Vynález se týká směsi pro výrobu silikátové izolace o nízké objemové' hmotnosti vykazující pevnost v tlaku minimálně 0,5 MPa a objemovou hmotnost 180 až 250 kg/m3, připravované hydrotermálním opracováním.
Je znáima příprava a použití silikátových tepelně izolačních hmot, tvořených v podstatě vodnatými křemičitany vápenatými, vykazujícími homogenní, mikroporézní struktury a obsahujících obvykle určitý podíl vláken, zejména anorganických, jako příkladně azbest. Tyto hmoty se připravují hydrotermálním zpracováním směsi vápenaté a křemičité složky spolu s vlákny a za přítomnosti velkého objemu vody, zejména spojeným s předběžnou reakcí zmíněných složek při teplotách pod 100 °C. Objemné gely, které při tomto předreagování vznikají, jsou předpokladem dosažení požadovaných vlastností při nízké objemové hmotnosti a umožňují tváření metodou filtračního lisování. Jakostní výrobky určitého chemického složení a s ustálenými fyzikálními vlastnostmi se vyznačují strukturou, tvořenou v podstatě mikrokrystalickými hydrosilikáty tobermoritem 5 CaO . 6 SiO2 .
. 5 H2O, xonotlitem 5 CaO . 5 SiO2 . H2O, anebo jejich směsemi. Výrobky tohoto typu vykazují velmi nízkou tepelnou vodivost a vzhledem k přítomnosti mfcovýztuže rovněž dobré fyzikálně-mechanické vlastnosti, zej201629 ména pevnost v tahu za. ohybu, a to i při velmi nízkých objemových hmotnostech (až 175 kg/m3). Jsou z těchto důvodů široce používány v oblasti průmyslových izolací a v náročných stavebních aplikacích.
Dále je znám tepelně a zvukově-izolační plyinosilikát, připravovaný z křemičitého písku, vápna a hliníkového prášku v objemových hmotnostech 250 až 300 kg/m3 (pevnost v tlaku 0,6 MPa) a 300 až 350 kg/m3 (pevnost v tlaku 0,8 MPa). Je určen především pro tepelnou izolaci plechových střech, jako zvukoabsorbční materiál apod. Jsou rovněž známy výrobky na bázi perlitu a cementového pojivá s přísadou azbestu a výrobky připravované z perlitu a vápna, anebo perlitu vápno-křemičitého pojivá hydrotermálním zpracováním, tzv. silikátperlit. Cementoperlitové hmoty s přísadou azbestu vykazují objemovou hmotnost 200 až 400 kg/m3 a pevnost za ohybu 0,2 až 0,36 MPa a jsou používány především k tepelné izolaci energetických agregátů, jako parních turbin apod. Hmoty na bázi perlitu a vápna, připravované lisováním v polosuchém stavu, dosahují při poměru vápno : perlit 1 :6 minimální objemovou hmotnost 250 kg/m3 a pevnost v tlaku 0,7 až 0,8 MPa. Hmoty připravované z perlitu a vápmokřemiČitého (pojivá vibračním formováním dosahují při poměru vápnokřemičité pojivo : perlit 1 : 5 minimální objemovou hmotnost 350 kg/m3 a pevnost v tlaku 1,0 MPa. Jsou používány jako tepelně-izolační materiál ve stavebních aplikacích a jako průmyslové izolace. Rovněž jsou známy plynosilikáty na bázi perlitu a vápnopískového pojivá o objemové hmotnosti cca 300 kg/m3 a pevnosti v tlaku pod 0,5 MPa.
Jak patrno, dosahuje se u hmot prostých vláknité výztuže (azbestu), to je u izolačního pórobetonu a u silikátperlitu spodní hranice objemových hmotností v rozmezí 250 až 300 kg/m3, při ještě vyhovujících fyzikálněmechanických vlastnostech z hlediska manipulačních, montážních a provozních pevností. Další snižování objemové hmotnosti vede u těchto hmot k výraznému poklesu pevnosti v tahu za ohybu i v tlaku, což vyvolává vysokou zmetkovitost, rozrušování materiálu při dopravě a montáži a znemožňuje praktickou aplikaci. Použití vláknité mikrovýztuže, jmenovitě azbestu, klade určité nároky z hlediska výrobní technologie, ovlivňuje v jisté míře ekonomiku a není vždy žádoucí vzhledem k otázkám ochrany prostředí a hygieny práce.
Pro některé účely je žádoucí použít levný tepelně-izolační materiál s co nejnižší objemovou hmotností, tj. pod 250 kg/m3, při postačujících pevnostních vlastnostech pro danou aplikaci, jakož i vyhovujících manipulačních a montážních pevnostech. Příkladem jsou izolační výplně sendvičových střešních dílců, dále izolace umožňující maximální odlehčenost při naprosté nehořlavosti v porovnání s organickými pěnovými umělými hmotami, jakož i zvýšenou tuhostí a odolností vůči tlakovému zatížení ve srovnání s plstěmi minerálních vláken apod.
