DE10047519A1 - Verfahren und Vorrichtung zur Dosierung eines Reduktionsmittels zur Entfernung von Stickoxiden aus Abgasen - Google Patents

Verfahren und Vorrichtung zur Dosierung eines Reduktionsmittels zur Entfernung von Stickoxiden aus Abgasen

Info

Publication number
DE10047519A1
DE10047519A1 DE10047519A DE10047519A DE10047519A1 DE 10047519 A1 DE10047519 A1 DE 10047519A1 DE 10047519 A DE10047519 A DE 10047519A DE 10047519 A DE10047519 A DE 10047519A DE 10047519 A1 DE10047519 A1 DE 10047519A1
Authority
DE
Germany
Prior art keywords
reducing agent
mass
metering
urea
aerosol
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Ceased
Application number
DE10047519A
Other languages
English (en)
Inventor
Sven Huber
Hanspeter Mayer
Gerhard Mueller
Michael Offenhuber
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Robert Bosch GmbH
Original Assignee
Robert Bosch GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Robert Bosch GmbH filed Critical Robert Bosch GmbH
Priority to DE10047519A priority Critical patent/DE10047519A1/de
Priority to KR1020037004087A priority patent/KR100840431B1/ko
Priority to JP2002528376A priority patent/JP2004509274A/ja
Priority to PCT/DE2001/003664 priority patent/WO2002024312A1/de
Priority to EP01985238A priority patent/EP1328333B1/de
Priority to AT01985238T priority patent/ATE284263T1/de
Priority to DE2001504784 priority patent/DE50104784D1/de
Priority to US10/381,310 priority patent/US7017335B2/en
Publication of DE10047519A1 publication Critical patent/DE10047519A1/de
Ceased legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • F01N3/18Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control
    • F01N3/20Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control specially adapted for catalytic conversion ; Methods of operation or control of catalytic converters
    • F01N3/2066Selective catalytic reduction [SCR]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/92Chemical or biological purification of waste gases of engine exhaust gases
    • B01D53/94Chemical or biological purification of waste gases of engine exhaust gases by catalytic processes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/92Chemical or biological purification of waste gases of engine exhaust gases
    • B01D53/94Chemical or biological purification of waste gases of engine exhaust gases by catalytic processes
    • B01D53/9404Removing only nitrogen compounds
    • B01D53/9409Nitrogen oxides
    • B01D53/9431Processes characterised by a specific device
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/92Chemical or biological purification of waste gases of engine exhaust gases
    • B01D53/94Chemical or biological purification of waste gases of engine exhaust gases by catalytic processes
    • B01D53/9495Controlling the catalytic process
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2610/00Adding substances to exhaust gases
    • F01N2610/02Adding substances to exhaust gases the substance being ammonia or urea
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2610/00Adding substances to exhaust gases
    • F01N2610/08Adding substances to exhaust gases with prior mixing of the substances with a gas, e.g. air
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2610/00Adding substances to exhaust gases
    • F01N2610/14Arrangements for the supply of substances, e.g. conduits
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2610/00Adding substances to exhaust gases
    • F01N2610/14Arrangements for the supply of substances, e.g. conduits
    • F01N2610/1473Overflow or return means for the substances, e.g. conduits or valves for the return path
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Combustion & Propulsion (AREA)
  • Health & Medical Sciences (AREA)
  • Biomedical Technology (AREA)
  • Environmental & Geological Engineering (AREA)
  • Analytical Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Toxicology (AREA)
  • Exhaust Gas After Treatment (AREA)
  • Exhaust Gas Treatment By Means Of Catalyst (AREA)
  • Treating Waste Gases (AREA)

Abstract

Es wird ein Verfahren und eine Vorrichtung zur Dosierung eines Reduktionsmittels vorgeschlagen, das zur massegeregelten Dosierung eines Reduktionsmittels, insbesondere eines Harnstoffs bzw. einer Harnstoffwasserlösung, zur Nachbehandlung des Abgases insbesondere eines Dieselmotors dient. Die Vorrichtung umfaßt einen Massesensor zur Messung des Reduktionsmittelmassestroms in die Katalysatoranordnung.

