CN208207047U - Double resistance multi-channel type high voltage direct current photoelectricity flow measuring systems - Google Patents
Double resistance multi-channel type high voltage direct current photoelectricity flow measuring systems Download PDFInfo
- Publication number
- CN208207047U CN208207047U CN201820619763.8U CN201820619763U CN208207047U CN 208207047 U CN208207047 U CN 208207047U CN 201820619763 U CN201820619763 U CN 201820619763U CN 208207047 U CN208207047 U CN 208207047U
- Authority
- CN
- China
- Prior art keywords
- optical fiber
- analog
- conversion module
- voltage
- digital conversion
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- 230000005622 photoelectricity Effects 0.000 title abstract 2
- 238000006243 chemical reaction Methods 0.000 claims abstract description 76
- 230000003287 optical effect Effects 0.000 claims abstract description 40
- 239000013307 optical fiber Substances 0.000 claims description 113
- 238000004891 communication Methods 0.000 claims description 15
- 238000005259 measurement Methods 0.000 claims description 15
- 230000005540 biological transmission Effects 0.000 abstract description 4
- 239000000835 fiber Substances 0.000 abstract 8
- 230000001052 transient effect Effects 0.000 abstract 1
- 238000000691 measurement method Methods 0.000 description 5
- 238000004519 manufacturing process Methods 0.000 description 2
- 238000000034 method Methods 0.000 description 2
- 238000010276 construction Methods 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 230000005674 electromagnetic induction Effects 0.000 description 1
- 238000004880 explosion Methods 0.000 description 1
- 238000007689 inspection Methods 0.000 description 1
- 238000009413 insulation Methods 0.000 description 1
- 238000012423 maintenance Methods 0.000 description 1
- 230000007257 malfunction Effects 0.000 description 1
- 238000013024 troubleshooting Methods 0.000 description 1
Landscapes
- Measurement Of Current Or Voltage (AREA)
Abstract
Description
技术领域technical field
本实用新型涉及直流输电电力设备维护技术领域,具体地指一种双电阻多通道型高压直流光电流测量系统。The utility model relates to the technical field of DC transmission power equipment maintenance, in particular to a dual-resistor and multi-channel high-voltage DC photocurrent measurement system.
背景技术Background technique
随着我国经济的快速发展,超高压、特高压直流输电工程大量投入运行,电流测量方法在工程中也大量投入运行。而光电流测量方法也随着智能变电站及集控中心的建设而大量普及,方便维护、造价低、简单实用的新型电阻型高压直流光电流测量方法也随之产生。但现有电阻型高压直流光电流测量方式均采用单电阻形式,且没有冗余模块,在实际应用中体现出弱鲁棒性,导致其存在可靠性低等问题。一旦出现此类电流测量失效的情况,将导致保护及控制装置无法动作的后果。With the rapid development of my country's economy, a large number of EHV and UHV DC transmission projects have been put into operation, and current measurement methods have also been put into operation in large quantities. With the construction of intelligent substations and centralized control centers, the photocurrent measurement method has also become popular, and a new resistance-type high-voltage DC photocurrent measurement method that is easy to maintain, low in cost, simple and practical has also emerged. However, the existing resistive high-voltage DC photocurrent measurement methods all adopt the form of a single resistor, and there is no redundant module, which shows weak robustness in practical applications, resulting in problems such as low reliability. Once such a current measurement failure occurs, the protection and control device will fail to operate.
实用新型内容Utility model content
本实用新型的目的就是要提供一种双电阻多通道型高压直流光电流测量系统,该系统能准确测量出瞬时电流的变化及电流波形的畸变情况。The purpose of this utility model is to provide a double-resistor multi-channel high-voltage direct current photocurrent measurement system, which can accurately measure the change of instantaneous current and the distortion of current waveform.
