CN211426630U - Digital electric meter capable of reducing current measurement error - Google Patents
Digital electric meter capable of reducing current measurement error Download PDFInfo
- Publication number
- CN211426630U CN211426630U CN201921828552.6U CN201921828552U CN211426630U CN 211426630 U CN211426630 U CN 211426630U CN 201921828552 U CN201921828552 U CN 201921828552U CN 211426630 U CN211426630 U CN 211426630U
- Authority
- CN
- China
- Prior art keywords
- sampling
- current
- electric meter
- sampling resistor
- terminal
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000005259 measurement Methods 0.000 title claims abstract description 110
- 238000005070 sampling Methods 0.000 claims abstract description 159
- 238000006243 chemical reaction Methods 0.000 claims abstract description 8
- 238000000034 method Methods 0.000 claims description 4
- 230000003321 amplification Effects 0.000 abstract description 4
- 238000003199 nucleic acid amplification method Methods 0.000 abstract description 4
- 230000005611 electricity Effects 0.000 description 3
- 238000012986 modification Methods 0.000 description 3
- 230000004048 modification Effects 0.000 description 3
- 238000010586 diagram Methods 0.000 description 2
Images
Landscapes
- Measurement Of Current Or Voltage (AREA)
- Measuring Instrument Details And Bridges, And Automatic Balancing Devices (AREA)
Abstract
本实用新型关于一种可降低电流测量误差的数字电表,包含:取样电路通过电流取样端而连接到电子设备,对电子设备进行电流取样而产生取样信号,取样电路包含多个不同电阻值的取样电阻,取样信号通过缓冲电路而传输到放大电路,由放大电路以选定的放大倍率加以放大,模拟对数字转换电路将放大后的取样信号转换为数字信号,微处理器可执行指定式自动换档测量模式,在该模式下,微处理器根据预设的最小测量档位开始进行电流取样,且微处理器根据数字信号的大小而自动切换选用取样电阻连接到电流取样端,选用的取样电阻的电阻值不低于最小测量档位所对应的取样电阻的电阻值,可降低测量电流时产生的误差,确保数字电表具有较佳的测量精度。
The utility model relates to a digital electric meter capable of reducing current measurement errors. The utility model comprises: a sampling circuit connected to an electronic device through a current sampling terminal, current sampling is performed on the electronic device to generate a sampling signal, the sampling circuit comprises a plurality of sampling resistors with different resistance values, the sampling signal is transmitted to an amplifier circuit through a buffer circuit, the amplifier circuit amplifies the sampling signal at a selected amplification factor, an analog-to-digital conversion circuit converts the amplified sampling signal into a digital signal, a microprocessor can execute a designated automatic shift measurement mode, in which the microprocessor starts current sampling according to a preset minimum measurement gear, and the microprocessor automatically switches to select a sampling resistor to be connected to the current sampling terminal according to the size of the digital signal, the resistance value of the selected sampling resistor is not lower than the resistance value of the sampling resistor corresponding to the minimum measurement gear, the error generated when measuring current can be reduced, and the digital electric meter can be ensured to have better measurement accuracy.
Description
技术领域technical field
本实用新型关于数字电表(Digital Multimeter,DMM),特别是指一种可降低电流测量误差的数字电表。The utility model relates to a digital electric meter (Digital Multimeter, DMM), in particular to a digital electric meter that can reduce the current measurement error.
背景技术Background technique
由于现阶段电子设备的消耗电流与待机电流的相对范围差距越来越明显,如果电子设备又有使用到电池,这时制造商在设计该电子设备的电路时就会很注重其消耗电流与待机电流,但消耗电流与待机电流其大小差距会很大,待机电流数值最小可以是数个微安培(μA)以下,但消耗电流数值最大可以到数个安培(A)。Since the gap between the current consumption and standby current of electronic equipment is becoming more and more obvious, if the electronic equipment uses batteries again, the manufacturer will pay more attention to the consumption current and standby current when designing the circuit of the electronic equipment. However, the difference between the consumption current and the standby current will be very large. The minimum value of the standby current can be several microamps (μA) or less, but the maximum value of the current consumption can be several amperes (A).
