag Verfahren zur automatischen Steuerung und/oder Regelung einer Bewegung eines Fahrzeugs während eines Einparkvorgangs
DE102005001358B4 (de) * 2005-01-11 2007-05-10 Daimlerchrysler Ag Verfahren zur Definition einer von einem Fahrzeug zu befahrenden Wegstrecke
JP4596978B2 (ja) * 2005-03-09 2010-12-15 三洋電機株式会社 運転支援システム
DE102006007149B4 (de) * 2005-08-05 2021-06-02 Volkswagen Ag Vorrichtung und Verfahren zur Überprüfung der Parklückenvermessung von Einparkhilfsvorrichtungen
JP4682809B2 (ja) * 2005-11-04 2011-05-11 株式会社デンソー 駐車支援システム
DE102005054359A1 (de) * 2005-11-15 2007-05-16 Leuze Lumiflex Gmbh & Co Kg Schutzeinrichtung
DE102006003489A1 (de) * 2006-01-25 2007-07-26 Robert Bosch Gmbh Vorrichtung und Verfahren zur Unterstützung eines Einparkvorgangs eines Fahrzeugs
GB2442776A (en) 2006-10-11 2008-04-16 Autoliv Dev Object detection arrangement and positioning system for analysing the surroundings of a vehicle
DE102006052779A1 (de) * 2006-11-09 2008-05-15 Bayerische Motoren Werke Ag Verfahren zur Erzeugung eines Gesamtbilds der Umgebung eines Kraftfahrzeugs
DE102006062061B4 (de) * 2006-12-29 2010-06-10 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Vorrichtung, Verfahren und Computerprogramm zum Bestimmen einer Position basierend auf einem Kamerabild von einer Kamera
KR101188588B1 (ko) * 2008-03-27 2012-10-08 주식회사 만도 모노큘러 모션 스테레오 기반의 주차 공간 검출 장치 및방법
DE102009050368A1 (de) 2008-10-24 2010-05-27 Magna Electronics Europe Gmbh & Co.Kg Verfahren zum automatischen Kalibrieren einer virtuellen Kamera
DE102009000401A1 (de) * 2009-01-26 2010-07-29 Robert Bosch Gmbh Verfahren und Vorrichtung zum Vermeiden einer Kollision zwischen einem Fahrzeug und einem Objekt
DE102009032541B4 (de) * 2009-07-10 2013-04-18 Audi Ag Verfahren zum Betreiben eines Fahrerassistenzsystems eines Fahrzeugs
US9361706B2 (en) * 2009-11-30 2016-06-07 Brigham Young University Real-time optical flow sensor design and its application to obstacle detection
KR101686170B1 (ko) * 2010-02-05 2016-12-13 삼성전자주식회사 주행 경로 계획 장치 및 방법
WO2012061567A1 (en) 2010-11-04 2012-05-10 Magna Electronics Inc. Vehicular camera system with reduced number of pins and conduits
US9264672B2 (en) 2010-12-22 2016-02-16 Magna Mirrors Of America, Inc. Vision display system for vehicle
US9233641B2 (en) 2011-02-25 2016-01-12 Magna Electronics Inc. Vehicular camera with aligned housing members and electrical connection between aligned housing members
US9047781B2 (en) 2011-05-31 2015-06-02 Georgia Tech Research Corporation Safety zone detection, enforcement and alarm system and related methods
DE112012003931T5 (de) 2011-09-21 2014-07-10 Magna Electronics, Inc. Bildverarbeitungssystem für ein Kraftfahrzeug mit Bilddatenübertragung undStromversorgung über ein Koaxialkabel