Description

Stand der Technik
Die Erfindung geht aus von einem Verfahren beziehungsweise einer Vorrichtung zur Dosierung eines Reduktionsmittels, insbesondere eines Harnstoffs bzw. einer Harnstoff-Wasser- Lösung im Rahmen einer katalytischen Abgasnachbehandlung, nach der Gattung der unabhängigen Ansprüche.
Um eine Verminderung von NOX-Bestandteilen in Abgasen zu erzielen, wurden insbesondere für Dieselmotoren Reduktionskatalysatoren entwickelt, die üblicherweise in sogenannte SCR-Katalysatoren (engl. "Selective Catalytic Reduction") und Speicherkatalysatoren unterteilt werden. Die sogenannten SCR-Katalysatoren werden mittels einer Harnstoff- und/oder Ammoniakreduktionsmittelzufuhr regeneriert, während die sogenannten Speicherkatalysatoren mit Kohlenwasserstoffen des mitgeführten Brennkraftmaschinen-Brennstoffs in sogenannten Abgasfettphasen regeneriert werden.
Aus der deutschen Patentanmeldung mit dem Aktenzeichen 199 46 900.8 ist eine Einrichtung bekannt, welche zum Entfernen von Stickoxiden in Abgasen beispielsweise aus einem Dieselmotor Harnstoff als Reduktionsmittel zudosiert. Die Dosierung erfolgt über ein Ventil, das Harnstoffdosen freigibt, die über die elektrische Ansteuerung des Dosierventils, dessen Drosselquerschnitt und den am Drosselventil anliegenden Druckunterschied bestimmt werden. Der vor dem Ventil anliegende Druck wird gemessen und innerhalb eines Toleranzbereichs konstant gehalten.
Vorteile der Erfindung
Das erfindungsgemäße Verfahren beziehungsweise die erfindungsgemäße Dosiervorrichtung mit den kennzeichnenden Merkmalen der unabhängigen Ansprüche haben demgegenüber den Vorteil, die Dosiertoleranzen auf Werte von unterhalb +/- 10%, beispielsweise auf Werte von ca. +/-5% zu senken. Serienstreuungen insbesondere des Drosselquerschnitts aufgrund von Fertigungstoleranzen des Bohrungsdurchmessers sowie der Ein- und Ausstömkanten können kompensiert werden, ebenso Temperaturabhängigkeiten in der Dosiermenge beispielsweise in einem Temperaturbereich von -10 bis +100°C, die durch die temperaturabhängige Viskosität der Flüssigkeit oder durch die Längenänderung der Bauteile aufgrund von Temperaturänderungen bedingt sind. Auch Zeitdriften über die gesamte Lebensdauer der Dosiervorrichtung (bis zu über 10000 Betriebsstunden) können kompensiert werden. Mit Hilfe der Massenbestimmung wird es möglich, einen geschlossenen Regelkreis beziehungsweise ein geschlossenes Regelkreisverfahren, ausgehend von der Dosierung über eine Detektierung des Dosiermassestroms, einer Erfassung der Meßwerte durch das Steuergerät bis zu einer korrigierten Ansteuerung des Dosierventils oder einer Dosierpumpe bereitzustellen. Somit besteht die Möglichkeit zur Korrektur der Ist-Werte beim Massenfluß mit dem Zweck der Anpassung an Soll-Werte, wodurch die Dosiergenauigkeit verbessert wird. Darüber hinaus können zeitlich beeinflußte Veränderungen erfaßt und korrigiert werden. Die Dosiertoleranz ist dann lediglich von der Meßtoleranz des Massesensors beeinflußt, was eine erhebliche Reduzierung der toleranzbeeinflussenden Bauteilezahl bedeutet.
Durch die in den abhängigen Ansprüchen aufgeführten Maßnahmen sind vorteilhafte Weiterbildungen und Verbesserungen der in den unabhängigen Ansprüchen angegebenen Verfahren beziehungsweise Dosiervorrichtung möglich. Besonders vorteilhaft ist es, wenn ein an sich bekannter Massesensor verwendet wird, der neben dem Massestrom zusätzlich die Dichte des durchfließenden Mediums mißt, so dass der verwendete Betriebsstoff und auch der beziehungsweise die Aggregatzustände des Betriebsstoffs erkannt werden können. So wird es möglich, bei Verwendung einer wässrigen Harnstofflösung über die Dichte die Konzentration des Harnstoffs zu bestimmen. Änderungen der Konzentration können somit innerhalb bestimmter Grenzen durch eine geänderte Ansteuerung des Dosierventils kompensiert werden. Dadurch wird die Dosiergenauigkeit weiter verbessert, und es kann bei über das Toleranzmaß hinausgehenden Abweichungen von der normal vorgesehenen Konzentration eine Fehlermeldung über eine fakultativ mit dem Steuergerät verbundene Warnanzeige ausgelöst werden. Auch Applikationsfehler, beispielsweise die Verwendung falscher Betriebsstoffe, z. B. von Wasser ohne Harnstoffzusatz oder von Methanol oder Kraftstoff, können erkannt werden und diese Information zu Systemnotabschaltungen bzw. zu Fehlermeldungen genutzt werden. Auch Phasenänderungen des Reduktionsmittels können erkannt werden, beispielsweise die Bildung von Dampfblasen nach Entgasungszuständen, eine Eisbildung nach Gefrieren und eine Bildung von Luftblasen. Das Steuergerät kann entsprechend Entlüftungs- bzw. Heizvorgänge einleiten, und eine Rücklaufleitung zum Tank bzw. ein separates Entlüftungsventil kann entfallen.
Besonders einfach gestaltet sich die dosierte Reduktionsmittelzufuhr durch eine entsprechende elektrisch ansteuerbare Dosierpumpe, da eine Pumpeneinheit ohnehin zur Beförderung des Harnstoffs notwendig ist.
Weiterhin vorteilhaft ist es, ein elektrisch ansteuerbares Dosierventil vorzusehen, das über ein Steuergerät elektrisch angesteuert werden kann, wobei dieses entweder allein oder in Kombination mit einer entsprechenden Ansteuerung der Dosierpumpe eine massegeregelte Dosierung gewährleistet.
Weitere Vorteile ergeben sich durch die in den weiteren abhängigen Ansprüchen und in der Beschreibung genannten Merkmale.
Zeichnung
Ausführungsbeispiele der Erfindung sind in der Zeichnung dargestellt und in der nachfolgenden Beschreibung näher erläutert. Es zeigen
Fig. 1 eine mit einem Wassertank, einem Harnstofftank und einer Katalysatoranordnung zusammengeschaltete Dosiervorrichtung und
Fig. 2 eine entsprechende Anordnung mit einer alternativen Dosiervorrichtung.
Beschreibung der Ausführungsbeispiele