如果使用者以一数字电表(DMM)去测量前述电子设备的消耗电流及待机电流,可以适当调整该数字电表的测量档位。因为消耗电流相对较大,此时为了可以测量到消耗电流,使用者可以直接手动选择较大电流测量档位,在此测量档位下因为数字电表内部切换至一相对较小的电流取样电阻,这时候测量误差就会比较小,较不会影响测量结果。If the user uses a digital power meter (DMM) to measure the consumption current and standby current of the aforementioned electronic device, the measurement range of the digital power meter can be adjusted appropriately. Because the current consumption is relatively large, at this time, in order to measure the current consumption, the user can directly select the larger current measurement gear manually. At this time, the measurement error will be relatively small and will not affect the measurement results.
但如果要同时测量电子设备的待机电流及消耗电流时,这时候需要使用该数字电表的一自动换档功能对电子设备测量,电子设备本身会先执行待机动作一段时间,这时数字电表会自动切换到适合的档位开始测量待机电流,之后电子设备本身会切换为动作模式,此时数字电表会自动切换到适合的档位开始测量消耗电流,才可以兼顾大电流与微小电流的测量,而不需要使用者手动频繁切换。因为待机电流较微小,一般数字电表的自动换档功能会从一最小档位开始测量,此最小档位的电流取样电阻相对较大(100Ω),请参考图2所示,待测电子设备的等效电阻以R1表示,而数字电表内部的取样电阻以R2表示,在此以R1=1KΩ、R2=100Ω为例计算,该待测电子设备的原始待机电流为:1V/1KΩ=1mA(毫安培),当数字电表对该待测电子设备进行测量时,所测得的测量电流为:1V/(1KΩ+100Ω)=0.909mA,因此,其测量误差的大小为:(1mA-0.909mA)/1mA×100%=9.1%。也就是说利用此最小档位测量待机电流时,所测得的数据将与实际值之间存在有9.1%的误差,对于需要高精准度的测量结果而言,此误差值恐无法满足测量需求。However, if you want to measure the standby current and consumption current of the electronic device at the same time, you need to use an automatic shift function of the digital meter to measure the electronic device. The electronic device itself will perform the standby action for a period of time, then the digital meter will automatically Switch to a suitable gear to start measuring the standby current, and then the electronic device itself will switch to the action mode. At this time, the digital meter will automatically switch to a suitable gear to start measuring the consumption current, so that the measurement of large current and small current can be taken into account. Users do not need to manually switch frequently. Because the standby current is relatively small, the automatic shifting function of the general digital meter will start to measure from a minimum gear. The current sampling resistance of this minimum gear is relatively large (100Ω). Please refer to Figure 2. The equivalent resistance is represented by R1, and the sampling resistance inside the digital meter is represented by R2. Here, take R1=1KΩ and R2=100Ω as an example to calculate, the original standby current of the electronic device to be tested is: 1V/1KΩ=1mA (millisecond) Ampere), when the digital meter measures the electronic equipment to be tested, the measured current is: 1V/(1KΩ+100Ω)=0.909mA, therefore, the size of the measurement error is: (1mA-0.909mA) /1mA×100%=9.1%. That is to say, when using this minimum gear to measure the standby current, there will be a 9.1% error between the measured data and the actual value. For the measurement results that require high accuracy, this error value may not meet the measurement requirements. .
实用新型内容Utility model content
本实用新型提供一种可降低电流测量误差的数字电表,可供使用者根据需求设定最小测量档位,以避免因取样电阻过大而衍生大幅度的测量误差。The utility model provides a digital electric meter which can reduce the current measurement error, which can be used by the user to set the minimum measurement gear position according to the requirements, so as to avoid the large measurement error caused by the excessive sampling resistance.