US9264673B2 (en) 2011-11-20 2016-02-16 Magna Electronics, Inc. Vehicle vision system with enhanced functionality
WO2013081985A1 (en) 2011-11-28 2013-06-06 Magna Electronics, Inc. Vision system for vehicle
KR101901586B1 (ko) * 2011-12-23 2018-10-01 삼성전자주식회사 로봇 위치 추정 장치 및 그 방법
WO2013129358A1 (ja) * 2012-03-02 2013-09-06 日産自動車株式会社 立体物検出装置
US9565342B2 (en) 2012-03-06 2017-02-07 Magna Electronics Inc. Vehicle camera with tolerance compensating connector
US8768583B2 (en) 2012-03-29 2014-07-01 Harnischfeger Technologies, Inc. Collision detection and mitigation systems and methods for a shovel
US10089537B2 (en) 2012-05-18 2018-10-02 Magna Electronics Inc. Vehicle vision system with front and rear camera integration
KR101401399B1 (ko) * 2012-10-12 2014-05-30 현대모비스 주식회사 주차 지원 장치 및 방법과 이를 이용한 주차 지원 시스템
US10057544B2 (en) 2013-03-04 2018-08-21 Magna Electronics Inc. Vehicle vision system camera with integrated physical layer components
DE102013010233B4 (de) 2013-06-18 2018-08-30 Volkswagen Aktiengesellschaft Verfahren zum Anzeigen von Umgebungsinformationen in einem Fahrzeug und Anzeigesystem für ein Fahrzeug
DE102013218571A1 (de) * 2013-09-17 2015-03-19 Volkswagen Aktiengesellschaft Vorrichtung und Verfahren zur seitlichen Umfelderfassung eines Kraftfahrzeugs
US9881220B2 (en) 2013-10-25 2018-01-30 Magna Electronics Inc. Vehicle vision system utilizing communication system
DE102015202846B4 (de) 2014-02-19 2020-06-25 Magna Electronics, Inc. Fahrzeugsichtsystem mit Anzeige
US9688199B2 (en) 2014-03-04 2017-06-27 Magna Electronics Inc. Vehicle alert system utilizing communication system
CN103913737B (zh) * 2014-04-04 2018-12-28 上海宇航系统工程研究所 空间目标可见光散射动态特性测试系统
US9971947B2 (en) 2014-07-31 2018-05-15 Magna Electronics Inc. Vehicle vision system with camera power control
US9729636B2 (en) 2014-08-01 2017-08-08 Magna Electronics Inc. Smart road system for vehicles
US10356337B2 (en) 2014-10-07 2019-07-16 Magna Electronics Inc. Vehicle vision system with gray level transition sensitive pixels
US9740945B2 (en) 2015-01-14 2017-08-22 Magna Electronics Inc. Driver assistance system for vehicle
US10032369B2 (en) 2015-01-15 2018-07-24 Magna Electronics Inc. Vehicle vision system with traffic monitoring and alert
US11370422B2 (en) * 2015-02-12 2022-06-28 Honda Research Institute Europe Gmbh Method and system in a vehicle for improving prediction results of an advantageous driver assistant system
US10298818B2 (en) 2015-03-23 2019-05-21 Magna Electronics Inc. Vehicle camera with enhanced imager and PCB assembly
US10026222B1 (en) * 2015-04-09 2018-07-17 Twc Patent Trust Llt Three dimensional traffic virtual camera visualization
US20160368336A1 (en) 2015-06-19 2016-12-22 Paccar Inc Use of laser scanner for autonomous truck operation
