CN219038369U - 三维漏斗状Dougherty传声器阵列、机械噪声采集系统 - Google Patents

三维漏斗状Dougherty传声器阵列、机械噪声采集系统 Download PDF

Info

Publication number
CN219038369U
CN219038369U CN202222228707.0U CN202222228707U CN219038369U CN 219038369 U CN219038369 U CN 219038369U CN 202222228707 U CN202222228707 U CN 202222228707U CN 219038369 U CN219038369 U CN 219038369U
Authority
CN
China
Prior art keywords
array
microphone
microphone array
dougherty
mechanical noise
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202222228707.0U
Other languages
English (en)
Inventor
汪势杰
余忠保
何雨薇
周延
乔冠瑜
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Guoneng Changyuan Hubei New Energy Co ltd
Original Assignee
Guoneng Changyuan Hubei New Energy Co ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Guoneng Changyuan Hubei New Energy Co ltd filed Critical Guoneng Changyuan Hubei New Energy Co ltd
Priority to CN202222228707.0U priority Critical patent/CN219038369U/zh
Application granted granted Critical
Publication of CN219038369U publication Critical patent/CN219038369U/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • Y02E10/72Wind turbines with rotation axis in wind direction

Landscapes

  • Measurement Of Mechanical Vibrations Or Ultrasonic Waves (AREA)

Abstract

公开了一种三维漏斗状Dougherty传声器阵列、机械噪声采集系统,传声器阵列以Dougherty螺旋阵列为依据,各阵元占有的螺旋长度相等,各阵元高度等间隔分配。机械噪声采集系统包括:所述的传声器阵列,该传声器阵列的中心位置的阵元作为参考传声器,该参考传声器置于待测构件近场位置;采集所述传声器阵列获取的噪声信号的数据采集模块;以及对所述数据采集模块采集的数据进行处理的处理终端模块,所述传声器阵列、所述数据采集模块以及所述处理终端模块依次连接。本申请以近场声全息技术实现多通道同步测量,并可应用于风电机组齿轮箱等机械设备工作噪声的声场信号采集,适用于后续的状态监测,具有测量效率高、精度高的优点。

