CN210086550U - Integrated non-light-transmitting wall thermal activation energy-saving building system - Google Patents
Integrated non-light-transmitting wall thermal activation energy-saving building system Download PDFInfo
- Publication number
- CN210086550U CN210086550U CN201920338430.2U CN201920338430U CN210086550U CN 210086550 U CN210086550 U CN 210086550U CN 201920338430 U CN201920338430 U CN 201920338430U CN 210086550 U CN210086550 U CN 210086550U
- Authority
- CN
- China
- Prior art keywords
- section
- wall
- layer
- heat pipe
- loop heat
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- 238000007725 thermal activation Methods 0.000 title claims abstract 3
- 239000010410 layer Substances 0.000 claims abstract description 111
- 238000001704 evaporation Methods 0.000 claims abstract description 59
- 239000007788 liquid Substances 0.000 claims abstract description 55
- 230000008020 evaporation Effects 0.000 claims abstract description 52
- 238000009833 condensation Methods 0.000 claims abstract description 45
- 230000005494 condensation Effects 0.000 claims abstract description 45
- 239000002344 surface layer Substances 0.000 claims abstract description 15
- 230000005855 radiation Effects 0.000 claims abstract description 6
- 230000001174 ascending effect Effects 0.000 claims abstract description 3
- 230000008859 change Effects 0.000 claims description 7
- 238000005265 energy consumption Methods 0.000 abstract description 13
- 230000010354 integration Effects 0.000 abstract 1
- 238000009413 insulation Methods 0.000 description 11
- 239000002184 metal Substances 0.000 description 8
- 238000010586 diagram Methods 0.000 description 6
- 238000010438 heat treatment Methods 0.000 description 6
- 238000000034 method Methods 0.000 description 6
- 230000000630 rising effect Effects 0.000 description 6
- 239000012530 fluid Substances 0.000 description 5
- 238000012546 transfer Methods 0.000 description 5
- 238000001125 extrusion Methods 0.000 description 4
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 3
- 239000000654 additive Substances 0.000 description 3
- 229910002804 graphite Inorganic materials 0.000 description 3
- 239000010439 graphite Substances 0.000 description 3
- 239000000463 material Substances 0.000 description 3
- 239000000843 powder Substances 0.000 description 3
- 230000008569 process Effects 0.000 description 3
- CSCPPACGZOOCGX-UHFFFAOYSA-N Acetone Chemical compound CC(C)=O CSCPPACGZOOCGX-UHFFFAOYSA-N 0.000 description 2
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 description 2
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 2
- 229910000831 Steel Inorganic materials 0.000 description 2
- 238000010521 absorption reaction Methods 0.000 description 2
- 238000005452 bending Methods 0.000 description 2
- 239000011489 building insulation material Substances 0.000 description 2
- 239000004567 concrete Substances 0.000 description 2
- 238000001816 cooling Methods 0.000 description 2
- 230000006872 improvement Effects 0.000 description 2
- 239000012774 insulation material Substances 0.000 description 2
- 239000000203 mixture Substances 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 239000010959 steel Substances 0.000 description 2
- 206010037660 Pyrexia Diseases 0.000 description 1
- 230000009471 action Effects 0.000 description 1
- 230000000996 additive effect Effects 0.000 description 1
- 238000004378 air conditioning Methods 0.000 description 1
- 150000001298 alcohols Chemical class 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 239000004566 building material Substances 0.000 description 1
- 229910002092 carbon dioxide Inorganic materials 0.000 description 1
- 239000001569 carbon dioxide Substances 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000004134 energy conservation Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- -1 etc.) Substances 0.000 description 1
- 238000009434 installation Methods 0.000 description 1
- 238000012423 maintenance Methods 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 230000000149 penetrating effect Effects 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 239000003507 refrigerant Substances 0.000 description 1
- 230000002269 spontaneous effect Effects 0.000 description 1
- 238000010792 warming Methods 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
Images
Landscapes
- Building Environments (AREA)
Abstract
Description
技术领域technical field
本实用新型涉及建筑节能技术领域,尤其是涉及一种被动式一体化非透光墙体热激活节能建筑系统。The utility model relates to the technical field of building energy saving, in particular to a passive integrated non-translucent wall thermally activated energy saving building system.
