CN2872497Y - Enhancing transmitting system of parameter-adjusting random resonant weak signal under strong noise background - Google Patents

Enhancing transmitting system of parameter-adjusting random resonant weak signal under strong noise background Download PDF

Info

Publication number
CN2872497Y
CN2872497Y CN 200520052219 CN200520052219U CN2872497Y CN 2872497 Y CN2872497 Y CN 2872497Y CN 200520052219 CN200520052219 CN 200520052219 CN 200520052219 U CN200520052219 U CN 200520052219U CN 2872497 Y CN2872497 Y CN 2872497Y
Authority
CN
China
Prior art keywords
signal
high
system
speed digital
stochastic resonance
Prior art date
Application number
CN 200520052219
Other languages
Chinese (zh)
Inventor
温熙森
胡茑庆
杨定新
秦国军
陈敏
Original Assignee
中国人民解放军国防科学技术大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国人民解放军国防科学技术大学 filed Critical 中国人民解放军国防科学技术大学
Priority to CN 200520052219 priority Critical patent/CN2872497Y/en
Application granted granted Critical
Publication of CN2872497Y publication Critical patent/CN2872497Y/en

Links

Abstract

The utility model discloses a parameter-regulating stochastic resonance system for weak signal-enhanced transmission system under the background of powerful noises, which comprises a program controlled amplifier, a stochastic resonance circuit for adjustable-parameter dual-stability system, a first A/D translator, a second A/D translator, a processing subsystem for high-speed digital signal, a first level translator, and a second level translator. The utility model system is characterized in that: when passing the analog circuit of dual-stability system, the use of parameters of DSP adjustable dual-stability circuit and programmable gain amplifier can make the weak signals with unknown frequency values at a certain frequency range realize the stochastic resonance, and receive self-adaptive enhancement transmission. The utility model has preferably solved the prior problems on high-frequency signal detection, and self-adaptive enhancement transmission of weak signals with unknown frequency at a certain frequency range, which has provided the necessary means and maintenance support for engineering applications on parameter-regulating stochastic resonance technology.

Description

强噪声背景下调参随机共振微弱信号增强传输系统 Strong noise reduction reference signal enhancement stochastic resonance transmission system Weak

技术领域 FIELD

本实用新型涉及一种强噪声背景下的微弱信号增强传输方法与系统,特别适用于低信噪比条件下机电系统早期故障诊断中微弱特征频率信号的检测。 Weak signal present invention relates to a background of strong noise enhancement transmission method and system, particularly suitable for early fault diagnosis of electromechanical systems in low SNR frequency detection characteristic weak signal.

背景技术 Background technique

随机共振技术于上世纪八十年代由意大利学者巴兹等人在研究地球古气候变化时提出。 Stochastic resonance technology in the 1980's by the Italian scholar Baz et al ancient Earth climate change research. 随机共振利用噪声增强微弱信号传输的机制,使其与其它微弱信号检测方法相比具有独特的优势,因而在生物信号处理、视觉图像与听觉识别、电磁系统及光信号处理等领域得到广泛重视,但有两方面的问题制约了随机共振在工程实践中的应用:第一,高频信号检测问题,通常的随机共振理论针对的是极低频信号(频率f<<1),而在工程实际中,信号频率往往与此要求有很大差别,比如机电系统中,特征频率一般在几十、几百赫兹到几千赫兹;第二,目前常用的数值仿真算法对采样频率有较高要求,信号需要过采样,随机共振发生时要求采样频率达到信号频率的100倍甚至更高才有较好的效果,此外该方法需要有信号频率的先验知识,对于一定频率范围内未知频率信号的自适应增强传输是一个难题,而机电系统中微弱特征信号往往只知道大致的频率范 Stochastic resonance noise enhancement mechanism using weak signal transmission, so that compared with other weak signal detection method has unique advantages and thus extensive attention in the biological signal processing, visual images and auditory recognition, optical signal processing systems and electromagnetic fields, but there are two problems restrict the application of stochastic resonance in engineering practice: a first high-frequency signal detection problem, a general theory of stochastic resonance for the extreme low frequency signal (frequency f << 1), and in engineering practice , the signal frequency and this requirement often very different, such as electromechanical systems, wherein a frequency usually in the tens, hundreds of Hz to several kHz; the second, the numerical simulation algorithm commonly used sampling frequency higher requirements, signal requires oversampling, the sampling frequency required signal frequency up to 100 times higher or even better results have stochastic resonance occurs when, in addition the method requires prior knowledge of the frequency of the signal for the adaptive unknown frequency within a frequency range of a signal to enhance the transmission is a problem, but a weak signal characteristic electromechanical systems often only know the approximate frequency range 围。 Wai.

发明内容 SUMMARY

本实用新型目的在于解决以上现有技术存在的问题,提供一种可以实现微弱信号自适应增强传输的调参随机共振微弱信号增强传输系统,该系统可用以增强机电系统微弱特征频率信号的传输。 This object of the present invention to solve the above prior art problems by providing a weak signal enhancement can be achieved adaptive transmission parameter adjustment stochastic resonance weak transmission signal enhancement system that may be used to enhance weak electro-mechanical system wherein the frequency of the transmission signal.