Description

三维漏斗状Dougherty传声器阵列、机械噪声采集系统
技术领域
本申请涉及一种三维漏斗状Dougherty传声器阵列、机械噪声采集系统,属于声学故障诊断技术领域。
背景技术
工业中的机械设备故障诊断技术主要是基于振动信号采集与分析的,其传感器布置在振动机械的表面,但在复杂部件、恶劣工况环境下难以实现。且此方法只能对若干孤立测点的振动信号进行分析,可能无法得到关键部件的振动信息,整体设备信息也难以提取,因此有必要寻找一种有效的非接触式诊断分析方法。机械噪声由撞击、摩擦下设备的各个部件发生固体振动而产生。基于正常工况下的噪声特征信息,将采集的目标信号与基准信号对比,可得到设备状态的故障源及诊断结果。但由于声信号的抗干扰性较低,普通的单通道声信号故障诊断应用有限。近场声全息技术可用于声场的重建。它利用空间声场变换算法,从多通道同步测量的数据中计算整个空间任意场点的声强,以重建声源表面的声场分布。
发明内容
本申请提出了一种三维漏斗状Dougherty传声器阵列、机械噪声采集系统,以近场声全息技术实现多通道同步测量,并可应用于风电机组齿轮箱等机械设备工作噪声的声场信号采集,适用于后续的状态监测,具有测量效率高、精度高的优点。
根据本申请实施例的一方面,提供一种传声器阵列,采用三维漏斗状Dougherty螺旋阵列。传声器阵列以Dougherty螺旋阵列为依据,对数螺旋阵列各个阵元间以等长间隔排布,以获得非冗余的阵列设计。本申请首次将原有螺旋从二维排布发展为三维排布,各阵元高度等间隔分配。
在一些示例中,各阵元占有的螺旋长度相等。
在一些示例中,各阵元高度等间隔分配。
在一些示例中,各阵元为MEMS麦克风。
根据本申请实施例的另一方面,提供一种机械噪声采集系统,包括:所述的传声器阵列,该传声器阵列的中心位置的阵元作为参考传声器,该参考传声器置于待测构件近场位置;采集所述传声器阵列获取的噪声信号的数据采集模块;以及对所述数据采集模块采集的数据进行处理的处理终端模块,所述传声器阵列、所述数据采集模块以及所述处理终端模块依次连接。
本申请有益效果:
本申请采用近场全息传声器阵列实现多通道同步测量,进而得到待测构件的声信号,数据采样效率更高,测量时间短。
本申请全息传声器阵列由若干个声压传感器按照设定采样间距组成,所有传声器在高度维度上以等间隔排布,全息传声器阵列按照设定采样间距对待测构件进行逐次测量,参考传声器位于三维漏斗状Dougherty螺旋传声器阵列中心位置,并置于待测构件近场位置,可以实现多个测点的同步测量,并且采用的是声压传感器,比声强法的声强探头更适用于工程实际应用。
附图说明
为了更清楚地说明本申请实施例的技术方案,下面将对实施例的附图作简单地介绍。
图1为本申请一实施例提供的Dougherty螺旋阵列参数的二维示意图。
图2为本申请一实施例提供的三维漏斗状Dougherty螺旋阵列单个阵元的示意图。
图3为本申请一实施例提供的三维漏斗状Dougherty螺旋阵列的示意图。
图4为本申请一实施例提供的机械噪声采集系统示意图。
具体实施方式
近年来,基于多通道声信号同步阵列测量与处理的声成像技术已日趋成熟,为新型声学故障诊断技术的发展创造了条件。如能同步处理与分析一个测量阵列上的多通道声信号,应用声场重建技术得到整个重建面上的声学信息,这些信息显然比单通道要丰富的多,从中挖掘出的声场空间分布特征必然较传统声学诊断技术所提取的特征更全面也更稳定。
本申请在研究近场声全息技术的基础上提出了一种三维漏斗状Dougherty传声器阵列信号采集系统,用于机械设备故障诊断中多通道声信号采集,利用三维传声器阵列的优点,更加准确全面地采集近场声信号并传输至主机端进行处理,从而进行后续的信号处理及分析。机械设备可以是风电机组齿轮箱,但不限定于此。
确定三维漏斗状Dougherty螺旋传声器阵列的阵元排布。本申请传声器阵列包括多个传声器阵元,基于Dougherty螺旋阵列,首次提出三维漏斗状阵列排布。传声器可为MEMS麦克风,体积小,抗干扰能力强,在一示例中,MEMS麦克风封装尺寸可小到4×3×1.2mm,信噪比为69dB。
针对每个传声器阵元,确定声源相对于传声器阵元的测量方位;基于待分析声信号的大致频率分布,计算传声器阵列的一系列阵列参数。