背景技术Background technique
近年来,被动式超低能耗建筑逐渐在我国兴起,也逐渐成为建筑能耗居高不下背景下的一个新的发展方向。降低建筑自身负荷是建筑节能的主要措施之一。In recent years, passive ultra-low energy buildings have gradually emerged in my country, and have gradually become a new development direction under the background of high building energy consumption. Reducing the building's own load is one of the main measures for building energy conservation.
目前超低能耗建筑的主要技术实现方式是依靠大量使用各种建筑保温材料增加围护结构的传热热阻。这一方式虽然在表面上降低了建筑能耗,但在应用上还存在下述不足之处:首先,这种技术方案并不适宜于在部分地区,如夏热冬冷地区,因为建筑保温材料的增加,虽然降低了建筑的冬季供暖负荷,但却使得夏季建筑室内热量无法及时散去,导致因制冷设备负荷增加而引起建筑负荷上升。其次,从建筑的全生命周期来看,保温材料的大量应用必然导致其生产和运输环节耗能巨大,在一定程度上属于“拆东墙补西墙”,偏离了可持续发展目标。最后,过厚的保温材料也给建筑带来了火灾隐患、占用大量建筑使用空间,并且保温层效果随时间推移会逐渐下降甚至失效,需要定期更换,安全性和经济性也存在一定问题。At present, the main technical realization method of ultra-low energy consumption building is to rely on a large number of various building insulation materials to increase the heat transfer resistance of the envelope structure. Although this method reduces building energy consumption on the surface, it still has the following shortcomings in application: First, this technical solution is not suitable for some areas, such as areas with hot summer and cold winter, because building insulation materials Although the increase of the heating load reduces the heating load of the building in winter, it makes the indoor heat of the building unable to dissipate in time in summer, resulting in an increase in the building load due to the increase in the load of the cooling equipment. Secondly, from the perspective of the whole life cycle of buildings, the large-scale application of thermal insulation materials will inevitably lead to huge energy consumption in its production and transportation links. Finally, excessively thick thermal insulation materials also bring fire hazards to the building, occupy a lot of building space, and the effect of the thermal insulation layer will gradually decline or even fail over time, requiring regular replacement, and there are also certain problems in safety and economy.
太阳能属于丰富易得的可再生能源,合理应用太阳能并用于降低建筑能耗对于丰富超低能耗建筑技术体系意义十分重大。目前,主动式热激活建筑系统作为一种逐渐兴起的建筑能源系统,其通过在围护结构中嵌入流体管道,并利用机械泵等主动驱动设备驱动流体在建筑围护结构中循环流动,为建筑供热或降温,但由于其维护和运行成本仍然较高。因此,如何通过低技技术手段将太阳能被动式应用于降低建筑能耗这一技术问题仍然没有得到较好的解决。Solar energy is an abundant and easily available renewable energy. The rational application of solar energy to reduce building energy consumption is of great significance to enriching the ultra-low energy consumption building technology system. At present, the active thermal activated building system is a gradually emerging building energy system. It embeds fluid pipes in the envelope and uses active driving equipment such as mechanical pumps to drive the fluid to circulate in the building envelope. Heating or cooling is still high due to its maintenance and operating costs. Therefore, the technical problem of how to apply passive solar energy to reduce building energy consumption through low-tech technical means has not been well resolved.
实用新型内容Utility model content
本实用新型的目的是针对现有技术中存在的技术缺陷,而提供一种一体化非透光墙体热激活节能建筑系统,以充分利用向阳面建筑表面所获得的低品位太阳辐射能实现降低建筑背阴面墙体能耗,并最终减少建筑的运行和使用成本。The purpose of this utility model is to aim at the technical defects existing in the prior art, and provide an integrated non-translucent wall thermally activated energy-saving building system, so as to make full use of the low-grade solar radiation energy obtained from the surface of the building facing the sun to reduce the The shady walls of the building consume energy and ultimately reduce the operating and operating costs of the building.