为了实现上述发明目的,本实用新型首先通过一种归一化尺度变换,证明调参随机共振可以实现高频信号的增强传输,利用模拟电路求解双稳系统模型,克服数值仿真方法中信号需要过采样的问题;其次利用高速数字信号处理器的运算与处理自动识别有用信号的频率,调节双稳系统模拟电路的相应参数,使双稳系统达到随机共振状态,实现信号的自适应增强传输。 In order to achieve the above object, the present invention is achieved by a first normalization scale transformation parameter adjustment prove stochastic resonance enhancement may be achieved with high frequency signals, an analog circuit model of solving bistable system, to overcome the numerical simulation method requires a signal through problems samples; Second-speed digital signal processor using the arithmetic processing automatic identification of the useful signal frequency, adjusting the bistable system parameters corresponding to the analog circuit, so that random bistable system reaches resonance, the transmission adaptive signal enhancement. 为此,本实用新型采用如下技术方案:本实用新型系统包括:程控放大器,用以将低信噪比混合输入信号进行信号放大;参数可调双稳系统随机共振电路,电连接于程控放大器,用以对程控放大器输出信号实现随机共振模型求解;第一A/D转换器,其一端电连接于程控放大器;第二A/D转换器,其一端电连接于双稳系统随机共振电路;高速数字信号处理子系统,电连接于第一A/D转换器的另一端和第二A/D转换器的另一端,用以计算经第一A/D转换器的程控放大器输出信号的统计特征,估算信号的大小,并输出增益控制信号,通过电平转换器,调节程控放大器增益,控制程控放大器输出信号大小,同时用以对经第二A/D转换器的双稳系统随机共振电路输出信号进行多次重复采样及FFT分析,找出各次采样信号的最大频率分量,判断微弱特征频率信号是否存在,并 To this end, the present invention adopts the following technical solutions: The system of the present invention comprising: a programmable amplifier for the low SNR signal mixed input signal amplification; adjustable parameters bistable system stochastic resonance circuit electrically connected to the programmable amplifier, solving the stochastic model to achieve resonance of the programmable amplifier output signal; a first A / D converter, which is electrically connected to one end of the programmable amplifier; second A / D converter, which is electrically connected to one end of the bistable system stochastic resonance circuit; high-speed statistical characteristics of the output signal of the programmable amplifier other ends of the digital signal processing subsystem, is electrically connected to the first a / D converter and second a / D converter, to calculate via the first a / D converter estimating the magnitude of the signal, and outputs a gain control signal by the level converter, adjust the programmable gain amplifier, programmable amplifier output signal magnitude control, simultaneously used for through the second a / D converter bistable system of stochastic resonance circuit output signal is repeatedly sampled and FFT analysis to identify each of the maximum frequency component signal samples, determining a frequency characteristic weak signal is present, and 出控制信号,控制信号通过电平转换器进行电平转换后控制双稳系统随机共振电路参数的调节,使微弱信号通过双稳系统随机共振电路时实现随机共振,达到增强微弱信号传输的目的;第一电平转换器,其一端电连接于高速数字信号处理子系统,其另一端电连接于程控放大器,用以将高速数字信号处理子系统输出控制信号进行电平转换,进而控制程控放大器的增益。 After the control signal, the control signal is level-converted by the level shifter control bistable system regulating circuit parameters resonance, so that weak signals implemented stochastic resonance random resonant circuit by bistable system, the purpose of reinforcing the weak signal transmission; a first level converter, which is electrically connected to one end of a high-speed digital signal processing subsystem, and the other end electrically connected to a programmable amplifier for the high-speed digital signal processing subsystem outputs a control signal for level conversion, and thus the control of the programmable amplifier gain.

第二电平转换器,其一端电连接于高速数字信号处理子系统,其另一端电连接于双稳系统随机共振电路,用以将高速数字信号处理子系统输出控制信号进行电平转换,进而控制双稳系统随机共振电路参数的调节。 A second level converter, which is electrically connected to one end of a high-speed digital signal processing subsystem, and the other end electrically connected to a bistable system stochastic resonance circuit for high-speed digital signal processing subsystem outputs a control signal for level conversion, and further a control parameter adjusting circuit bistable system stochastic resonance.

所述高速数字信号处理子系统包括:高速数字信号处理器DSP,其作为本子系统的核心元件,并主要通过其发挥上述的本子系统在本实用新型系统中的作用;电源模块,与高速数字信号处理器DSP电连接,用以提供高速数字信号处理器DSP所需的电源;监控复位模块,与高速数字信号处理器DSP电连接,用以做为高速数字信号处理器DSP的“看门狗”,确保在程序跑飞的情况下能有效复位;Flash存贮器,与高速数字信号处理器DSP电连接,用以存贮高速数字信号处理器DSP的程序及重要数据;逻辑控制模块,与高速数字信号处理器DSP电连接,用以完成高速数字信号处理器DSP与各外围器件数据交换的逻辑控制。 The high-speed digital signal processing subsystem comprising: a high-speed digital signal processor, the DSP, as a core element of this sub-system, and primarily through its role in the above-described subsystem of the present invention, the present system; power module, the high-speed digital signal processor DSP are electrically connected to supply a desired power high-speed digital signal processor DSP; reset monitor module connected to electrical high speed digital signal processor DSP for high-speed digital signal processor (DSP) as the "watchdog" ensure effective reset in case of runaway; Flash memory, high-speed digital signal processor DSP is electrically connected to high-speed digital signal processor DSP storing programs and important data; logic control module, high speed a digital signal processor DSP is electrically connected to the control logic to complete the high speed digital signal processor (DSP) to each peripheral device data exchange.

本实用新型系统的工作原理:传感器拾取混有噪声的低信噪比混合输入信号送到程控放大器进行信号放大,程控放大器输出一路经第一A/D转换器送至高速数字信号处理子系统,由DSP计算程控放大器输出信号的统计特征,估算信号的大小,并输出增益控制信号,通过第一电平转换器,调节程控放大器增益,控制程控放大器输出信号的大小。 Working principle of the present invention the system: sensor noise pickup mixed with the mixed input signal to the low SNR programmable amplifier for signal amplification, via the first programmable amplifier output one A / D converter to the high-speed digital signal processing subsystem, statistical features programmable amplifier output signal is calculated by the DSP, the estimated size of the signal, and outputs the gain control signal, the first level converter, adjust the programmable gain amplifier, programmable amplifier to control the size of the output signal. 程控放大器输出的另一路作为参数可调双稳系统模拟电路的输入,通过模拟电路实现双稳系统随机共振模型的求解,输出信号经第二A/D转换器送至高速数字信号处理子系统,由DSP通过多次重复采样及FFT分析,找出各次采样信号的最大频率分量,判断微弱特征频率信号是否存在,并输出控制信号,控制信号通过第二电平转换器进行电平转换后控制双稳系统模拟电路参数的调节,使微弱信号通过双稳系统模拟电路时实现随机共振,达到增强微弱信号传输的目的。 Another way programmable parameter adjustable amplifier output as a bistable system input analog circuit to realize bistable stochastic resonance model solution system by an analog circuit, the output signal of the second A / D converter to the high-speed digital signal processing subsystem, after repeated by sampling and FFT analysis of the DSP, to find out the maximum frequency component of each sub-sampled signal, determines whether there is a weak characteristic frequency signal, and outputs a control signal, control signal level conversion by the second level converter control bistable system adjustment analog circuit parameters, so that a weak signal of stochastic resonance realized by an analog circuit bistable system, the purpose of reinforcing the weak signal transmission.

