Patents

Search tools Text Classification Chemistry Measure Numbers Full documents Title Abstract Claims All Any Exact Not Add AND condition These CPCs and their children These exact CPCs Add AND condition
Exact Exact Batch Similar Substructure Substructure (SMARTS) Full documents Claims only Add AND condition
Add AND condition
Application Numbers Publication Numbers Either Add AND condition

Facility for indirect cooling of liquids by the gas current

Landscapes

Show more

CS219534B1

Czechoslovakia

Other languages
English
Inventor
Zdenek Beran
Jaroslav Stanek
Stanislav Smejkal
Josef Lutcha
Vaclav Michal
Josef Mika
Miloslav Hartman

Worldwide applications
1981 CS 1982 DD SU

Application CS580480A events

Description

(54) Zařízení pro nepřímé chlazení tekutin proudem plynu
Vynález se týká zařízení pro nepřímé chlazení tekutých médií proudem plynu, u kterého je přestup tepla na straně plynu zvyšován přítomností pohyblivých částic pevné hmoty. Podstata vynálezu spočívá v tom, že mezitrubkový prostor s nejméně dvěma řadami trubek je maximálně do jedné poloviny vyplněn částicemi pevné hmoty o velikosti přesahující jednu třetinu mezery mezi sousedními trubkami řady. Trubky jsou přitom uspořádány tak, že středy výše ležících trubek jsou umístěny nad středem rozteče dvou vedle sebe umístěných níže ležících trubek. Trubky s ochlazovanou látkou mohou být ožebrovány a v horní části mezitrubkového prostoru může být umístěn rozvod kapalného chladivá.
Vynález se týká zařízení pro nepřímé chlazení tekutých médií proudem plynu, u kterého je přestup tepla na straně plynu zvyšován přítomností pohyblivých částic pevné hmoty.
Pro chlazení tekutin, jako jsou kapalíny, popř. kondenzující páry nebo plyny, se běžně používá chladičů, kde chlazená látka prochází trubkami chladiče, které jsou z venkovní strany obtékány proudem chladicího plynu. Příkladem takového zařízení je vzduchový chladič, kde plynné chladicí prostředí, vzduch, je čerpáno pomocí ventilátoru svazkem trubek, jimiž proudí chlazená tekutina. V převážné většině případů je tekutina uvnitř trubek kapalina, popř. kondenzující páry. Při přenosu tepla z těchto médií na vnitřní stěnu trubky se dosahuje poměrně vysoké intenzity přestupu tepla, charakterizované koeficientem přestupu tepla. Hodnoty koeficientu přestupu ' tepla jsou v tomto případě o dva až tři řády vyšší, než na vnější straně trubek, kde proudí plynné chladicí prostředí. Přestup tepla na vnější straně trubky je potom limitujícím faktorem, určujícím přenos tepla z chlazeného do chladicího prostředí.
Známý způsob, používaný pro zlepšení tohoto stavu, je zvýšení vnějšího povrchu trubek chladiče ožebrováním. U běžných ocelí je možno známými způsoby ožebrování zvýšit vnější povrch nanejvýše asi trojnásobek. Větší stupeň ožebrování, až dvacetinásobek, je možno dosáhnout za cenu několikanásobného zvýšení nákladů použitím tažných kovů, hlavně hliníku.
Nevýhodou vysokožebrovaných trubek jsou kromě vysoké ceny i provozní problémy, jako je zanášení · žeber, nesnadné čištění a možnost poškození poměrně tenkých a měkkých žeber a následné snížení účinnosti. Obecně nepříznivý faktor u chladičů s plynným chladicím prostředím je poměrně nízká tepelná kapacita plynů a u vzduchových chladičů ještě značné kolísání chladicího výkonu v závislosti na teplotě okolního vzduchu.
Jinou známou metodou pro· snížení nepříznivého velkého rozdílu v intenzitě přestupu na vnější i vnitřní straně trubek je použití fluidní vrstvy pevných částic. V tomto případě jsou ponořeny trubky chladiče do fluidní vrstvy částic křemenného písku o velikosti řádově ΙΟ-1 mm, nebo jiné obdobné hmoty, udržované ve vznosu proudem chladicího prostředí.
Přestupy tepla · na vnější straně trubek jsou v takovém systému několikanásobně vyšší. Uvádějí se hodnoty koeficientů přestupu tepla 200 · až 500 W/m2 °Ο. Další uváděná výhoda je možnost zvýšení chladicího účinku odparem kapaliny, zpravidla vody, uváděné přímo do fluidní vrstvy. Pro stabilizaci vrstvy je však nutno použít tzv. fluidního roštu, který svým hydraulickým odporem podstatně zvyšuje spotřebu energie na dopravu chladicího vzduchu zařízením. Kro mě toho je · možno pracovat pouze s nízkou vrstvou, tzn. · prakticky pouze s jednou řadou trubek, vzhledem ke značné · tlakové ztrátě vrstvy.
Zařízení podle vynálezu zachovává vysokou intenzitu přestupu tepla na straně chladicího prostředí, srovnatelnou s fluidní vrstvou a přitom podstatně snižuje · -nevýhodu vysoké spotřeby energie na překonání hydraulického odporu vrstvy.
Podstata vynálezu spočívá v-tom, že částice, umístěné v mezitrubkovému prostoru alespoň jedné řady trubek chladiče a udržované v pohybu působením proudu chladicího prostředí a vlastní tíhy, mají velikost přesahující jednu třetinu mezery mezi sousedními trubkami řady. Trubky s ochlazovanou látkou mohou být ožebrovány a nad řadou trubek s částicemi může být · umístěn rozvod kapalného chladivá, s výhodou vody. Velikost částic se pohybuje v rozmezí 3 až 10 mm.
Výše uvedenými technickými opatřeními se několikanásobně zvyšuje přestup tepla na straně chladicího prostředí, což vede ke zvýšení měrného chladicího výkonu aparátu. Pro větší část průmyslových případů chlazení je možno použít nízkožebrované, případně holé trubky, což znamená úsporu tažných kovů, Jako je hliník. Kromě toho lze pro chlazení využít výparného tepla sekundárního chladivá, s výhodou vody, což přináší další zvýšení měrného chladicího výkonu. Sekundárního chladivá je možno také využít pro snížení nepříznivého vlivu kolísání teploty atmosférického vzduchu.
Účinky technických opatření, tvořících podstatu vynálezu, jsou odvozeny od vlastností systému tryskajících vrstev pevných Částic vytvářejících paralelně s osami trubek podélné fontány. Tento systému vzniká a je stabilní pro částice, jejichž velikost je určována uspořádáním příslušné řady trubek. Pevné částice, jejichž hmotnost je poměrně nízká, turbulizují proud chladicího prostředí a svým pohybem zprostředkují přenos tepla mezi tekutou fází, chladícím prostředím a stěnou trubky. Při zavádění hrubě dispergovaného kapalného chladivá, např. vody, · do takového systému, dochází k rozptýlení chladívá po povrchu Částic, jeho intenzivnímu odiparu a snižování teploty chladicího prostředí. Migrace částic v horizontálním a omezeně í vertikálním směru zajišťuje rovnoměrné rozdělení teplot, resp. zachování vhodných teplotních spádů v systému.
Na zkušební sekci vzduchového chladiče a ploše příčného řezu 0,2 m2 a na poloprovozním zařízení o ploše příčného řezu 1 m2 byly sledovány vlastnosti popsaného systému ve čtyřřadém uspořádání, odpovídajícím podmínkám provozního zařízení. Částice vytvářející tryskající vrstvy měly velikost 6 až 7 mm a měrnou hmotnost cca 750 kg/m3. Rychlosti chladicího prostředí vzduchu se
213534 pohybovaly v rozmezí 2,5 až 4 m/s (vztaženo na plochu příčného řezu a měrnou hmotnost vzduchu p = 1,2 kg/m3]. Uvnitř trubek kondenzovala vodní pára. Hodnoty koeficientu přestupu tepla vypočtené z naměřených tepelných bilancí se na straně vzduchu pohybovaly v rozmezí 170 až 220 W/m2 K. Tlaková ztráta chladicí sekce byla 250 až 350 Pa. Vzhledem к tomu, že hodnoty koeficientu přestupu u běžných vzduchových chladičů se pohybují okolo hodnoty 50 W/m2 K., je dosažené zvýšení 200 až 300 °/o.
Na výkrese je znázorněn příklad provedení vzduchového chladiče tekutin podle vynálezu. Na obr. 1 je axonometrický obraz celkového uspořádání chladiče s částečným řezem, obr. 2 je částečný příčný řez svazkem chladicích trubek.