为实现本实用新型的目的所采用的技术方案是:The technical scheme adopted for realizing the purpose of the present utility model is:
一种一体化非透光墙体热激活节能建筑系统,包括非透光墙体和环路热管系统,所述环路热管系统为由蒸发段、蒸发段集汽器、蒸汽上升段、冷凝段分汽器、冷凝段、冷凝段集液器、液体下降段、蒸发段分液器依次连通组成的封闭循环系统,所述环路热管系统中设置有相变工质;所述蒸发段嵌入所述非透光墙体向阳面的外抹灰层或边坡面层中,所述冷凝段嵌入所述非透光墙体背阴面的结构层中或屋顶结构层中;所述蒸发段的位置低于所述冷凝段的位置。An integrated non-translucent wall thermally activated energy-saving building system, comprising a non-translucent wall and a loop heat pipe system, the loop heat pipe system is composed of an evaporation section, an evaporation section steam collector, a steam rising section, and a condensation section. A closed cycle system consisting of a steam separator, a condensation section, a liquid collector in the condensation section, a liquid descending section, and a liquid separator in the evaporation section are connected in sequence, and the loop heat pipe system is provided with a phase-change working medium; the evaporation section is embedded in the In the outer plastering layer or the slope surface layer of the sun-facing side of the non-translucent wall, the condensation section is embedded in the structural layer on the shady side of the non-transparent wall or in the roof structure layer; the location of the evaporation section position below the condensation section.
所述环路热管系统位于所述非透光墙体相邻墙体的交界处的部分分别设置有外穿内穿墙套管或外穿外穿墙套管。The parts of the loop heat pipe system located at the junction of the non-translucent walls and adjacent walls are respectively provided with outer-penetrating inner-wall-penetrating sleeves or outer-penetrating outer-wall-penetrating sleeves.
所述非透光墙体向阳面的外抹灰层或边坡面层表面太阳辐射热吸收系数大于0.5.The solar radiation heat absorption coefficient of the outer plastering layer or the slope surface layer of the non-translucent wall facing the sun is greater than 0.5.
位于首层的所述环路热管系统中,所述蒸发段嵌入所述边坡面层中,所述冷凝段嵌入所述非透光墙体北墙结构层中。In the loop heat pipe system located on the first floor, the evaporation section is embedded in the slope surface layer, and the condensation section is embedded in the non-transparent north wall structural layer of the wall.
位于中间层的所述环路热管系统中,所述蒸发段嵌入所述非透光墙体南墙外抹灰层中,所述冷凝段嵌入所述非透光墙体北墙结构层中。In the loop heat pipe system located in the middle layer, the evaporation section is embedded in the outer plastering layer of the south wall of the non-transparent wall, and the condensation section is embedded in the structural layer of the north wall of the non-transparent wall.
位于屋顶的所述环路热管系统中,所述蒸发段嵌入所述非透光墙体南墙外抹灰层中,所述冷凝段嵌入屋顶结构层中。In the loop heat pipe system located on the roof, the evaporation section is embedded in the outer plastering layer of the south wall of the non-transparent wall, and the condensation section is embedded in the roof structure layer.
位于首层、中间层和屋顶的所述环路热管系统的蒸发段集汽器、蒸汽上升段、冷凝段集汽器分别嵌入东墙外抹灰层中。The evaporation section steam collector, the steam rising section and the condensation section steam collector of the loop heat pipe system located on the first floor, the middle floor and the roof are respectively embedded in the plastering layer outside the east wall.
位于首层、中间层和屋顶的所述环路热管系统的蒸发段分液器、液体下降段、冷凝段集液器分别嵌入西墙外抹灰层中。The evaporating section liquid separator, the liquid descending section and the condensation section liquid collector of the loop heat pipe system located on the first floor, the middle floor and the roof are respectively embedded in the exterior plastering layer of the west wall.
所述所述非透光墙体向阳面的外抹灰层或边坡面层材料中添加有金属粉末或石墨,所述金属粉末或石墨添加剂占所述外抹灰层或边坡面层材料组成的比例按重量百分比小于0.25%。Metal powder or graphite is added to the outer plastering layer or the slope surface layer material on the sunny side of the non-transparent wall, and the metal powder or graphite additive accounts for the outer plastering layer or the slope surface layer material. The proportion of the composition is less than 0.25% by weight.