Uvedené nedostatky odstraňuje směs pro výrobu silikátové izolace o nízké objemové hmotnosti, vykazující pevnost v tlaku minimálně 0,5 MPa a objemovou hmotnost 180 až 250 kg/m3, připravované hydrotermálním zpracováním podle vynálezu, jehož podstata je v tom, že sestává z 35 až 50 hmot. % křemeliny, popřípadě v kombinaci s mletým křemičitým pískem o specifickém povrchu minimálně 7000 cm2/g, s výhodou nad 10 000 cm2/g, z 20 až 25 hmotnostních % portlandského cementu, z 20 až 25 hmotnostních % vápna, 10 až 15 hmotnostních % expandovaného perlitu a z 0,15 až 0,2 hmotnostních % hliníkového prášku. Směs pro výrobu silikátové izolace o nízké objemové hmotnosti může obsahovat do 5 hmotnostních % úletu z výroby krystalického křemíku nebo ferrosilicia na úkor sníženého obsahu křemeliny a do 5 hmotnostních % vláknité složky, s výhodou krátkovláknitého azbestu, vztaženo na celkový obsah pevných složek. Je účelné použít předem mletou křemičitou složku, v případě použití křemičitého písku na specifický povrch minimálně 7000 cm2/g, nejlépe nad 10 000 cm2/g a mleté vápno a provést společně krátkodobé domletí směsi obou složek s cementem. Do takto připravené směsi se vmíchá expandovaný perlit a směs se homogenizuje. Perlit je vhodný netříděný, o střední objemové hmotnosti 150 kg/m3.
Postupuje se příkladně tak, že se jemně mletá křemelina smísí s cementem a mletým vápnem a provede se domletí v kulovém mlýnu na příslušnou jemnost. Nato se přidá expandovaný perlit a směs se zhomogenizuje. Výsledná směs se rozmíchá v příslušném množství vody, přidá se hliníkový prášek a hmota se odleje do formy a podrobí autoklávovému zpracování při tlaku 1,3 MPa a výdrži 6 hod. Výsledný produkt se suší, řeže a případně podrobuje kalibraci a dalšímu zpracování.
Použití přísady jemně disperzního, nekrystalickěho, vysoce aktivního kysličníku křemičitého, jakým jsou úlety z výroby krystalického křemíku, popřípadě ferrosilicia, v množství do 5 hmotnostních %, s výhodou 4 hmotností %, umožňuje dosáhnout zvýšení pevnosti v tlaku výrobku až o 0,15 MPa. Přísada dobře rozvolněné vláknité složky, jako krátkovláknitého azbestu,, umožňuje pro určité aplikace dosáhnout zlepšení některých fyzikálněmeohanických vlastností, jako pevnosti v tahu za ohybu.
Výhoda směsi pro výrobu silikátové izolace o nízké objemové hmotnosti je v tom, že je možno ji vyrábět při relativně nízkých vlastních nákladech ve velkých objemech v podstatě s využitím zařízení používaného pro výrobu pórobetonu, přičemž mimořádně nízká objemová hmotnost při dostačující pevnosti a tuhosti umožňuje její použití pro lehké konstrukce, vyžadující maximální odlehčenost použitých prvků, jakož i v tom, že suroviny pro získání této směsi pro výrobu izolační hmoty jsou dostupné a relativně levné.
Příklady provedení
Příklad 1
Byla použita směs, Obsahující 39 hmotnostních % křemeliny o obsahu SiO2 ve vysušeném vzorku 82% a zbytku na sítě 0,063 %, 25 hmotnostních % portlandského cementu, 25 hmotnostních % mletého vápna, 11 hmotnostních % expandovahého perlitu zn. 150 a 0,2 hmotnostní % hliníkového prášku (vztaženo na celkovou hmotnost pevných složek). Směs bez perlitu a hliníkového prášku byla domleta 5 minut v kulovém mlýnu; propad sítem 0,063 činil 83,8 %. Nato byla provedena homogenizace s periitem po dobu 15 minut a směs byla po rozmíchání ve vodě při vodním součiniteli 1,67 a přidáním hliníkového prášku odlita do forem a autoklávována při 1,3 MPa. Objemová hmotnost vysušeného prvku činila 241 kg/m3, pevnost v tlaku 0,64 MPa.
Příklad 2
Postupováno bylo stejně jako v příkladu 1, pouze byly ke směsi přidány 3 hmotnostní % úletu z výroby krystalického křemíku, na al úfcor příslušného snížení obsahu křemeliny. Objemová hmotnost výsledného vysušeného prvku činila 244-kg/m3, pevnost v tlaku 0,77 MPa.
Příklad 3
Postupováno bylo stejně jako v příkladu 1, pouze jako křemičitá složka byla použita směs 20 % křemeliny a 80 % křemičitého písku, mletého na specifický povrch 10 600 om1 2/g, v celkovém množství 36 hmotnostních % a přísada expandovaného perlitu činila 14 hmotnostních %. Propad sítem 0,063 domleté směsi činil 85,6%. Objemová hmotnost výsledného prvku činila 247 kg/m3, pevnost v tlaku 0,72 MPa.
Příklad 4
Postupováno bylo stejně jako v příkladu 1, složení směsi bylo pozměněno na 44 hmotnostních % křemeliny, 20 hmotnostních % vápna; obsah ostatních složek byl nezměněn. Objemová hmotnost výsledného prvku činila 226 kg/m3, pevnost v tlaku 0,83 MPa.
Příklad 5
Složení výchozí směsi činilo 49 hmotnostních % křemeliny, 20 hmotnostních % cementu, 20 hmotnostních % vápna, 11 hmotnostních % expandovaného perlitu, 0,2 hmotnostní % hliníkového prášku. Postupováno bylo jako v příkladu 1; objemová hmotnost výsledného prvku činila 224 kg/m3, pevnost v tlaku 0,55 MPa.
PŘEDMĚT VYNÁLEZU