In Fig. 1 ist mit 1 ein Harnstofftank bezeichnet, aus welchem eine Harnstoff-Wasser-Lösung über eine Harnstoffleitung 1a mit Rückschlagventil 2 und einem als Filtersieb ausgeführtem Filter 3 von einer Dosierpumpe 4 angesaugt und zu einem Dosierventil 7 einer Mischkammer 8 gefördert wird. Die Pumpe 4 ist zur Minimierung der Überströmmenge über einen Steuermotor 4a drehzahlgesteuert. Eine geförderte Übermenge wird über ein Druckbegrenzungsventil 11 zur Saugseite der Pumpe zurückgeführt. Aus einem Druckluftbehälter 20 ist Druckluft über eine Druckluftleitung 2a mit einem Filtersieb 21, einem 2/2-Wegeventil 22, einer Drossel 23 und ein Rückschlagventil 24 in die Mischkammer einbringbar. Eine Aerosolleitung 25 führt von der Mischkammer 8 zum Katalysator 30, der auf der einen Seite eine Abgaszufuhr 29 und auf der gegenüberliegenden Seite einen Abgasauslaß 31 aufweist. Der Harnstofftank 1 ist mit einem Füllstandsensor 52 und einem Temperatursensor 51 versehen. Zwischen der Dosierpumpe 4 und dem Dosierventil 7 ist ein Massesensor 50 angeordnet. Temperatursensoren 53 und 54 messen die Temperatur des Abgases am Einlaß bzw. Auslaß des Katalysators 30. Ferner ist zwischen dem 2/2-Wegeventil 22 und der Drossel 23 ein Drucksensor 55 vorgesehen. Ein Temperatursensor 56 mißt die Temperatur eines metallischen Gehäuseblocks 41, auf dem die von der mit diesem Bezugszeichen versehenen strichmarkierten Linie umrandeten Komponenten angeordnet bzw. integriert sind. Auf dem Gehäuseblock 41 ist ferner ein Steuergerät 40 angebracht, das sowohl mit den Sensoren 50 bis 56 als auch mit dem Steuermotor 4a und dem Dosierventil 7 elektrisch verbunden ist. Der Gehäuseblock 41 ist geerdet, das Steuergerät 40 bezieht das elektrische Potential des Gehäuseblocks 41 als Referenzpotential. Über eine CAN- Datenleitung 39 (CAN ist eine Abkürzung für den englischen Ausdruck "Controlled Area Network") ist das Steuergerät 40 mit der Spannungsversorgung und weiteren elektronischen Komponenten im Kraftfahrzeug, insbesondere dem Motorsteuergerät, verbunden.
Das Dosierventil 7 dosiert die erforderliche Harnstoffwasserlösung in die Mischkammer 8 ein. In der Mischkammer wird unter Beaufschlagung der Harnstoffwasserlösung mittels der Druckluft ein Aerosol und ein Wandfilm erzeugt, welches bzw. welcher über die Aerosolleitung 25 in den Katalysator 30 eingebracht wird. Das Steuergerät 40 erfaßt hierbei Signale, die von einem übergeordneten Motorsteuergerät über die CAN-Datenleitung 39 empfangen werden, sowie die Signale von Druck-, Temperatur- bzw. Füllstandsensoren 51 bis 56, welche an sich bekannt sind und hier nicht weiter erläutert werden. Darüber hinaus empfängt das Steuergerät 40 ein elektrisches Signal vom Massesensor 50, aus dem sich der zeitabhängige Massendurchsatz am Reduktionsmittel zwischen der Dosierpumpe 4 und dem Dosierventil 7 ergibt. Das Steuergerät 40 berechnet aus den Sensorinformationen eine Harnstoffdosiermenge, welche einem den Katalysator 30 durchströmenden Abgas zugegeben werden soll. Der Massesensor 50 mißt unter Verwendung bekannter induktiver und/oder mechanischer Verfahren die Strömungsgeschwindigkeit des Reduktionsmittels über einen definierten Strömungsquerschnitt und generiert ein dem Massefluß proportionales elektrisches Signal. Das Steuergerät 40 regelt mit Hilfe des Dosierventils 7 und des Ventils 22 den Harnstoff-Wasser-Lösungsdruck bzw. den Druck in der Druckluftleitung. Das Steuergerät verwendet hierzu vom Motorsteuergerät über die Datenleitung 39 zugeführte Daten des Motorbetriebszustands sowie die aus der Dosierungsvorrichtung und dem Katalysator stammenden Sensordaten. Der Massesensor 50 erkennt die durchströmende Masse an Harnstoff-Wasser-Lösung und gibt den Meßwert ebenfalls an das Steuergerät weiter, so dass über einen geschlossenem Regelkreis der Ist-Massenstrom erfaßt und über die Ansteuerung des Dosierventils 7 mit dem Sollmassenstrom abgeglichen werden kann.
Alternativ kann die Dosiervorrichtung auch ohne Druckluftunterstützung verwendet werden, d. h. ohne Verwendung der Bauteile 20 bis 24. Der Massesensor kann auch so ausgebildet sein, dass er neben dem Massefluß auch die Dichte des durch die Meßzelle strömende Mediums bestimmt. Auch solche Massesensoren sind an sich bekannt. Bei der Verwendung einer wässrigen Harnstofflösung als fließendes Medium kann mit derartigen Meßelementen über die Dichte die Konzentration bestimmt werden. Änderungen der Konzentration können innerhalb bestimmter Grenzen durch geänderte Ansteuerung des Dosierventils kompensiert werden, indem entsprechende Konzentrations-Korrekturlinien im Steuergerät 40 abgespeichert sind. Dadurch wird die Dosiergenauigkeit weiter verbessert bzw. bei Konzentrationsunter- und - überschreitungen kann eine Fehlermeldung ausgelöst werden. Darüber hinaus kann das Steuergerät dann erkennen, wenn falsche Betriebsstoffe verwendet werden, und diese Information zu Systemnotabschaltungen und Fehlermeldungen nutzen. Informationen über die Dichte des Mediums können vom Steuergerät ferner dazu genutzt werden, um Phasenänderungen zu erkennen, wie beispielsweise Dampfblasen nach Entgasungszuständen, Eisbildung nach Gefrieren sowie Luft bei Luftblasenbildung. Entsprechend kann das Steuergerät Entlüftungs- und/oder Heizvorgänge einleiten. Entlüftungsvorgänge können über das Dosierventil 7 ausgeführt werden, ein Heizen über nicht näher dargestellte Heizelemente, die mit dem Gehäuseblock 41 in thermischem Kontakt stehen.
Alternativ zur Volumenstrommessung über einen definierten Strömungsquerschnitt kann auch ein kommerziell erhältlicher, nach dem Coriolis-Prinzip funktionierender Massesensor verwendet werden. Eine weitere Alternative besteht in der Ausführung als Waage ähnlich einer an sich bereits bekannten Kraftstoffwaage, die ein definiertes Volumen wiegt. Weiterhin ist es möglich, den Massesensor ähnlich einem Heissdraht-Luftmassensensor auszugestalten, der den Massenstrom über die durch die strömende Flüssigkeit induzierte Abkühlung eines erhitzten Drahtes bestimmt. Weiterhin kann unabhängig von der konkreten Ausgestaltung des Massesensors in ihm ein Temperatursensor integriert sein, der die Temperatur des Betriebsstoffes misst und dem Steuergerät mitteilt, so dass das Steuergerät einen Temperaturabgleich des Massenstromsensors durchführen kann, um die Temperaturabhängigkeit der kinematischen Viskosität der Flüssigkeit zu berücksichtigen.
Fig. 2 zeigt eine weitere alternative Ausführungsform, bei der gleiche Bauteile wie in Fig. 1 mit gleichen Bezugszeichen versehen sind. Im Vergleich zu Fig. 1 entfällt das Druckbegrenzungsventil 11, und anstelle des Dosierventils 7 ist ein Rückschlagventil 110 angeordnet.
Hier handelt es sich im Vergleich zur Anordnung nach Fig. 1 um eine vereinfachte Ausführungsform, bei der die Dosierung lediglich mittels der Dosierpumpe erfolgt.