所述环路热管系统中,所述蒸发段的管体沿流动方向的坡度范围为+0.5%至+5.0%,所述冷凝段的管体沿流动方向的坡度范围为-0.5%至-5.0%。In the loop heat pipe system, the gradient range of the tube body of the evaporation section along the flow direction is +0.5% to +5.0%, and the gradient range of the tube body of the condensation section along the flow direction is -0.5% to -5.0% %.
与现有技术相比,本实用新型的有益效果是:Compared with the prior art, the beneficial effects of the present utility model are:
1、本实用新型的一体化非透光墙体热激活节能建筑系统中设置有环路热管系统,只需向阳面与背阴面存在微小温差条件即可充分依赖环路热管系统的自发循环驱动内部相变工质进行向阳面与背阴面墙体之间的热量迁移与传输,在超低温差传热条件下实现热量转移,充分利用免费的低品位太阳能解决建筑背阴面能耗相对较大的问题,为超低能耗建筑的技术实现提供可靠解决方案。本实用新型整个循环过程无需任何机械驱动设备,大幅降低了超低能耗建筑保温层使用量以及保温层过厚带来的建筑使用面积下降问题,同时降低建筑火灾安全隐患,降低了建筑运行和定期更换保温层所带来的额外费用。1. The integrated non-translucent wall thermally activated energy-saving building system of the present invention is provided with a loop heat pipe system, which can fully rely on the spontaneous circulation drive of the loop heat pipe system as long as there is a slight temperature difference between the sunny side and the backside. The phase change working medium transfers and transmits heat between the sunny side and the back side wall, realizes heat transfer under the condition of ultra-low temperature differential heat transfer, and makes full use of free low-grade solar energy to solve the problem of relatively large energy consumption on the back side of the building. Provide reliable solutions for the technical realization of ultra-low energy buildings. The whole cycle process of the utility model does not need any mechanical driving equipment, which greatly reduces the usage of the ultra-low energy consumption building thermal insulation layer and the reduction of the building usable area caused by the excessively thick thermal insulation layer. The extra cost of replacing the insulation.
2、本实用新型的建筑系统中,环路热管系统的蒸发段设置于南墙外抹灰及南墙边坡面层中,环路热管系统的冷凝段设置于北墙及屋顶混凝土层中,能够充分利用低品位太阳能解决建筑背阴面能耗相对较大的问题。2. In the building system of the present utility model, the evaporation section of the loop heat pipe system is arranged in the plastering outside the south wall and the slope surface layer of the south wall, and the condensation section of the loop heat pipe system is arranged in the concrete layer of the north wall and the roof, It can make full use of low-grade solar energy to solve the problem of relatively large energy consumption on the shady side of the building.
附图说明Description of drawings
图1所示为本实用新型一体化非透光墙体热激活节能建筑系统东向示意图;Fig. 1 shows the eastward schematic diagram of the integrated non-translucent wall thermally activated energy-saving building system of the present invention;
图2所示为本实用新型一体化非透光墙体热激活节能建筑系统西向示意图;Figure 2 is a schematic diagram showing the west direction of the integrated non-translucent wall thermally activated energy-saving building system of the present invention;
图3所示为本实用新型一体化非透光墙体热激活节能建筑系统南向示意图;3 is a schematic diagram showing the south direction of the integrated non-translucent wall thermally activated energy-saving building system of the present invention;
图4所示为本实用新型一体化非透光墙体热激活节能建筑系统北向示意图;4 is a schematic diagram showing the north direction of the integrated non-translucent wall thermally activated energy-saving building system of the present invention;
图5所示为外穿外穿墙套管的结构示意图;Figure 5 shows a schematic diagram of the structure of the outer casing through the outer wall;
图6所示为外穿外穿墙套管的剖面图;Figure 6 shows a cross-sectional view of the outer casing through the outer wall;
图7所示为外穿内穿墙套管的结构示意图;Figure 7 shows a schematic diagram of the structure of the outer casing through the inner wall;
图8所示为外穿内穿墙套管的剖面图。Figure 8 shows a cross-sectional view of the outer wall bushing through the inner wall.