为实现此目的,本实用新型所设计的一种双电阻多通道型高压直流光电流测量系统,其特征在于:它包括第一模数转换模块、第二模数转换模块、第三模数转换模块、第四模数转换模块、高压直流光电流信号接收计算设备、第一光纤收发器、第二光纤收发器、第三光纤收发器、第四光纤收发器、第五光纤收发器、第六光纤收发器、第七光纤收发器、第八光纤收发器、串联在高压直流线路的一次高压回路中的第一电阻和第二电阻,其中,第一模数转换模块、第二模数转换模块、第三模数转换模块和第四模数转换模块的电压模拟量测量端分别与串联后的第一电阻和第二电阻并联,第一模数转换模块的数字信号输出端连接第一光纤收发器的数字信号输入端,第一光纤收发器的光信号输出端通过光纤连接第二光纤收发器的光信号输入端,第二光纤收发器的数字信号输出端连接高压直流光电流信号接收计算设备的第一数字信号通信接口;In order to achieve this goal, a dual-resistance multi-channel high-voltage DC photocurrent measurement system designed by the utility model is characterized in that it includes a first analog-to-digital conversion module, a second analog-to-digital conversion module, and a third analog-to-digital conversion module. module, the fourth analog-to-digital conversion module, high-voltage DC photocurrent signal receiving and computing equipment, the first optical fiber transceiver, the second optical fiber transceiver, the third optical fiber transceiver, the fourth optical fiber transceiver, the fifth optical fiber transceiver, the sixth The optical fiber transceiver, the seventh optical fiber transceiver, the eighth optical fiber transceiver, the first resistor and the second resistor connected in series in the primary high-voltage circuit of the high-voltage DC line, wherein the first analog-to-digital conversion module and the second analog-to-digital conversion module , the voltage analog measurement terminals of the third analog-to-digital conversion module and the fourth analog-to-digital conversion module are respectively connected in parallel with the first resistor and the second resistor connected in series, and the digital signal output terminal of the first analog-to-digital conversion module is connected to the first optical fiber transceiver The digital signal input end of the first optical fiber transceiver, the optical signal output end of the first optical fiber transceiver is connected to the optical signal input end of the second optical fiber transceiver through an optical fiber, and the digital signal output end of the second optical fiber transceiver is connected to a high voltage DC photocurrent signal receiving computing device The first digital signal communication interface;
第二模数转换模块的数字信号输出端连接第三光纤收发器的数字信号输入端,第三光纤收发器的光信号输出端通过光纤连接第四光纤收发器的光信号输入端,第四光纤收发器的数字信号输出端连接高压直流光电流信号接收计算设备的第二数字信号通信接口;The digital signal output end of the second analog-to-digital conversion module is connected to the digital signal input end of the third optical fiber transceiver, the optical signal output end of the third optical fiber transceiver is connected to the optical signal input end of the fourth optical fiber transceiver through an optical fiber, and the fourth optical fiber The digital signal output end of the transceiver is connected to the second digital signal communication interface of the high-voltage DC photocurrent signal receiving computing device;
第三模数转换模块的数字信号输出端连接第五光纤收发器的数字信号输入端,第五光纤收发器的光信号输出端通过光纤连接第六光纤收发器的光信号输入端,第六光纤收发器的数字信号输出端连接高压直流光电流信号接收计算设备的第三数字信号通信接口;The digital signal output end of the third analog-to-digital conversion module is connected to the digital signal input end of the fifth optical fiber transceiver, the optical signal output end of the fifth optical fiber transceiver is connected to the optical signal input end of the sixth optical fiber transceiver through an optical fiber, and the sixth optical fiber The digital signal output end of the transceiver is connected to the third digital signal communication interface of the high voltage DC photocurrent signal receiving computing device;
第四模数转换模块的数字信号输出端连接第七光纤收发器的数字信号输入端,第七光纤收发器的光信号输出端通过光纤连接第八光纤收发器的光信号输入端,第八光纤收发器的数字信号输出端连接高压直流光电流信号接收计算设备的第四数字信号通信接口。The digital signal output end of the fourth analog-to-digital conversion module is connected to the digital signal input end of the seventh optical fiber transceiver, the optical signal output end of the seventh optical fiber transceiver is connected to the optical signal input end of the eighth optical fiber transceiver through an optical fiber, and the eighth optical fiber The digital signal output end of the transceiver is connected to the fourth digital signal communication interface of the high-voltage direct current photocurrent signal receiving computing device.
本实用新型的双电阻多通道型高压直流光电流测量系统,利用电压u=电流i*电阻r的基本原理,通过将一次电流转化为电压模型,并利用光纤送至高压直流光电流信号接收计算设备。因电阻固定所以电压u的大小随随电流的变化而成正比变化,并能反应出瞬时电流的变化及电流波形的畸变情况。The dual-resistor and multi-channel high-voltage DC photocurrent measurement system of the present utility model utilizes the basic principle of voltage u=current i*resistance r, converts the primary current into a voltage model, and sends it to the high-voltage DC photocurrent signal to receive and calculate by optical fiber equipment. Because the resistance is fixed, the size of the voltage u changes proportionally with the change of the current, and can reflect the change of the instantaneous current and the distortion of the current waveform.