Claims (20)

1. Verfahren zur Dosierung eines Reduktionsmittels, insbesondere eines Harnstoffs beziehungsweise einer Harnstoff-Wasser-Lösung, bei denen das Reduktionsmittel einer Katalysatoranordnung (30) zur Entfernung von Stickoxiden aus den Abgasen insbesondere eines Dieselmotors zugeführt wird, dadurch gekennzeichnet, dass ein Massenstrom des Reduktionsmittels gemessen und das Reduktionsmittel in Abhängigkeit von der Größe des Massenstroms dosiert wird.
2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass die Dichte des Reduktionsmittels vor dem Zuführen in die Katalysatoranordnung gemessen wird.
3. Verfahren nach Anspruch 2, dadurch gekennzeichnet, daß das Reduktionsmittel in Abhängigkeit von der gemessenen Dichte dosiert wird.
4. Verfahren nach Anspruch 2 oder 3, dadurch gekennzeichnet, dass eine Fehlermeldung oder eine Notabschaltung der Reduktionsmittelzufuhr durchgeführt wird, wenn die gemessene Dichte ausserhalb eines vorgegebenen Toleranzbereichs liegt.
5. Verfahren nach einem der Ansprüche 2, 3 oder 4, dadurch gekennzeichnet, dass aus der gemessenen Dichte der Aggregatzustand des Reduktionsmittels bestimmt beziehungsweise die Aggregatzustäde des Reduktionsmittels bestimmt werden und dass bei Vorliegen gasförmiger oder fester Phasen das Reduktionsmittel entgast beziehungsweise aufgeheizt wird.
6. Verfahren nach einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, dass aus dem dosierten Reduktionsmittel ein Aerosol gebildet und anschließend das Aerosol in die Katalysatoranordnung (30) eingeführt wird.
7. Verfahren nach Anspruch 6, dadurch gekennzeichnet, dass zur Bildung des Aerosols dem Reduktionsmittel Luft dosiert zugeführt wird.
8. Verfahren nach einem der Ansprüche 1 bis 7 dadurch gekennzeichnet, dass der Massenstrom unter Ausnutzung des Corioliseffekts gemessen wird.
9. Verfahren nach einem der Ansprüche 1 bis 7, dadurch gekennzeichnet, dass der Massenstrom bestimmt wird, indem über einen definierten Strömungsquerschnitt die Strömungsgeschwindigkeit des Reduktionsmittels gemessen wird.
10. Verfahren nach einem der Ansprüche 1 bis 7, dadurch gekennzeichnet, dass der Massenstrom mittels einer Gewichtsmessung bestimmt wird.
11. Vorrichtung zur Dosierung eines Reduktionsmittels, insbesondere eines Harnstoffs beziehungsweise einer Harnstoff- Wasser-Lösung, mit Mitteln (2, 3, 4) zur Reduktionsmittelzufuhr in eine Katalysatoranordnung (30) zur Entfernung von Stickoxiden aus den Abgasen insbesondere eines Dieselmotors, dadurch gekennzeichnet, dass den Mitteln zur Reduktionsmittelzufuhr ein Massesensor (50) zur Messung des Reduktionsmittel-Massestroms in die Katalysatoranordnung (30) nachgeordnet ist, so dass über mindestens einen Aktuator (4, 4a; 7) eine massegeregelte Dosierung des Reduktionsmittels in Abhängigkeit eines elektrischen Signals des Massesensors erfolgen kann.
12. Vorrichtung nach Anspruch 11, dadurch gekennzeichnet, dass der Massesensor neben der Messung des Massestroms auch eine Dichtemessung durchführen kann.
13. Vorrichtung nach Anspruch 11 oder 12, dadurch gekennzeichnet, dass die Mittel eine insbesondere elektrisch ansteuerbare (4a), als Aktuator zur massegeregelten Dosierung dienende Dosierpumpe (4) umfassen.
14. Vorrichtung nach einem der Ansprüche 11 bis 13, dadurch gekennzeichnet, dass dem Massesensor (50) ein elektrisch ansteuerbares Dosierventil (7) nachgeordnet ist.
15. Vorrichtung nach einem der Ansprüche 11 bis 14, dadurch gekennzeichnet, dass die dosierte Reduktionsmittelzufuhr in eine Mischkammer (8) zur Bildung eines Aerosols erfolgt, so dass über eine Aerosolleitung (25) das Aerosol in die Katalysatoranordnung (30) eingeführt werden kann.
16. Vorrichtung nach Anspruch 15, dadurch gekennzeichnet, dass Mittel (20, 21, 22, 23, 24, 55) zur dosierten Luftzufuhr in die Mischkammer (8) vorgesehen sind.
17. Vorrichtung nach einem der Ansprüche 11 bis 16, dadurch gekennzeichnet, dass der Massesensor nach dem Coriolisprinzip arbeitet.
18. Vorrichtung nach einem der Ansprüche 11 bis 16, dadurch gekennzeichnet, dass der Massesensor über einen definierten Strömungsquerschnitt die Strömungsgeschwindigkeit des Reduktionsmittels mißt.
19. Vorrichtung nach einem der Ansprüche 11 bis 16, dadurch gekennzeichnet, dass der Massesensor eine Gewichtsmessung durchführt.
20. Vorrichtung nach einem der Ansprüche 11 bis 19, dadurch gekennzeichnet, dass der Massesensor (50) an einem mit einer CAN-Datenleitung (39) verbindbaren Steuergerät (40) angeschlossen ist, so dass das Steuergerät den mindestens einen Aktuator (4, 4a; 7) unter Verwertung des elektrischen Signals ansteuern kann.
DE10047519A 2000-09-22 2000-09-22 Verfahren und Vorrichtung zur Dosierung eines Reduktionsmittels zur Entfernung von Stickoxiden aus Abgasen Ceased DE10047519A1 (de)