所述参数可调双稳系统随机共振电路包括:由运算放大器构成的积分器、反向器、第一乘法器、第二乘法器、电阻网络、模拟开关等。 The adjustable parameters bistable system stochastic resonance circuit comprising: an integrator composed of an operational amplifier, an inverter, a first multiplier, a second multiplier, resistor networks, analog switches and the like. 电阻网络3个一组,每一组的阻值相同,3个电阻一端接在一起,连接到模拟开关的输入,3个电阻另外一端分别接程控放大器输出信号、乘法器2输出经分压后的信号、系统输出信号(运算放大器U2输出)经分压后的信号,模拟开关输出连接到积分器的输入,通过模拟开关切换8通道中的不同通道,构成一个闭环非线性系统。 A resistor network 3 groups, each group of the same value, with one end of three resistors connected to the input of the analog switch, the other end of the resistor 3 are connected to programmable amplifier output signal, the output of the multiplier 2 by dividing the signal, the output signal of the system (output of the operational amplifier U2) is connected via a signal, the analog switch outputs the divided voltage to the input of the integrator, switching the channel 8 different channels through an analog switch, a nonlinear form a closed loop system. 同时控制双稳系统模拟电路的参数,不同的参数适用于不同频率段的信号,对于不同频率段的信号可以通过切换不同的通道实现增强传输的目的。 While controlling the parameters of the analog circuit bistable system, different parameters suitable for signals of different frequency, for signals of different frequency bands by switching channels of different purposes for enhanced transmission.

本实用新型的特点在于利用DSP调节双稳电路参数和程控放大器增益能够使一定频率范围内频率值未知的微弱信号在通过双稳系统模拟电路时实现随机共振,得到自适应增强传输。 The present invention is characterized by the use of DSP parameter adjustment bistable circuit and programmable amplifier gain can be made within a certain frequency range of the frequency values ​​of the unknown stochastic resonance weak signal when implemented by an analog circuit bistable system to give enhanced adaptive transmission. 较好地解决了目前高频信号检测和对于一定频率范围内未知频率微弱信号的自适应增强传输问题,为调参随机共振技术的工程应用提供了必要的手段和技术保障。 Solved the current and the high-frequency signal detection means and to provide the necessary technical support for the unknown frequency within a certain frequency range enhancement adaptive weak signal transmission problems, as a random parameter adjustment resonance technique engineering applications.

下面结合附图进一步说明本实用新型系统的技术方案。 Further technical solutions of the present invention in conjunction with the following drawings system.

附图说明 BRIEF DESCRIPTION

图1为本实用新型系统原理框图图2为参数可调双稳系统模拟电路图图3为检测算法的流程图图4为含有噪声的输入信号图5为参数可调双稳系统随机共振电路的输出信号图6为图4所示信号的FFT谱图图7为图5所示信号的FFT谱图 Figure 1 is a system block diagram invention FIG 2 is a bistable system parameters adjustable analog circuit of FIG. 3 is a flowchart detection algorithm of FIG. 4 is an input signal containing noise parameters 5 adjustable bistable system stochastic resonance circuit output FIG 6 is a signal diagram FFT spectrum signal shown in FIG. 47 is a signal of the FFT spectrum shown in FIG. 5

具体实施方式 Detailed ways

本实用新型系统结构原理如图1所示,主要由程控放大器1、参数可调双稳系统随机共振电路2、第一A/D转换器3、第二A/D转换器5、第一电平转换器6、第二电平转换器4、高速数字信号处理子系统7电连接构成。 The present novel system is shown in principle, mainly by a programmable amplifier, an adjustable parameter bistable system stochastic resonance circuit 2, first A / D converter 3, a second A / D converter 5, a first electrical level converter 6, the second level converter 4, the high-speed digital signal processing subsystem 7 are electrically interconnected. 高速数字信号处理子系统7包括高速数字信号处理器(DSP)701、电源模块702、监控复位模块705、Flash存贮器703及逻辑控制模块704构成。 High-speed digital signal processing subsystem 7 comprises a high-speed digital signal processor (DSP) 701, a power module 702, reset monitor module 705, Flash memory 703 and a control logic module 704 configured. 其中的高速数字信号处理器701是本系统的主控CPU,实现信号程控增益调节、双稳系统电路参数的控制。 Wherein the high-speed digital signal processor 701 is the master CPU of the system, programmed to implement signal gain adjustment, the control circuit of the bistable system parameters.