图1为本申请实施例公开的Dougherty螺旋阵列参数的二维示意图,其中Dougherty螺旋阵的螺旋切线PT与半径OP的夹角为螺旋角ν,PN为阵元P的曲率半径,PN⊥PT。图2、图3为本申请实施例公开的三维漏斗状Dougherty螺旋阵列的单个阵元示意图及整体示意图。如图2、图3,设定坐标轴原点O为参考点,以z轴正方向为发展方向,依次分配螺旋最内圈阵元至最外圈阵元,阵列整体高度为H。此外,Dougherty螺旋阵设计中需要选取的参数有最内环半径r0,最外环半径rmax,螺旋角ν,阵元数M。定义三维漏斗状Dougherty螺旋传声器阵列的螺旋长度为L。定义阵元的方位角即阵元在xOy平面上的投影与x轴正方向的夹角为φ,定义阵元的俯仰角即方向向量和坐标z轴的夹角为θ。
计算三维漏斗状Dougherty螺旋传声器阵列的最大螺旋长度Lmax
Figure BDA0003809801650000031
其中定义:h=cot(ν);
计算螺旋长度间隔值及第m个阵元对应的螺旋长度:
Figure BDA0003809801650000032
Lm=ΔL·(m-1)
分析可知:
Figure BDA0003809801650000033
则可得第m个阵元对应的方位角φm和到z轴的距离即阵元半径rm
Figure BDA0003809801650000034
rm=r0exp(h·φ)
定义三维漏斗状Dougherty螺旋传声器阵列的高度为H,则第m个阵元对应的高度为:
Figure BDA0003809801650000035
定义俯仰角θm为第m个阵元的方向向量和坐标z轴的夹角:
Figure BDA0003809801650000036
参考点O到第m个阵元间的向量:
rm=(rm cosφm,rm sinφm,Hm)
以上为确定三维漏斗状Dougherty传声器阵列的阵元排布过程。
定义主瓣峰值和最大旁瓣水平的差值为动态范围DR,阵列设计中要求DR尽可能大;定义主瓣中辐射功率为最大值一半时两个矢径间的夹角称为主瓣宽度BW;定义单位时间内从连续信号中提取并组成离散信号的采样个数为采样频率f。
当内层布置的阵元较多时,Dougherty螺旋阵的平均旁瓣水平较低,但主瓣宽度会增大;相应地,当外层布置的阵元较多时,多臂对数螺旋阵的平均旁瓣水平提高,但主瓣宽度会减小。阵元分布选择等阵列螺旋长度分布,即令各阵元占有的螺旋长度相等,使各阵元的加权较为均衡。
本申请实施例公开的噪声源为风电机组齿轮箱,其分析频带的上下限大约为[300,3000]Hz,其上下限比值约为10,因此仅需设计单个螺旋阵,无需多个子阵嵌套设计。
图4为本申请实施例公开的一种用于风电机组齿轮箱的三维漏斗状Dougherty传声器阵列信号采集系统的示意图。如图4,所述信号采集系统包括信号采集模块、数据采集模块、数据传输模块及处理终端模块。信号采集模块包括三维漏斗状Dougherty传声器阵列2、参考传声器3。数据采集模块包括测量平台4。数据传输模块包括数据线5、集线器6。
测量平台4与三维漏斗状Dougherty传声器阵列2相连和参考传声器3相连。测量平台4还通过数据线5、集线器6与显示器7连接。测量平台4和显示器7位于风电齿轮箱1外侧。传声器阵列2位于风电机组内部。
测量平台4软件部分可以是基于Labview开发的,但不限定于此,还可以采用其他程序开发环境。
测量平台4的硬件部分包括机箱、嵌入式控制器和数据采集卡,嵌入式控制器集成于机箱中,数据采集卡通过插槽与机箱连接。在一示例中,数据采集卡可采用NI-9231和NI-9201声音与振动模块,其中参考传声器3与NI-9201声音与振动模块连接,三维漏斗状Dougherty传声器阵列2与NI-9231声音与振动模块连接;机箱采用NI-cDAQ-9185,其功能包括集成CPU、硬盘驱动器、RAM、以太网、视频、键盘/鼠标、串行、USB以及其他外设I/O。处理终端模块可以理解为测量平台4中对数据采集卡采集的三维漏斗状Dougherty传声器阵列2、参考传声器3的信号进行处理的部分,具体处理方法为现有技术。
三维漏斗状Dougherty传声器阵列由若干个声压传感器按照设定采样间距组成,所有传声器以等间隔排布,三维漏斗状Dougherty传声器阵列按照设定采样间距对待测构件进行逐次测量,采样间距与重建距离根据声波的最小波长确定,参考传声器位于三维漏斗状Dougherty螺旋传声器阵列中心位置,并置于待测构件近场位置,整个全息测量过程中参考传声器的位置保持不变。采用传声器阵列,可以实现多个测点的同步测量。
本申请具有三维阵列定位精准度高、无定位盲区的优点,同时简化设计,降低成本,适用于风电机组齿轮箱声场信号的多通道同步测量。