Priority Applications (8)

Application Number Priority Date Filing Date Title
DE10047519A DE10047519A1 (de) 2000-09-22 2000-09-22 Verfahren und Vorrichtung zur Dosierung eines Reduktionsmittels zur Entfernung von Stickoxiden aus Abgasen
KR1020037004087A KR100840431B1 (ko) 2000-09-22 2001-09-24 배기 가스로부터 산화 질소를 제거하기 위한 환원제 계량 공급 방법 및 장치
JP2002528376A JP2004509274A (ja) 2000-09-22 2001-09-24 排ガスから窒素酸化物を除去するための還元剤を調量する方法及び装置
PCT/DE2001/003664 WO2002024312A1 (de) 2000-09-22 2001-09-24 Verfahren und vorrichtung zur dosierung eines reduktionsmittels zur entfernung von stickoxiden aus abgasen
EP01985238A EP1328333B1 (de) 2000-09-22 2001-09-24 Verfahren und vorrichtung zur dosierung eines reduktionsmittels zur entfernung von stickoxiden aus abgasen
AT01985238T ATE284263T1 (de) 2000-09-22 2001-09-24 Verfahren und vorrichtung zur dosierung eines reduktionsmittels zur entfernung von stickoxiden aus abgasen
DE2001504784 DE50104784D1 (de) 2000-09-22 2001-09-24 Verfahren und vorrichtung zur dosierung eines reduktionsmittels zur entfernung von stickoxiden aus abgasen
US10/381,310 US7017335B2 (en) 2000-09-22 2001-09-24 Method and device for dosing a reducing agent for the removal of nitrogen oxides from exhaust gases

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE10047519A DE10047519A1 (de) 2000-09-22 2000-09-22 Verfahren und Vorrichtung zur Dosierung eines Reduktionsmittels zur Entfernung von Stickoxiden aus Abgasen

Publications (1)

Publication Number Publication Date
DE10047519A1 true DE10047519A1 (de) 2002-04-18

Family

ID=7657587

Family Applications (2)

Application Number Title Priority Date Filing Date
DE10047519A Ceased DE10047519A1 (de) 2000-09-22 2000-09-22 Verfahren und Vorrichtung zur Dosierung eines Reduktionsmittels zur Entfernung von Stickoxiden aus Abgasen
DE2001504784 Expired - Lifetime DE50104784D1 (de) 2000-09-22 2001-09-24 Verfahren und vorrichtung zur dosierung eines reduktionsmittels zur entfernung von stickoxiden aus abgasen

Family Applications After (1)

Application Number Title Priority Date Filing Date
DE2001504784 Expired - Lifetime DE50104784D1 (de) 2000-09-22 2001-09-24 Verfahren und vorrichtung zur dosierung eines reduktionsmittels zur entfernung von stickoxiden aus abgasen

Country Status (7)