系统具体连接如下:见图1,机电系统的微弱特征频率信号由传感器拾取,通常混杂有噪声干扰,使得信号信噪比较低。 Specific system connected as follows: Figure 1, wherein the electromechanical system frequency weak signal picked up by the sensor, usually contaminated with noise, so that the signal to noise ratio is low. 将此混合输入信号送到程控放大器1,程控放大器1的输出接到第一A/D转换器3,第一A/D转换器3与高速数字信号处理器701相连,高速数字信号处理器701计算信号的统计特征,估算信号的大小,输出的控制信号通过第一电平转换器6控制程控放大器1的增益K3,K3共可以设置14级增益分别为0、1、2、4、8、16、32、64、128、256、512、1024、2048、4096,通过增益调节最终使程控放大器1输出信号大小在要求的范围内。 The mixed signal is input to the programmable amplifier 1, the output of the programmable amplifier to a first A / D converter 3, a first A / D converter 3 is connected to the high-speed digital signal processor 701, high speed digital signal processor 701 calculating the statistical characteristics of the signal, the estimated size of the signal, the control signal output from the control gain K3 programmable amplifier 1 through the first level converter. 6, 14 may be provided co-K3 are gain 0,1,2,4,8, 16,32,64,128,256,512,1024,2048,4096, eventually adjusting the gain programmable amplifier output signal magnitude in the required range. 程控放大器1的输出同时接到参数可调双稳系统随机共振电路2,参数可调双稳系统随机共振电路2的输出接到第二A/D转换器5,第二A/D转换器5与高速数字信号处理器701相连。 1, while the output of the amplifier programmed to the adjustable parameters bistable system stochastic resonance circuit 2, the adjustable parameters bistable system stochastic resonance circuit 2 is connected to the output of the second A / D converter 5, a second A / D converter 5 connected to the high-speed digital signal processor 701. 高速数字信号处理器701通过FFT计算分析相应的频率段内是否存在微弱特征频率信号,如果该频率段范围内没有发现微弱特征信号,则高速数字信号处理器701输出控制信号经过第二电平转换器4控制参数可调双稳系统随机共振电路2中的模拟开关CD4051切换到下一通道以改变电路的参数,相应地也改变了双稳系统模拟电路2所适合的信号频率段。 High-speed digital signal processor 701 is calculated by the FFT analyzing whether the presence of a weak characteristic frequency signal within a respective frequency band, wherein if a weak signal is not found within the frequency band range, the high-speed digital signal processor 701 outputs the control signal through the second level converting 4 adjustable control parameters bistable system stochastic resonance circuit 2 CD4051 analog switch is switched to the next channel to change the parameters of the circuit, but also changed the corresponding analog circuit bistable system 2 suitable signal frequency band. 不断反复这一过程,直到切换到适合于此微弱特征频率信号增强传输的电路参数。 This process is repeated continuously until the switch to be suitable for this weak signal enhancing circuit frequency characteristic of the transmission parameters. 见图2,参数可调双稳系统随机共振电路2中电阻网络3个一组,每一组的阻值相同,3个电阻一端接在一起,连接到模拟开关的输入,3个电阻另外一端分别接程控放大器输出信号、乘法器2输出经分压后的信号、系统输出信号(运算放大器U2输出)经分压后的信号,模拟开关输出连接到积分器的输入;积分器由运算放大器U1及反馈电容C构成,其中反馈电容C一端连接到运算放大器U1的输出端,一端连接到U1的反向输入端;以运算放大器U2及电阻R构成反向放大器,U1的输出接到U2的反向端,同时接到乘法器2的一个输入端,U2的输出为双稳系统模拟电路的输出信号x(t),一路经分压接到电阻网络,另一路接到乘法器1的两个输入端,乘法器1的输出作为乘法器2的另一路输入,乘法器2输出为-x3(t),经分压接到电阻网络。 Figure 2, adjustable parameters bistable system stochastic resonance in a resistor network 3 2 groups, each group of the same value, with one end of three resistors connected to the input of the analog switch, the other end of the resistor 3 respectively, then the programmable amplifier output signal, the multiplier 2 output the divided voltage signal, the output signal of the system (output of the operational amplifier U2) is connected via a signal, the analog switch outputs the divided voltage to the input of the integrator; integrator operational amplifier U1 and a feedback capacitor C configuration, wherein the feedback capacitor C having one end connected to the output terminal of the operational amplifier U1, having one end connected to the inverting input of U1; U2 operational amplifier and a resistor R constituting the inverting amplifier, the output of U1 to U2 of anti toward the end, and to one input of the multiplier 2, U2 output of bistable circuit analog system output signal x (t), all the way through to the voltage dividing resistor network, another way to two multipliers 1 an input terminal, an output of the multiplier as a further input of the multiplier 2, the multiplier 2 output -x3 (t), a divided to the resistor network. 在高速数字处理子系统7中,电源模块702用来提供高速数字信号处理器701所需的2.5V与1.8V电源;复位监控模块705用做高速数字信号处理器701的“看门狗”,确保在程序跑飞的情况下能有效复位;Flash存贮器703用来存贮高速数字信号处理器701的程序及重要数据;高速数字信号处理器701与各外围器件数据交换的逻辑控制由逻辑控制模块704完成。 In high-speed digital processing subsystem 7, the power module 702 is used to provide the required high speed digital signal processor 701 2.5V and 1.8V power supply; reset monitor module 705 is used as a high-speed digital signal processor 701 of the "watchdog", ensure effective reset in the case of runaway; Flash memory 703 for storing programs and important data of high-speed digital signal processor 701; a high-speed digital signal processor 701 and the logic of each peripheral device by a data exchange control logic The control module 704 is completed.

所述技术方案中有关元器件具体可选用:程控放大器:LTC6915,高速数字信号处理器(DSP):TI公司的TMS320VC54系列,如TMS320VC5402、TMS320VC5409、TMS320VC5410等;第一电平转换器:74LVC4245;第二电平转换器:74LVC4245;模拟开关:CD4051;电源模块:与DSP配套的电源芯片,如TPS767D325;复位监控模块:MAX706;Flash存贮器:AM29LV200B;逻辑控制模块:逻辑控制器件,如GAL16LV8、GAL20LV8,或CPLD器件。 The aspect related to the choice of specific components: programmable amplifier: The LTC6915, high-speed digital signal processor (DSP): TI's TMS320VC54 series, such as TMS320VC5402, TMS320VC5409, TMS320VC5410 like; a first level converter: 74LVC4245; first a two-level converter: 74LVC4245; analog switch: CD4051; power module: supporting the power chip with a DSP, such as TPS767D325; reset PCU: MAX706; Flash memory: AM29LV200B; logic control module: logic control device, such as GAL16LV8, GAL20LV8, or CPLD device.

参数可调双稳系统随机共振电路是系统中的一个核心单元,该电路在较高频率信号的作用下能否实现随机共振从而达到增强微弱信号传输的目的是一个关键。 Adjustable parameters bistable system stochastic resonance circuit is a core unit of the system, the circuit under the effect of high frequency signals can be achieved so as to achieve the purpose of enhancing stochastic resonance weak signal transmission is a key. 本发明通过一种尺度变换,从理论上分析了如图2所示的双稳系统模拟电路能够在高频信号的作用下实现随机共振,增强微弱信号的传输,并且通过调节电路参数来适应不同频率的微弱信号。 The present invention is achieved by a scale transformation of the bistable system analyzes the analog circuit shown in Figure 2 can be achieved theoretically stochastic resonance under the effect of high-frequency signal, transmitting the weak signal enhancement, and to accommodate different circuit parameters by adjusting weak signal frequency.