本实用新型可降低电流测量误差的数字电表,包含有:The utility model can reduce the current measurement error of the digital electric meter, which includes:
一取样电路,通过一电流取样端而连接到该电子设备,对该电子设备进行电流取样而产生一取样信号,该取样电路包含多个不同电阻值的取样电阻;a sampling circuit, connected to the electronic device through a current sampling terminal, and sampling the current of the electronic device to generate a sampling signal, the sampling circuit comprising a plurality of sampling resistors with different resistance values;
一缓冲电路,其输入端连接该电流取样端;a buffer circuit, the input terminal of which is connected to the current sampling terminal;
一放大电路,其输入端连接该缓冲电路的输出端,并提供有多个不同的放大倍率以放大该取样信号;an amplifying circuit, the input end of which is connected to the output end of the buffer circuit, and is provided with a plurality of different magnification ratios to amplify the sampling signal;
一模拟对数字转换电路,其输入端连接该放大电路,将该放大后的取样信号转换为一数字信号;an analog-to-digital conversion circuit, the input end of which is connected to the amplifying circuit, and converts the amplified sampling signal into a digital signal;
一微处理器,连接该取样电路、该放大电路及该模拟对数字转换电路,当该微处理器执行一指定式自动换档测量模式,该微处理器根据预设的一最小测量档位开始进行电流取样,且在电流取样过程中,该微处理器根据数字信号的大小而自动切换选用取样电阻连接到该电流取样端,选用的取样电阻的电阻值不低于该最小测量档位所对应的取样电阻的电阻值。A microprocessor is connected to the sampling circuit, the amplifying circuit and the analog-to-digital conversion circuit. When the microprocessor executes a specified automatic shift measurement mode, the microprocessor starts according to a preset minimum measurement gear Carry out current sampling, and during the current sampling process, the microprocessor automatically switches and selects a sampling resistor to connect to the current sampling terminal according to the size of the digital signal, and the resistance value of the selected sampling resistor is not lower than the corresponding minimum measurement gear. The resistance value of the sampling resistor.
在其中一种实施例中,该多个取样电阻包含一第一取样电阻、一第二取样电阻及一第三取样电阻;In one embodiment, the plurality of sampling resistors include a first sampling resistor, a second sampling resistor and a third sampling resistor;
该取样电路包含:The sampling circuit includes:
一第一开关,具有一第一输入端、一第一输出端与一第二输出端,该第一输入端连接该电流取样端,该第一输出端连接该第一取样电阻,其中,该第一输入端能切换连接到该第一输出端或第二输出端;A first switch has a first input end, a first output end and a second output end, the first input end is connected to the current sampling end, the first output end is connected to the first sampling resistor, wherein the The first input terminal can be switched to be connected to the first output terminal or the second output terminal;
一第二开关,具有一第二输入端、一第三输出端与一第四输出端,该第二输入端连接该第一开关的第二输出端;该第三输出端连接该第二取样电阻,该第四输出端连接该第三取样电阻;该第二输入端能切换连接到该第三输出端或第四输出端;A second switch has a second input terminal, a third output terminal and a fourth output terminal, the second input terminal is connected to the second output terminal of the first switch; the third output terminal is connected to the second sampling terminal a resistor, the fourth output terminal is connected to the third sampling resistor; the second input terminal can be switched to be connected to the third output terminal or the fourth output terminal;
其中,该第一取样电阻的电阻值小于该第二取样电阻的电阻值,该第二取样电阻的电阻值小于该第三取样电阻的电阻值。Wherein, the resistance value of the first sampling resistor is smaller than the resistance value of the second sampling resistor, and the resistance value of the second sampling resistor is smaller than the resistance value of the third sampling resistor.
在其中一种实施例中,该第一取样电阻的电阻值为0.1Ω,该第二取样电阻R2的电阻值为1Ω,该第三取样电阻R3的电阻值为100Ω。In one embodiment, the resistance value of the first sampling resistor is 0.1Ω, the resistance value of the second sampling resistor R2 is 1Ω, and the resistance value of the third sampling resistor R3 is 100Ω.
在其中一种实施例中,该缓冲电路包含一运算放大器。In one embodiment, the buffer circuit includes an operational amplifier.
在其中一种实施例中,该最小测量档位对应的取样电阻为该第二取样电阻。In one of the embodiments, the sampling resistance corresponding to the minimum measurement gear is the second sampling resistance.