Country Link
US (1) US7017335B2 (de)
EP (1) EP1328333B1 (de)
JP (1) JP2004509274A (de)
KR (1) KR100840431B1 (de)
AT (1) ATE284263T1 (de)
DE (2) DE10047519A1 (de)
WO (1) WO2002024312A1 (de)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102008060373A1 (de) * 2008-12-03 2010-06-10 J. Eberspächer GmbH & Co. KG Abgasreinigungseinrichtung für Fahrzeuge
DE102009009711A1 (de) * 2009-02-19 2010-08-26 J. Eberspächer GmbH & Co. KG Abgasreinigungseinrichtung für Fahrzeuge
WO2013170983A1 (de) 2012-05-15 2013-11-21 Robert Bosch Gmbh Dosiersystem und verfahren zum eindosieren eines reduktionsmittels
WO2015055681A1 (de) * 2013-10-15 2015-04-23 Continental Automotive Gmbh Dosieranlage zur zuführung von substanzen in gasströme

Families Citing this family (52)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3687916B2 (ja) * 2003-10-28 2005-08-24 日産ディーゼル工業株式会社 エンジンの排気浄化装置
US7594393B2 (en) * 2004-09-07 2009-09-29 Robert Bosch Gmbh Apparatus for introducing a reducing agent into the exhaust of an internal combustion engine
JP3686670B1 (ja) 2004-10-29 2005-08-24 日産ディーゼル工業株式会社 排気浄化装置
JP3686669B1 (ja) * 2004-10-29 2005-08-24 日産ディーゼル工業株式会社 液体還元剤判別装置
US7644577B2 (en) * 2004-10-29 2010-01-12 Philip Morris Usa, Inc. Reducing agent metering system for reducing NOx in lean burn internal combustion engines
JP3714559B1 (ja) * 2004-11-05 2005-11-09 日産ディーゼル工業株式会社 排気浄化装置
DE102004054238A1 (de) * 2004-11-10 2006-05-11 Robert Bosch Gmbh Dosiersystem sowie Verfahren zum Betreiben eines Dosiersystems
JP4327072B2 (ja) * 2004-11-19 2009-09-09 日産ディーゼル工業株式会社 排気浄化装置の液体還元剤判別システム
EP1676988B1 (de) * 2004-12-30 2007-04-18 Grundfos Management A/S Dosierpumpenaggregat
EP1683967B1 (de) * 2004-12-30 2007-11-21 Grundfos NoNox a/s Vorrichtung zur Erzeugung eines Reduktionsmittel-Luft-Gemisches
DE502004010210D1 (de) * 2004-12-30 2009-11-19 Grundfos Nonox As Dosierpumpenaggregat
JP4444165B2 (ja) * 2005-06-10 2010-03-31 日産ディーゼル工業株式会社 エンジンの排気浄化装置
US20070042495A1 (en) * 2005-08-22 2007-02-22 Detroit Diesel Corporation Method of controlling injection of a reducing agent in an engine emissions control system
US7578321B2 (en) * 2005-10-13 2009-08-25 Ford Global Technologies, Llc Freeze protection for on-board vehicle emissions treatment system
BR122018068217B1 (pt) * 2005-12-22 2019-07-16 Grundfos Nonox A/S Sistema e método de transferência de fluido
DE102006012855A1 (de) * 2006-03-21 2007-09-27 Robert Bosch Gmbh Verfahren und Dosiersystem zur Schadstoffreduktion in Kraftfahrzeugabgasen
CN101506482A (zh) * 2006-07-13 2009-08-12 因勒纪汽车系统研究公司 用于存储一种添加剂并将它注入发动机排气的系统和方法
US8499739B2 (en) * 2006-08-31 2013-08-06 Caterpillar Inc. Injector having tangentially oriented purge line
US7726118B2 (en) * 2006-09-18 2010-06-01 Ford Global Technologies, Llc Engine-off ammonia vapor management system and method
JP5008366B2 (ja) * 2006-09-26 2012-08-22 Udトラックス株式会社 エンジンの排気浄化装置
US7926604B2 (en) * 2006-12-19 2011-04-19 International Truck Intellectual Property Company, Llc Electrical harness clipping bar for aftertreatment device
US8215100B2 (en) * 2007-03-02 2012-07-10 Caterpillar Inc. Regeneration device having external check valve
JP4687709B2 (ja) * 2007-04-25 2011-05-25 トヨタ自動車株式会社 内燃機関の排気浄化装置
US7721533B2 (en) * 2007-05-15 2010-05-25 Continental Automotive Systems Us, Inc. Diesel dosing system relief of trapped volume fluid pressure at shutdown
DE102007024782B4 (de) * 2007-05-26 2011-08-25 Eichenauer Heizelemente GmbH & Co. KG, 76870 Heizeinsatz und dessen Verwendung in einem Harnstoffversorgungssystem
US9032710B2 (en) * 2007-08-20 2015-05-19 Parker-Hannifin Corporation Diesel dosing system for active diesel particulate filter regeneration
DE102007044403B4 (de) * 2007-09-18 2011-04-28 Continental Automotive Gmbh Vorrichtung zum Einbringen einer Reduktionsmittelflüssigkeit in ein Abgas einer Verbrennungsanlage
US7971426B2 (en) * 2007-11-01 2011-07-05 Ford Global Technologies, Llc Reductant injection system diagnostics
DE102008013960A1 (de) * 2008-03-12 2009-09-17 Albonair Gmbh Dosiersystem zur Eindüsung einer Harnstofflösung in den Abgasstrom eines Verbrennungsmotors
US8096110B2 (en) * 2008-11-19 2012-01-17 GM Global Technology Operations LLC Ammonia (NH3) storage control system and method at low nitrogen oxide (NOx) mass flow rates
DE102009023325B4 (de) * 2008-12-10 2012-01-26 Continental Automotive Gmbh Verfahren zur Adaption der Injektionsmittelzufuhr in einem Injektionssystem
DE102009055738A1 (de) * 2009-11-26 2011-06-09 Continental Automotive Gmbh Verfahren zur Bestimmung des Zustandes eines Reduktionsmittels in einem Reduktionsmitteltank
DE102009056181A1 (de) * 2009-11-27 2011-06-01 Emitec Gesellschaft Für Emissionstechnologie Mbh Verfahren zum Betrieb einer Fördervorrichtung für ein Reduktionsmittel
JP5503277B2 (ja) 2009-12-15 2014-05-28 ボッシュ株式会社 還元剤噴射弁の制御装置
DE102010004201A1 (de) * 2010-01-08 2011-07-14 Emitec Gesellschaft für Emissionstechnologie mbH, 53797 Verfahren zum Betrieb einer Fördervorrichtung für ein Reduktionsmittel
DE102010028863A1 (de) 2010-05-11 2011-11-17 Robert Bosch Gmbh Vorrichtung zur Reduktion von Schadstoffen im Abgasstrom eines Verbrennungsmotors
DE102010029834A1 (de) * 2010-06-09 2011-12-15 Robert Bosch Gmbh Druckausgleichsvorrichtung für Hydrauliksysteme
SE535632C2 (sv) * 2010-06-21 2012-10-23 Scania Cv Ab Förfarande vid förekomst av luft i vätsketillförsel vid ett SCR-system och motsvarande SCR-system
US20120020857A1 (en) * 2010-07-21 2012-01-26 Isada Raymond Upano Dosing system having recirculation heating and vacuum draining
DE102011003912B4 (de) * 2011-02-10 2023-08-03 Robert Bosch Gmbh Vorrichtung und Verfahren zur Eindosierung einer Flüssigkeit in den Abgasstrang einer Brennkraftmaschine
WO2013028729A1 (en) * 2011-08-22 2013-02-28 Cummins Emission Solutions Inc. Urea solution pumps having leakage bypass
US20130074936A1 (en) * 2011-09-27 2013-03-28 Caterpillar Inc. Mis-fill prevention system
DE102011118214A1 (de) 2011-11-11 2013-05-16 Emitec Gesellschaft Für Emissionstechnologie Mbh Verfahren zum Betrieb einer Dosiervorrichtung
CN102817681B (zh) * 2012-07-26 2014-07-02 北京理工大学 柴油机固体scr控制系统
US9021787B2 (en) * 2012-09-05 2015-05-05 Mi Yan Fluid delivery apparatus with flow rate sensing means
DE102012108272A1 (de) * 2012-09-06 2014-03-06 Emitec Denmark A/S Vorrichtung zur Förderung eines flüssigen Additivs
US8997463B2 (en) * 2013-04-17 2015-04-07 Continental Automotive Systems, Inc. Reductant delivery unit for automotive selective catalytic reduction with reducing agent heating
US10473014B2 (en) * 2013-12-23 2019-11-12 Baohua Qi Low pressure atomizing injector
US10113463B2 (en) 2015-10-13 2018-10-30 Clark Equipment Company Remote fluid supply for an engine
US9657628B1 (en) 2016-01-29 2017-05-23 Caterpillar Inc. Reductant supply system for engine
WO2019235586A1 (ja) 2018-06-06 2019-12-12 株式会社クレハ 非水電解質二次電池負極用炭素質材料の製造方法及び製造装置
CN109989806B (zh) * 2019-03-04 2021-02-05 中国船舶重工集团公司第七一一研究所 柴油机高压scr换气稳压系统