本实用新型的优势有:The utility model has the advantages of:
(1)该实用新型型与传统的采用电磁型电流互感器的电流测量方式相比,不存在电磁饱和现象,更能够准确反映出故障电流波形的变化,传统的电磁型电流互感器存在区外故障时会导致电磁线圈饱和,引起差动保护误动作;(1) Compared with the traditional current measurement method using electromagnetic current transformer, this utility model does not have electromagnetic saturation phenomenon, and can more accurately reflect the change of fault current waveform. The traditional electromagnetic current transformer exists outside the area Failure will lead to electromagnetic coil saturation, causing differential protection malfunction;
(2)本实用新型因使用光纤作为传输媒介,不存在一次绝缘闪络的缺陷,不存在漏油、漏气及电流互感器爆炸等故障;(2) Because the utility model uses optical fiber as the transmission medium, there is no defect of an insulation flashover, and there are no failures such as oil leakage, air leakage, and current transformer explosion;
(3)该实用新型设有冗余备用设备,故障处理时不需要进行一次设备停电处理,大大的降低了一次设备停电次数。(3) The utility model is equipped with redundant backup equipment, and it is not necessary to perform a power outage of the equipment when troubleshooting, which greatly reduces the number of power outages of the equipment.
附图说明Description of drawings
图1为本实用新型的结构示意图;Fig. 1 is the structural representation of the utility model;
图中,1—第一电阻、2—第二电阻、3—高压直流线路的一次高压回路、4—第一模数转换模块、5—第二模数转换模块、6—第三模数转换模块、7—第四模数转换模块、8—高压直流光电流信号接收计算设备、9—第一光纤收发器、10—第二光纤收发器、11—第三光纤收发器、12—第四光纤收发器、13—第五光纤收发器、14—第六光纤收发器、15—第七光纤收发器、16—第八光纤收发器In the figure, 1—the first resistor, 2—the second resistor, 3—the primary high voltage circuit of the high voltage DC line, 4—the first analog-to-digital conversion module, 5—the second analog-to-digital conversion module, 6—the third analog-to-digital conversion Module, 7—the fourth analog-to-digital conversion module, 8—high voltage DC photocurrent signal receiving and computing equipment, 9—the first optical fiber transceiver, 10—the second optical fiber transceiver, 11—the third optical fiber transceiver, 12—the fourth Optical fiber transceiver, 13—fifth optical fiber transceiver, 14—sixth optical fiber transceiver, 15—seventh optical fiber transceiver, 16—eighth optical fiber transceiver
具体实施方式Detailed ways
以下结合附图和具体实施例对本实用新型作进一步的详细说明:Below in conjunction with accompanying drawing and specific embodiment the utility model is described in further detail:
由于直流电流没有交变效应,无法形成电磁感应,无法直接测量电流,因此本实用新型设计的一种双电阻多通道型高压直流光电流测量系统,如图1所示,它包括第一模数转换模块4、第二模数转换模块5、第三模数转换模块6、第四模数转换模块7、高压直流光电流信号接收计算设备8、第一光纤收发器9、第二光纤收发器10、第三光纤收发器11、第四光纤收发器12、第五光纤收发器13、第六光纤收发器14、第七光纤收发器15、第八光纤收发器16、串联在高压直流线路的一次高压回路3中的第一电阻1和第二电阻2(高压直流线路的一次高压回路3的对地电压一般为±400kV,±500kV,± 800kV,±1100kV,第一、二电阻两端电压为0~20mV),其中,第一模数转换模块4、第二模数转换模块5、第三模数转换模块6和第四模数转换模块7的电压模拟量测量端分别与串联后的第一电阻1 和第二电阻2并联,第一模数转换模块4的数字信号输出端连接第一光纤收发器9的数字信号输入端,第一光纤收发器9的光信号输出端通过光纤连接第二光纤收发器10的光信号输入端,第二光纤收发器10的数字信号输出端连接高压直流光电流信号接收计算设备8 的第一数字信号通信接口;Since the DC current has no alternating effect, electromagnetic induction cannot be formed, and the current cannot be directly measured. Therefore, a dual-resistor multi-channel high-voltage DC photocurrent measurement system designed by the utility model, as shown in Figure 1, includes the first modulus Conversion module 4, second analog-to-digital conversion module 5, third analog-to-digital conversion module 6, fourth analog-to-digital conversion module 7, high-voltage DC photocurrent signal receiving and computing equipment 8, first optical fiber transceiver 9, second optical fiber transceiver 10. The third optical fiber transceiver 11, the fourth optical fiber transceiver 12, the fifth optical fiber transceiver 13, the sixth optical fiber transceiver 14, the seventh optical fiber transceiver 15, the eighth optical fiber transceiver 16, and the The first resistor 1 and the second resistor 2 in the primary high-voltage circuit 3 (the ground voltage of the primary high-voltage circuit 3 of the high-voltage DC line is generally ±400kV, ±500kV, ±800kV, ±1100kV, the voltage at both