Claims (8)

1.一种传声器阵列,其特征在于,采用三维漏斗状Dougherty螺旋阵列,各阵元占有的螺旋长度相等,各阵元高度等间隔分配。
2.根据权利要求1所述的传声器阵列,其特征在于,各阵元为MEMS麦克风。
3.一种机械噪声采集系统,其特征在于,包括:权利要求1-2任一项所述的传声器阵列;采集所述传声器阵列获取的噪声信号的数据采集模块;以及对所述数据采集模块采集的数据进行处理的处理终端模块,所述传声器阵列、所述数据采集模块以及所述处理终端模块依次连接。
4.根据权利要求3所述的机械噪声采集系统,其特征在于,所述传声器阵列的中心位置的阵元作为参考传声器,该参考传声器置于待测构件近场位置。
5.根据权利要求3所述的机械噪声采集系统,其特征在于,所述数据采集模块采用声音与振动模块。
6.根据权利要求5所述的机械噪声采集系统,其特征在于,所述声音与振动模块采用NI数据采集卡。
7.根据权利要求3所述的机械噪声采集系统,其特征在于,所述处理终端模块采用NI-cDAQ-9185。
8.根据权利要求3所述的机械噪声采集系统,其特征在于,用于风电机组齿轮箱声场信号的多通道同步测量。
CN202222228707.0U 2022-08-22 2022-08-22 三维漏斗状Dougherty传声器阵列、机械噪声采集系统 Active CN219038369U (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202222228707.0U CN219038369U (zh) 2022-08-22 2022-08-22 三维漏斗状Dougherty传声器阵列、机械噪声采集系统

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202222228707.0U CN219038369U (zh) 2022-08-22 2022-08-22 三维漏斗状Dougherty传声器阵列、机械噪声采集系统

Publications (1)

Publication Number Publication Date
CN219038369U true CN219038369U (zh) 2023-05-16

Family

ID=86288299

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202222228707.0U Active CN219038369U (zh) 2022-08-22 2022-08-22 三维漏斗状Dougherty传声器阵列、机械噪声采集系统

Country Status (1)

Country Link
CN (1) CN219038369U (zh)

Similar Documents

Publication Publication Date Title
US11307285B2 (en) Apparatus, system and method for spatially locating sound sources
CN109061323B (zh) 一种采用球面幅度扫描的近场天线测量方法
Wang et al. A non-contact fault diagnosis method for rolling bearings based on acoustic imaging and convolutional neural networks
KR20050058467A (ko) 음원 탐사 시스템
CN109683134B (zh) 一种面向旋转声源的高分辨率定位方法
CN113868583B (zh) 一种子阵波束聚焦的声源距离计算方法及系统
CN107490729A (zh) 一种天线近场无相位测量方法
CN107505548A (zh) 一种基于柔性阵列传感器的局放超声定位方法
CN110530510B (zh) 一种利用线性声阵列波束形成的声源辐射声功率测量方法
CN112381860B (zh) 一种旋转叶片动频测量的无标记计算机视觉方法
CN109991519B (zh) 基于神经网络和无线传感阵列的局部放电测向方法及系统
CN219038369U (zh) 三维漏斗状Dougherty传声器阵列、机械噪声采集系统
CN115436759A (zh) 基于声学成像感知技术的巡检机器人监测方法及系统
CN110082431A (zh) 一种用于材料表面声阻抗测量的方法及装置
CN105116056B (zh) 基于fbg传感系统和二阶统计量的声发射定位系统及方法
CN114355290A (zh) 一种基于立体阵列的声源三维成像方法及系统
CN116952355B (zh) 一种浅海环境近场辐射噪声测量系统及终端
KR100217872B1 (ko) 이동음원의 홀로그램을 측정하여 음향특성을 영상화하는 시스템 및 방법
CN114609245B (zh) 一种阵列式超声导波仪、钢结构损伤监测系统及方法
EP2466330B1 (en) Ultrasound system and method for processing beam-forming based on sampling data
CN113567822B (zh) 一种用于电气设备局部放电的监测装置
CN115575081A (zh) 一种面向风洞脉动压力测量的二维点阵设计方法及装置
CN113639934A (zh) 气体泄漏位置三维定位方法、定位系统
CN106197881A (zh) 一种阀门泄漏监测的无线声学成像装置
CN111721399A (zh) 一种水工建筑结构振动测试系统和测试方法

Legal Events

Date Code Title Description
GR01 Patent grant
GR01 Patent grant