(57) Řešení se týká způsobu čištění roztoku glukózy, oligosacharidů a hydrolyzátů škrobu v různém technologickém stadiu pomocí ionexových derivátů celulózy. Způsob čištění roztoků oligosacharidů glukózy nebo hydrolyzátů škrobu spočívá v tom, že 40 až 100 dílů roztoku sa uvedou do styku v míchané nádobě nebo ,naplněné koloně β 1 dílem perlové celulózy obsahující (N,N-diethyl)aminové skupiny v OH nebo Cl-formě v koncentraci až 1,1 mmol/g, f popřípadě 6 perlovou celulózou regenerovanou promytím 3 obj. díly roztoků solí nebo báze vybrané ze skupiny zahrnující chlorid sodný a hydroxid draselný o kon* centraci 0,5 až 1 mol/1 s následným promytím stejným objemem max. 1 mol/1 kyseliny chlorovodíkové a/nebo destilované vody. Tento způsob čištění lze tedy provést jak v kontinuálním, tak i diskontinuálnim zařízení, přičemž eorbent je regenerovatelný. Roztoky škrobu nebo glukózy různé provenience lze tímto způsobem čistit v různém technologickém stádiu.
1270 |
904 |
(11) |
|
(13) |
Bl |
(51) |
Int. Cl.5
C 13 К 1/00 |
CS 270 904 B1
I
Vynález ee týká způsobu čištění roztoků glukózy, oligosacharidů a hydrolyzátů škrobu v různém technologickém stadiu pomoci ionexových derivátů celulózy.
Stávající způeob čištěni glukózových roztoků připravených hydrolýzou ztekuconého Škrobu ionexy spočívá (jak plyne z počítačové rešerše v Chemical abstracts a World Patent Indexu (WPI) v letech 1960 až 1984) v použiti silně kyselého katexu v Na formě pro čištěni tzv. zeleného sirupu při přípravě glukózy ze škrobu (N. G. Gulyuh: SSSR pat. 207824 (1966), Chem. Abstr. 69, 20603 (1969)). Pro tyto účely jsou však také navrženy silně basické anexy s polymernimi sorbenty bez ionogenních skupin makroporézniho typu, a to zejména pro čištění eacharózy (□. štamberg, V. Valter: Entfarbungsharze, Akademie-Verleg-Serlin /1970/). Prakticky se však čisti roztoky po hydrolýza Škrobu rozmícháním s karbóraflnem, filtrací a izolovaná glukóza se dvojnásobně krystalizuje. Nevýhodou čištění karborafinem je špatná filtrovatelnost, potíže při odstranění adsorbentu z roztoku a odběr adsorbentu.
Uvedené nevýhody odstraňuje způsob čištění roztoků Škrobu a glukózy, při kterém se uvedené roztoky uvádí do styku в celulózou v perlové formě s diethylaminovými nebo 1-(N,N-diethylamino)-2-hydroxypropylovými skupinami. Výše uvedený způsob čištění lze s výhodou provést tak, že se roztok nechá protékat vrstvou derivátů celulózy v perlové formě.
Výhodou způsobu podle vynálezu je, že jej lze provést jak šaržovitě násadou ionexové celulózy do roztoku škrobu nebo glukózy, tak i kontinuálně průtokem roztoku kolonou naplněnou perlovou celulózou. Oproti čištění roztoků šaržovitým způsobem v tanku, je kolonový způsob účinnější. Prvý způsob však nevyžaduje žádná dodatečná zařízení. Zde je nutné zdůraznit, že sorpce probíhá i za zvýšené teploty 25 až 95 °C.
Základním předpokladem pro tento způsob čištěni je dostatečná pevnost a nestlačitelnost nosiče. Perlová celulóza je však dostatečně odolná i na oděr.
Předmětem vynálezu je způsob čištění roztoků oligosecharidů glukózy nebo hydrolyzátů škrobu, jehož podstata spočívá v tom, že se 40 až 100 dílů roztoku uvedou do styku v míchané nádobě nebo naplněné koloně s 1 dílem perlové celulózy, obsahujícím /N,N-dimethyl/aminové skupiny v OH nebo Cl-formě v koncentraci až 1,1 mmol/g, popřípadě s perlovou celulózou regenerovanou promytim 3 obj. díly roztoků solí nebo báze vybrané ze skupiny zahrnující chlorid sodný a hydroxid draselný o koncentraci 0,5 až 1 mol/1 s následným promytim stejným objemem max. 1 mol/1 kyseliny chlorovodíkové a/nebo destilované vody.
Tento způsob čištění lze tedy provést jak v kontinuálním, tak i diisokontinuálním zařízení, přičemž sorbent je regenerovatelný. Regenerace se provádí promytim trojnásobkem objemu lože roztoku solí nebo báze vybrané ze skupiny zahrnující chlorid sodný a hydroxid sodný o koncentraci až 1 mol/1, následným promytim stejným objemem až 1 mol/1 kyseliny chlorovodíkové a destilované vody. Roztoky škrobu nebo glukózy různé provenience lze postupem podle vynálezu čistit v různém technologickém stadiu. Lze tedy Čistit roztoky bramborového, kukuřičného nebo jiného škrobu. Dále potom roztoky škrobu po ztekucení nebo s výhodou i po hydrolýze, tj. glukózový sirup. Stupeň vyčištěni roztoků byl sledován měřením absorpce roztoků při 280 nm, kde se nacházelo absorpční maximum roztoků .