在其中一种实施例中,该放大电路提供1倍、10倍及100倍的放大倍率。In one of the embodiments, the amplification circuit provides 1X, 10X and 100X magnification.
在其中一种实施例中,当该第三取样电阻被切换连接到该电流取样端,且放大电路提供100倍的放大倍率,该数字电表操作于100微安培的测量档位;In one of the embodiments, when the third sampling resistor is switched and connected to the current sampling terminal, and the amplifying circuit provides a magnification of 100 times, the digital electric meter operates at a measurement gear of 100 microamps;
当该第三取样电阻被切换连接到该电流取样端,且放大电路提供10倍的放大倍率,该数字电表操作于1毫安培的测量档位;When the third sampling resistor is switched and connected to the current sampling terminal, and the amplifying circuit provides a 10-fold magnification, the digital electric meter operates at a measurement gear of 1 mA;
当该第二取样电阻被切换连接到该电流取样端,且放大电路提供100倍的放大倍率,该数字电表操作于10毫安培的测量档位;When the second sampling resistor is switched and connected to the current sampling terminal, and the amplifying circuit provides a magnification of 100 times, the digital electric meter operates at a measurement gear of 10 mA;
当该第二取样电阻被切换连接到该电流取样端,且放大电路提供10倍的放大倍率,该数字电表操作于100毫安培的测量档位;When the second sampling resistor is switched and connected to the current sampling terminal, and the amplifying circuit provides a 10-fold magnification, the digital electric meter operates at a measurement gear of 100 mA;
当该第一取样电阻被切换连接到该电流取样端,且放大电路提供10倍的放大倍率,该数字电表操作于1安培的测量档位;When the first sampling resistor is switched and connected to the current sampling terminal, and the amplifying circuit provides a 10-fold magnification, the digital electric meter operates at a measurement gear of 1 ampere;
当该第一取样电阻被切换连接到该电流取样端,且放大电路提供1倍的放大倍率,该数字电表操作于3安培的测量档位。When the first sampling resistor is switched and connected to the current sampling terminal, and the amplifying circuit provides a magnification of 1 times, the digital electric meter operates at a measurement gear of 3 amperes.
在其中一种实施例中,该微处理器读取该数字信号并将其转换为一电流值,并将该电流值与一上切换值与一下切换值比对,以自动切换测量档位。In one embodiment, the microprocessor reads the digital signal and converts it into a current value, and compares the current value with an upper switching value and a lower switching value to automatically switch the measurement gear.
在其中一种实施例中,该微处理器连接一操作界面及一显示界面。In one embodiment, the microprocessor is connected to an operation interface and a display interface.
本实用新型的数字电表提供了指定式自动换档测量模式,由使用者自行设定一最小测量档位,该最小测量档位所对应的取样电阻相对较小,因此,当数字电表执行自动换档时,即可维持在使用者指定的最小测量档位而不会切换到较大的取样电阻,可降低测量电流时产生的误差,确保数字电表具有较佳的测量精度。The digital electric meter of the present invention provides a designated automatic shift measurement mode, and the user sets a minimum measurement gear by himself. The sampling resistance corresponding to the minimum measurement gear is relatively small. When the current measurement is selected, it can maintain the minimum measurement range specified by the user without switching to a larger sampling resistance, which can reduce the error generated when measuring the current and ensure that the digital meter has better measurement accuracy.
附图说明Description of drawings
图1:本实用新型数字电表的电路方块图。Fig. 1: The circuit block diagram of the utility model digital electric meter.
图2:现有数字电表以较大取样电阻测量待机电流的等效电路图。Figure 2: Equivalent circuit diagram of an existing digital electric meter measuring standby current with a large sampling resistance.