一般双稳系统的数学模型为:x&CenterDot;=ax-bx3+Acos&omega;t+&Gamma;(t)---(1)]]>其中x代表系统输出,Acosωt代表微弱特征频率信号,Γ(t)是均值为0,强度为D的白噪声,满足:&lt;Γ(t)&gt;=0;&lt;Γ(t)Γ(t′)&gt;=2Dδ(tt′) (2)Acosωt+Γ(t)代表作用于系统的混合输入信号,该系统有两个稳态 Mathematical models typically bistable system to: x & CenterDot; = ax-bx3 + Acos & omega; t + & Gamma; (t) --- (1)]]> where x represents the system output, Acosωt representative of the weak characteristic frequency signal, Γ (t ) is the mean value is 0, the intensity of white noise D satisfy: & lt; Γ (t) & gt; = 0; & lt; Γ (t) Γ (t ') & gt; = 2Dδ (tt') (2) Acosωt + mixing the input signal Γ (t) representative for the system, the system has two stable 根据随机共振理论,当a=b=1时,随机共振仅适用于极低频的信号(ω<<1)。 The theory of stochastic resonance, when a = b = 1, only stochastic resonance ELF signal (ω << 1). 当a,b不为1时,引入变换:令y=xba,&tau;=at---(3)]]>代入(1)得:aabdydt=aaby-aaby3+Acos&omega;a&tau;+&Gamma;(&tau;a)---(4)]]>上式中噪声 When a, b is not 1, the introduction of conversion: Let y = xba, & tau; = at --- (3)]]> into (1) obtained: aabdydt = aaby-aaby3 + Acos & omega; a & tau; + & Gamma; ( & tau; a) --- (4)]]> noise formula 满足:&lt;Γ(τ/a)Γ(0)&gt;=2Daδ(τ)即有:&Gamma;(&tau;a)=aDa&xi;(&tau;)&lang;&xi;(&tau;)&rang;=0,&lang;&xi;(&tau;),&xi;(0)&rang;=&delta;(&tau;)---(5)]]>将(5)代入(4),整理得到:dydt=y-y3+ba3Acos&omega;a&tau;+2Dba2&xi;(&tau;)---(6)]]> Satisfies: & lt; Γ (τ / a) Γ (0) & gt; = 2Daδ (τ) namely: & Gamma; (& tau; a) = aDa & xi; (& tau;) & lang; & xi; (& tau;) & rang; = 0 , & lang; & xi; (& tau;), & xi; (0) & rang; = & delta; (& tau;) --- (5)]]> of (5) into (4), finishing to give: dydt = y-y3 + ba3Acos & omega; a & tau; + 2Dba2 & xi; (& tau;) --- (6)]]>

由此可见(6)式与(1)式是等价的,且信号频率为原来信号频率的1/a。 Thus (6) and the formula (1) are equivalent, and the signal frequency of the original signal frequency is 1 / a. 因此,对于高频信号,可以通过选取适当的参数a将高频信号转化为低频信号来进行处理,通过选取适当的参数b可以适应强弱不同的输入信号。 Thus, for high frequency signals can be processed by selecting the appropriate parameters of a high-frequency signal into a low frequency signal, can adapt to different input signal strength by selecting appropriate parameter b.

假定图1混合输入信号中的微弱特征频率信号幅度为U0,频率为ω(ω=2πf),噪声为W(t),模拟开关CD4051所切换的一组电阻阻值为R。 A mixed input signal is assumed in FIG weak characteristic frequency signal amplitude U0, frequency ω (ω = 2πf), a set of noise resistance value W (t), CD4051 analog switch is switched R. 根据运算放大电路的相关原理,可以得到描述图2所示双稳系统电路的方程:x=&Integral;[K1RCx-K2M1M2RCx3+K32U0cos&omega;t+W(t)RC]dt---(7)]]>其中K1为输出信号x(t)的分压系数,K2为乘法器2输出信号的分压系数,K3为程控放大器增益,M1、M2分别为乘法器1,2的系数。 The relevant principles operational amplifier, can be described in FIG. 2 Equation bistable system circuit shown: x = & Integral; [K1RCx-K2M1M2RCx3 + K32U0cos & omega; t + W (t) RC] dt --- (7)]] > wherein K1 is the output signal x (t) of the partial pressure coefficient, K2 is the division factor of the output signal of the multiplier 2, K3 is a programmable gain amplifier, M1, M2 coefficient multipliers 1 and 2 respectively.

两边微分得:x&CenterDot;=K1RCx-K2M1M2RCx3+K32U0cos&omega;t+W(t)RC---(8)]]>将式(8)与式(1)比较,有:a=K1RC,b=K2M1M2RC,A=2U0K3RC,&Gamma;(t)=K3W(t)RC---(9)]]>当取参数R=15kΩ,C=168pf,K1=0.0785,K2=0.4676,K3=1,M1=M2=0.1,可以计算出:a=31150.79,b=1855.56。 Both sides of the differential obtained: x & CenterDot; = K1RCx-K2M1M2RCx3 + K32U0cos & omega; t + W (t) RC --- (8)]]> formula (8) formula (1) Comparison with: a = K1RC, b = K2M1M2RC , A = 2U0K3RC, & Gamma; (t) = K3W (t) RC --- (9)]]> taken when the parameter R = 15kΩ, C = 168pf, K1 = 0.0785, K2 = 0.4676, K3 = 1, M1 = M2 = 0.1, can be calculated: a = 31150.79, b = 1855.56. 由式(9)可见通过改变其中R的值可以改变参数a,b的大小,从而能够适应不同频率的微弱特征信号。 By the formula (9) can be seen to change the parameters a, b by changing the size in which the value of R, it is possible to accommodate weak characteristic signals of different frequencies.