ends of the first and second resistors 0-20mV), wherein, the voltage analog measurement terminals of the first analog-to-digital conversion module 4, the second analog-to-digital conversion module 5, the third analog-to-digital conversion module 6 and the fourth analog-to-digital conversion module 7 are respectively connected to the serially connected The first resistor 1 and the second resistor 2 are connected in parallel, the digital signal output end of the first analog-to-digital conversion module 4 is connected to the digital signal input end of the first optical fiber transceiver 9, and the optical signal output end of the first optical fiber transceiver 9 is connected through an optical fiber The optical signal input end of the second optical fiber transceiver 10, the digital signal output end of the second optical fiber transceiver 10 is connected to the first digital signal communication interface of the high voltage DC photocurrent signal receiving computing device 8;
第二模数转换模块5的数字信号输出端连接第三光纤收发器11 的数字信号输入端,第三光纤收发器11的光信号输出端通过光纤连接第四光纤收发器12的光信号输入端,第四光纤收发器12的数字信号输出端连接高压直流光电流信号接收计算设备8的第二数字信号通信接口;The digital signal output end of the second analog-to-digital conversion module 5 is connected to the digital signal input end of the third optical fiber transceiver 11, and the optical signal output end of the third optical fiber transceiver 11 is connected to the optical signal input end of the fourth optical fiber transceiver 12 by an optical fiber , the digital signal output end of the fourth optical fiber transceiver 12 is connected to the second digital signal communication interface of the high-voltage DC photocurrent signal receiving computing device 8;
第三模数转换模块6的数字信号输出端连接第五光纤收发器13 的数字信号输入端,第五光纤收发器13的光信号输出端通过光纤连接第六光纤收发器14的光信号输入端,第六光纤收发器14的数字信号输出端连接高压直流光电流信号接收计算设备8的第三数字信号通信接口;The digital signal output end of the third analog-to-digital conversion module 6 is connected to the digital signal input end of the fifth optical fiber transceiver 13, and the optical signal output end of the fifth optical fiber transceiver 13 is connected to the optical signal input end of the sixth optical fiber transceiver 14 by an optical fiber The digital signal output end of the sixth optical fiber transceiver 14 is connected to the third digital signal communication interface of the high voltage DC photocurrent signal receiving computing device 8;
第四模数转换模块7的数字信号输出端连接第七光纤收发器15 的数字信号输入端,第七光纤收发器15的光信号输出端通过光纤连接第八光纤收发器16的光信号输入端,第八光纤收发器16的数字信号输出端连接高压直流光电流信号接收计算设备8的第四数字信号通信接口。The digital signal output end of the fourth analog-to-digital conversion module 7 is connected to the digital signal input end of the seventh optical fiber transceiver 15, and the optical signal output end of the seventh optical fiber transceiver 15 is connected to the optical signal input end of the eighth optical fiber transceiver 16 through an optical fiber , the digital signal output end of the eighth optical fiber transceiver 16 is connected to the fourth digital signal communication interface of the high voltage DC photocurrent signal receiving computing device 8 .
上述技术方案中,所述高压直流光电流信号接收计算设备8用于根据接收到的每路数字信号并结合第一电阻1和第二电阻2的阻值分别计算出对应的高压直流线路的一次高压回路电流值,且当计算的所有高压直流线路的一次高压回路电流值相等时,高压直流光电流信号接收计算设备8计算的高压直流线路的一次高压回路电流值为正确值。In the above technical solution, the high-voltage direct-current photocurrent signal receiving and calculating device 8 is used to calculate the corresponding high-voltage direct-current line according to the received digital signal of each channel and the resistance values of the first resistor 1 and the second resistor 2 respectively. The high-voltage loop current value, and when the calculated primary high-voltage loop current values of all high-voltage DC lines are equal, the primary high-voltage loop current value of the high-voltage DC line calculated by the high-voltage DC photocurrent signal receiving computing device 8 is a correct value.