US10486599B2 (en) 2015-07-17 2019-11-26 Magna Mirrors Of America, Inc. Rearview vision system for vehicle
US10875403B2 (en) 2015-10-27 2020-12-29 Magna Electronics Inc. Vehicle vision system with enhanced night vision
US11027654B2 (en) 2015-12-04 2021-06-08 Magna Electronics Inc. Vehicle vision system with compressed video transfer via DSRC link
CN105607060B (zh) * 2016-02-17 2018-01-30 张爱玉 一种具有识别功能的自动倒车装置
CN105759261B (zh) * 2016-02-17 2018-03-06 深圳市奥德迈科技术有限公司 一种具有识别功能的自动减速装置
CN105652270B (zh) * 2016-02-17 2018-03-27 中山银利智能科技股份有限公司 一种具有识别功能的自动门禁
CN105699972B (zh) * 2016-02-17 2018-06-26 张国阳 一种具有环境感知能力的全自动轮式载货装置
CN105759272B (zh) * 2016-02-17 2018-02-23 郴州市长信住工科技有限公司 一种具有识别功能的智能停车管理装置
US10132971B2 (en) 2016-03-04 2018-11-20 Magna Electronics Inc. Vehicle camera with multiple spectral filters
JP2017162204A (ja) * 2016-03-09 2017-09-14 株式会社東芝 物体検出装置、物体検出方法および物体検出プログラム
US10380439B2 (en) 2016-09-06 2019-08-13 Magna Electronics Inc. Vehicle sensing system for detecting turn signal indicators
US10607094B2 (en) 2017-02-06 2020-03-31 Magna Electronics Inc. Vehicle vision system with traffic sign recognition
US10933798B2 (en) 2017-09-22 2021-03-02 Magna Electronics Inc. Vehicle lighting control system with fog detection
US10744941B2 (en) 2017-10-12 2020-08-18 Magna Electronics Inc. Vehicle vision system with bird's eye view display
US10682966B2 (en) 2017-11-16 2020-06-16 Magna Electronics Inc. Vehicle light/display control system using camera
US11718303B2 (en) * 2018-01-03 2023-08-08 Toyota Research Institute, Inc. Vehicles and methods for building vehicle profiles based on reactions created by surrounding vehicles
US11417107B2 (en) 2018-02-19 2022-08-16 Magna Electronics Inc. Stationary vision system at vehicle roadway
US11683911B2 (en) 2018-10-26 2023-06-20 Magna Electronics Inc. Vehicular sensing device with cooling feature
US20190141310A1 (en) * 2018-12-28 2019-05-09 Intel Corporation Real-time, three-dimensional vehicle display
US11609304B2 (en) 2019-02-07 2023-03-21 Magna Electronics Inc. Vehicular front camera testing system
US11535158B2 (en) 2019-03-28 2022-12-27 Magna Electronics Inc. Vehicular camera with automatic lens defogging feature
US11135883B2 (en) 2019-05-13 2021-10-05 Magna Electronics Inc. Vehicular sensing system with ultrasonic sensor at trailer hitch
CN110562170B (zh) * 2019-09-26 2020-12-01 陕西重型汽车有限公司 一种无人车3d场景显示数据记录与模块调试系统及方法
US11750905B2 (en) 2020-08-14 2023-09-05 Magna Electronics Inc. Vehicular camera with inductive lens heater
US11801795B2 (en) 2020-09-18 2023-10-31 Magna Electronics Inc. Vehicular camera with lens heater with connectors
US11749105B2 (en) 2020-10-01 2023-09-05 Magna Electronics Inc. Vehicular communication system with turn signal identification