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01148333A (ja) * 1987-12-03 1989-06-09 Babcock Hitachi Kk 脱硝用還元剤の供給方法
US5367875A (en) * 1992-12-07 1994-11-29 Coltec Industries Inc Automated catalytic reduction system
DE4315278A1 (de) * 1993-05-07 1994-11-10 Siemens Ag Verfahren und Einrichtung zur Dosierung eines Reduktionsmittels in ein stickoxidhaltiges Abgas
WO1997012129A2 (de) * 1995-09-29 1997-04-03 Siemens Aktiengesellschaft Verfahren und vorrichtung zur umsetzung eines schadstoffes in einem abgas an einem katalysator
US6063350A (en) 1997-04-02 2000-05-16 Clean Diesel Technologies, Inc. Reducing nox emissions from an engine by temperature-controlled urea injection for selective catalytic reduction
US6399034B1 (en) * 1997-05-14 2002-06-04 Hjs Fahrzeugtechnik Gmbh & Co. Process for reducing nitrogen oxides on SCR catalyst
DE19736384A1 (de) * 1997-08-21 1999-02-25 Man Nutzfahrzeuge Ag Verfahren zur Dosierung eines Reduktionsmittels in stickoxidhaltiges Abgas einer Brennkraftmaschine
DE19750138A1 (de) * 1997-11-12 1999-05-27 Siemens Ag Einrichtung zum Einbringen eines flüssigen Reduktionsmittels in eine Abgas-Reinigungsanlage
DE19756251C1 (de) * 1997-12-17 1999-07-22 Siemens Ag Verfahren und Vorrichtung zur Reduzierung der Stickoxide im Abgas einer Verbrennungsanlage
DE19818448A1 (de) * 1998-04-24 1999-10-28 Siemens Ag Verfahren und Vorrichtung zur katalytischen Reduzierung von Stickoxiden im Abgas einer Verbrennungsanlage
DE19946900A1 (de) 1999-06-22 2000-12-28 Bosch Gmbh Robert Vorrichtung zur Dosierung eines Reduktionsmittels