上述技术方案中,第一电阻1和第二电阻2总的电阻值由测量范围确定,使最大电流值乘以总电阻值等于20mV,比如最大电流时 3000A,第一电阻1加第二电阻2的阻值只要等于6.66μΩ即可, 3000A乘以6.66μΩ等于20mV,上述20mV值不是固定,是根据具体工程进行选择。In the above technical solution, the total resistance value of the first resistor 1 and the second resistor 2 is determined by the measurement range, so that the maximum current value multiplied by the total resistance value is equal to 20mV, for example, when the maximum current is 3000A, the first resistor 1 plus the second resistor 2 As long as the resistance value is equal to 6.66μΩ, 3000A multiplied by 6.66μΩ is equal to 20mV. The above 20mV value is not fixed and is selected according to the specific project.
上述技术方案中,高压直流光电流信号接收计算设备8可以采用ABB公司生产的SG101型、SG102型或南瑞公司生产的 PCS-221JA型。In the above technical solution, the high-voltage direct current photocurrent signal receiving and computing device 8 can be SG101 or SG102 produced by ABB or PCS-221JA produced by NARI.
上述计算方案中,同时使用串联双电阻模式,可实现双电阻串联互补偿优势,提高测量可靠性;该第一、二电阻的总电阻值比较小,只有10-6欧姆级别,精度要求比较高,制造困难,由于电阻制造工艺的原因,双电阻相加达到一个要求的高精度阻值的难度远小于单个电阻达到高精度阻值的难度低。In the above calculation scheme, the dual-resistor mode in series is used at the same time, which can realize the advantages of dual-resistance series mutual compensation and improve measurement reliability; the total resistance value of the first and second resistors is relatively small, only 10 -6 ohm level, and the accuracy requirement is relatively high , Manufacturing is difficult. Due to the resistance manufacturing process, the difficulty of adding two resistors to achieve a required high-precision resistance is much less than that of a single resistor to achieve high-precision resistance.
上述技术方案中,所述第一模数转换模块4、第二模数转换模块 5、第三模数转换模块6和第四模数转换模块7其中之一为冗余的模数转换模块。In the above technical solution, one of the first analog-to-digital conversion module 4, the second analog-to-digital conversion module 5, the third analog-to-digital conversion module 6 and the fourth analog-to-digital conversion module 7 is a redundant analog-to-digital conversion module.
上述技术方案中,所述第一模数转换模块4、第二模数转换模块 5、第三模数转换模块6和第四模数转换模块7的数字信号输出端输出的均为电压信号。In the above technical solution, the digital signal output terminals of the first analog-to-digital conversion module 4, the second analog-to-digital conversion module 5, the third analog-to-digital conversion module 6 and the fourth analog-to-digital conversion module 7 output voltage signals.