Family Cites Families (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AT353487B (de) * 1977-05-31 1979-11-12 Plasser Bahnbaumasch Franz Vermessungseinrichtung zur anzeige bzw. registrierung des profilverlaufes von tunnel- roehren, durchlaessen u.dgl. engstellen
AT372725B (de) * 1981-02-12 1983-11-10 Plasser Bahnbaumasch Franz Gleisverfahrbare einrichtung zur lage-ermittlung zum nachbargleis
JPS60259904A (ja) * 1984-06-05 1985-12-23 Kokusai Kogyo Kk 路面横断プロフイル測定方法
US4931930A (en) * 1988-04-19 1990-06-05 Industrial Technology Research Institute Automatic parking device for automobile
DE3832720A1 (de) * 1988-09-27 1990-03-29 Bosch Gmbh Robert Abstandsmesseinrichtung zur beruehrungslosen abstands- und winkelerkennung
DE3833022A1 (de) * 1988-09-29 1990-04-05 Fraunhofer Ges Forschung Verfahren zum schutz eines fahrzeugs gegen kollisionen und kollisionsgeschuetztes fahrzeug
US5546188A (en) * 1992-11-23 1996-08-13 Schwartz Electro-Optics, Inc. Intelligent vehicle highway system sensor and method
US5278423A (en) * 1992-12-30 1994-01-11 Schwartz Electro-Optics, Inc. Object sensor and method for use in controlling an agricultural sprayer
JP3263699B2 (ja) * 1992-12-22 2002-03-04 三菱電機株式会社 走行環境監視装置
DE4333112A1 (de) * 1993-09-29 1995-03-30 Bosch Gmbh Robert Verfahren und Vorrichtung zum Ausparken eines Fahrzeugs
JP3522317B2 (ja) * 1993-12-27 2004-04-26 富士重工業株式会社 車輌用走行案内装置
DE4410617A1 (de) * 1994-03-26 1995-09-28 Reitter & Schefenacker Gmbh Überwachungseinrichtung
SE506753C2 (sv) * 1995-05-02 1998-02-09 Tokimec Inc Anordning för bestämning av formen av en vägyta
FR2732493B1 (fr) * 1995-03-29 1997-05-30 Renault Dispositif de detection et/ou de localisation d'un vehicule
US5831719A (en) * 1996-04-12 1998-11-03 Holometrics, Inc. Laser scanning system
FR2749670B1 (fr) * 1996-06-11 1998-07-31 Renault Dispositif et procede de mesure de creneaux de stationnement d'un vehicule automobile
GB2319420A (en) * 1996-11-13 1998-05-20 Ford Motor Co Parallel parking aid using radar
DE19650808A1 (de) * 1996-12-06 1998-06-10 Bosch Gmbh Robert Einparkvorrichtung für ein Kraftfahrzeug
US5809440A (en) * 1997-02-27 1998-09-15 Patchen, Inc. Agricultural implement having multiple agents for mapping fields
DE19741896C2 (de) * 1997-09-23 1999-08-12 Opel Adam Ag Vorrichtung zur bildlichen Darstellung von Bereichen der Umgebung eines Kraftfahrzeugs
DE29718862U1 (de) * 1997-10-23 1997-12-18 Mann Kai Anordnung zum Erleichtern des Parkens von Kraftfahrzeugen
DE59809476D1 (de) * 1997-11-03 2003-10-09 Volkswagen Ag Autonomes Fahrzeug und Verfahren zur Steuerung eines autonomen Fahrzeuges
DE19801884A1 (de) * 1998-01-20 1999-07-22 Mannesmann Vdo Ag Überwachungssystem für Fahrzeuge
JP3936472B2 (ja) * 1998-06-12 2007-06-27 ジオ・サーチ株式会社 地中探査方法
JP4114292B2 (ja) * 1998-12-03 2008-07-09 アイシン・エィ・ダブリュ株式会社 運転支援装置
DE19934670B4 (de) * 1999-05-26 2004-07-08 Robert Bosch Gmbh Objektdetektionssystem
EP1103004A1 (de) * 1999-05-26 2001-05-30 Robert Bosch Gmbh Objektdetektionssystem
DE60038467T2 (de) * 1999-08-12 2009-04-23 Kabushiki Kaisha Toyota Jidoshokki, Kariya Lenkhilfseinrichtung
DE60139236D1 (de) * 2000-05-12 2009-08-27 Toyota Jidoshokki Kariya Kk Hilfe beim rückwärtsfahren einen fahrzeugs
DE10049229A1 (de) * 2000-09-28 2002-05-02 Daimler Chrysler Ag Verfahren zur Verbesserung der Reaktionsfähigkeit