附图标号reference number
100 数字电表100 digital meters
10 取样电路10 Sampling circuit
20 缓冲电路20 Snubber circuit
30 放大电路30 Amplifier circuit
40 模拟对数字转换器40 analog-to-digital converters
50 微处理器50 Microprocessors
60 操作界面60 Operation interface
70 显示界面70 Display interface
200 电子设备200 Electronics
K1B 第一开关K1B first switch
K2B 第二开关K2B second switch
R1 第一取样电阻R1 first sampling resistor
R2 第二取样电阻R2 second sampling resistor
R3 第三取样电阻R3 third sampling resistor
A 电流取样端A Current sampling terminal
具体实施方式Detailed ways
以下配合图式及本实用新型的较佳实施例,进一步阐述本实用新型为达成预定实用新型目的所采取的技术手段。The technical means adopted by the present invention to achieve the intended purpose of the utility model are further described below in conjunction with the drawings and the preferred embodiments of the present invention.
请参考图1,本实用新型是一可降低电流测量误差的数字电表100,经由一电流取样端A连接到一电子设备200,以测量该电子设备200的相关电气参数。本实用新型的数字电表100包含了一取样电路10、一缓冲电路20、一放大电路30、一模拟对数字转换器(ADC)40、一微处理器50。Please refer to FIG. 1 , the present invention is a digital
该取样电路10用于对电子设备200进行取样而产生一取样信号S,取样电路10包含了一第一开关K1B、一第二开关K2B、一第一取样电阻R1、一第二取样电阻R2及一第三取样电阻R3。The
该第一开关K1B具有一第一输入端(Pin 4)及一第一输出端(Pin 5)、一第二输出端(Pin 3),该第一输入端连接该电流取样端A,该第一输出端连接该第一取样电阻R1,其中,在该第一开关K1B的内部接点,该第一输入端的内部接点根据该微处理器50的控制,选择性地切换连接到该第一输出端或第二输出端的内部接点。The first switch K1B has a first input end (Pin 4), a first output end (Pin 5), and a second output end (Pin 3), the first input end is connected to the current sampling end A, the first An output terminal is connected to the first sampling resistor R1, wherein, at the internal contact of the first switch K1B, the internal contact of the first input terminal is selectively switched and connected to the first output terminal according to the control of the
该第二开关K2B具有一第二输入端(Pin 4)及一第三输出端(Pin 5)、一第四输出端(Pin 3),该第二输入端连接该第一开关K1B的第二输出端;该第三输出端连接该第二取样电阻R2、该第四输出端连接该第三取样电阻R3,其中,在该第二开关K2B内部,该第二输入端的内部接点根据该微处理器50的控制,选择性地切换连接到该第三输出端或第四输出端的内部接点。The second switch K2B has a second input terminal (Pin 4), a third output terminal (Pin 5), and a fourth output terminal (Pin 3), and the second input terminal is connected to the second input terminal of the first switch K1B Output terminal; the third output terminal is connected to the second sampling resistor R2, the fourth output terminal is connected to the third sampling resistor R3, wherein, inside the second switch K2B, the internal contact of the second input terminal is based on the microprocessor Under the control of the
在本实施例中,该第一取样电阻R1的电阻值为0.1Ω,提供1A或3A的测量档位。该第二取样电阻R2的电阻值为1Ω,提供10mA或100mA的测量档位。该第三取样电阻R3的电阻值为100Ω,提供100μA或1mA的测量档位。如何切换选择第一取样电阻R1~第三取样电阻R3所代表的六个测量档位,将于以下更进一步详述。In this embodiment, the resistance value of the first sampling resistor R1 is 0.1Ω, providing a measurement range of 1A or 3A. The resistance value of the second sampling resistor R2 is 1Ω, providing a measurement range of 10mA or 100mA. The resistance value of the third sampling resistor R3 is 100Ω, providing a measurement range of 100μA or 1mA. How to switch and select the six measurement gears represented by the first sampling resistor R1 to the third sampling resistor R3 will be described in further detail below.