Vyšší účinek způsobu podle vynálezu spočívá především ve vysoké sorpčni schopnosti perlová celulózy s diethylaminovými skupinami vůči barevným látkám obsaženým v roztocích škrobu a glukózy. Vyšší účinek dále spočívá v pravidelném sférickém tvaru navrhovaného sorbentu, který umožňuje rychlou filtraci v důsledku malého odporu vrstvy a skutečnost, že nedochází к oděru těchto částic ve srovnáni e karboraflnem, v možnosti regenerovat sorbent de9orpcí barevných látek, které tvoří například mimo jiné betainy a
CS 270 904 81 bílkoviny, roztokem soli nebo báze například 1 mol/1 chloridu sodného respektive 1 mol/1 hydroxidu sodného.
Níže uvedené příklady ilustruji způsob čištěni roztoků, aniž by se tim předmět vynálezu omezoval.
Příklad 1 dílů ztekuceného bramborového škrobu (27,9 % hmot, sušiny, glukózový ekvivalent 23,2) bylo čerpáno při 50 °C přes 1 díl perlové celulózy obsahující l-(N,N-diethy* lamino)-2-hydroxypropllové skupiny v koncentraci 1,07 mmol/g zrnitosti 0,3 až 1,0 mm v Cl formě umístěné v koloně délky 3 cm a průměru 1,5 cm rychlostí 0,25 dílů/min. Oále změny absorpčního maxima při 280 nm sa průtokem zachytilo 35 % hmot, barevných látek .
Přiklad 2 dílů glukózového sirupu (29,5 % hmot, sušiny, glukózový ekvivalent 97,8) bylo čerpáno při 50 °C přes 1 díl perlové celulózy obsahující (N,N-diethylamino)ethylové skupiny (1 mmol/g) v Cl formě rychlosti 0,46 dílů/min. Dle změny abeorpčního maxima při 280 nm se průtokem přes ionex odstranilo z roztoku glukózy 43 % hmot, barevných látek. V dynamických podmínkách, kdy byla perlová celulóza umístěna v koloně, nebyla pozorována ztráta tlaku v koloně nebo stlačitelnost vrstvy až do tlaku 20 kPa.
Přiklad 3
V 50 dílech ztekuceného kukuřičného škrobu (35,2 % hmot, sušiny, glukózový ekvivalent 30 %) byl rozmíchán v baňce 1 díl perlové celulózy s 1-(N,N-diethylamino)-2-hydroxypropylovými skupinami (1,08 mmol/g, velikost zrna 0,135 až 0,44 mm) při teplote 70 °C. Po 30 minutách kontaktu za mírného míchání kotvovým míchadlem (100 ot/min) byla absorpce roztoku při 280 nm o 26 % nižší, než původního roztoku a odstranila se Jeho pěnivost. Ze ztekuceného kukuřičného Škrobu se sorbovala absolutně nejvyšší množství nečistot, které činilo téměř 200 % (2x násobek) nečistot sorbovaných z glukózového sirupu a 120 % (l,2x násobek) nečistot ve ztekuceném bramborovém škrobu.
Sorbent byl po sorpci regenerován v koloně průtokem 0,1 a 1,0 mol/1 roztoky chloridu sodného, kyseliny chlorovodíkové, hydroxidu sodného. Při desorpci 0,1 mol/1 chloridu sodného se deeorbuje 30 % hmot, sorbovaných látek, 1,0 mol/1 chloridu sodného 29 % hmot., 0,1 mol/1 kyseliny chlorovodíkové 7 % hmot., 1,0 mol/1 kyseliny chlorovodíkové i 8 % hmot., 0,1 mol/1 hydroxidu sodného 15 % hmot, a 1,0 mol/1 hydroxidu sodného 9 % hmot, sorbovaných látek. Regenerace byla ukončena převedením do Cl-formy 1 mol/1 kyseliny chlorovodíkové a promytím destilovanou vodou do neutrální reakce. Po regeneraci poy užitý ionex sorboval stejné množství barevných látek.
Příklad 4
Postupem uvedeným v příkladu 2 byl čištěn glukózový sirup vyčištěný Již před tím karborafinem. Perlová celulóza в diethylamlnovými skupinami z tohoto roztoku však sorbovala dalších 26 % hmot, barevných látek, Jak plynulo z měření absorpce při 280 nm.
Příklad 5
Postupem uvedeným v příkladu 2 bylo čištěno 100 dílů glukózového sirupu, 1 díl perlové celulózy a diethylamlnovými skupinami. Z tohoto roztoku sorboval podíl dalších % barevných látek, Jak plynulo z měření absorbance při 280 nm, která poklesla o 26 %.
Perlová celulóza byla regenerována promytím 1 . 1 dílem roztoku 0,5 mol/1 chloridu sodného nebo 0,5 mol/1 hydroxidu sodného a 2 díly destilované vody.
CS 270 904 Bl