具体实施方式Detailed ways
以下结合附图和具体实施例对本实用新型进行详细说明。The present utility model will be described in detail below with reference to the accompanying drawings and specific embodiments.
本实用新型一种一体化非透光墙体热激活节能建筑系统如图1-图6所示,包括非透光墙体和环路热管系统。所述环路热管系统为由蒸发段1、蒸发段集汽器2、蒸汽上升段3、冷凝段分汽器4、冷凝段5、冷凝段集液器6、液体下降段7、蒸发段分液器8依次连通组成的封闭循环系统,所述环路热管系统内设置有相变工质。所述蒸发段1嵌入所述非透光墙体向阳面的外抹灰层或边坡面层12中,所述冷凝段5嵌入所述非透光墙体背阴面的结构层或屋顶9结构层中。所述环路热管系统中,所述蒸发段1的位置位于低于所述冷凝段5的位置。An integrated non-translucent wall thermally activated energy-saving building system of the present invention is shown in Figures 1 to 6, including a non-translucent wall and a loop heat pipe system. The loop heat pipe system is divided into evaporation section 1, evaporation
所述环路热管系统位于所述非透光墙体相邻墙体交界处的部分分别设置有外穿内穿墙套管14或外穿外穿墙套管13。The part of the loop heat pipe system located at the junction of the adjacent walls of the non-transparent wall is respectively provided with an outer-penetrating inner-wall-penetrating
本实用新型中,所述环路热管系统中的蒸发段和冷凝段均等同于一个平行流换热器。所述环路热管系统的具体连接方式为:所述蒸发段1包括多根蒸发管,所述冷凝段5包括多根冷凝管。每根所述蒸发管的蒸汽出口分别与对应的所述蒸发段集汽器2的蒸汽进口连接,多个所述蒸发段集汽器2的蒸汽出口并联连接后与蒸汽上升段3管路的蒸汽进口连接,蒸汽上升段3管路的蒸汽出口与冷凝段分汽器4的蒸汽进口连接,冷凝段分汽器4的每个蒸汽出口分别与对应的每根冷凝管的蒸汽进口连接,汽态工质在冷凝管中冷凝成为液态。每根冷凝管的液体出口分别与对应的冷凝段集液器6的液体进口连接,所述冷凝段集液器6的液体出口与液体下降段7的液体进口连接,液体下降段7管路的液体出口与蒸发段分液器8的液体进口连接,蒸发段分液器8的每个液体出口分别与对应的每根蒸发管的液体进口连接,形成封闭的循环系统。In the present invention, the evaporation section and the condensation section in the loop heat pipe system are equivalent to a parallel flow heat exchanger. The specific connection mode of the loop heat pipe system is as follows: the evaporation section 1 includes a plurality of evaporation tubes, and the
本实施例中所述非透光墙体由外向内依次为外抹灰层、保温层和结构层。所述环路热管系统可以根据建筑物的不同需要安装在建筑物的不同位置。本实施例中,优选的所述环路热管系统的安装位置为:位于首层的所述环路热管系统中,所述蒸发段1嵌入所述边坡面层12中,所述冷凝段5嵌入第二层所述非透光墙体的北墙11结构层中。位于中间层的所述环路热管系统中,所述蒸发段1嵌入该层所述非透光墙体南墙10外抹灰层中,所述冷凝段5嵌入上一层所述非透光墙体北墙11结构层中。位于顶层的所述环路热管系统中,所述蒸发段1嵌入顶层所述非透光墙体南墙10外抹灰层中,所述冷凝段5嵌入屋顶9的结构层中。In this embodiment, the non-light-transmitting wall body is sequentially composed of an outer plastering layer, a thermal insulation layer and a structural layer from the outside to the inside. The loop heat pipe system can be installed in different positions of the building according to different needs of the building. In this embodiment, the preferred installation position of the loop heat pipe system is: in the loop heat pipe system on the first floor, the evaporation section 1 is embedded in the