见图3,程序算法流程具体说明如下:第一步,程序开始后,首先DSP系统进行初始化工作,先假定所要增强传输的微弱特征信号的频率在第一档频率范围; Shown in Figure 3, the program flow of the algorithm described in detail as follows: First, the program starts, first, the DSP system for initialization, first assumed that the frequency characteristics of the signal to be weak increase transmission speed in a first frequency range;

第二步,DSP根据信号频率f的大小,预先设置程控放大器的增益K3的大小,并输出相应的控制信号,通过电平转换器转换输出;第三步,DSP启动A/D转换器1采样程控放大器的输出信号,采样8192点数据,DSP计算采样数据的统计特征(均方根值);第四步,判断采样数据的统计特征(均方根值)是否在要求的范围内。 A second step, the DSP according to the magnitude of the signal frequency f is set in advance the size of the programmable amplifier gain K3 and outputs corresponding control signals, converted by the level converter output; the third step, the DSP starts A / D converter 1 samples programmable amplifier output signal, the sampling data of 8192 points, sampled data statistical characteristics (rms value) of the DSP calculated; a fourth step determines statistical characteristics of sampled data (rms) is in the range of requirements. 如果在要求范围内则转到第五步,如果不在要求范围内则转第二步;第五步,根据预设的频率档,确定需要切换的一组电阻的通道号,DSP输出控制信号,通过电平转换器控制模拟开关切换对应通道的电阻;第六步,DSP启动A/D转换器2采样参数可调双稳系统随机共振电路的输出信号,先后采样三次,对每一次的采样数据进行FFT分析。 If you go to the fifth step in the required range, if the switch is not required within the scope of the second step; a fifth step, according to a predetermined frequency shift to determine the need to switch to a channel number group of resistors, the DSP outputs a control signal, switching the corresponding channel resistance controlled analog switch via the level converter; a sixth step, start the DSP output signal a / D converter 2 samples adjustable parameters bistable system stochastic resonance circuit has sampled three times, each time the sample data FFT analysis.

第七步,根据FFT分析,分别计算得到每次采样信号中所对应的最大频率分量值fmax1,fmax2,fmax3;第八步,参数可调双稳系统模拟电路在含噪信号的作用下如果达到随机共振状态,那么其输出信号中的最大频率成分是一致的,为微弱特征信号的频率f。 A seventh step, the FFT analysis, are calculated to obtain the maximum frequency fmax1 each component value corresponding to the sampled signal, fmax2, fmax3; eighth step, the adjustable parameters in an analog circuit bistable system under the influence of noisy signals is reached stochastic resonance state, the maximum frequency component of the output signal is the same, f is the frequency characteristic of a signal weak. 如果没有达到随机共振状态,则参数可调双稳系统模拟电路输出信号中的最大频率分量是变化的,不固定的。 If the state does not reach stochastic resonance, the maximum frequency component adjustable parameters bistable system analog output signal circuit is varied, not fixed. 因而先判断fmax1,fmax2,fmax3是否一致? So first determine fmax1, whether fmax2, fmax3 consistent? 如果一致则表明系统达到随机共振状态,输出为得到增强传输的微弱特征频率信号,否则表明微弱特征信号频率f不在当前所预设的频率档,DSP将预设频率档调节到下一档,转到第三步继续执行。 If it indicates that the system reaches a consistent state stochastic resonance, in order to obtain enhanced output characteristic frequency weak signal transmission, wherein the weak signal otherwise indicates that the frequency f is not currently preset frequency file, the DSP will adjust the frequency shift to the next preset speed, rpm the third step is to continue.

下面用一个具体实例来说明本实用新型的有益效果:机电系统的微弱特征信号往往混有很强的背景噪声,图4所示为150Hz的微弱特征频率信号淹没在均方根值为955.2mV白噪声中的波形。 Below with a specific example of the present invention will be described beneficial effects: a weak signal characteristic electromechanical systems often mixed with a strong background noise, characterized as weak signals submerged in 150Hz frequency rms white 955.2mV FIG. 4 noise waveform. 信号频率为150Hz,通过尺度变换后,相当于频率为0.004815Hz,频率远小于1,满足随机共振理论的要求。 Signal frequency is 150Hz, by the scale transformation, the frequency is equivalent 0.004815Hz, a frequency much less than 1, satisfy stochastic resonance theory. 微弱正弦信号的幅值U0=100mV,将含有噪声的混合信号送至程控放大器,经A/D转换器1输入至TMS320VC5410,当TMS320VC5410调节程控放大器增益K3=1,程控放大器输出达到要求。 Weak Signal amplitude U0 = 100mV, the mixed signal to the programmable amplifier with noise, TMS320VC5410 input to the A / D converter, a programmable amplifier gain adjustment when TMS320VC5410 K3 = 1, programmable amplifier output to meet the requirements. 双稳系统随机共振电路输出经A/D转换器2输入至TMS320VC5410,TMS320VC5410通过多次重复采样及FFT分析,计算每次采样数据中的最大频率分量。 Bistable system stochastic resonance circuit outputs the A / D converter 2 is input to TMS320VC5410, TMS320VC5410 by repeated sampling and FFT analysis to calculate the maximum frequency component in the data for each sample. 如果所调节的电路参数适合于混合输入中的微弱频率信号的频率,则该频率将是双稳系统模拟电路输出信号中的最大频率分量,那么多次采样并计算得到的最大频率分量将一致,否则多次采样计算得到的是大频率分量将不同,此时DSP输出的控制信号经电平转换器控制模拟开关CD4051切换到下一频率档。 If the parameter adjustment circuit is adapted to mix the input frequency signal a frequency weak, the frequency will be the maximum frequency component bistable system analog output signal, the multiple sampling and calculates the maximum frequency component obtained will be the same, otherwise, multiple samples is calculated big different frequency components, where the DSP outputs a control signal level converter controlled analog switch CD4051 switch to the next frequency shift. 该实例中,当图2中R11,R12,R13(R11=R12=R13=15kΩ)被切换选通时,多次重复采样数据中的最大频率分量均一致,说明此时所调节的电路参数使双稳系统达到随机共振状态,能够增强150Hz微弱特征频率信号的传输。 In this example, FIG. 2 when R11, R12, R13 (R11 = R12 = R13 = 15kΩ) is switched gated repeated maximum frequency component of the sampled data are consistent, a circuit parameter is adjusted so that at this time random bistable system reaches resonance can enhance the transmission characteristic frequency of 150Hz weak signal. 图5所示是参数可调双稳系统随机共振电路输出信号的时域波形,可见输出信号在两状态间周期地翻转,原本淹没在噪声中的微弱信号得到了增强传输。 FIG 5 is a time-domain waveform parameters adjustable bistable system stochastic resonance circuit an output signal, the output signal can be seen between the two inverted state periodically, originally buried in the noise is enhanced weak signal transmission. 图6为图4所示混合输入信号的FFT谱图,由于强背景噪声干扰,从图中不能分辨出150Hz的微弱频率分量;图7为图5所示输出信号的FFT谱图,其中150Hz的频率分量在图中非常突显,更加清楚地表明,原本微弱的150Hz特征频率信号得到显著增强传输。 Figure 6 is mixed FFT spectrogram of the input signal shown in FIG. 4, since a strong background noise, can not distinguish between weak frequency components of 150Hz from the figure; FIG. 7 is a spectrum of the output signal of the FFT shown in FIG. 5, wherein the 150Hz frequency component is highlighted in the figure, it shows more clearly that, had a faint characteristic 150Hz frequency signal transmission is significantly enhanced.