一种上述系统的电流测量方法,它包括如下步骤:A current measuring method of the above-mentioned system, it comprises the steps:
步骤1:高压直流线路的一次高压回路3的电流通过第一电阻1 和第二电阻2转换成对应的电压量,并分别由第一模数转换模块4、第二模数转换模块5、第三模数转换模块6的电压模拟量测量端进行采集;Step 1: The current of the primary high-voltage loop 3 of the high-voltage DC line is converted into a corresponding voltage through the first resistor 1 and the second resistor 2, and is respectively converted by the first analog-to-digital conversion module 4, the second analog-to-digital conversion module 5, and the second analog-to-digital conversion module. The voltage analog measurement terminals of the three analog-to-digital conversion modules 6 are collected;
步骤2:第一模数转换模块4、第二模数转换模块5、第三模数转换模块6分别将采集到的电压模拟量转换成电压数字量;Step 2: the first analog-to-digital conversion module 4, the second analog-to-digital conversion module 5, and the third analog-to-digital conversion module 6 respectively convert the collected voltage analog quantities into voltage digital quantities;
步骤3:第一光纤收发器9将第一模数转换模块4输出的电压数字量转换成对应的第一路电压光信号,第一路电压光信号由光纤传输到第二光纤收发器10中,第二光纤收发器10将第一路电压光信号转换成对应的第一路电压数字信号,第二光纤收发器10将第一路电压数字信号传输给高压直流光电流信号接收计算设备8的第一路数字信号通信端;Step 3: The first optical fiber transceiver 9 converts the voltage digital quantity output by the first analog-to-digital conversion module 4 into a corresponding first voltage optical signal, and the first voltage optical signal is transmitted to the second optical fiber transceiver 10 by an optical fiber , the second optical fiber transceiver 10 converts the first voltage optical signal into a corresponding first voltage digital signal, and the second optical fiber transceiver 10 transmits the first voltage digital signal to the high voltage DC photocurrent signal receiving computing device 8 The first digital signal communication terminal;
第三光纤收发器11将第二模数转换模块5输出的电压数字量转换成对应的第二路电压光信号,第二路电压光信号由光纤传输到第四光纤收发器12中,第四光纤收发器12将第二路电压光信号转换成对应的第二路电压数字信号,第四光纤收发器12将第二路电压数字信号传输给高压直流光电流信号接收计算设备8的第二路数字信号通信端;The third optical fiber transceiver 11 converts the voltage digital quantity output by the second analog-to-digital conversion module 5 into a corresponding second voltage optical signal, and the second voltage optical signal is transmitted to the fourth optical fiber transceiver 12 by an optical fiber. The optical fiber transceiver 12 converts the second voltage optical signal into a corresponding second voltage digital signal, and the fourth optical fiber transceiver 12 transmits the second voltage digital signal to the second high voltage DC photocurrent signal receiving computing device 8 Digital signal communication terminal;
第五光纤收发器13将第三模数转换模块6输出的电压数字量转换成对应的第三路电压光信号,第三路电压光信号由光纤传输到第六光纤收发器14中,第六光纤收发器14将第三路电压光信号转换成对应的第三路电压数字信号,第六光纤收发器14将第三路电压数字信号传输给高压直流光电流信号接收计算设备8的第三路数字信号通信端;The fifth optical fiber transceiver 13 converts the voltage digital quantity output by the third analog-to-digital conversion module 6 into a corresponding third voltage optical signal, and the third voltage optical signal is transmitted to the sixth optical fiber transceiver 14 by an optical fiber. The optical fiber transceiver 14 converts the third voltage optical signal into a corresponding third voltage digital signal, and the sixth optical fiber transceiver 14 transmits the third voltage digital signal to the third high voltage DC photocurrent signal receiving computing device 8 Digital signal communication terminal;
步骤4:高压直流光电流信号接收计算设备8根据接收到的第一路电压数字信号、第二路电压数字信号和第三路电压数字信号,并结合第一电阻1和第二电阻2的阻值分别计算出对应的三个高压直流线路的一次高压回路电流值,当计算的三个高压直流线路的一次高压回路电流值相等时(该设计使得本实用新型具有自检功能,提高了电流测量的准确性),高压直流光电流信号接收计算设备8计算的高压直流线路的一次高压回路电流值为正确值;Step 4: The high-voltage DC photocurrent signal receiving computing device 8 is based on the received first voltage digital signal, the second voltage digital signal and the third voltage digital signal, and combines the resistance of the first resistor 1 and the second resistor 2 Calculate the primary high-voltage loop current values of the corresponding three high-voltage direct current lines respectively, when the primary high-voltage loop current values of the three high-voltage direct current lines calculated are equal (this design makes the utility model have a self-check function, which improves the current measurement accuracy), the primary high-voltage loop current value of the high-voltage direct current line calculated by the high-voltage direct current photocurrent signal receiving computing device 8 is a correct value;
步骤5:当计算的三个高压直流线路的一次高压回路电流值不相等时,分别对第一路电压数字信号、第二路电压数字信号和第三路电压数字信号对应的电压采集支路进行故障检查,当发现其中一路故障时,断开故障的电压采集支路,将第四模数转换模块7、第七光纤收发器15和第八光纤收发器16作为冗余备用电压采集支路接入系统,替代故障的电压采集支路,当根据此时的三路电压数字信号计算的三个高压直流线路的一次高压回路电流值相等时,高压直流光电流信号接收计算设备8计算的高压直流线路的一次高压回路电流值为正确值。Step 5: When the calculated primary high-voltage circuit current values of the three high-voltage direct current lines are not equal, respectively conduct voltage acquisition branches corresponding to the first voltage digital signal, the second voltage digital signal, and the third voltage digital signal Fault inspection, when one of the faults is found, disconnect the faulty voltage acquisition branch, and connect the fourth analog-to-digital conversion module 7, the seventh optical fiber transceiver 15 and the eighth optical fiber transceiver 16 as redundant backup voltage acquisition branches into the system to replace the faulty voltage acquisition branch. When the primary high-voltage loop current values of the three high-voltage direct current lines calculated according to the three-way voltage digital signals at this time are equal, the high-voltage direct current signal receiving calculation device 8 calculates the high-voltage direct current The primary high-voltage loop current value of the line is the correct value.