根据使用需要,相变工质在环路热管系统的封闭循环过程中,可以从东墙集汽,从西墙集液,也可以从西墙集汽,从东墙集液。以从东墙集汽,从西墙集液为例,位于首层、中间层和屋顶的所述环路热管系统的蒸发段集汽器2、蒸汽上升段3、冷凝段集汽器4分别嵌入东墙外抹灰层中。位于首层、中间层和屋顶的所述环路热管系统的蒸发段分液器8、液体下降段7、冷凝段集液器6分别嵌入西墙外抹灰层中。According to the needs of use, the phase change working medium can collect steam from the east wall, collect liquid from the west wall, or collect steam from the west wall and collect liquid from the east wall during the closed circulation process of the loop heat pipe system. Taking the steam collection from the east wall and the liquid collection from the west wall as an example, the
由于南墙的蒸发段管路位于保温层以外的外抹灰层中,蒸发段集汽器2、蒸汽上升段3、冷凝段集汽器4分别嵌入东墙外抹灰层中,蒸发段分液器8、液体下降段7、冷凝段集液器6分别嵌入西墙外抹灰层中,为解决蒸发段管路与蒸汽上升段管路以及液体下降段管路在南墙与东墙和西墙外抹灰层结合处的连接,同时克服金属管路连接产生的弯管应力对环路热管结构的影响,所述外穿外穿墙套管13置于南墙外抹灰层与东墙外抹灰层连接处及南墙外抹灰层与西墙外抹灰层的连接处,即:外穿外穿墙套管13从一侧的外抹灰层穿过进入另一侧的外抹灰层。所述外穿外穿墙套管13具有两层结构,其示意图如图5和图6所示,内层为防挤压橡胶管套层13-1,外层为金属钢管层13-2。外穿外穿墙套管内层防挤压橡胶管套层13-1包覆南墙外抹灰层与东墙外抹灰层连接处、南墙外抹灰层与西墙外抹灰层的连接处的管路及蒸发段集汽器2的蒸汽进口或蒸发段分液器8的液体进口。由于北墙的冷凝段管路位于保温层以内的结构层中,屋顶的冷凝段管路位于屋顶的结构层中,蒸发段集汽器2、蒸汽上升段3、冷凝段集汽器4分别嵌入东墙外抹灰层中,蒸发段分液器8、液体下降段7、冷凝段集液器6分别嵌入西墙外抹灰层中,为解决冷凝段管路与蒸汽上升段管路以及液体下降段管路在北墙(或屋顶)结构层与东墙或西墙抹灰层结合处的连接,同时克服金属管路连接产生的弯管应力以及冷桥的产生对环路热管结构以及建筑自身保温性能的影响,所述外穿内穿墙套管14置于北墙结构层与东墙外抹灰层的连接处、北墙结构层与西墙外抹灰层的连接处、屋顶结构层与东墙外抹灰层的连接处及屋顶结构层与西墙外抹灰层的连接处,即:外穿内穿墙套管14从西墙或东墙的外抹灰层穿过北墙的外抹灰层和保温层进入北墙(或屋顶)的结构层中。外穿内穿墙套管14具有三层结构,内层为防挤压橡胶管套层14-1,中间层为金属钢管层14-2,外层为保温层14-3。外穿内穿墙套管14内层防挤压橡胶管套层14-1包覆北墙结构层与东墙外抹灰层的连接处、北墙结构层与西墙外抹灰层的连接处、屋顶结构层与东墙外抹灰层的连接处及屋顶结构层与西墙外抹灰层的连接处的连接管路及冷凝段分汽器4的每个蒸汽出口或冷凝段集液器6的液体进口。Since the evaporation section pipeline of the south wall is located in the outer plastering layer outside the thermal insulation layer, the evaporation
所述环路热管系统中充入的相变工质,可为醇类(如乙醇、丙酮等)、空调用制冷剂(如R22、R134a、R410a等)或自然工质(如水、二氧化碳等)。相变工质的充入比例(充入体积/环路热管系统蒸发段体积)为20-150%。The phase change working fluid charged in the loop heat pipe system can be alcohols (such as ethanol, acetone, etc.), refrigerants for air conditioning (such as R22, R134a, R410a, etc.) or natural working fluids (such as water, carbon dioxide, etc.) . The charging ratio of the phase change working medium (charged volume/volume of the evaporation section of the loop heat pipe system) is 20-150%.