Claims (3)

1.一种强噪声背景下调参随机共振微弱信号增强传输系统,其特征在于它包括:程控放大器,用以将低信噪比混合输入信号进行信号放大;参数可调双稳系统随机共振电路,电连接于程控放大器,用以对程控放大器输出信号实现随机共振模型求解;第一A/D转换器,其一端电连接于程控放大器;第二A/D转换器,其一端电连接于双稳系统随机共振电路;高速数字信号处理子系统,电连接于第一A/D转换器的另一端和第二A/D转换器的另一端,用以计算经第一A/D转换器的程控放大器输出信号的统计特征,估算信号的大小,并输出增益控制信号,通过电平转换器,调节程控放大器增益,控制程控放大器输出信号大小,同时用以对经第二A/D转换器的双稳系统随机共振电路输出信号进行多次重复采样及FFT分析,找出各次采样信号的最大频率分量,判断微弱特征频率 A strong noise reduction reference signal enhancement stochastic resonance weak transmission system, characterized in that it comprises: programmable amplifier for the low SNR signal mixed input signal amplification; adjustable parameters bistable system stochastic resonance circuit, It is electrically connected to a programmable amplifier for the output signal of the programmable amplifier implemented stochastic resonance model solution; first A / D converter, which is electrically connected to one end of the programmable amplifier; second A / D converter, which is electrically connected to one end of the bistable the system of stochastic resonance; high-speed digital signal processing subsystem, is electrically connected to the other ends of the first a / D converter and second a / D converter, to calculate via the first a / D converter of programmable statistical characteristics of the amplifier output signal, the estimated size of the signal, and outputs a gain control signal by the level converter, adjust the programmable gain amplifier, programmable control amplifier output signal magnitude, while the pair via a second converter for a / D bis stability of stochastic resonance system and the output signal of the FFT analysis sample repeatedly, each time to find the maximum frequency component of the sampled signal, determines the frequency characteristics weak 号是否存在,并输出控制信号,控制信号通过电平转换器进行电平转换后控制双稳系统随机共振电路参数的调节,使微弱信号通过双稳系统随机共振电路时实现随机共振,达到增强微弱信号传输的目的;第一电平转换器,其一端电连接于高速数字信号处理子系统,其另一端电连接于程控放大器,用以将高速数字信号处理子系统输出控制信号进行电平转换,进而控制程控放大器的增益。 Number exist, and outputs a control signal to control the signal level converted by the level shifter control bistable system regulating circuit parameters resonance, so that weak signals implemented stochastic resonance random resonant circuit by bistable system, to enhance weak purpose signal transmission; a first level converter, which is electrically connected to one end of a high-speed digital signal processing subsystem, and the other end electrically connected to a programmable amplifier for the high-speed digital signal processing subsystem outputs a control signal for level conversion, then control the programmable gain amplifier. 第二电平转换器,其一端电连接于高速数字信号处理子系统,其另一端电连接于双稳系统随机共振电路,用以将高速数字信号处理子系统输出控制信号进行电平转换,进而控制双稳系统随机共振电路参数的调节。 A second level converter, which is electrically connected to one end of a high-speed digital signal processing subsystem, and the other end electrically connected to a bistable system stochastic resonance circuit for high-speed digital signal processing subsystem outputs a control signal for level conversion, and further a control parameter adjusting circuit bistable system stochastic resonance.
2.根据权利要求1所述的强噪声背景下调参随机共振微弱信号增强传输系统,其特征在于高速数字信号处理子系统包括:高速数字信号处理器DSP,其作为本子系统的核心元件,并主要通过其发挥上述的本子系统在本实用新型系统中的作用;电源模块,与高速数字信号处理器DSP电连接,用以提供高速数字信号处理器DSP所需的电源;监控复位模块,与高速数字信号处理器DSP电连接,确保在程序跑飞的情况下能有效复位;Flash存贮器,与高速数字信号处理器DSP电连接,用以存贮高速数字信号处理器DSP的程序及重要数据;逻辑控制模块,与高速数字信号处理器DSP电连接,用以完成高速数字信号处理器DSP与各外围器件数据交换的逻辑控制。 The strong noise reduction according to claim 1 stochastic resonance weak signal enhancement reference transmission system, characterized in that the high-speed digital signal processing subsystem comprising: a high-speed digital signal processor, the DSP, as a core element of this sub-system, and mainly through its role in the above-described subsystem of the present invention, the present system; power module, the high-speed digital signal processor DSP is electrically connected to high-speed digital signal processor (DSP) to provide the desired power; monitoring module reset, and high-speed digital the signal processor DSP are electrically connected to ensure effective reset in case of runaway; Flash memory, connected to the electric high-speed digital signal processor DSP for storing programs and important data of high-speed digital signal processor DSP; logic control module, connected to the electric high-speed digital signal processor DSP, the control logic to complete the high speed digital signal processor (DSP) to each peripheral device data exchange.
3.根据权利要求1或2所述的强噪声背景下调参随机共振微弱信号增强传输系统,其特征在于参数可调双稳系统随机共振电路包括由运算放大器构成的积分器和反向器、乘法器1、乘法器2、电阻网络、模拟开关,电阻网络3个一组,每一组的阻值相同,3个电阻一端接在一起,连接到模拟开关的输入,3个电阻另外一端分别接程控放大器输出信号、乘法器2输出经分压后的信号、系统输出信号经分压后的信号,模拟开关输出连接到积分器的输入。 The strong noise of claim 1 or claim 2 Weak down stochastic resonance signal enhancement reference transmission system, characterized in that the adjustable parameters bistable system stochastic resonance circuit comprises an integrator and an inverter constituted by an operational amplifier, a multiplier 1, multiplier 2, resistor network, the analog switch, a resistor network 3 groups, each group of the same value, with one end of three resistors connected to the input of an analog switch, three resistors respectively connected to the other end programmable amplifier output signal, the multiplier 2 output the divided voltage signal, the system output signal, the analog switch outputs connected to the input voltage divided by the integrator.
CN 200520052219 2005-10-24 2005-10-24 Enhancing transmitting system of parameter-adjusting random resonant weak signal under strong noise background CN2872497Y (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN 200520052219 CN2872497Y (en) 2005-10-24 2005-10-24 Enhancing transmitting system of parameter-adjusting random resonant weak signal under strong noise background