该缓冲电路20的一输入端连接该电流取样端A,该缓冲电路20的一输出端连接该放大电路30,其中,该缓冲电路20主要是由一运算放大器(OP)构成,例如采用IC型号为OPA2188AID的运算放大器集成电路。An input end of the
该放大电路30的一输入端连接该缓冲电路20的输出端,在本实施例中,该放大电路30提供三种放大倍率,可分别切换提供1倍(×1)、10倍(×10)及100倍(×100)的放大倍率,该放大电路30的放大倍率是由该微处理器50控制选择。其中,该取样信号S通过该缓冲电路20而传递到放大电路30,通过该放大电路20放大该取样信号S。An input end of the amplifying
该模拟对数字转换电路40的一输入端连接该放大电路30,以接收放大后的该取样信号S,并将其转换为一数字信号。An input end of the analog-to-
该微处理器50连接该模拟对数字转换电路40,以读取转换产生的该数字信号,并根据该数字信号的大小,控制是否要切换连接该第一取样电阻R1~第三取样电阻R3以及调整该放大电路30的放大倍率。The
该微处理器50可连接一操作界面60,该操作界面60供使用者对数字电表100进行设定操作,例如手动切换测量档位、设定最小测量档位、选择测量模式等。The
该微处理器50可进一步连接一显示界面70,该显示界面可显示该数字电表100的测量数据、设定画面或相关信息。The
首先说明该第一取样电阻R1、第二取样电阻R2、第三取样电阻R3可配合该放大电路30提供的放大倍率,而组合出六种不同的测量档位,每一种测量档位对应一可测电流值,如下表所示:First, it is explained that the first sampling resistor R1, the second sampling resistor R2, and the third sampling resistor R3 can be combined with the magnification provided by the amplifying
以选用测量档位100μA为例:该微处理器50控制该第一开关K1B的第一输入端(Pin4)切换连接到第二输出端(Pin 3),该第二开关K2B的第一输入端(Pin 4)切换连接到第二输出端(Pin 3),通过该第一开关K1B、第二关关K2B的连接而选用到该100Ω的第三取样电阻R3;该微处理器50控制该放大电路30提供100倍的放大倍率。经由该微处理器50完成前述控制,数字电表100可操作在100μA的测量档位。Taking the selection of the
以选用测量档位10mA为例:该微处理器50控制该第一开关K1B的第一输入端(Pin4)切换连接到第二输出端(Pin 3),该第二开关K2B的第一输入端(Pin 4)切换连接到第一输出端(Pin 5),通过该第一开关K1B、第二关关K2B的连接而选用到该1Ω的第二取样电阻R2;该微处理器50控制该放大电路30提供100倍的放大倍率。经由该微处理器50完成前述控制,数字电表100可操作在10mA的测量档位。Taking the selection of the measurement gear 10mA as an example: the
以选用测量档位1A为例:该微处理器50控制该第一开关K1B的第一输入端(Pin4)切换连接到第一输出端(Pin 5),该第二开关K2B可维持上一个状态而不需切换,通过该第一开关K1B的连接而选用到该0.1Ω的第一取样电阻R1;该微处理器50控制该放大电路30提供10倍的放大倍率。经由该微处理器50完成前述控制,数字电表100可操作在1A的测量档位。其它三种测量档位切换方式仅改变不同的放大倍率,故不予赘述。Taking the selection of measurement gear 1A as an example: the
本实用新型数字电表100提供了“指定式自动换档测量模式”供使用者选定操作,该指定式自动换档测量模式是由使用者通过该操作界面60指定一最小测量档位,并将该最小测量档位存储在该微处理器50内部,举例来说,数字电表100可提供100μA、1mA、10mA、100mA、1A五种测量档位供使用者择一指定为最小测量档位,虽然100μA测量档位对应的内阻为最大,但如果电子设备200内阻远大于100Ω或可以容许测量误差,使用者仍然可以指定100μA为最小测量档位。The digital
当数字电表100操作在该指定式自动换档测量模式时,微处理器50自动切换到使用者预设的最小测量档位,在以下实施例中,以10mA作为最小测量档位为例说明,即使用该第二取样电阻R2=1Ω、放大倍率为100倍;此时流过该取样电阻R2的取样电流会转换为电压,也就是该取样信号S为一电压信号,该电压信号由该放大电路30进行放大,放大后的电压信号由该模拟对数字电路40转换成一数字信号,微处理器50读取该数字信号后,将其转换为一测量电流值,该测量电流值与一上切换值TH1及一下切换值TH2比较,以决定是否要切换测量档位。When the
根据本实用新型的一较佳实施例,该上切换值TH1的制订标准是以该测量档位的可测电流值乘以一第一比例而得到,例如该第一比例设定为120%。该下切换值TH2的制订标准是以该测量档位的可测电流值乘以一第二比例而得到,例如该第二比例设定为10%。According to a preferred embodiment of the present invention, the setting standard of the upper switching value TH1 is obtained by multiplying the measurable current value of the measuring gear by a first ratio, for example, the first ratio is set to 120%. The standard for making the lower switching value TH2 is obtained by multiplying the measurable current value of the measuring gear by a second ratio, for example, the second ratio is set to 10%.