所述非透光墙体向阳面的外抹灰层或边坡面层优选为深色建筑材料,并添加金属粉末、石墨等添加剂,添加剂占外抹灰层或边坡面层材料组成的比例按重量百分比小于0.25%,表面太阳辐射热吸收系数大于0.5。The outer plastering layer or the slope surface layer on the sunny side of the non-translucent wall body is preferably a dark building material, and additives such as metal powder and graphite are added, and the additives account for the proportion of the material composition of the outer plastering layer or the slope surface layer. The weight percentage is less than 0.25%, and the surface solar radiation heat absorption coefficient is greater than 0.5.
所述环路热管系统中,蒸发段1的管体沿流动方向坡度范围为+0.5%至+5.0%,冷凝段5的管体沿流动方向坡度范围为-0.5%至-5.0%。In the loop heat pipe system, the slope of the tube body of the evaporation section 1 along the flow direction ranges from +0.5% to +5.0%, and the slope range of the tube body of the
所述环路热管系统的蒸发段和冷凝段嵌管材料可为圆形或多边形金属或非金属管道,表面可嵌入针状或片状翅片,等效管径范围为5-25mm,管间距范围为100-300毫米。The evaporating section and condensing section of the loop heat pipe system can be made of circular or polygonal metal or non-metallic pipes, the surface can be embedded with needle-shaped or sheet-shaped fins, the equivalent pipe diameter is in the range of 5-25mm, and the distance between pipes is 5-25mm. The range is 100-300 mm.
本实用新型的一体化非透光墙体热激活节能建筑系统采暖季工作模式如下:冬季白天,南墙10外抹灰层、南侧边坡面层12在太阳辐射作用下不断积聚热量并逐渐升温。此时,南墙相比北墙温升较为明显,南墙与北墙之间传热温差逐渐增加。而对于传统建筑围护结构中,由于南墙外抹灰层置于外保温层以外,因此这部分热量基本未被有效利用即散失在周围环境中。本实用新型的热激活建筑系统则充分利用这一未被有效利用的低品位可再生能源。由于受到南墙外抹灰层、南墙边坡面层的加热,蒸发段1中的工质受热相变蒸发成为汽态工质,并积聚在环路热管系统蒸发段出口处的蒸发段集汽器2内以及蒸汽上升段3内。当南北墙温差达到一定值时(即相变力完全可以克服管路循环流动阻力时),汽态工质将携带热量并经蒸发段集汽器2、汽体上升管3以及冷凝段分汽器4进入环路热管冷凝段5,汽态工质在冷凝段5相变冷凝成为液态工质,并向混凝土层释放热量,达到为北墙加热、降低北墙负荷的目的。相变冷凝后的液态工质经冷凝段集液器6、液体下降段7和蒸发段分液器8进入蒸发段1,完成工质流动循环。The heating season working mode of the integrated non-translucent wall heat-activated energy-saving building system of the present invention is as follows: during the daytime in winter, the outer plastering layer of the
综上所述,本实用新型的一体化非透光墙体热激活节能建筑系统整个循环过程无需任何机械驱动设备,可在冬季有效提升北墙温度,实现了太阳能被动式利用以及利用低技技术手段实现降低背阴面能耗的目的。To sum up, the whole cycle process of the integrated non-translucent wall thermally activated energy-saving building system of the present invention does not require any mechanical drive equipment, can effectively increase the temperature of the north wall in winter, and realizes the passive utilization of solar energy and the use of low-tech technical means. To achieve the purpose of reducing the energy consumption of the backside.
以上所述仅是本实用新型的优选实施方式,应当指出的是,对于本技术领域的普通技术人员来说,在不脱离本实用新型原理的前提下,还可以做出若干改进和润饰,这些改进和润饰也应视为本实用新型的保护范围。The above are only the preferred embodiments of the present invention. It should be pointed out that for those skilled in the art, some improvements and modifications can be made without departing from the principles of the present invention. Improvement and modification should also be regarded as the protection scope of the present invention.