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102008060373A1 (de) * 2008-12-03 2010-06-10 J. Eberspächer GmbH & Co. KG Abgasreinigungseinrichtung für Fahrzeuge
DE102008060373B4 (de) 2008-12-03 2023-07-06 Robert Bosch Gmbh Abgasreinigungseinrichtung für Kraftahrzeuge
DE102009009711A1 (de) * 2009-02-19 2010-08-26 J. Eberspächer GmbH & Co. KG Abgasreinigungseinrichtung für Fahrzeuge
WO2013170983A1 (de) 2012-05-15 2013-11-21 Robert Bosch Gmbh Dosiersystem und verfahren zum eindosieren eines reduktionsmittels
DE102012208130A1 (de) 2012-05-15 2013-11-21 Robert Bosch Gmbh Dosiersystem und Verfahren zum Eindosieren eines Reduktionsmittels
WO2015055681A1 (de) * 2013-10-15 2015-04-23 Continental Automotive Gmbh Dosieranlage zur zuführung von substanzen in gasströme
DE102013220799A1 (de) * 2013-10-15 2015-04-30 Continental Automotive Gmbh Dosieranlage zur Zuführung von Substanzen in Gasströme
DE102013220799B4 (de) 2013-10-15 2018-11-29 Continental Automotive Gmbh Dosieranlage zur Zuführung von Substanzen in Gasströme

Also Published As

Publication number Publication date
JP2004509274A (ja) 2004-03-25
ATE284263T1 (de) 2004-12-15
KR20030066626A (ko) 2003-08-09
US20040047783A1 (en) 2004-03-11
DE50104784D1 (de) 2005-01-13
EP1328333B1 (de) 2004-12-08
EP1328333A1 (de) 2003-07-23
US7017335B2 (en) 2006-03-28
KR100840431B1 (ko) 2008-06-20
WO2002024312A1 (de) 2002-03-28

Similar Documents

Publication Publication Date Title
EP1328333B1 (de) Verfahren und vorrichtung zur dosierung eines reduktionsmittels zur entfernung von stickoxiden aus abgasen
EP1322402B1 (de) Verfahren und vorrichtung zur dosierung eines reduktionsmittels zur entfernung von stickoxiden aus abgasen
DE19807935C1 (de) Vorrichtung zur Reduzierung des NO¶x¶-Gehaltes im Abgas einer Brennkraftmaschine
DE112011100874B4 (de) Steuersystem zur Dosiererkompensation in einem SCR-System
EP1399653B1 (de) Vorrichtung und verfahren zur dosierung eines reduktionsmittels zur entfernung von stickoxiden aus abgasen
EP2307676B1 (de) Verfahren zum betreiben einer abgasreinigungsanlage mit einem scr-katalysator
DE102009010888B4 (de) Verfahren und Vorrichtung zur Steuerung eines SCR-Abgasnachbehandlungssystems einer Brennkraftmaschine
DE102014201304A1 (de) Verfahren zum Betreiben eines zur NOx-Verminderung von Abgasen einer Brennkraftmaschine vorgesehenen Katalysatorsystems
DE112018007221T5 (de) Verbesserte Russbeladungsschätzung unter Verwendung von dualen Differenzdrucksensoren
DE102012209240A1 (de) Verfahren zur Plausibilisierung einer Messvorrichtung zur Ermittlung einer Qualität einer Harnstoffwasserlösung in einem Behälter eines SCR-Katalysatorsystems
DE112018002695T5 (de) Systeme und Verfahren zum Steuern der Strömungsverteilung in einem Nachbehandlungssystem
DE102015224670A1 (de) Verfahren zur Korrektur eines Modellwertes einer NOx-Konzentration
DE112014000399T5 (de) Bestimmung und Verwendung von Abgasgegendruck
DE102017205777A1 (de) Verfahren zur Überwachung des Volumenstroms eines Dosierventils eines fluidischen Dosiersystems einer Brennkraftmaschine insbesondere eines Kraftfahrzeugs
DE102014216052A1 (de) Verfahren zum Korrigieren einer Steuerlogik eines Katalysators zur selektiven katalytischen Reduktion und dasselbe verwendendes Abgassystem
DE102013114641A1 (de) Harnstoffwasserlösungs-Zufügungs-Steuereinheit
WO2012072666A1 (de) Verfahren zum bestimmen einer aktuellen füllmenge einer flüssigkeit in einem behälter, insbesondere für ein kraftfahrzeug
WO2012095355A1 (de) Abgaskatalysatorsystem und verfahren zum betreiben eines abgaskatalysators
DE102010043928A1 (de) Verfahren zur Überwachung eines diskreten Tankfüllstandsgebers
DE102008064606A1 (de) Funktionsanpassung einer Abgasreinigungsvorrichtung
WO2018014058A1 (de) Verfahren zur erkennung einer undichten stelle in einem wärmerückgewinnungssystem
DE102013200541B4 (de) Verfahren und Vorrichtung zur Druckindizierung in einem Dosierungssystem
DE102009028459A1 (de) Verfahren zum Betreiben eines SCR-Katalysators
DE102008044335A1 (de) Verfahren zur Füllstandsbestimmung
EP3543493B1 (de) Verfahren und vorrichtung zum überwachen einer scr-abgasnachbehandlungseinrichtung

Legal Events

Date Code Title Description
OP8 Request for examination as to paragraph 44 patent law
8131 Rejection