本说明书未作详细描述的内容属于本领域专业技术人员公知的现有技术。The content not described in detail in this specification belongs to the prior art known to those skilled in the art.
Claims (4)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201820619763.8U CN208207047U (en) | 2018-04-27 | 2018-04-27 | Double resistance multi-channel type high voltage direct current photoelectricity flow measuring systems |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201820619763.8U CN208207047U (en) | 2018-04-27 | 2018-04-27 | Double resistance multi-channel type high voltage direct current photoelectricity flow measuring systems |
Publications (1)
Publication Number | Publication Date |
---|---|
CN208207047U true CN208207047U (en) | 2018-12-07 |
Family
ID=64522559
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201820619763.8U Expired - Fee Related CN208207047U (en) | 2018-04-27 | 2018-04-27 | Double resistance multi-channel type high voltage direct current photoelectricity flow measuring systems |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN208207047U (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN108646076A (en) * | 2018-04-27 | 2018-10-12 | 国家电网公司 | Double resistance multi-channel type high voltage direct current photoelectricity flow measuring systems and method |
-
2018
- 2018-04-27 CN CN201820619763.8U patent/CN208207047U/en not_active Expired - Fee Related
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN108646076A (en) * | 2018-04-27 | 2018-10-12 | 国家电网公司 | Double resistance multi-channel type high voltage direct current photoelectricity flow measuring systems and method |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN106771645B (en) | Capacitance type potential transformer dielectric loss and capacitance on-line monitoring method and monitoring system | |
CN101726715A (en) | Online calibration method for error characteristics of voltage transformer for power system | |
CN102879697A (en) | Optimized power transformer testing method | |
CN106199118B (en) | Capacitor voltage-dividing type zero sequence voltage transformer with power output | |
CN105842510A (en) | Electronic transformer with self-calibration function and self-calibration method thereof | |
CN104330668B (en) | Electronic mutual inductor redundant apparatus | |
CN201438213U (en) | Electronic current transformer polarity measurement system | |
CN112904260B (en) | Two-stage calibration method for direct-current voltage divider | |
CN104698311A (en) | System and method for electrically detecting DC arrester of DC circuit | |
CN104535957A (en) | Measuring accuracy comparison device of intelligent substation | |
CN102445583B (en) | Voltage signal monitoring device of power energy quality monitoring device and circuit as well as application thereof | |
CN101614798A (en) | Polarity detection system of electronic transformer | |
CN208207047U (en) | Double resistance multi-channel type high voltage direct current photoelectricity flow measuring systems | |
CN203133266U (en) | Digital testing and evaluation platform used for optical-fiber-type current transformer | |
CN204945342U (en) | The differential proving installation in transforming plant DC power-supply system loop | |
CN108646076A (en) | Double resistance multi-channel type high voltage direct current photoelectricity flow measuring systems and method | |
CN107202937A (en) | A kind of submarine cable parameter detection method | |
CN207516534U (en) | A kind of transformer station direct current system punching current transformer, which does not have a power failure, replaces capacity checking device | |
CN102749607A (en) | Test platform for electronic current transformer | |
CN116299139A (en) | High-voltage current transformer error online monitoring method and system | |
CN213934005U (en) | Device for measuring current signal in wide range of feeder terminal | |
CN108303668A (en) | The digitized measurement simulator based on three-phase high-voltage electric energy | |
CN114034985A (en) | Power distribution network asymmetric fault in-situ positioning method based on distributed power supply information | |
CN114720936A (en) | Device and method for detecting error of secondary winding of multi-channel mutual inductor without power outage | |
CN201464596U (en) | Electronic transducer polarity detecting system |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
GR01 | Patent grant | ||
GR01 | Patent grant | ||
CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20181207 |
|
CF01 | Termination of patent right due to non-payment of annual fee |