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN 200520052219 CN2872497Y (en) 2005-10-24 2005-10-24 Enhancing transmitting system of parameter-adjusting random resonant weak signal under strong noise background

Publications (1)

Publication Number Publication Date
CN2872497Y true CN2872497Y (en) 2007-02-21

Family

ID=37740840

Family Applications (1)

Application Number Title Priority Date Filing Date
CN 200520052219 CN2872497Y (en) 2005-10-24 2005-10-24 Enhancing transmitting system of parameter-adjusting random resonant weak signal under strong noise background

Country Status (1)

Country Link
CN (1) CN2872497Y (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101546913A (en) * 2009-04-21 2009-09-30 上海追日电气有限公司 Multifunctional high-power electronic load and control method thereof
CN101825665A (en) * 2010-05-28 2010-09-08 桂林电子科技大学 Method for detecting stochastic resonance transient electromagnetic weak signals
CN102457264A (en) * 2010-10-27 2012-05-16 精工爱普生株式会社 Signal level conversion circuit, physical quantity detection device and electronic apparatus
CN103063914A (en) * 2012-12-29 2013-04-24 杭州电子科技大学 Weak signal detection circuit based on modulation bistable stochastic resonance theory
CN103067107A (en) * 2012-12-31 2013-04-24 哈尔滨工业大学 Device and detection method based on superhet type stochastic resonance detection system
CN103699513A (en) * 2013-12-20 2014-04-02 中国科学技术大学 Stochastic resonance method based on multi-scale noise adjustment
CN104198205A (en) * 2014-09-05 2014-12-10 哈尔滨工程大学 Stochastic resonance detecting device and stochastic resonance detecting method for underwater robot Doppler faults

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101546913A (en) * 2009-04-21 2009-09-30 上海追日电气有限公司 Multifunctional high-power electronic load and control method thereof
CN101825665A (en) * 2010-05-28 2010-09-08 桂林电子科技大学 Method for detecting stochastic resonance transient electromagnetic weak signals
CN102457264A (en) * 2010-10-27 2012-05-16 精工爱普生株式会社 Signal level conversion circuit, physical quantity detection device and electronic apparatus
CN102457264B (en) * 2010-10-27 2016-06-15 精工爱普生株式会社 Signal level shift circuit, measuring physical and electronics
CN103063914A (en) * 2012-12-29 2013-04-24 杭州电子科技大学 Weak signal detection circuit based on modulation bistable stochastic resonance theory
CN103063914B (en) * 2012-12-29 2015-06-17 杭州电子科技大学 Weak signal detection circuit based on modulation bistable stochastic resonance theory
CN103067107A (en) * 2012-12-31 2013-04-24 哈尔滨工业大学 Device and detection method based on superhet type stochastic resonance detection system
CN103699513A (en) * 2013-12-20 2014-04-02 中国科学技术大学 Stochastic resonance method based on multi-scale noise adjustment
CN103699513B (en) * 2013-12-20 2017-03-29 中国科学技术大学 A kind of stochastic resonance method adjusted based on multiple dimensioned noise
CN104198205A (en) * 2014-09-05 2014-12-10 哈尔滨工程大学 Stochastic resonance detecting device and stochastic resonance detecting method for underwater robot Doppler faults
CN104198205B (en) * 2014-09-05 2017-02-08 哈尔滨工程大学 Stochastic resonance detecting device and stochastic resonance detecting method for underwater robot Doppler faults

Similar Documents

Publication Publication Date Title
Kasdin Discrete simulation of colored noise and stochastic processes and 1/f/sup/spl alpha//power law noise generation
Helstrom Statistical theory of signal detection: international series of monographs in electronics and instrumentation
Lyon Computational models of neural auditory processing
Yoon et al. Power measurement using the wavelet transform
US5465287A (en) Subscriber line impedance measurement device and method
Wies et al. Use of ARMA block processing for estimating stationary low-frequency electromechanical modes of power systems
EP0123626A1 (en) Method and apparatus for simulating aural response information
Björklund A survey and comparison of time-delay estimation methods in linear systems
RU2089015C1 (en) Method for determining frequency characteristics of battery power supply sources
DE19941859A1 (en) Battery powered medical apparatus e.g. hearing aid
CN100483139C (en) Self-adapting random resonant weak signal detection method
Elwakil Fractional-order circuits and systems: An emerging interdisciplinary research area
Margolis et al. Nonuniform sampling of periodic bandlimited signals
CN100561162C (en) Virtual oscillating table detection signal processing method and equipment thereof
WO2002056145A3 (en) Circuit simulation
Tomic et al. A new power system digital harmonic analyzer
JPH02222003A (en) Adaptive controller
CN100335982C (en) Equipment quick test based on model control
Dash et al. A fast recursive algorithm for the estimation of frequency, amplitude, and phase of noisy sinusoid
Sun et al. Application of the positive reality principle to metal electrode linear polarization phenomena
CN101600144B (en) Method and system for obtaining a plurality of parameters of electro-acoustic product by adopting continuous logarithmic swept-frequency signal
CN1810204A (en) Bioelectrical impedance measuring device and body composition measuring apparatus
CN102901929A (en) Device for calculating impedances of battery cell and battery impedance measuring system
CN105103661B (en) Virtual RF sensors
Grenier Parametric time-frequency representations

Legal Events

Date Code Title Description
C14 Granted
C17 Cessation of patent right