Cited By (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10336681A1 (de) * 2003-08-09 2005-03-03 Audi Ag Kraftfahrzeug
DE10336681B4 (de) * 2003-08-09 2005-07-07 Audi Ag Kraftfahrzeug
WO2005033736A1 (de) 2003-09-12 2005-04-14 Valeo Schalter Und Sensoren Gmbh Verfahren und computerprogramm zum erfassen der kontur eines hindernisses in der umgebung eines fahrzeugs
DE102004021561A1 (de) * 2004-05-03 2005-12-08 Daimlerchrysler Ag Objekterkennungssystem für ein Kraftfahrzeug
DE102004047121A1 (de) * 2004-09-27 2006-04-13 Daimlerchrysler Ag Verfahren zum Betreiben verstellbarer Sensoren zur Hinderniserkennung durch ein Kraftfahrzeug
DE102004047212A1 (de) * 2004-09-27 2006-04-13 Daimlerchrysler Ag Gabelstapler mit Sensoren zur Hinderniserkennung
DE102004047121B4 (de) * 2004-09-27 2012-12-06 Andreas Stopp Verfahren zum Betreiben verstellbarer Sensoren zur Hinderniserkennung durch ein Kraftfahrzeug
EP1643271A1 (de) * 2004-09-30 2006-04-05 Robert Bosch Gmbh Verfahren und Vorrichtung zum Klassifizieren von Seitenbegrenzungen einer Parklücke für ein Einparkassistenzsystem eines Kraftfahrzeugs
DE102004051690A1 (de) * 2004-10-23 2006-04-27 Volkswagen Ag Kraftfahrzeug mit einem Parklückendetektor
DE102004057296A1 (de) * 2004-11-26 2006-06-08 Daimlerchrysler Ag Lane-Departure-Warning mit Unterscheidung zwischen Fahrbahnrandmarkierung und baulicher Begrenzung des Fahrbahnrandes
US7411486B2 (en) 2004-11-26 2008-08-12 Daimler Ag Lane-departure warning system with differentiation between an edge-of-lane marking and a structural boundary of the edge of the lane
DE102006007150A1 (de) * 2005-08-05 2007-02-08 Volkswagen Ag Verfahren und Vorrichtung zur Parklückenvermessung
DE102005056976A1 (de) * 2005-11-30 2007-06-06 GM Global Technology Operations, Inc., Detroit Einrichtung zur Umfelderfassung für ein Fahrzeug
DE102006011590A1 (de) * 2006-03-10 2007-09-13 Adc Automotive Distance Control Systems Gmbh Vorrichtung und Verfahren einer Parklücke
DE102006011590B4 (de) * 2006-03-10 2019-02-28 Adc Automotive Distance Control Systems Gmbh Vorrichtung zum Vermessen einer Parklücke
US8135513B2 (en) 2007-01-04 2012-03-13 Continental Automotive Gmbh Vertical alignment of a lidar sensor
DE102007001103A1 (de) * 2007-01-04 2008-07-10 Siemens Ag Vertikale Ausrichtung eines Lidar-Sensors
WO2009077220A1 (de) * 2007-12-19 2009-06-25 Robert Bosch Gmbh Verfahren und vorrichtung zum anpassen der führung eines fahrzeuges
US8422737B2 (en) 2008-01-16 2013-04-16 Robert Bosch Gmbh Device and method for measuring a parking space
DE102008004632A1 (de) 2008-01-16 2009-07-23 Robert Bosch Gmbh Vorrichtung und Verfahren zur Vermessung einer Parklücke
DE102008004633A1 (de) 2008-01-16 2009-07-23 Robert Bosch Gmbh Verfahren und Vorrichtung zur Erkennung und/oder Vermessung einer Parklücke
EP2081167A3 (de) * 2008-01-16 2012-01-25 Robert Bosch Gmbh Verfahren und Vorrichtung zur Erkennung und/oder Vermessung einer Parklücke
EP2081167A2 (de) 2008-01-16 2009-07-22 Robert Bosch Gmbh Verfahren und Vorrichtung zur Erkennung und/oder Vermessung einer Parklücke
DE102009039085A1 (de) * 2009-08-27 2011-03-10 Valeo Schalter Und Sensoren Gmbh Verfahren zum Manövrieren eines Fahrzeugs sowie Fahrerassistenzsystem und Parkassistenzsystem für ein Fahrzeug
DE102010013341A1 (de) 2010-03-30 2011-01-05 Daimler Ag Vorrichtung mit zumindest einem Lasersensor zur Abtastung einer Umgebung eines Fahrzeuges
DE102011082475A1 (de) * 2011-09-12 2013-03-14 Robert Bosch Gmbh Fahrerassistenzsystem zur Unterstützung eines Fahrers in kollisionsrelevanten Situationen
DE102012201051A1 (de) * 2012-01-25 2013-07-25 Robert Bosch Gmbh Verfahren zur Fahrassistenz und Fahrassistenzsystem
DE102016120433A1 (de) * 2016-10-26 2018-04-26 Valeo Schalter Und Sensoren Gmbh Parkplatzerkennung mit Laserscanner
WO2021223920A1 (de) 2020-05-06 2021-11-11 Audi Ag Kraftfahrzeug mit einem optischen umgebungssensor und verfahren zum betrieb eines kraftfahrzeugs
DE102020211151A1 (de) 2020-09-04 2022-03-10 Robert Bosch Gesellschaft mit beschränkter Haftung LiDAR-Sensor mit vergrößertem Erfassungsbereich