举例来说,若目前的测量档位为10mA,则上切换值TH1、下切换值TH2分别为:For example, if the current measurement gear is 10mA, the upper switching value TH1 and the lower switching value TH2 are:
TH1=10mA×120%=12mATH1=10mA×120%=12mA
TH2=10mA×10%=1mATH2=10mA×10%=1mA
若该微处理器50判断目前的测量电流值大于12mA,则从目前的测量档位10mA自动升档至上一阶的测量档位100mA;若判断目前的测量电流值小于1mA,则从目前的测量档位10mA自动降档至下一阶的测量档位1mA;若判断目前的测量电流值介于1mA~12mA,则维持在目前的测量档位。如此重复判断测量电流值的大小,而自动升档或降档至一合适的测量档位。If the
但要特别注意的是,在本实用新型的“指定式自动换档测量模式”中,因为使用者已经预设最小测量档位为10mA,因此即使测量电流值小于1mA,该微处理器50仍会维持在该最小测量档位10mA,而不会再自动降档;而自动升档则不会受到限制,当测量电流值大于该上切换值TH1,即自动升档一阶的测量档位。However, it should be noted that in the “specified automatic shift measurement mode” of the present invention, because the user has preset the minimum measurement gear as 10mA, even if the measurement current value is less than 1mA, the
当本实用新型的数字电表100的最小测量档位设定为100μA,本实用新型的数字电表100相当于执行一般数字电表的“一般自动换档测量模式”,也就是从最小测量档位逐渐升档。When the minimum measurement gear of the
综上所述,本实用新型的数字电表提供了指定式自动换档测量模式,可供使用者指定一最小测量档位,当数字电表执行自动换档时,即可维持在使用者指定的最小测量档位,因为该最小测量档位对应的取样电阻值相对较小,因此可降低测量电流时产生的误差,确保数字电表具有较佳的测量精度。To sum up, the digital electric meter of the present invention provides a designated automatic shift measurement mode, which can be used by the user to specify a minimum measurement gear. Measurement gear, because the sampling resistance value corresponding to the minimum measurement gear is relatively small, so it can reduce the error generated when measuring the current and ensure that the digital meter has better measurement accuracy.
以上所述仅是本实用新型的较佳实施例而已,并非对本实用新型做任何形式上的限制,虽然本实用新型已以较佳实施例揭露如上,然而并非用以限定本实用新型,任何熟悉本专业的技术人员,在不脱离本实用新型技术方案的范围内,当可利用上述揭示的技术内容作出些许更动或修饰为等同变化的等效实施例,但凡是未脱离本实用新型技术方案的内容,依据本实用新型的技术实质对以上实施例所作的任何简单修改、等同变化与修饰,均仍属于本实用新型技术方案的范围内。The above descriptions are only preferred embodiments of the present invention, and are not intended to limit the present invention in any form. Although the present invention has been disclosed above with preferred embodiments, it is not intended to limit the present invention. Those skilled in the art, without departing from the scope of the technical solution of the present invention, can make some changes or modifications to equivalent examples of equivalent changes by using the technical content disclosed above, provided that the technical solutions of the present invention are not deviated from the technical solution of the present invention. content, any simple modifications, equivalent changes and modifications made to the above embodiments according to the technical essence of the present invention still fall within the scope of the technical solutions of the present invention.