Claims (9)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201920338430.2U CN210086550U (en) | 2019-03-15 | 2019-03-15 | Integrated non-light-transmitting wall thermal activation energy-saving building system |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201920338430.2U CN210086550U (en) | 2019-03-15 | 2019-03-15 | Integrated non-light-transmitting wall thermal activation energy-saving building system |
Publications (1)
Publication Number | Publication Date |
---|---|
CN210086550U true CN210086550U (en) | 2020-02-18 |
Family
ID=69471945
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201920338430.2U Expired - Fee Related CN210086550U (en) | 2019-03-15 | 2019-03-15 | Integrated non-light-transmitting wall thermal activation energy-saving building system |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN210086550U (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109853774A (en) * | 2019-03-15 | 2019-06-07 | 天津商业大学 | A kind of non-transparent wall hot activation energy saving building system of integration |
CN111895832A (en) * | 2020-08-18 | 2020-11-06 | 同济大学 | A combined heat pipe system and a building structure for its application |
-
2019
- 2019-03-15 CN CN201920338430.2U patent/CN210086550U/en not_active Expired - Fee Related
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109853774A (en) * | 2019-03-15 | 2019-06-07 | 天津商业大学 | A kind of non-transparent wall hot activation energy saving building system of integration |
CN111895832A (en) * | 2020-08-18 | 2020-11-06 | 同济大学 | A combined heat pipe system and a building structure for its application |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN108487492B (en) | Composite wall for passive ultra-low energy buildings | |
CN206514380U (en) | One kind utilizes solar energy, air energy, soil source heat pump coupling heating system | |
CN108317652A (en) | Solar heat collection ventilation system for passive house | |
CN203323422U (en) | Building integrated energy storage type solar gravity assisted heat pipe and heat pump heating supply system | |
CN103453577B (en) | Split type plate type solar heat pump heat collector and its control method | |
CN101761998A (en) | Embedded pipeline air-conditioning system of envelop enclosure and control method thereof | |
CN102383504A (en) | Hot tube embedding type intelligent heat exchange wall body | |
CN108870602A (en) | Solar energy optical-thermal, photovoltaic and air conditioner integrated system | |
CN111706945A (en) | A passive thermally activated building system for ultra-low energy consumption buildings | |
CN210086550U (en) | Integrated non-light-transmitting wall thermal activation energy-saving building system | |
CN104613531B (en) | Separate heat pipe panel solar indoor heating system | |
CN104296229A (en) | Separated solar heat pipe heating and hot water supply device and method thereof | |
CN104501455A (en) | Combined heating and cooling solar-assisted heat pump system | |
CN202927948U (en) | Wall-mounted flat-plate solar heating device with separated heat pipes | |
CN104776622B (en) | External channel set hot vaporizer and the solar water heater with the collection hot vaporizer | |
CN202254392U (en) | Vacuum pipe solar thermal collector with thermal storage function | |
CN210086515U (en) | A passive non-transparent wall energy-saving building system | |
CN109853774A (en) | A kind of non-transparent wall hot activation energy saving building system of integration | |
CN210089466U (en) | A heat exchange unit and a light-transmitting enclosure structure | |
CN216693691U (en) | Solar heat pipe wall body radiation heating device | |
CN110762598A (en) | Novel warm braw heating system who combines solar energy | |
CN205980441U (en) | Photovoltaic curtain wall and waste heat heat pump utilize system based on building envelope | |
CN206176762U (en) | Hot transmission type does not have compressor solar heat pump water heater | |
CN204678723U (en) | External channel set hot vaporizer and there is the solar water heater of this thermal-arrest evaporimeter | |
CN208154693U (en) | Solar heat collection ventilation system for passive house |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
GR01 | Patent grant | ||
GR01 | Patent grant | ||
CF01 | Termination of patent right due to non-payment of annual fee | ||
CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20200218 Termination date: 20210315 |