Also Published As

Publication number Publication date
DE20105340U1 (de) 2001-07-26
ITMI20020603A1 (it) 2003-09-22
FR2822547A1 (fr) 2002-09-27
US20020169537A1 (en) 2002-11-14
FR2822547B1 (fr) 2006-07-28
ES2197807B1 (es) 2005-01-01
US7230640B2 (en) 2007-06-12
ITMI20020603A0 (it) 2002-03-22
GB0206817D0 (en) 2002-05-01
DE10114932B4 (de) 2005-09-15
GB2379111B (en) 2003-08-27
GB2379111A (en) 2003-02-26
ES2197807A1 (es) 2004-01-01

Similar Documents

Publication Publication Date Title
DE10114932B4 (de) Dreidimensionale Umfelderfassung
EP1267178B1 (de) Verfahren zur Verarbeitung eines tiefenaufgelösten Bildes
DE102004010197B4 (de) Verfahren zur Funktionskontrolle einer Positionsermittlungs- oder Umgebungserfassungseinrichtung eines Fahrzeugs oder zur Kontrolle einer digitalen Karte
DE102009009815B4 (de) Verfahren und Vorrichtung zur Erkennung von Parklücken
EP1628141B1 (de) Triangulationsverfahren mit Laserdioden und einer Mono-Kamera zur Abstandsbestimmung für Stop-and-Go Anwendungen für Kraftfahrzeuge
DE102016220075A1 (de) Kraftfahrzeug und Verfahren zur 360°-Umfelderfassung
EP1068992A2 (de) Rückfahrhilfe
EP1589484A1 (de) Verfahren zur Erkennung und/oder Verfolgung von Objekten
EP2033165B1 (de) Verfahren für die erfassung eines verkehrsraums
EP1298454A2 (de) Verfahren zur Erkennung und Verfolgung von Objekten
WO2018103795A1 (de) Kameravorrichtung sowie verfahren zur situationsangepassten erfassung eines umgebungsbereichs eines fahrzeugs
DE102011116169A1 (de) Vorrichtung zur Unterstützung eines Fahrers beim Fahren eines Fahrzeugs oder zum autonomen Fahren eines Fahrzeugs
EP1543475A2 (de) Verfahren und vorrichtung zur videobasierten beobachtung und vermessung der seitlichen umgebung eines fahrzeugs
DE10127204A1 (de) Erfassungsverfahren und - vorrichtung
DE102011077333A1 (de) Fahrerassistenzsystem mit Objektdetektion
EP1460454B1 (de) Verfahren zur gemeinsamen Verarbeitung von tiefenaufgelösten Bildern und Videobildern
DE102009007408B4 (de) Vorrichtung zur Umfelderfassung eines Kraftfahrzeugs
DE10148070A1 (de) Verfahren zur Erkennung und Verfolgung von Objekten
DE10148062A1 (de) Verfahren zur Verarbeitung eines tiefenaufgelösten Bildes
DE102020110809B3 (de) Verfahren und Vorrichtung zum Erkennen von Blooming in einer Lidarmessung
DE102020121504A1 (de) Antriebssteuervorrichtung für ein autonom fahrendes Fahrzeug, Halteziel und Antriebssteuersystem
DE102013010233B4 (de) Verfahren zum Anzeigen von Umgebungsinformationen in einem Fahrzeug und Anzeigesystem für ein Fahrzeug
DE102009038406B4 (de) Verfahren und Vorrichtung zur Vermessung des Umfeldes eines Kraftfahrzeugs
AT517658B1 (de) System zur Aufnahme von Fahrzeugseitenansichten
DE102006015036A1 (de) Verfahren zur Fahrwegüberwachung

Legal Events

Date Code Title Description
OP8 Request for examination as to paragraph 44 patent law
8364 No opposition during term of opposition
8327 Change in the person/name/address of the patent owner

Owner name: DAIMLERCHRYSLER AG, 70327 STUTTGART, DE

8327 Change in the person/name/address of the patent owner

Owner name: DAIMLER AG, 70327 STUTTGART, DE

R119 Application deemed withdrawn, or ip right lapsed, due to non-payment of renewal fee