Claims (4)
Hide Dependent

  1. Funkční částí chladiče je svazek chladicích trubek 1, které jsou zaústěny do vstupní komory 2 chlazené látky a výstupní komory 3 chlazené látky. Chladicí prostředí — vzduch — je dopravováno chladičem pomocí ventilátoru 4, prochází postupně vstuppRedmEt
    1. Zařízení pro nepřímé chlazení tekutin proudem plynu, sestávající z čerpadla pro dopravu chladicího prostředí, vstupní a výstupní komory chladicího prostředí, vstupní a výstupní komory chlazené látky a systému souběžných řad trubek s ochlazovanou látkou, kde· v mezitrubkovém prostoru alespoň jedné řady trubek jsou umístěny částice pevné hmoty, které jsou udržovány v pohybu působením proudu chladicího prostředí a vlastní tíhy vyznačené tím, že velikost částic (7) přesahuje jednu třetinu 1 ní komorou 5 chladicího prostředí, mezitrubkovým prostorem a výstupní komorou 6 chladicího prostředí. Mezitrubkový prostor je částečně, vyplněn kulovitými částicemi 7 pevné hmoty, které vytvářejí v proudu chladicího prostředí podélně tryskající vrstvy 8. Síto 9, uložené ve spodní části trubkového svazku, zabraňuje propadávání pevných částic 7 do vstupní komory 5 chladicího prostředí. Ve výstupní komoře 6 chladicího prostředí nad horní řadou chladicích trubek 1 je umístěn rozvod 10 kapalného chladivá, s výhodou vody.
    Zařízení podle vynálezu je vhodné zejména pro nepřímé chlazení kapalin vzduchem na relativně nízké teploty 40 až 80 °C. Zvýšení chladicího účinku využitím výparného tepla sekundárního chladivá se zvláště uplatní při vyšších teplotách chladicího vzduchu, daných klimatickými podmínkami té které lokality. Není však vyloučeno použití tohoto zařízení pro vyšší chladicí teploty, jiná chladicí média a některé případy kondenzace par.
    ynAlezu mezery mezi sousedními trubkami (1) řady.
  2. 2. Zařízení podle bodu 1, vyznačené tím, že trubky (1] s ochlazovanou látkou jsou ožebrovány.
  3. 3. Zařízení podle bodů 1 a 2, vyznačené tím, že nad řadou trubek (1) s částicemi (7) je umístěn rozvod (10] kapalného chladivá, s výhodou vody.
  4. 4. Zařízení podle bodů 1 až 3, vyznačené tím, že velikost částic (7) pevné hmoty se pohybuje v rozmezí 3 až 10 mm.