Claims (9)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201921828552.6U CN211426630U (en) | 2019-10-29 | 2019-10-29 | Digital electric meter capable of reducing current measurement error |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201921828552.6U CN211426630U (en) | 2019-10-29 | 2019-10-29 | Digital electric meter capable of reducing current measurement error |
Publications (1)
Publication Number | Publication Date |
---|---|
CN211426630U true CN211426630U (en) | 2020-09-04 |
Family
ID=72287415
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201921828552.6U Active CN211426630U (en) | 2019-10-29 | 2019-10-29 | Digital electric meter capable of reducing current measurement error |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN211426630U (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2022068300A1 (en) * | 2020-09-30 | 2022-04-07 | 长鑫存储技术有限公司 | Power consumption measuring assembly and method, and chip power consumption measuring device |
CN114509602A (en) * | 2022-02-18 | 2022-05-17 | 上海磐启微电子有限公司 | A chip working current measurement system |
US12032022B2 (en) | 2020-09-30 | 2024-07-09 | Changxin Memory Technologies, Inc. | Power consumption measurement assembly and method, and chip power consumption measurement device |
-
2019
- 2019-10-29 CN CN201921828552.6U patent/CN211426630U/en active Active
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2022068300A1 (en) * | 2020-09-30 | 2022-04-07 | 长鑫存储技术有限公司 | Power consumption measuring assembly and method, and chip power consumption measuring device |
CN114333971A (en) * | 2020-09-30 | 2022-04-12 | 长鑫存储技术有限公司 | Power consumption measuring assembly and method and chip power consumption measuring device |
US12032022B2 (en) | 2020-09-30 | 2024-07-09 | Changxin Memory Technologies, Inc. | Power consumption measurement assembly and method, and chip power consumption measurement device |
CN114509602A (en) * | 2022-02-18 | 2022-05-17 | 上海磐启微电子有限公司 | A chip working current measurement system |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN211426630U (en) | Digital electric meter capable of reducing current measurement error | |
CN201378188Y (en) | Digitally controlled resistance measuring device | |
CN101839936B (en) | Current measurement device | |
CN101231332A (en) | Fully automatic transformer calibrator inspection system | |
CN213600773U (en) | Current measuring circuit and measuring instrument capable of automatically switching measuring range | |
CN107688048B (en) | Reverse-addition type potentiostat and IV conversion measurement circuit for electrochemical measurement | |
CN117192182A (en) | Signal acquisition device with automatic range adjustment function and application method thereof | |
CN113985109B (en) | Weak current measurement device and system | |
CN213517279U (en) | A semi-automatic multi-function multimeter | |
CN118731624A (en) | Method and system for measuring semiconductor transfer characteristics | |
CN201126469Y (en) | Standard primary battery test equipment | |
CN204425272U (en) | A kind of solar cell properties testing equipment | |
CN112630517A (en) | Method and system for automatically switching range measurement current | |
CN204988943U (en) | High accuracy metal material fatigue damage test instrument | |
CN116545393A (en) | Precise output amplifying circuit, load detection circuit and device using circuit | |
CN217404394U (en) | Protection and measurement dual-purpose high-precision large-dynamic-range alternating current sampling circuit | |
CN211123024U (en) | PCB branch current detection device and PCB detection system | |
TWI237110B (en) | Optical power meter | |
CN222913744U (en) | Current detection circuit and switching power supply converter comprising same | |
CN207007914U (en) | A kind of digital multimeter with assistant voice prompt facility | |
CN203745637U (en) | Calibration device for high voltage switch dynamic characteristic tester | |
CN217787215U (en) | Current sampling circuit with ultra-dynamic range | |
CN213069011U (en) | Full-range automatic switching resistance measurement CPCI board card | |
CN220043382U (en) | Precise output amplifying circuit, load detection circuit and device using circuit | |
CN212364418U (en) | Automatic control conversion circuit of differential probe based on VGA |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
GR01 | Patent grant | ||
GR01 | Patent grant |